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ON THE STABLE RANK AND REAL RANK OF
GROUP C∗-ALGEBRAS OF NILPOTENT

LOCALLY COMPACT GROUPS

ROBERT J. ARCHBOLD and EBERHARD KANIUTH∗

Abstract

It is shown that if G is an almost connected nilpotent group then the stable rank of C∗(G) is equal
to the rank of the abelian group G/[G,G]. For a general nilpotent locally compact group G, it is
shown that finiteness of the rank of G/[G,G] is necessary and sufficient for the finiteness of the
stable rank of C∗(G) and also for the finiteness of the real rank of C∗(G).

Introduction

For aC∗-algebraA, the real rank RR(A) [3] and the stable rank sr(A) [18] have
been defined as numerical invariants giving non-commutative analogues of
the real and complex dimension of topological spaces. More precisely, for the
continuous functions on a compact Hausdorff space X one has RR(C(X)) =
dimX and sr(C(X)) = ⌊

1
2 dimX

⌋+1, where dimX is the covering dimension
ofX [17]. For unitalA, the stable rank sr(A) is either ∞ or the smallest possible
integer n such that each n-tuple inAn can be approximated in norm by n-tuples
(b1, . . . , bn) such that

∑n
i=1 b

∗
i bi is invertible. Similarly, the real rank RR(A)

is either ∞ or the smallest non-negative integer n such that each (n+ 1)-tuple
of self-adjoint elements inAn+1 can be approximated in norm by (n+1)-tuples
(b0, b1, . . . , bn) of self-adjoint elements such that

∑n
i=0 b

2
i is invertible. For

non-unital A, these ranks are defined to be those of the unitization of A.
Several authors have computed or estimated the stable and the real rank of

groupC∗-algebrasC∗(G) for various classes of locally compact groupsG [1],
[6], [7], [13], [15], [19], [20], [21], [22], [23], [23], [25], [26]. For example, for
simply connected nilpotent Lie groups, Sudo and Takai [25] (following earlier
work of Sheu [20]) have shown that sr(C∗(G)) is the complex dimension of
the space of characters of G. On the other hand, for the free group F2 on
2 generators it has been shown that sr(C∗(F2)) = RR(C∗(F2)) = ∞ [18],
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[15], but sr(C∗
r (F2)) = RR(C∗

r (F2)) = 1 [6] (where r indicates the reduced
C∗-algebra of a non-amenable group).

In Section 1 of this paper, the result of Sudo and Takai mentioned above is
extended to almost connected nilpotent groups G. To be specific,

sr(C∗(G)) = 1 +
⌊

1

2
dim ̂G/[G,G]

⌋
= 1 +

⌊
1

2
rank(G/[G,G])

⌋
< ∞

(Theorem 1.5), where the rank of an abelian group is as defined in Sec-
tion 1. The method of proof involves structure theory for G together with
Nistor’s estimate for the stable rank of C∗-algebras containing certain con-
tinuous trace ideals [16]. As a corollary, it follows that either RR(C∗(G)) =
rank(G/[G,G]) (a sufficient condition for this equality is that rank(G/[G,G])
is odd) or RR(C∗(G)) = 1 + rank(G/[G,G]).

In Section 2, general nilpotent locally compact groups G are considered.
The main result (Theorem 2.8) is that the finiteness of the rank of G/[G,G]
is necessary and sufficient for the finiteness of sr(C∗(G)) and also for the
finiteness of RR(C∗(G)). In addition to further structural properties of G, the
proof uses an estimate from Section 1 and also Rieffel’s estimate for the stable
rank of crossed products by the integers [18].

The results of Sections 1 and 2 suggest that the stable rank of C∗(G), for
a nilpotent group G, may depend only on the abelian quotient G/[G,G].
Further evidence in this direction is provided by [24, Theorem 2], which deals
with the case of finitely generated, torsion-free, two-step nilpotent (discrete)
groups. On the other hand, we give examples to show that the conclusions
of Theorems 1.5 and 2.8 may fail to hold if the hypothesis of nilpotency is
replaced by solvability.

1. Almost connected nilpotent groups

For any locally compact group G, let G0 denote the connected component of
the identity. Recall that G is said to be almost connected if the quotient group
G/G0 is compact.

