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CONSTRUCTION AND PURE INFINITENESS OF
C*-ALGEBRAS ASSOCIATED WITH
LAMBDA-GRAPH SYSTEMS

KENGO MATSUMOTO

Abstract

A X\-graph system is a labeled Bratteli diagram with shift transformation. It is a generalization of
finite labeled graphs and presents a subshift. In [16] the author has introduced a C*-algebra Og
associated with a A-graph system ¥ by using groupoid method as a generalization of the Cuntz-
Krieger algebras. In this paper, we concretely construct the C*-algebra Oy by using both creation
operators and projections on a sub Fock Hilbert space associated with £. We also introduce a new
irreducible condition on & under which the C*-algebra Og becomes simple and purely infinite.

0. Introduction

For a finite set X, a subshift (A, o) is a topological dynamics defined by a
closed shift-invariant subset A of the compact set X2 of all bi-infinite sequences
of X with shift transformation o defined by o ((x;);cz) = (xi+1)icz. The author
has introduced the notions of symbolic matrix system and A-graph system as
presentations of subshifts ([15]). They are generalized notions of symbolic
matrix and A-graph (= labeled graph) for sofic subshifts. We henceforth denote
by Z, and by N the set of all nonnegative integers and the set of all positive
integers respectively. A symbolic matrix system (., I) over X consists of two
sequences of rectangular matrices (M 11, I 1+1),! € Z. The matrices 4 ;11
have their entries in formal sums of ¥ and the matrices /; ;. have their entries
in {0, 1}. They satisfy the following commutation relations

I M 40 = Mo D42, lel,.

It is required that each row of /; ;1 has at least one 1 and each column of 7; ;4
has exactly one 1. A A-graph system & = (V, E, A, ) over X consists of a
vertex set V. =VoU ViUV, U--- anedgeset E = Eg  UE| ;UE;3U- -,
a labeling map A : E — X and a surjective map ¢ (= t;;4+1) : Vig1 = V;
for each | € Z,. It naturally arises from a symbolic matrix system (/, I).

The labeled edges from a vertex vf € V; to a vertex v}“ € Vj4 are given by

Received August 16, 2004.



74 KENGO MATSUMOTO

the (i, j)-component A ;1 (i, j) of M) ;+1. The map ¢ (= ¢;141) is defined by
Ll,l+1(v;+l) = vf precisely if 1 ;+1(i, j) = 1. The symbolic matrix systems
and the A-graph systems are the same objects and give rise to subshifts by
gathering label sequences appearing in the labeled Bratteli diagrams of the A-
graph systems. Conversely we have a canonical method to construct a symbolic
matrix system and a A-graph system from an arbitrary subshift [15].

In [16], the author has constructed C*-algebras from A-graph systems as
groupoid C*-algebras by using continuous graphs in the sense of Deaconu
(cf. [5], [19]) and studied their structure. Let ¥ = (V, E, A, t) be a A-graph
system over X. Let {v], ..., vfn(l)} be the vertex set V;. The C*-algebra Og
is generated by partial isometries S, corresponding to the symbols o € X
and projections E! corresponding to the vertices v/ € V;, i = 1,...,m(l),
| € Z, .ltisrealized as a universal unique C*-algebra subject to certain operator
relations among S,, @ € ¥ and Ef, i=1,...,m(),l € Z, encoded by the
structure of L. A condition on &, called condition (I), has been introduced
([16]). Irreducibility and aperiodicity for & have been also defined so that if
L satisfies condition (I) and is irreducible, the C*-algebra Oy is shown to be
simple. It is also proved that if in particular ¥ is aperiodic, Og is simple and
purely infinite ([16, Theorem 4.7 and Proposition 4.9]).

