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CHARACTERIZATIONS OF INNER PRODUCT SPACES
BY MEANS OF NORM ONE POINTS

JOSÉ MENDOZA and TIJANI PAKHROU∗

Abstract
Let X be a a real normed linear space of dimension at least three, with unit sphere SX . In this
paper we prove that X is an inner product space if and only if every three point subset of SX has
a Chebyshev center in its convex hull. We also give other characterizations expressed in terms of
centers of three point subsets of SX only. We use in these characterizations Chebyshev centers as
well as Fermat centers and p-centers.

Introduction

Let (X, ‖ · ‖) be a real normed linear space with unit sphere SX. Let x0 be an
element of X and let A be a non-empty bounded subset of X. We write

r(x0, A) = sup{‖y − x0‖ : y ∈ A}
and

r(A) = inf{r(x,A) : x ∈ X}.
The number r(A) is called the Chebyshev radius of A, and we write

Z(A) = {x ∈ X : r(x,A) = r(A)}.
This set (possibly empty) is known as the Chebyshev center set of A. Any
point of Z(A) is said to be a Chebyshev center of A. Note that “Chebyshev
center” denotes a set as well as any point in that set. This should not cause any
confusion.

Given r > 0 we denote by B(x0, r) the closed ball centered at x0 with
radius r , that is,

B(x0, r) = {x ∈ X : ‖x − x0‖ ≤ r}.
Notice that if x0 is a Chebyshev center of A and we take r = r(A), then

A ⊂ B(x0, r).
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In fact, the Chebyshev radius of A, r(A), is the smallest number r ≥ 0 for
which there exists x ∈ X such that

A ⊂ B(x, r).

In [1] Amir gave the following condition as a characterization of inner product
spaces (IPS in short) among real normed linear spaces of dimension at least
three (we keep the number assigned in the book):

(15.14) If a1, a2, a3 are norm one points in X such that r({a1, a2, a3}) = 1,
then 0 is in the convex hull of {a1, a2, a3}.

Since a1, a2, a3 are norm one points, r({a1, a2, a3}) = 1 just means that 0
is Chebyshev center of {a1, a2, a3}. Therefore, we can reformulate (15.14) as
follows:

(15.14’) If a1, a2, a3 are norm one points in X and 0 is a Chebyshev center of
the set {a1, a2, a3}, then 0 is in its convex hull.

However, we have shown in [8] that there is a mistake in Amir’s book:
condition (15.14) (or (15.14’)) does not characterize IPS.

At this point a natural question arises: How must Amir’s condition be mod-
ified to keep its spirit and get a right characterization?

On one hand, Amir’s condition is motivated by the Garkavi-Klee theorem
(see [6], [7] or (15.1) and (15.2) of [1]):

Theorem 1 (Garkavi-Klee). Let X be a real normed linear space of di-
mension at least three. Then X is an IPS if and only if the following condition
holds:

(GK) Every three point subset of X has a Chebyshev center in its convex
hull.

On the other hand, one of the main features of equivalent conditions (15.14)
and (15.14’) is that they are expressed only in terms of norm one points.

With this in mind, we have been looking for conditions involving Chebyshev
centers of sets of three norm one points. That is, we have dealt with Chebyshev
centers of triangles whose vertices are norm one points, or in other words,
triangles inscribed in the unit sphere. We have found two conditions. The first
one is just (15.14’) with an additional requirement, and the second one is just
condition (GK), writing SX instead of X. They are the following:

(A) If a1, a2, a3 are norm one points in X then Z({a1, a2, a3}) is non-
empty, and if 0 is a Chebyshev center of the set {a1, a2, a3}, then 0 is
in its convex hull.
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(GKs) Every three point subset of SX has a Chebyshev center in its convex
hull.

In section 1 (Theorem 1) we show that they are indeed characterizations of
IPS.