LetG be a nilpotent locally compact group. ThenGc, the set of all compact
elements of G, is a closed normal subgroup of G [10, Corollary 3.5.1 and
Lemma 3.8]. Moreover, Gc is compact whenever G is compactly generated
[10, Theorem 9.7]. From this it can easily be deduced that G/Gc is compact-
free (see [13, Remark 1]). In particular, (G/Gc)0, the connected component
of G/Gc, is a simply connected nilpotent Lie group. Also, G0G

c is open in G
and G/G0G

c is torsion-free [10, Theorem 8.3]. Since G0G
c/Gc is connected

and open inG/Gc,G0G
c/Gc = (G/Gc)0. HenceG/Gc is a Lie group. When

G is discrete, Gc is just the subgroup consisting of all elements of finite order
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which is usually denoted Gt and called the torsion subgroup of G. Finally,
recall that if G is a torsion-free nilpotent group, then all the subquotients
Zj+1(G)/Zj (G) arising from the upper central series of G are torsion-free as
well [2, Corollary 2.11].

We next introduce the group theoretical rank of a locally compact abelian
group. For a discrete torsion-free abelian group D, rankD means the torsion-
free rank ofD (see [11]), that is, rankD is the maximal number of independent
elements of D when this number is finite and rankD = ∞ otherwise. Let G
be an arbitrary locally compact abelian group. Then G/Gc = Rk ×D, where
D is torsion-free discrete, and the rank of G is defined to be k+ rankD. Note
that rankG < ∞ whenever G/Gc is compactly generated. On the other hand,
the additive group of rational numbers has rank 1.

Throughout the paper, we shall frequently use the fact that if G is a locally
compact abelian group and H is a closed subgroup of G, then rank(G/H) ≤
rankG. This is easily seen as follows. Define a closed subgroup K of G
by K ⊇ H and K/H = (G/H)c. Then G/Gc = Rm × D and G/K =
(G/H)/(G/H)c = Rn × E, where m, n ∈ N0 and D and E are torsion-
free abelian discrete groups. Since Gc ⊆ K , the quotient homomorphism
G → G/H induces a homomorphism q : G/Gc → G/K . It follows that
q(Rm) = Rn, whence n ≤ m, and hence q gives rise to a homomorphism from
D onto E. Now, it is immediate from the definition of the torsion-free rank
that rankE ≤ rankD. Thus

rank(G/H) = n+ rankE ≤ m+ rankD = rankG.

Denoting by Ĝ the dual group of G, we have

RR(C∗(G)) = RR(C0(Ĝ)) = dim Ĝ = rankG

and

sr(C∗(G)) = sr(C0(Ĝ)) = 1 +
⌊

1

2
dim Ĝ

⌋
= 1 +

⌊
1

2
rankG

⌋

(see [1, Section 2] and the references therein).
In passing, we note that if J is a closed ideal of a C∗-algebra A then

sr(J ), sr(A/J ) ≤ sr(A) [18, Section 4] and similarly for the real rank [9,
Théorème 1.4].

Lemma 1.1. LetG be a projective limit of groupsGα = G/Kα , where each
Kα is a compact normal subgroup of G. Then

(i) sr(C∗(G)) = supα sr(C∗(Gα)) and sr(C∗
r (G)) = supα sr(C∗

r (Gα)).

(ii) RR(C∗(G))= supαRR(C∗(Gα)) and RR(C∗
r (G))= supαRR(C∗

r (Gα)).
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Proof. Let K be any compact normal subgroup of G, and let q : G →
G/K denote the quotient homomorphism and µK normalized Haar measure
on K . Then µK is a central idempotent measure, and the map φ : f →
f ◦ q establishes an isomorphism between L1(G/K) and the closed ideal
L1(G) ∗ µK of L1(G). For π ∈ Ĝ and f ∈ L1(G/K), π(f ◦ q) = π(f ◦
q)π(µK) = 0 wheneverπ �∈ Ĝ/K◦q. Notice that ifπ = σ ◦q with σ ∈ Ĝ/K ,
then π ∈ Ĝr if and only if σ ∈ (Ĝ/K)r . This implies that ‖f ‖C∗(G/K) =
‖f ◦ q‖C∗(G) and ‖f ‖C∗