In this paper, we will first introduce a new construction of the C*-algebras
Oq. We will construct a sub Fock Hilbert space associated with a A graph
system ¥ and define creation operators and sequence of projections. We will
then show that Og is canonically isomorphic to the quotient C*-algebra of the
C*-algebra generated by the creation operators and the projections by an ideal
(Theorem 2.6). This construction is a generalization of a construction of Cuntz-
Krieger algebras [3] by [7], [8] and C*-algebras associated with subshifts [14].
We will next introduce a new irreducible condition and new condition (I) on
& such that Oz becomes simple and purely infinite (Theorem 3.9). The new
conditions are called A-irreducible condition and A-condition (I) respectively.
In the previously proved result [16, Theorem 4.7 and Proposition 4.9], we
needed aperiodicity condition on & for O¢ to be simple and purely infinite. It
is well-known that the Cuntz-Krieger algebra 04 is simple and purely infinite
if the matrix A is irreducible with condition (I). Since the C*-algebras O are
a generalization of the Cuntz-Krieger algebras O, the aperiodicity condition
on ¥ is too strong such that Oq becomes simple and purely infinite. From
this point of view, the A-irreducible condition with A-condition (I) on ¥ is
an exact generalization of the irreducible condition with condition (I) on the
nonnegative matrices A.

The author would like to thank the referee who named the terms A-irredu-
cible and A-condition (I) instead of the originally used terms (new) irreducible
and (new) condition (I), and for his useful comments.
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1. Review of C*-algebras associated with A-graph systems

For a A-graph system & = (V, E, A, t) over X, the vertex sets V;, [ € Z, and
the edge sets E;;11, [ € Z, are finite disjoint sets. An edge e in E; ;4 has its
source vertex s(e) in V; and its terminal vertex 7 (e) in V;;. Every vertex in V
has outgoing edges and every vertex in V, except Vp, has incoming edges. The
label of an edge e € E means A(e) € X. It is then required that there exists
an edge in E; ;1 with label o and its terminal is v € V4 if and only if there
exists an edge in E;_;; with label « and its terminal is ¢(v) € V;. Foru € Vi
and v € V41, we put

E'(u,v) ={e € Ejj+1 | t(e) =v,i(s(e)) = u},
E(u,v)={ec E_1;]|s(e) =u,t(e)=1(v)}.

Then there exists a bijective correspondence between E*(u, v) and E, (u, v) that
preserves labels for every pair (u, v) € V;_; x V4. This property is called
the local property of the A-graph system. A finite sequence (ey, ez, ..., e,) of
edges such that (e;) = s(ej+1),1 = 1,2,...,n — 1 is called a path. We put
Y; = X and define

AI: = :()»(61),)&(62), .)€ l_[Ei lei € Ei_yi,t(e;) =s(eit1), i € N}
ieN

and
A = {(Oli)iez € l_[Ei | (i, i1, ...) €AY, i € Z}-
ieZ
Then Ay is a subshift over ¥ called the subshift presented by £. A finite se-
quence p = (U1, ..., ig) of u; € X thatappearsin Ag is called an admissible
word of ¥ of length || = k. Denote by A’; the set of all admissible words of
length k of £ and put A} = U,‘?‘;OAIQ where Ag denotes the empty word @.

We briefly review the C*-algebra Og associated with A-graph system &,
that has been originally constructed in [16] to be a groupoid C*-algebra of a
groupoid of a continuous graph obtained by & (cf. [5], [6], [19]).

Let & = (V, E, X, 1) be a left-resolving A-graph system over X, that is,
fore,e’ € E, AMe) = A(€'), t(e) = t(e') implies e = ¢’. The vertex set V; is
denoted by {v{, e, U,ln(z)}- Define the transition matrices A; 41, I; ;+1 of & by
settingfori =1,2,...,.m(),j=1,2,....m(l+ 1), € X,
if s(e) =v!, Me) =a, t(e) = v]l.Jrl for some e € E; 1,

1
Ao, j)= {
- 0 otherwise,

.. 1 ify ity = o,
L@, j) = { I’IH.( ;)=
0 otherwise.
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The C*-algebra Oy is realized as the universal unital C*-algebra generated by

partial isometries S,, & € ¥ and projections Ef i=12,....,m(),l € Z,
subject to the following operator relations called (¥):
(1.1) D oS.Si =1,

aeX

m(l) m(l+1)
(1.2) YEI=1L El= ) LG DET

— o
(1.3) SgSLE] = E|SpS;,

m(+1)
(1.4) SyE[Sg = Y A1, B, HE,
j=1

forpex,i=12,....,m(),l €Z,.
For a vertex vf € V;, we denote by I +(vf ) the set

I @) = {(en, i(e2),..) € AT [ s(er) = v}, 1(e)) = s(ej+1), j € N}

of all infinite label sequences in ¥ starting at vf. We say that ¥ satisfies condition
(I) if for each vf € V, the set F+(vf.) contains at least two distinct label
sequences.