Since Chebyshev centers are just particular kinds of centers, it is natural to
consider the preceding conditions for another kinds, too. Let us see this.

Take p ≥ 1. Given a three point set � = {a1, a2, a3} in X, we consider the
function on X,

x �→ rp(x,�) =
( 3∑

i=1

‖ai − x‖p
)1/p

.

Write
Zp(�) = {

z ∈ X : rp(z,�) = inf
x∈X rp(x,�)

}
.

This set (perhaps empty) is the set of p-centers of �. In the case p = 1 the p-
centers are called Fermat centers or Fermat-Torricelli medians of the triangle
�. In the case p = 2 they are sometimes called barycenters.

We consider now conditions analogous to (A) and (GKs) for these centers.

(Ap) If a1, a2, a3 are norm one points in X then Zp({a1, a2, a3}) is non-
empty, and if 0 is a p-center of the set {a1, a2, a3}, then 0 is in its
convex hull.

(GKs
p) Every three point subset of SX has a p-center in its convex hull.

At this point, the following question arises: Do these conditions characterize
IPS (among real normed linear spaces of dimension at least three)?

We devote the other two sections of this paper (sections 2 and 3) to this
question. We show that in the case p = 1, that is, for Fermat centers, the
answer is affirmative (section 2). Concerning the case p > 1, we prove that
the answer is also affirmative for condition (GKs

p) (section 3), but we have not
been able to get an answer for condition (Ap).

While section 1 based on the Garkavi-Klee theorem, the main tool in sec-
tions 2 and 3 is a theorem recently proved by Benítez, Fernández and Soriano.
It is the exact analogue to the Garkavi-Klee theorem, with p-centers instead
of Chebyshev centers. The case p > 1 was proved in [2], [3], and the case
p = 1, in [4]. This is the result:

Theorem 2 (Benítez-Fernández-Soriano). Let X be a real normed linear
space of dimension at least three, and let p ≥ 1. Then X is an IPS if and only
if the following condition holds:

(GKp) Every three point subset of X has a p-center in its convex hull.



characterizations of inner product spaces . . . 107

Remark 1. One should notice that with the usual conventions, p-centers
forp = +∞ are just Chebyshev centers. Thus, (A∞)would coincide with (A),
and (GKs

∞), with GKs . With this convention, the preceding theorem holds even
for p = +∞: in this case, it is just the Garkavi-Klee theorem.

Given a set B, we will denote by conv(B) the convex hull of B.

1. Characterizations by means of Chebyshev centers

In order to prove our first theorem we need a couple of lemmas. Of course, a
few pictures would be a help in understanding the meaning and the proofs of
these lemmas.

To avoid trivial situations we will always suppose that the vertices of our
triangles are not on a line, and we will also suppose that the dimension of the
normed linear spaces involved is at least two.

Lemma 1. Let (X, ‖ · ‖) be a real normed linear space, let � = {a1, a2, a3}
be a three point subset ofX and suppose that� has a Chebyshev center s ∈ X.
Then the maximum r(s,�) = max1≤i≤3 ‖ai − s‖ is attained at least at two
points.

Proof. Write r = r(s,�) and suppose, for instance, that ‖s − a1‖ <

‖s − a3‖ = r . We must show that ‖s − a2‖ = ‖s − a3‖ = r . If we assume
‖s−a2‖ < ‖s−a3‖ = r , by the continuity of the norm, there exists s ′ ∈ [s, a3]
such that ‖s ′ − a3‖ < ‖s − a3‖ = r,

‖s ′ − a2‖ < ‖s − a3‖ = r and

‖s ′ − a1‖ < ‖s − a3‖ = r.

Of course, this means r(s ′,�) < r = r(s,�), which contradicts the fact that
s is a Chebyshev center of �.

The following lemma is inspired by Lemma 15.1 of [1].