r (G/K)
= ‖f ◦ q‖C∗

r (G)
, and hence φ extends uniquely

to isomorphisms from C∗(G/K) onto the closed ideal L1(G) ∗ µK of C∗(G)
and from C∗

r (G/K) onto the closed ideal L1(G) ∗ µK

r
of C∗

r (G).
Now, in the situation of the lemma, let Iα and Jα denote the closure of

L1(G)∗µKα
in C∗(G) and C∗

r (G), respectively. Then ∪αIα is dense in C∗(G)
and ∪αJα is dense in C∗

r (G) since ∪αL
1(G) ∗ µKα

is dense in L1(G). Since
the sets {Iα} and {Jα} are suitably directed, it follows from [18, Theorem 5.1]
and [13, Lemma 4(i)] that

sr(C∗(G)) ≤ sup
α

sr(Iα) = sup
α

sr(C∗(Gα)) ≤ sr(C∗(G))

and

RR(C∗(G)) ≤ sup
α

RR(Iα) = sup
α

RR(C∗(Gα)) ≤ RR(C∗(G)),

and similarly for the reduced C∗-algebras. This yields (i) and (ii).

Alternatively, to prove Lemma 1.1, we could exploit Proposition 2.2 of [14].

Lemma 1.2. Let G be a Lie group such that G0 is nilpotent and G/G0 is
finite. Then

sr(C∗(G)) ≤ max

{
2, 1 +

⌊
1

2
rank(G0/[G0,G0])

⌋}
.

Proof. The connected nilpotent Lie group G0 is type I, and every irre-
ducible representation of G0 is either 1-dimensional or infinite dimensional.
This follows from the fact that every irreducible representation of a connected
nilpotent Lie group is induced from a character of some closed subgroup [4].
SinceG/G0 is finite,G is type I and dim π ≤ [G : G0] for every finite dimen-
sional irreducible representation π of G. Indeed, for any such π , π ≤ indGG0

χ

for some character χ of G0. In particular, the set Ĝfin consisting of all finite
dimensional representations in Ĝ is closed in Ĝ. Since Ĝfin has the property
that if π, ρ ∈ Ĝfin then every irreducible subrepresentation of π ⊗ ρ̄ belongs
to Ĝfin, it follows that Ĝfin = Ĝ/N for some closed normal subgroup N of G.
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Actually, N = [G0,G0]. In fact, if x ∈ [G0,G0] then χ(x) = 1 for all char-
acters χ of G0 and hence π(x) is the identity operator for every π ∈ Ĝfin, and
conversely, if x ∈ N then indGG0

χ(x) is the identity operator, whence x ∈ G0

and χ(x) = 1 for every character χ of G0.
We claim that C∗(G) has a composition series of finite length in which

the successive quotients have continuous trace. By a result of Dixmier [5],
the C∗-algebra of any simply connected nilpotent Lie group has this property.
Hence the same is true for theC∗-algebra of any connected nilpotent Lie group
because its C∗-algebra is a quotient of the C∗-algebra of its simply connected
covering group. Since G/G0 is finite, it follows that C∗(G) has a composition
series of finite length in which all the successive quotients have continuous
trace [8, Corollary 1].

Now, let I be the closed ideal of C∗(G) such that Î = Ĝ \ Ĝfin. Then I

is a separable type I C∗-algebra all of whose irreducible representations are
infinite dimensional. By intersecting the ideals in the composition series for
C∗(G) with I , we obtain a sequence

I = I0 ⊇ I1 ⊇ · · · ⊇ Ir+1 = {0}
of closed ideals ofC∗(G) such that Ij /Ij+1 has continuous trace for 0 ≤ j ≤ r .
Applying Lemma 2 of [16] repeatedly, we get

sr(C∗(G)) ≤ max{2, sr(C∗(G)/Ir)} ≤ max{2,max{2, sr(C∗(G)/Ir−1)}}
≤ . . . ≤ max{2, sr(C∗(G)/I)}.

Recall that C∗(G)/I = C∗(G/N) = C∗(G/[G0,G0]). Since G0/[G0,G0]
is an abelian normal subgroup of finite index in G/[G0,G0] and G is second
countable, by [19, Corollary 3.3]

sr(C∗(G/N)) ≤ sr(C∗(G0/[G0,G0])) = 1 +
⌊

1

2
rank(G0/[G0,G0])

⌋
,

which finishes the proof.