THEOREM 1.1 ([16]). Suppose that ¥ satisfies condition (I). Let Sa, o EX
and El i =12,....,m(), l € Z, be another family of nonzero partial
isometries and nonzero projections satisfying the relations ({). Then the map
S — S, El — El extends to an isomorphism from Og onto the C*-algebra

@x generated by Sa, o € X and Ef, i=1,2,....,mW0),l €Z,.

Hence the C*-algebra Oy under the condition that ¥ satisfies condition (I)
is the unique C*-algebra subject to the above relations (X). By the uniqueness
of Oy, the correspondence Sy — zSy, E! — Elforz e T={ze C||z| =1}
yields an action ag of T called the gauge action. Let %, ,f be the finite dimensional
C*-subalgebra of Oy generated by S E, Sh,ou,v € A’g, i =1,2,...,m().
Let % be the C*-subalgebra of Oy generated by the algebras %/, k < I. Itis
an AF-algebra realized as the fixed point algebra 0" of Og under ay.

A - graph system { is said to be irreducible if for a vertex vl € V; and a
sequence @®, u',..) of Vertlces u" €V, with ¢, ,,+1(u"+1) =u",nelZ,,
there exists a path starting at vl and terminating at u’*V for some N € N.
L is said to be aperiodic if for a vertex vf € Vj there exists an N € N such
that there exist paths starting at v,’. and terminating at all vertices of Vjiy.
These properties for A-graph systems are generalizations of the corresponding

properties for finite directed graphs.
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THEOREM 1.2 ([16], Proposition 4.9). Suppose that a A-graph system X
satisfies condition (I). If & is irreducible, the C*-algebra Oq is simple. If in
particular  is aperiodic, Oq is simple and purely infinite.

In what follows, we fix a left-resolving A-graph system & = (V, E, A, 1)
over X.

2. Fock space construction

In this section, we will construct a family of partial isometries and projections
satisfying the relations (&) in a concrete way. Let Qg be the projective limit

Qo = {(M[)zez+ € l_[ Vilugm@™) =u' 1€ Z+}
leZ,

of the system ¢; ;41 : Vi1 — Vi, 1 € Z,.. We endow Q¢ with the projective
limit topology from the discrete topologies on V;,/ € Z, so that it is a compact
Hausdorff space. An element u in Qg is called a vertex. Let Eg be the set of all
triplets (u, o, w) € Qg x X x Qg such thatthereexists e, ;1 € E; ;4 satisfying
ul = s(epsr1), w' = t(e;41) and @ = A(ey4q) for each [ € Z, where
U= (ul),€z+, w = (w’),ez+ € Qe.Theset Eq¢ C Q¢ X X X Q¢ 1 a continuous
graph in the sense of Deaconu ([14, Proposition 2.1]). For w = (wl)lez+ € Qg
and o € X, the local property of ¥ ensures that if there exists ep; € Eo |
satisfying w! = #(ep.1), @ = A(eg 1), there uniquely exist ¢; ;1 € Ej ;41 and
u = (u)ez, € Q satisfying u’ = s(e;111), w't' = 1(e141), @ = A(e141)
for all/ € Z,.. Hence for every w € Qg, there exist @« € ¥ and u € Qg such
that (u, o, w) € Eg. Let us consider the finite path spaces of the graph Eg as
follows:

0
Wg = Qj\{,
Wq = Eq,

2
W = {(uo, oy, uy, o, uz) | (uo, oy, uy), (uy, @z, uz) € Eg},

k .
We = {(uo, o1, ur, 00, oo, up) | (uim1, o, u;) € Eg, i = 1,2, ...k},

We assign to a finite path n € Wif the vector ¢,. Foreachk € Z, let 8’; be the
Hilbert space spanned by the complete orthonomal basis {e, | € Wif}. The
Hilbert space g is defined by their direct sums

ok
52,)8 == @;?io(,?g-
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We define creation operators Ty for 8 € £ and projections P! for v/ € V on
Hge by setting

€u_,.Boo,ar i1,y 1L there exists u_j € Qg
such that (u_1,8,up)€Eq,

0 otherwise,

Tﬂe(uoyal,m SO O UE) T

.....