Lemma 2. Let (X, ‖ · ‖) be a real normed linear space and let � =
{a1, a2, a3} be a three point subset of X such that Z(�) is non-empty. Then at
least one of the following holds:

(a) � = {a1, a2, a3} has a Chebyshev center which is equidistant to the
three points a1, a2, a3.

(b) The triangle � = {a1, a2, a3} has a Chebyshev center in the midpoint of
one of its sides.

Proof. Assume that (a) does not hold. Take s ∈ Z(�) and write r =
r(s,�). By the preceding lemma, we may suppose, without loss of generality,
that ‖s − a1‖ < ‖s − a2‖ = ‖s − a3‖ = r.
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Our aim now is to show that m = 1
2 (a2 + a3) is a Chebyshev center of �. This

will complete the proof.
Notice first that

‖a2 − a3‖ ≤ ‖a2 − s‖ + ‖s − a3‖ = 2r.

Next let us show that ‖a2 − a3‖ = 2r . Assume this is not the case. Then, since
m is the midpoint of the segment [a2, a3], we have

‖m − a2‖ = ‖m − a3‖ < r.

In other words, if we denote by B̊(a, r) the open ball centered at a with radius
r , we have m ∈ B̊(a2, r) ∩ B̊(a3, r). Therefore

[m, s) ⊂ B̊(a2, r) ∩ B̊(a3, r).

Since ‖s − a1‖ < r , there exists s ∈ [m, s) satisfying

‖s − a1‖ < r.

On the other hand, we have s ∈ [m, s) ⊂ B̊(a2, r) ∩ B̊(a3, r). Thus

‖s − a2‖ < r and ‖s − a3‖ < r.

So we have r(s,�) < r = r(s,�), which contradicts the fact that s is a
Chebyshev center of �. This shows that

‖a2 − a3‖ = 2r,

and so
‖m − a2‖ = ‖m − a3‖ = 1

2
‖a2 − a3‖ = r.

Let us now show that m is a Chebyshev center of �. If ‖m − a1‖ ≤ r , this
is clear. Hence we assume ‖m − a1‖ > r , and try to get a contradiction.

The equality ‖a2 − a3‖ = 2r implies that

B(a2, r) ∩ B(a3, r) ⊂ {x ∈ X : ‖x − a2‖ = ‖x − a3‖ = r}.
Therefore, since m and s belong to B(a2, r) ∩ B(a3, r), it follows that

[m, s] ⊂ B(a2, r) ∩ B(a3, r) ⊂ {x ∈ X : ‖x − a2‖ = ‖x − a3‖ = r}.
The function x �→ ‖x − a1‖ takes at m, a value greater than r (‖m − a1‖)
and at s, a value smaller (‖s − a1‖). Therefore (Bolzano’s theorem) at some
point s0 ∈ [m, s], we have ‖s0 − a1‖ = r . But [m, s] ⊂ {x ∈ X : ‖x − a2‖ =



characterizations of inner product spaces . . . 109

‖x − a3‖ = r} implies that ‖s0 − a1‖ = ‖s0 − a2‖ = ‖s0 − a3‖ = r . This is
the desired contradiction because we are assuming that condition (a) does not
hold.

We can now prove the announced result.

Theorem 3. Let X be a real normed linear space of dimension at least
three. Then the following are equivalent:

(*) X is an IPS.

(A) If a1, a2, a3 are norm one points in X then Z({a1, a2, a3}) is non-
empty, and if 0 is a Chebyshev center of the set {a1, a2, a3}, then 0 is
in its convex hull.

(GKs) Every three point subset of SX has a Chebyshev center in its convex
hull.

Proof. It is clear that (*) implies (A).
Let us prove that (A) implies (GKs). Let � = {a1, a2, a3} be a three point

subset of SX. We wish to show that Z(�) ∩ conv(�) �= ∅. The hypothesis
implies that Z(�) �= ∅ and so we must be in one of the cases (a) or (b)
described in Lemma 2. If we are in case (b) then clearly Z(�)∩conv(�) �= ∅.
So let us suppose we are in case (a). This means that there exists b ∈ Z(�)

such that
r(b,�) = ‖a1 − b‖ = ‖a2 − b‖ = ‖a3 − b‖.