Proposition 1.3. Let G be an almost connected locally compact group
such that G0 is nilpotent. Then

sr(C∗(G)) ≤ max

{
2, 1 +

⌊
1

2
rank(G0/[G0,G0])

⌋}
.

Proof. By [12] G is a projective limit of Lie groups G/Kα , and by Lem-
ma 1.1

sr(C∗(G)) = sup
α

sr(C∗(G/Kα)).
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Thus it suffices to show that if K is any compact normal subgroup of G such
that G/K is a Lie group, then

sr(C∗(G/K)) ≤ max

{
2, 1 +

⌊
1

2
rank(G0/[G0,G0])

⌋}
.

Observe next that (G/K)0 = G0K/K . Indeed, G0K/K is connected and
(G/K)/(G0K/K) = G/G0K is a totally disconnected Lie group and hence
discrete. Also

(G/K)0/[(G/K)0, (G/K)0] = (G0K/K)/[G0K/K,G0K/K],

which is a quotient of G0/[G0,G0]. Thus

rank((G/K)0/[(G/K)0, (G/K)0]) ≤ rank(G0/[G0,G0]).

Since (G/K)0 is nilpotent and has finite index inG/K , Lemma 1.2 yields that

sr(C∗(G/K)) ≤ max

{
2, 1 +

⌊
1

2
rank((G/K)0/[(G/K)0, (G/K)0])

⌋}

≤ max

{
2, 1 +

⌊
1

2
rank(G0/[G0,G0])

⌋}
,

as required.

When G itself rather than just G0 is nilpotent, we can prove a considerably
stronger result (Theorem 1.5) which generalizes the result of Sudo and Takai
mentioned in the introduction. For that, we need the following fairly simple
lemma.

Lemma 1.4. LetG be an almost connected nilpotent locally compact group.
Then

rank(G/[G,G]) = rank(G0/[G0,G0]).

Proof. Choose any compact normal subgroup K of G such that G/K is a
Lie group. Since

(G/K)/[G/K,G/K] = (G/K)/([G,G]K)/K = G/[G,G]K

and [G,G]K/[G,G] is compact, we obtain

rank((G/K)/[G/K,G/K]) = rank(G/[G,G]).
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Replacing G with G0 and K with K ∩G0, we get

rank(G0/[G0,G0]) = rank(G0/(G0 ∩K)/[G0/(G0 ∩K),G0/(G0 ∩K)])

= rank((G0K/K)/[G0K/K,G0K/K])

= rank((G/K)0/[(G/K)0, (G/K)0])

(compare the proof of Proposition 1.3). Thus it suffices to prove the lemma
when G is a Lie group, so that G/G0 is finite.

To that end, we observe first that ifH is a torsion-free nilpotent group having
an abelian normal subgroup of finite index, then H is abelian. This is shown
by induction on the length of the upper central series of H . Since H/Z(H) is
torsion-free and has an abelian subgroup of finite index, it is abelian. Thus H
is 2-step nilpotent, torsion-free and has an abelian normal subgroupA of finite
index d, say. For x, y ∈ H , it follows that

[x, y]d
2 = [x, yd ]d = [xd, yd ] = e.

Since H is torsion-free, we obtain that [H,H ] = {e}.
Now define a closed normal subgroup N of G by N ⊇ [G0,G0] and

N/[G0,G0] = (G/[G0,G0])c. Then, since (N∩G0)/[G0,G0] has only com-
pact elements,

rank(G0/[G0,G0]) = rank(G0/(N ∩G0)) = rank(G0N/N).

Moreover, G0N/N is an abelian subgroup of finite index in the compact-
free nilpotent group G/N . By the above observation, G/N is abelian. Thus
N ⊇ [G,G] ⊇ [G0,G0] and N/[G,G] has only compact elements. This
implies

rank(G/[G,G]) = rank(G/N) = rank(G0N/N) = rank(G0/[G0,G0]),

which concludes the proof.

Before proceeding we mention that if G is an almost connected nilpotent
locally compact group and G is non-abelian, then rank(G/[G,G]) ≥ 2. This
can be seen as follows.