! - — (1!
P eqwy,arur, o) = Uo = (uo)leZ+€ Qg,

.....

0 otherwise.

Note that the vertex u_; € Qg satisfying (u—_;, 8, ug) € Eg is unique for g
and u if it exists, because ¥ is left-resolving. It is direct to see that

C€uy,an,...,08,ux) if k = 1 and o] = 13,

T*E( ) = {
U0, UL ,00, . O U ) .
A 0 otherwise.

LEMMA 2.1. For B € &
(i) TpTy is the projection onto the subspace spanned by the vectors e, such
that n = (g, o0y, Uy, &g, ..., 0, Uy) € Wif, ar =B, keN,

(i1) T/;‘ Ty is the projection onto the subspace spanned by the vectors eg such
that € = (ug, o1, u1, 02, ..., o, ux) € W, k € Z, (u_y, B, ug) € Eg
for some u_; € Qq.

Let Py denote the projection on $¢ onto the subspace 82 It is immediate
to see that PyTg = 0 for 8 € ¥ and Py Pl.[ = Pi’ P, for vf € V. We then have

LEMMA 2.2.
2.1) Y TT;+ Py =1,
aeX
m(l) m(l+1)
22) Yopl=1. Pl=Y LG )P
i=1 j=1
(2.3) TsT; P} = P/T,T;,
m(l+1)
(2.4) TiP/Ty= Y Ay, B. )HPH,
j=1

forpex,i=12....md),leZ.
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ProOF. We will show the relation (2.4). Other relations are direct. For 8 €
T,vh eV, (o, o1, ur, 0, ..., o, ug) € WE, it follows that

* pl
Tﬁ Py Tgequ,arur.an,....n.ur)
Cup.ar iy o) AL (U—1, B, ug) € E¢ for some u_; € Q¢
1o ol

= and u’ | = v; where u_; = (u_l)l€Z+ € Qg,

0 otherwise,
f ol o I+1 A _

e(uo,m,u],az,...,ak,uk) 1 S(e) - U[’ t(e) - u() s (e) - ﬂ

= forsome e € E; 41,
0 otherwise,

m(l+1)

Hence the relation (2.4) holds.
Foraword v =a;---ap € AG, wesetT, =Ty, - Ty,.

LEMMA 2.3. Every polynomial of T,, P,-[,oe ex,i=12,....,m(),leZ,
is a finite linear combination of elements of the form T, Pil T for u,v € A,
i=12,....,m),leZ,.

ProoF. It follows that by (2.3) and (2.4)
m(l+1)

PIT, =T,T;P/T,= > Apil, o, )T, P
j=1

and hence m+1)

TP =) Aumila HPTY.
j=1

The assertion is immediately seen by these equations.

Let J¢ be the C*-algebra on $¢ generated by T, Pl-l, Py,ae X i=
1,2,...,m(),l € Z, and ¥ the closed two-sided ideal of ¢ generated by
Py.

LEMMA 2.4. £ is the closure of the algebra of all finite linear combinations
of elements of the form TMPilPOTV*for w,ve AL, i=12,....m(),l €.

PROOF. Since PyTy = 0, one sees T, P/ TPy = PyT,P/T = 0. As
the algebra J¢ is generated by elements of the form TMPil T} and Py, by
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using the relation P Pil = Pil Py, I is the closure of the algebra of all linear
combinations of elements of the forms 7, P/ PyT} and T, P!T*. Since .$ =
I« PyT ¢, one concludes that .# is the closure of the algebra of all finite linear
combinations of elements of the form 7, P! Py T}

LEMMA 2.5. Tp, P! ¢ 4.