Write r(b,�) = r and take

u1 = a1 − b

r
, u2 = a2 − b

r
, u3 = a3 − b

r
.

Then �0 = {u1, u2, u3} is a three point subset of SX. Besides, �0 is obtained
from � through a translation and a homothety: to be precise �0 = φ(�),
where φ(x) = x−b

r
. A straightforward verification now shows that φ(b) = 0 ∈

Z(�0). Our hypothesis implies that φ(b) = 0 ∈ conv(�0) = conv(φ(�)). Of
course, it follows that b ∈ conv(�). Hence we get Z(�) ∩ conv(�) �= ∅, as
we wished.

Finally, let us prove that (GKs) implies (*). Let us suppose that X is not an
IPS. By the Garkavi-Klee theorem, this means that (GK) does not hold. So we
can find a three point subset� = {a1, a2, a3} ofX such thatZ(�)∩conv(�) =
∅. Therefore, there exists y0 ∈ X \ conv(�), such that

r(y0,�) = max
1≤i≤3

‖ai − y0‖ < r(x,�) for all x ∈ conv(�).
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Let us denote by Y the linear span of {a1, a2, a3, y0}, and let b ∈ Y be a
Chebyshev center of � = {a1, a2, a3} in the finite dimensional space Y ,

r(b,�) = max
1≤i≤3

‖ai − b‖ ≤ r(y,�) for all y ∈ Y.

In particular, taking y = y0, we deduce r(b,�) ≤ r(y0,�) < r(x,�) for all
x ∈ conv(�), and so

(1) r(b,�) < r(x,�) for all x ∈ conv(�).

This inequality implies b �∈ conv(�). Therefore, condition (b) in Lemma 2
can not be satisfied, and so condition (a) in that lemma holds. Hence, we can
assume

r(b,�) = ‖a1 − b‖ = ‖a2 − b‖ = ‖a3 − b‖ ≤ r(y,�) for all y ∈ Y.

We proceed now as in the previous reasoning. Write r(b,�) = r and take
u1 = a1−b

r
, u2 = a2−b

r
and u3 = a3−b

r
. Then �0 = {u1, u2, u3} is a three point

subset of SX. As above we have �0 = φ(�), where φ(x) = x−b
r

. So, by a
straightforward verification, we get from (1)

r(0,�0) = r(φ(b), φ(�)) < r(φ(x), φ(�)) for all x ∈ conv(�),

and so
r(0,�0) < r(z,�0) for all z ∈ conv(�0).

Of course, this implies that �0 has no Chebyshev center in its convex hull, and
this means that (GKs) does not hold.

Remark 2. In the preceding proof it was shown that for all real normed
linear spaces (whatever their dimension) conditions (GKs

∞) and (GK∞) are
equivalent.

2. Characterizations by means of Fermat centers

To get the characterizations we need two results. The first one is due to Dur-
ier. The second one is a consequence of Benítez-Fernández-Soriano theorem
(Theorem 2 above) in the case p = 1.

Proposition 1 (Corollary 2.3 of [5]). Let X be a real normed linear space,
let � = {a1, a2, a3} be a three point subset of X, let λ1, λ2, λ3 be positive
numbers and consider the three point set �′ = {λ1a1, λ2a2, λ3a3}. Suppose
0 ∈ Z1(�). Then the following is true:

(1) 0 ∈ Z1(�′).
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(2) If λi ≤ 1 for i = 1, 2, 3 then Z1(�′) ⊂ Z1(�).

(3) If λi = λ for i = 1, 2, 3 then Z1(�′) = λZ1(�).