By Lemma 1.4, we can assume that G is connected. Moreover, we can
assume that G is a Lie group since for any compact normal subgroup C of
G, (G/C)/[G/C,G/C] is a quotient of G/[G,G]. Let H denote the simply
connected covering group ofG and q : H → G the covering homomorphism.
LetZn+1(G) = G andZn(G) �= G. Then [G,G] ⊆ Zn(G) andq−1(Zj (G)) =
Zj(H), 1 ≤ j ≤ n+1. Now, it is well-known that sinceH is simply connected,
H/Zn(H) = Rd for some d ≥ 2. So the above claim follows.
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Theorem 1.5. Let G be an almost connected nilpotent locally compact
group. Then

sr(C∗(G)) = 1 +
⌊

1

2
rank(G/[G,G])

⌋
= 1 +

⌊
1

2
rank(G0/[G0,G0])

⌋

= sr(C∗(G0)) < ∞.

Proof. We can assume that G is non-abelian. By Proposition 1.3, Lem-
ma 1.4 and the fact that C∗(G/[G,G]) is a quotient of C∗(G),

sr(C∗(G)) ≤ 1 +
⌊

1

2
rank(G0/[G0,G0])

⌋
= 1 +

⌊
1

2
rank(G/[G,G])

⌋

= sr(C∗(G/[G,G])) ≤ sr(C∗(G)).

This proves the first equality. Replacing G with G0 and applying Lemma 1.4
again we obtain the remaining equalities. Finally, note that G is compactly
generated and that the rank of any compactly generated abelian group is finite.

Corollary 1.6. Let G be an almost connected nilpotent locally compact
group.

(i) If rank(G/[G,G]) is odd, then

RR(C∗(G)) = rank(G/[G,G]).

(ii) If rank(G/[G,G]) is even, then

rank(G/[G,G]) ≤ RR(C∗(G)) ≤ 1 + rank(G/[G,G]).

Proof. Both (i) and (ii) are immediate consequences of Theorem 1.5 and
the estimate RR(A) ≤ 2 sr(A) − 1 which holds for arbitrary C∗-algebras A
[3, Proposition 1.2].

In [26, Example 4.2] the so-called split oscillator group G (a semidirect
product of R with the Heisenberg group) was considered. It was shown that
sr(C∗(G)) = 2 although rank(G/[G,G]) = 1. So the last equality of The-
orem 1.5 does not hold in general for simply connected solvable Lie groups of
type I.

The following example shows that all the other equalities of Theorem 1.5
may also fail for solvable almost connected groups.

Example 1.7. Let G be the semidirect product G = Z2 � Rn, where Z2 =
{1,−1} acts on Rn by coordinatewise multiplication. ThenG0 = [G,G] = Rn
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and hence

sr(C∗(G0)) = 1+
⌊n

2

⌋
, rank(G0/[G0,G0]) = n and rank(G/[G,G]) = 0.

On the other hand, since every non-trivial character of Rn induces a 2-dimen-
sional irreducible representation of G, C∗(G) has a closed ideal J isomorphic
to C0((Rn \ {0})/Z2,M2(C)) with quotient C∗(G)/J = C2. Since n is the
maximal dimension of compact subsets of the quotient space (Rn \ {0})/Z2,

sr(C∗(G)) = max
{
sr(C0((Rn \ {0})/Z2),M2(C)), sr(C2)

}
= 1 +

⌈
1

2

⌊n
2

⌋⌉

(see [1, Lemmas 1.3 and 1.2]).

2. Finiteness of the ranks for nilpotent groups

In this section we are going to characterize, for a general nilpotent locally
compact group G, the finiteness of both sr(C∗(G)) and RR(C∗(G)) in terms
of a simple and purely group-theoretic condition, the finiteness of the rank of
the abelian locally compact group G/[G,G] (Theorem 2.8). To establish this
result, we need to show that if G is a (discrete) nilpotent group and G/[G,G]
has finite rank then all the subquotients arising from the lower central series of
G also have finite rank. The analogous conclusion is known to be true when
the finite rank condition is replaced by finite generation. The arguments in that
case have influenced our proofs (in particular, that of Lemma 2.3). Note that in
Lemmas 2.3 and 2.5 we have temporarily suspended the convention that G0 is
the connected component of the identity of a locally compact group. Instead,
we use the notation G = G0 ⊇ G1 ⊇ · · · ⊇ Gn+1 = {e} for the lower central
series of an (n+ 1)-step nilpotent discrete group.