PrOOF. Suppose Tg € £. By Lemma 2.4, there exists a finite linear combin-
ation X =Y, cuviaTu P PoT) of T, P/ PyT, v € Af i =1,2,...,
m(l), 1 € Z; such that | X — Tg| < % Let K denote the maximum length
of the words v that appear in the element ) cuv.i1Ty P! PyT}. Take a
finite path £ = (ug, 1, uy, @2, ..., Ag41, Ugy1) € Wf“ such that there ex-
ists a vertex u_; € Qg satisfying (u_;, B, ug) € Eg. We have Xe; = 0 and
Tge: = eq_, Bouo,...axsruxs1) SO that

”(X - Tﬂ)eé:” - ”e(l,{,],ﬂ,u() ..... aK+]v’4K+I)” == 17

a contradiction.

Suppose next P/ €.#. There exists similarly an element ¥ = Y vl Cuvil
T, P! PyT} suchthat |Y — P!|| < 1. Takea finite pathn = (uo, o1, uy, o, ... .,
Okl Uk+1) € Wf“ such that uf) = vf, where 1y = (ué)l€Z+ € Q¢ so that
Ye, =0and P.’e,7 = e, a contradiction.

DEFINITION. Let O ¢ be the quotient C*-algebra 7/ of 7 ¢ by the ideal .#,
and the operators S, and E; E! the quotient images of 7,, and P in0, @ respectively.

By Lemma 2.5, the elements Sa and Ef are not zeros for each @ € X and
vf € V, and satisfy the relations (¥) by Lemma 2.2. Thus by Theorem 1.1 we
obtain

__ THEOREM 2.6. Suppose that £ satisfies condition (I). Then the C*-algebra
O is canonically isomorphic to the C*-algebra Og associated with L-graph
system L.

Define a unitary representation U of the circle group T on the Hilbert space
e by Uze, = z¥e, for n € W§. It is easy to see that the automorphisms
Ad(U;), z € T on the algebra of all bounded linear operators on $g¢ leave
invariant globally both the algebras 7 and . They give rise to an action on
the C*-algebra O'¢ that is the gauge action ag on Ok.

This construction of the C*-algebra O is inspired by the construction of
the C*-algebras of Hilbert C*-bimodules by [18] and [10] (cf. [9]). Our con-
structoin can work for the construction of the C*-algebras of general continu-
ous graphs of Deaconu [5].
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3. A-irreducibility and pure infiniteness

As in Section 1, it has been proved in [16] that if ¥ is aperiodic, the C*-algebra
O¢ becomes simple and purely infinite. The aperiodic condition on ¥ however
is too strong such that the algebra Og is simple and purely infinite. In fact,
the Cuntz-Krieger algebra 0, is simple and purely infinite if the matrix A is
irreducible with condition (I). In this section, we introduce a new irreducible
condition along with a new condition (I) on ¥ under which the C*-algebra
O is simple and purely infinite. The new conditions are called A-irreducible
condition and A-condition (I) respectively. They are exact generalization of the
corresponding conditions on a finite square matrix A with entries in {0, 1}.

DEFINITION. A A-graph system X is A-irreducible if for an ordered pair of
vertices v/, vl € V}, there exists a number L;(i, j) € N such that for a vertex

1’ J
v;lﬂ’(l”’) € Visr, i, j) with LL’(i*j)(vil”LLl("J)) = v, there exists a path y in &

such that Sp) = v;’ ‘) = v£l+L/(i,j)’

where (%/0-/) means the L, (i, j)-times compositions of ¢, and s ('), ¢ (y) denote
the source vertex, the terminal vertex of y respectively. It is obvious that if ¢ is
M-irreducible, then it is irreducible in the sense of Section 1. Let G be a finite
directed graph and ¥ the associated A-graph system defined in [16, Section 7].
It is then immediate that G is irreducible if and only if ¥ is A-irreducible.

The following lemma is direct from the local property of A-graph system.

LeEmMma 3.1. Suppose that a ,-graph system & is A-irreducible. For a vertex
vf € V), let L be the number L;(i, i) as in the definition of A-irreducible for
the pair (v}, v').