Let X be a real normed linear space, and let Y be a subspace of X. Given
a three point subset � = {a1, a2, a3} of Y , we denote by Z1

Y (�) the set of all
Fermat centers of � in Y , that is,

Z1
Y (�) = {

z ∈ Y : r1(z,�) = inf
y∈Y r1(y,�)

}
.

Lemma 3. Let X be a real normed linear space of dimension at least three,
and let us suppose X is not an IPS. Then there exist a subspace Y of X and a
three point subset � of SY such that 0 ∈ Z1

Y (�) and Z1
Y (�) ∩ conv(�) = ∅.

Proof. Assume X is not an IPS. By the Benítez-Fernández-Soriano the-
orem, there is a three point subset T = {a1, a2, a3} of X such that Z1(T ) ∩
conv(T ) = ∅. Therefore, there exists y0 ∈ X such that

r1(y0, T ) < r1(x, T ) for all x ∈ conv(T ).

Then, if we denote by Y the linear span of {a1, a2, a3, y0}, we have

Z1
Y (T ) ∩ conv(T ) = ∅.

If we apply the Hahn-Banach separation theorem on Y to the compact
convex sets Z1

Y (T ) and conv(T ), we deduce that there exist a linear form y∗
on Y and some real number c such that

y∗(y) ≤ c < y∗(x) for all y ∈ Z1
Y (T ) and all x ∈ conv(T ).

Of course, we can assume there exists b ∈ Z1
Y (T ) such that y∗(b) = c.

Moreover, by means of the translation x �→ x − b, we can suppose that b = 0
and c = 0 so that

y∗(y) ≤ 0 < y∗(x) for all y ∈ Z1
Y (T ) and all x ∈ conv(T ).

Notice now that the preceding inequality implies that ai �= 0 for i = 1, 2, 3.
Take λ = min{‖a1‖, ‖a2‖, ‖a3‖}, and take a′

i = 1
λ
ai for i = 1, 2, 3. By parts

1 and 3 of the preceding proposition, if we write T ′ = {a′
1, a

′
2, a

′
3}, we have

0 ∈ Z1
Y (T

′) and

y∗(y) ≤ 0 < y∗(x) for all y ∈ Z1
Y (T

′) and all x ∈ conv(T ′).

Take
� =

{
a′

1

‖a′
1‖
,

a′
2

‖a′
2‖
,

a′
3

‖a′
3‖

}
.
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Since ‖a′
i‖ ≥ 1 for i = 1, 2, 3, it follows from parts 1 and 2 of the preceding

proposition that 0 ∈ Z1
Y (�) and

y∗(y) ≤ 0 < y∗(x) for all y ∈ Z1
Y (�) and all x ∈ conv(�).

Of course, � is a three point subset of SX and the preceding inequality implies
that Z1

Y (�) and conv(�) are disjoint. This completes the proof.

We can now give our second characterization of inner product spaces.

Theorem 4. Let X be a real normed linear space of dimension at least
three. Then the following are equivalent:

(*) X is an IPS.

(A1) If a1, a2, a3 are norm one points in X then Z1({a1, a2, a3}) is non-
empty, and if 0 is a Fermat center of the set {a1, a2, a3}, then 0 is in
its convex hull.

(GKs
1) Every three point subset of SX has a Fermat center in its convex hull.

Proof. It is clear that (*) implies (A1).
Let us prove that (A1) implies (GKs

1). Let T = {a1, a2, a3} be a three point
subset of SX. We must prove that Z1(T ) ∩ conv(T ) �= ∅. By our hypothesis,
Z1(T ) �= ∅. Take b ∈ Z1(T ) (we will assume b �= ai for i = 1, 2, 3, otherwise
we would trivially have Z1(T ) ∩ conv(T ) �= ∅). Then 0 ∈ Z1(�), where
� = {a1 − b, a2 − b, a3 − b}. Take λ = min{‖a1 − b‖, ‖a2 − b‖, ‖a3 − b‖}.
Since λ is a positive number, we can define a′

i = 1
λ
(ai − b), for i = 1, 2, 3.