Lemma 2.1. Let A be an abelian group. Then rankA ≤ r if and only if
every finitely generated subgroup B of A is of the form B = Zk × F , where
k ≤ r and F is a finite group.

Proof. Suppose first that rankA ≤ r and let B be a finitely generated
subgroup of A. Then B = Zk × F where k ≥ 0 and F is finite. Thus A/At

contains a copy of Zk and so r ≥ rank(A/At) ≥ k.
Conversely, let {x1, . . . , xl} be a subset of A whose image in A/At is an

independent set. Assuming the stated condition on finitely generated subgroups
of A, the subgroup generated by x1, . . . , xl is of the form Zk × F where
k ≤ r and F is finite. Passing to A/At , we obtain a copy of Zk containing an
independent set of l elements. Hence l ≤ k ≤ r , and so rankA ≤ r .
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Lemma 2.2. Let H be a nilpotent group and let {e} = H0 ⊆ H1 ⊆ · · · ⊆
Hn = H be a sequence of normal subgroups of H such that Hj/Hj−1 =
Zdj × Fj for some finite group Fj and dj ∈ N0 (1 ≤ j ≤ n). Then H contains
a normal subgroup N such that H/N is finite and N has a composition series
N0 = {e} ⊆ N1 ⊆ · · · ⊆ Nn = N whereNj−1 is normal inNj ,Nj/Nj−1 = Zej
and

∑n
j=1 ej ≤ ∑n

j=1 dj . In particular,N is generated by ≤ ∑n
j=1 dj elements.

Proof. If n = 1, we may simply put N = Zd1 . Now suppose that n > 1
and that the result has been established up to stage n − 1. Since H is finitely
generated, it contains a torsion-free normal subgroup K of finite index [2,
Theorem 2.1]. LetKj = K∩Hj for j = 1, . . . , n. Then the quotientsKj/Kj−1

have similar structure to the quotients Hj/Hj−1, with no increase in the dj .
Applying the induction hypothesis to K/K1, we obtain a normal subgroup L
of finite index in K and a series

K1 = L1 ⊆ L2 ⊆ · · · ⊆ Ln = L

such that Lj−1 is normal in Lj , Lj/Lj−1 is isomorphic to Zlj (2 ≤ j ≤ n) and∑n
j=2 lj ≤ ∑n

j=2 dj .
Since L has finite index in H , there exists a normal subgroup N of H such

that N ⊆ L and H/N is finite. Let Nj = Lj ∩ N, 1 ≤ j ≤ n. Then Nj/Nj−1

is isomorphic to a subgroup of Kj/Kj−1 and hence is isomorphic to Zej where
ej ≤ lj (2 ≤ j ≤ n). Finally, since N1 = L1 ∩ N is isomorphic to Zd1 , the
inductive step is complete.

Lemma 2.3. LetG be a nilpotent group and letGn, n = 0, 1, . . . denote the
lower central series of G. Suppose that Gn+1 = {e} and that all the quotient
groups Gk−1/Gk , 1 ≤ k ≤ n, are of finite rank. Then Gn has finite rank.

Proof. Let a1, . . . , am ∈ Gn = [G,Gn−1] be given. Then each ai, 1 ≤
i ≤ m, can be written as

ai =
mi∏
j=1

[bij , cij ],

where bij ∈ G, cij ∈ Gn−1, 1 ≤ j ≤ mi,mi ∈ N. Since all the quotients
Gk−1/Gk , 1 ≤ k ≤ n, have finite rank, by Lemma 2.2 there exist N ∈ N
and elements u1, . . . , us ∈ G, where s depends only on G/Gn, such that,
denoting by U the subgroup generated by u1, . . . , us , bNij ∈ UGn for all
1 ≤ i ≤ m, 1 ≤ j ≤ mi . Similarly, since Gn−1/Gn has finite rank, there exist
M ∈ N and v1, . . . , vt ∈ Gn−1, where t depends only on Gn−1/Gn, such that
cMij ∈ VGn (V the subgroup of Gn−1 generated by v1, . . . , vt ). Thus

bNij = uij xij and cMij = vij yij ,
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where uij ∈ U, vij ∈ V, xij , yij ∈ Gn. Since Gn is contained in the centre
of G, we have [x, y1y2] = [x, y1][x, y2] for x ∈ G, y1, y2 ∈ Gn−1 and
[x1x2, y] = [x1, y][x2, y] for x1, x2 ∈ G, y ∈ Gn−1. It follows that

aNM
i =

( mi∏
j=1

[bij , cij ]