(i) For a number k € N and a vertex VIHRE ¢ Viskr with LkL(v;+kL) =

J i
there exists a path w in & such that s(w) = vf. andt(mw) = vjl.+kL.

(1) Ifeverypathm in & oflength L withs(w) = vf must satisfy 1= (t (7)) = vf,
then every path y in & of length kL for some k € Nwith s(y) = Uf must
satisfy *E(t(y)) = vl

We will introduce A-condition (I).

DEFINITION. A A-graph system X is said to satisfy A-condition (1) if for a
vertex vf € Vj there exist two distinct paths y;, y» in ¥ such that

sy =s() =v,  tn) =t(rn), A1) # r(n).

It is obvious that if & satisfies A-condition (I), it satisfies condition (I) in the
sense of Section 1. One immediately sees that the adjacency matrix of a finite
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directed graph G satisfies condition (I) in the sense of Cuntz-Krieger [3] if and
only if ¥ satisfies A-condition (I).

Let A; 41, ;41 be the transition matrices of ¥ as in Section 1. Define
the matrices Ay ik, [114x for k € N by setting fori = 1,2,...,m(), j =
k
L2,....m(+k),ue A,
1ifs(y) = vl A(y) = . 1(y) = v
Appr(, 1, j) = for some path y in &,

0 otherwise,

~ I+k
1iff ™) =),

Lk, j) = {
" 0 otherwise,

where A(y) = A(y1) - A(y) fory = (v1, ..., ), v € E, 1 <i <k.

LEMMA 3.2. Suppose that & is A-irreducible and satisfies A-condition (I).
For a vertex vf € Vy, let L be the number as in Lemma 3.1. Then one of the
following two conditions holds:

(1) There existaword neAﬁ and avertexvitte Vigr suchthat Ay 41,1, 7)

j
=1, 1,400, j)=0.

(2) There exists k € N such that I ;111 (i, h) = 1 implies A; ;11 (i, b, h) =
1 for some u € AZL, and there exists h € {1,...,m(l + L)} such that
ZMeAﬁL Ap ik (s, h) > 2.

PRrOOF. Suppose that the condition (1) does not hold. As ¥ is A-irreducible,
it satisfies the assumption of Lemma 3.1(ii). By the A-condition (I), we may
take a number k € N and a vertex vff"L € Viyx1, and two distinct paths y;, y»

in L such that

sr) =s() =v,  tn) =t =v, Ay # M.

Hence we have A; 1441, (i, y1, h) = Aj 1440 (i, 2, h) = 1 so that

Z Appikr (@5 p, h) =2

;/.EA@L
and the condition (2) holds.

PROPOSITION 3.3. Assume that & is A-irreducible and satisfies A-condition

(1). For the projection Ell in the C*-algebra Oy corresponding to the vertex

vf. € V), there exists a number L € N such that for every vertex vﬁfL e VL
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with (* (vffL )= vf, there exists an admissible word (1(h) in Aé such that
m(l+L)

SumELShay #0  and Y Dgr (i m)Sua ELESh, < EL
h=1

Proor. For vf € Vj, let L be the number as in Lemma 3.1. One of the two
conditions (1) and (2) in the preceding lemma holds. Suppose that (1) holds.
As ¥ is A-irreducible, for a vertex vffL € V1 with(F (UL—H‘ ) = vf, there exists
a path y (k) in ¥ of length L such that s(y(h)) = vf, t(y(h) = vf,“. Put
(k) = A(y (h)) € AL sothat S, E, " S7 ) # 0. By the condition (1), there
exists a word 1 € Aé such that A; ;1 1., n, j) = 1, I ;4. (, j) = 0 for some
j=1,...,m( + L). Hence one has

m(l+L)

. I+L I+L
Z Ler G, W) Sy EyT Spuh) +S'7Ej+ S,
h=1
m(l+L)

< >0 Augrov, S, ELTESS.

h=1"veAk

Now A;4+1(i, n, j) = 1 so that S,,EffLS;; # 0. By (1.1), (1.3) and (1.4), the
equality

m(l+L)
(3.1) Yo D Al WS EES) = Ef
h=1 yeAL
holds so that m{+L)