By part 1 of Proposition 1, 0 ∈ Z1(�′), where �′ = {a′
1, a

′
2, a

′
3}. Notice that

we now have ‖a′
i‖ ≥ 1 for i = 1, 2, 3. Therefore, it follows from parts 1 and

2 of Proposition 1 that

0 ∈ Z1(�′′) ⊂ Z1(�′),

where
�′′ =

{
a′

1

‖a′
1‖
,

a′
2

‖a′
2‖
,

a′
3

‖a′
3‖

}
.

Now, the hypothesis implies that 0 belongs to conv(�′′). Using this one can
easily verify that b belongs to conv(T ). This completes the proof of this part.

Finally, let us show that (GKs
1) implies (*). Assume (*) does not hold, that is,

assumeX is not an IPS. By the preceding lemma, there exist a subspace Y ofX
and a three point subset� of SY such that 0 ∈ Z1

Y (�) andZ1
Y (�)∩conv(�) =

∅. Therefore,

min{r1(y,�) : y ∈ Y } < min{r1(x,�) : x ∈ conv(�)}.
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But this implies

inf{r1(x,�) : x ∈ X} ≤ min{r1(y,�) : y ∈ Y }
< min{r1(x,�) : x ∈ conv(�)}.

It then follows that Z1(�) and conv(�) are disjoints, and this completes the
proof.

3. A characterization by means of p-centers

The following proposition is, at least partially, known (see Lemma 5.2 of [5],
and also [3] and [4]). However, we have not found the whole statement of the
proposition explicitly in the literature. For this reason we include a proof. It
relies upon results contained in [3] and [4].

Proposition 2. Let X be a real normed linear space, let a1, a2, a3 be norm
one points in X and let p > 1. Then 0 ∈ Zp(�) if and only if 0 ∈ Z1(�), and
in this case Zp(�) ⊂ Z1(�).

Proof. We use the notations of [3] and [4]. By Lemma 1 of [3], 0 ∈ Zp(�)

if and only if there exist f ∈ Ja1, g ∈ Ja2, h ∈ Ja3, such that

‖a1‖p−1f + ‖a2‖p−1g + ‖a3‖p−1h = f + g + h = 0.

But by Proposition 1 of [4], this just means that 0 ∈ Z1(�).
Let us show now that Zp(�) ⊂ Z1(�). Take x ∈ Zp(�). Lemma 2 of [3]

implies that ‖ai‖ = ‖ai − x‖ for all i ∈ {1, 2, 3},
and so

r1(0,�) = ‖a1‖+‖a2‖+‖a3‖ = ‖a1 −x‖+‖a2 −x‖+‖a3 −x‖ = r1(x,�).

Therefore, x ∈ Z1(�).

We can give now the characterization of inner product spaces. It is a con-
sequence of the preceding proposition and Lemma 3.

Theorem 5. Let X be a real normed linear space of dimension at least
three, and let p > 1. Then the following are equivalent:

(*) X is an IPS.

(GKs
p) Every three point subset of SX has a p-center in its convex hull.

Proof. It is well known that (*) implies (GKs
p). For the converse, assume

X is not an IPS. By Lemma 3, there exist a subspace Y of X and a three point
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subset � of SY such that 0 ∈ Z1
Y (�) and Z1

Y (�)∩ conv(�) = ∅. Then, by the
preceding proposition, Zp

Y (�) ∩ conv(�) = ∅. Therefore,

min{rp(y,�) : y ∈ Y } < min{rp(x,�) : x ∈ conv(�)}.
But this implies

inf{rp(x,�) : x ∈ X} ≤ min{rp(y,�) : y ∈ Y }
< min{rp(x,�) : x ∈ conv(�)}.

It follows that Zp(�) and conv(�) are disjoint, and this finishes the proof.
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