)NM

=
mi∏
j=1

[bNij , c
M
ij ] =

mi∏
j=1

[uij xij , vij yij ] =
mi∏
j=1

[uij , vij ].

So, if a is any element of the subgroup A generated by a1, . . . , am, then aNM

is contained in the subgroup H of Gn generated by the set of all commutators
[uk, vl], 1 ≤ k ≤ s, 1 ≤ l ≤ t .

Since A = Zk × F , where k ≥ 0 and F is finite, and {aNM : a ∈ A} ⊆ H ,
it follows that H contains a subgroup isomorphic to Zk . Hence k ≤ st and so
rankGn ≤ st by Lemma 2.1.

Corollary 2.4. Let G be a nilpotent group. If G/[G,G] is of finite rank,
then so are all the subquotients arising from the lower central series of G.

Proof. This follows by induction from Lemma 2.3.

Lemma 2.5. Let G be a torsion-free nilpotent group of length n + 1 such
that Gj/Gj+1 is of finite rank rj , 0 ≤ j ≤ n. Then there exists a sequence
{e} = N0 ⊆ N1 ⊆ · · · ⊆ Nn+1 = G of normal subgroups such that Nj+1/Nj ,
0 ≤ j ≤ n, is contained in the centre of G/Nj and is torsion-free of rank sj
where

∑n
j=0 sj ≤ ∑n

j=0 rj .

Proof. We prove the lemma by induction on the length l(G) of the lower
central series. If l(G) = 1, nothing has to be shown. Suppose the statement is
true when l(G) ≤ n, and let G be as in the lemma with l(G) = n+ 1. Let Z
denote the centre of G and let

N = {x ∈ Z : xGn ∈ (Z/Gn)
t }.

Then Z/N is torsion-free and since G/Z is also torsion-free, G/N is torsion-
free. Moreover, l(G/N) ≤ n sinceGn ⊆ Z. Let (G/N)j , j = 0, 1, . . ., denote
the lower central series ofG/N . Then (G/N)n = {N} and (G/N)j/(G/N)j+1

is a quotient of Gj/Gj+1. Thus

rank((G/N)j/(G/N)j+1) ≤ rj (0 ≤ j ≤ n− 1).

Set N1 = N . By the inductive hypothesis, there exists a sequence of normal
subgroupsNk ofG, k = 2, . . . , n+1, such thatN1 ⊆ N2 ⊆ · · · ⊆ Nn+1 = G,
Nk+1/Nk is torsion-free and contained in the centre of G/Nk , and Nk+1/Nk

has rank sk , where
∑n

k=1 sk ≤ ∑n−1
j=0 rj . Since N1 ⊆ Z, it only remains to

notice that rankN = rankGn.
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To that end, let {x1, . . . , xd} be an independent subset of N . Then, since
N/Gn is a torsion group, xs1, . . . , x

s
d ∈ Gn for some s ∈ N, and these elements

are independent in Gn. Thus d ≤ rankGn. This finishes the proof.

Proposition 2.6. Let G be a nilpotent locally compact group such that
G/G0 = (G/G0)

c. Then

sr(C∗(G)) ≤ max

{
2, 1 +

⌊
1

2
rank(G0/[G0,G0])

⌋}
.

Proof. Let H denote the collection of all compactly generated open sub-
groups ofG. ThenG = ∪H∈HH and, for eachH ∈ H ,H0 = G0 andH/G0 is
compact since every compact subset ofG/G0 generates a compact subgroup of
G/G0. Since C∗(G) is the inductive limit of C∗-subalgebras C∗(H),H ∈ H ,
it follows from Proposition 1.3 that

sr(C∗(G)) ≤ sup
H∈H

sr(C∗(H)) ≤ sup
H∈H

max

{
2, 1 +

⌊
1

2
rank(H0/[H0, H0])

⌋}

= max

{
2, 1 +

⌊
1

2
rank(G0/[G0,G0])

⌋}
.