Z Il,l+L(i, h)SM(h)E;ZJrLSZ(h) < Ell
h=1

We next assume that the condition (2) holds. There exists k € N such that
Lk (i, h) = 1 implies A j1x (i, u, h) = 1 for some u € AZL, and there
exists h = 1,...,m(l + L) such that ZMGA&L Ak, w, h) = 2. By (3.1)

we obtain m4kL)

Z I rr (@, h)Sﬂ(h)Eil—i_kLSZ(h) < E}.
h=1

Take L as kL so that we get the desired assertion.

Let N,™™" be the number of paths y in € starting at a vertex in V; and

terminating at vff". As ¥ is left-resolving, it is the number of admissible words
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pin Ag of length n such that S, El o S, # 0. It satisfies the equality
w3 s e
MEAG

By the local property of A-graph system, we have N 7" = Nj 7" if o (v}) =

" (v,lf”). For a vertex v”" € Vj4n, define a projection PH'" " by setting

1

I+n,n __ I+

P = > S.EL™S:.
wVEAY

LEMMA 3.4. Take u € Af satisfying SMEZJ’” S, # 0. Then there exists a
partial isometry U h+" in Og such that

I+nyrl4+n* _ yrl4n*yp7l4n __ I+n o*
Uh,uUh,u —Uh,u Uh,;r— E SyE,™ST,

VEAg

Ul+nPl+n nUH—n — S EH_nS*.

ProOF. The elements S¢ El R 7 », &, n € A§ form a matrix units of the C*-
subalgebra of Oy generated by S E [n Sy, &, m € Aj that is isomorphic to the

full matrix algebra of size Nj™". As PH'" " is a projection of rank one in
the subalgebra, one can find a desired partral isometry by elementary linear
algebra.

The following lemma is straightforward

LEMMA 3.5. Put V) = «/ﬁ D uent S LELTE. Then we have

m(l+L)
Vive=1,  VLEIVi = ) LG byt
h=1

PROPOSITION 3.6. Assume that & is A-irreducible and satisfies A-condition
(I). Then the projection Ell for vf € V is an infinite projection in Ox.

PRrOOF. Suppose that the number m (/) of the vertex set V; is one for all
| € Z... Then we have E! = 1. Since £ satisfies A-condition (I), the alphabet
¥ is not singleton. Now 1 = ZaeE SeSyand Ay y11(i, «, j) = 1foralli, «, j.
Hence we see by the relations (%),

SiSu = SuSy=1.

aeX
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This implies that the unit 1 is an infinite projection. In this case, the C*-algebra
Og is isomorphic to the Cuntz algebra 05 of order | 2| the number of X.

Suppose next that there exists [y € Z, such thatm(ly) > 2. Hence m(/) > 2
for [ > ly. For a projection Ell with [ > [y, by Proposition 3.3 for h =
1,...,m({ + L) with [; ;41 (i, h) = 1, there exists an admissible word w (&)
in A% such that

m(l+L)
1 . l
SumE;EShg, #0  and D Lusr W) Sum ERTE Sy < Ef
h=1

Let V;, be the isometry as in Lemma 3.5 and U ;,LL(h) the partial isometry as in
Lemma 3.4. Then we set W/ = (Zﬁllﬂ) Utk )VL. AsU'TE pITL — 0 for

N B, ju(h) k()= h
k # h, it follows that Wil Wl.l =1and

m(l+L)
WHEW = 3 LG UL PO
h=1
m(l+L)
= Y huer D) SunmEyESS g, < EL.
h=1

Hence E f is an infinite projection.

LEMMA 3.7. Assume that & is A-irreducible and satisfies \-condition (I).
Then for the projection Ell € Og for vf € V, there exists an element U € Og
such that UU* = 1 and UEfU* =1

PrOOF. Assume that ¥ is A-irreducible and satisfies A-condition (I), so
that  is irreducible and satisfies condition (I). Hence Og is simple. By [4,
Lemma V.5.4] with Proposition 3.6, the unit 1 of Og is equivalent to a subpro-
jection of E!. Take an element U € Oy such that UU* = 1 and U*U < E..
This implies UE!U* = 1.