Lemma 2.7. LetN be an open normal subgroup of a locally compact group
G, and suppose that G/N is abelian and torsion-free of finite rank r . Then

sr(C∗(G)) ≤ sr(C∗(N))+ r.

Proof. Let H be a subgroup of G containing N such that H/N is iso-
morphic to Zm for some m ∈ N. Then C∗(H) can be written as a repeated
crossed product

C∗(H) = (. . . (C∗(N)×α1 Z) . . .)×αm Z,

and hence Theorem 7.1 of [17] yields that sr(C∗(H)) ≤ sr(C∗(N))+m.
Let H be the collection of all subgroups H of G such that N ⊆ H and

H/N is finitely generated. Then, for each such H , H/N is isomorphic to Zm,
where m ≤ r , whence sr(C∗(H)) ≤ sr(C∗(N)) + r by the first paragraph.
Finally,

sr(C∗(G)) ≤ sup
H∈H

sr(C∗(H)) ≤ sr(C∗(N))+ r.

Theorem 2.8. Let G be a nilpotent locally compact group. Then the fol-
lowing conditions are equivalent.
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(i) sr(C∗(G)) < ∞.

(ii) RR(C∗(G)) < ∞.

(iii) The abelian locally compact group G/[G,G] has finite rank.

Proof. (i) ⇒ (ii) follows from RR(A) ≤ 2 sr(A) − 1 for any C∗-alge-
bra A [3].

Suppose that (ii) holds and letH = G/[G,G]. SinceC∗(H) is a quotient of
C∗(G), RR(C∗(H)) < ∞. Now H/Hc is the direct product of a vector group
Rn and a torsion-free discrete groupD. By definition, rank(H) = n+rank(D).
Thus it suffices to observe that D has finite rank. Since C∗(D) is a quotient of
C∗(H), we have

rank(D) = RR(C∗(D)) ≤ RR(C∗(H)) < ∞.

To show (iii) ⇒ (i), let q : G → G/G0 denote the quotient homomorphism
and let N = q−1((G/G0)

c). By Proposition 2.6,

sr(C∗(N)) ≤ max

{
2, 1 +

⌊
1

2
rank(G0/[G0,G0])

⌋}
.

N is open in G because G/G0 is totally disconnected and hence has com-
pact open subgroups. Moreover, G/N is torsion-free. By hypothesis (iii),
(G/N)/[G/N,G/N ] has finite rank. Then, by Corollary 2.4 and Lemma 2.5,
there exists a sequence N0 = N ⊆ N1 ⊆ · · · ⊆ Nn+1 = G of nor-
mal subgroups of G such that each Nj+1/Nj is abelian, torsion-free and
has finite rank rj , say (0 ≤ j ≤ n). Climbing up the ascending series
Nj , j = 1, . . . , n + 1, and applying Lemma 2.7 at each step, we obtain
sr(C∗(G)) ≤ sr(C∗(N))+ ∑n

j=0 rj .

The implications (iii) ⇒ (i) and (iii) ⇒ (ii) of the preceding theorem do not
hold for arbitrary locally compact groups. We conclude with a simple example
of a discrete group G which has an abelian subgroup of index 2 with the
property that G/[G,G] has rank zero, whereas

sr(C∗(G)) = RR(C∗(G)) = ∞.

Example 2.9. Let N denote the direct sum of infinitely many copies of Z
and G the semidirect product G = Z2 �N , where the action of Z2 = {1,−1}
on N is given by (−1) · (x1, x2, . . .) = (−x1,−x2, . . .). Then [G,G] consists
of all elements (x1, x2, . . .) of N such that all xj are even. Thus G/[G,G] is
the direct sum of infinitely many copies of Z2 and hence is a torsion group.
So rank(G/[G,G]) = 0. However, the finite conjugacy class subgroup of G
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equals N . Then, by Theorem 3.4 of [1],

RR(C∗(G)) ≥
⌈

rank(N)

2[G : N ] − 1

⌉
=

⌈
1

3
rank(N)

⌉
= ∞,

and hence also sr(C∗(G)) = ∞.
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