THEOREM 3.8. If ¥ is A-irreducible and satisfies A-condition (1), for any
nonzero X € Og there exist A, B € Og such that AXB = 1.

PrROOF. Let E : Oy — ¢ be the canonical conditional expectation given
by

E(X) = /(ag),(X)dt, X € Oq.
T

Since E is faithful, we may assume that |E(X*X)| = 1. Let P¢ be the *-
algebra generated algebraically by the generators S, Ef, o€ X, vf € V. For
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any 0 < € < 41—1, we may find 0 < Y € Py such that | X*X — Y| < 5 so that
IEY)| > 1 — 5. As in the discussion in [16, Section 3], the element Y is
expressed as

Y = Z Y, S+ Yy + Z S,Y,  forsome Y_,, Y, Y,€FenPy.
[v[=1 [ul=1

Take k < [ such that Y_,, Yy, Y, € ,%i for all , v in the above expression.
Now ¥ satisfies condition (I). By [16, Lemma 3.1 and Lemma 4.2] there exists
aprojection Qf( in the diagonal algebra of % for k < [ satisfying the following
properties

(1) Qi commutes with 5515
(2) The map X € & — QX Q! € 0'F] O is an isomorphism.
(3) 04Su 0 = ;S0 =0 for I < |l [v] < k.

As E(Y) =Yy, it follows that by (1) and (3),

QLYQL = Y_,0iS;0+ QYo Qk + Y 00, 0LY, = QLE(Y) Q.

[vi=1 =1

Since QL E(Y) Q! € Fy, there exists 0 < Z € 9’7,5 for some k' < I’ such that
IQLE(Y)Q) — ZIl < 5. By (2), we note || O, E(Y) ;|| = [IE(Y)]| so that

€
IZI = IEW) =7 > 1-¢€

and
€

IZI < IQLE(Y) QL Il + 5

€ € €
IEX)| + 3= IEX* X)) + St5< l+e.

As the algebra 97,5 is finite dimensional, we have spectral decomposition Z =
Zle A R; of Z for some real numbers A; > 0 and minimal projections R; €
3515 Since | —€¢ < ||Z|| < 14€,wemay findipsuchthat ] —e < A;, < 1+¢,
and may assume that R;, = SMOEE(;S;O for some |uo| = k' and vfo € Vy. By
Lemma 3.7, there exists U € O¢ such that UU* = 1, UEf(;U* = 1. Put
A=US, R Q' . Tt follows that

JAX*XA* — 1]| < |[AX*XA* — AY A¥|
+ |AYA* — US’, Ri,ZR;, S, U*|l + |US’ RiyZR;y S U™ — 1]
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One then sees

€
JAX"XAT — AYAT| < XX — Y] < -

* * * * * €
2||AYA* — US% Ri\ZR;, S, U*|l = |US} Riy(QLY Q) — Z)R;, S, U™ < >
US: RiyZRi,Su,U* = Li,UEL U* = Aj,.
Thus we obtain
o s € € 1
JAX*XA* — 1| <§+E+|ki0—1| < 2e < T

Hence AX*XA* is invertible so that we have an element C € O such that
AX*XA*C = 1.

Therefore we conclude by [4, Theorem V.5.5]

THEOREM 3.9. If & is A-irreducible and satisfies A-condition (I), then the
C*-algebra Oy is simple and purely infinite.

Let A be afinite square matrix with entriesin {0, 1} and G 4 its corresponding
directed graph. By considering the associated A-graph system ¥g,, we have
the following well-known result:

CoroLLARY 3.10 ([1], [2], [3]). If A satisfies condition (I) in the sense of
Cuntz-Krieger [3] and is irreducible, the Cuntz-Krieger algebra O 4 is simple
and purely infinite.

In [12], [16, Theorem 7.7] and [17], examples of A-graph systems that are
A-irreducible and satisfy A-condition (I) are presented and the K-groups for
the associated C*-algebras are computed.
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