CONSTRUCTION AND PURE INFINITENESS OF C*-ALGEBRAS ASSOCIATED WITH LAMBDA-GRAPH SYSTEMS

KENGO MATSUMOTO

Abstract

A λ -graph system is a labeled Bratteli diagram with shift transformation. It is a generalization of finite labeled graphs and presents a subshift. In [16] the author has introduced a C^* -algebra $\mathcal{O}_{\mathfrak{L}}$ associated with a λ -graph system \mathfrak{L} by using groupoid method as a generalization of the Cuntz-Krieger algebras. In this paper, we concretely construct the C^* -algebra $\mathcal{O}_{\mathfrak{L}}$ by using both creation operators and projections on a sub Fock Hilbert space associated with \mathfrak{L} . We also introduce a new irreducible condition on \mathfrak{L} under which the C^* -algebra $\mathcal{O}_{\mathfrak{L}}$ becomes simple and purely infinite.

0. Introduction

For a finite set Σ , a subshift (Λ, σ) is a topological dynamics defined by a closed shift-invariant subset Λ of the compact set Σ^{Z} of all bi-infinite sequences of Σ with shift transformation σ defined by $\sigma((x_{i})_{i \in Z}) = (x_{i+1})_{i \in Z}$. The author has introduced the notions of symbolic matrix system and λ -graph system as presentations of subshifts ([15]). They are generalized notions of symbolic matrix and λ -graph (= labeled graph) for sofic subshifts. We henceforth denote by Z_{+} and by N the set of all nonnegative integers and the set of all positive integers respectively. A symbolic matrix system (\mathcal{M}, I) over Σ consists of two sequences of rectangular matrices ($\mathcal{M}_{l,l+1}, I_{l,l+1}$), $l \in Z_{+}$. The matrices $\mathcal{M}_{l,l+1}$ have their entries in formal sums of Σ and the matrices $I_{l,l+1}$ have their entries in $\{0, 1\}$. They satisfy the following commutation relations

$$I_{l,l+1}\mathcal{M}_{l+1,l+2} = \mathcal{M}_{l,l+1}I_{l+1,l+2}, \qquad l \in \mathsf{Z}_+.$$

It is required that each row of $I_{l,l+1}$ has at least one 1 and each column of $I_{l,l+1}$ has exactly one 1. A λ -graph system $\mathfrak{L} = (V, E, \lambda, \iota)$ over Σ consists of a vertex set $V = V_0 \cup V_1 \cup V_2 \cup \cdots$, an edge set $E = E_{0,1} \cup E_{1,2} \cup E_{2,3} \cup \cdots$, a labeling map $\lambda : E \to \Sigma$ and a surjective map $\iota (= \iota_{l,l+1}) : V_{l+1} \to V_l$ for each $l \in \mathbb{Z}_+$. It naturally arises from a symbolic matrix system (\mathcal{M}, I) . The labeled edges from a vertex $v_i^l \in V_l$ to a vertex $v_i^{l+1} \in V_{l+1}$ are given by

Received August 16, 2004.

the (i, j)-component $\mathcal{M}_{l,l+1}(i, j)$ of $\mathcal{M}_{l,l+1}$. The map $\iota (= \iota_{l,l+1})$ is defined by $\iota_{l,l+1}(v_j^{l+1}) = v_i^l$ precisely if $I_{l,l+1}(i, j) = 1$. The symbolic matrix systems and the λ -graph systems are the same objects and give rise to subshifts by gathering label sequences appearing in the labeled Bratteli diagrams of the λ -graph systems. Conversely we have a canonical method to construct a symbolic matrix system and a λ -graph system from an arbitrary subshift [15].

In [16], the author has constructed C^* -algebras from λ -graph systems as groupoid C^* -algebras by using continuous graphs in the sense of Deaconu (cf. [5], [19]) and studied their structure. Let $\mathfrak{L} = (V, E, \lambda, \iota)$ be a λ -graph system over Σ . Let $\{v_1^l, \ldots, v_{m(l)}^l\}$ be the vertex set V_l . The C^* -algebra $\mathcal{O}_{\mathfrak{L}}$ is generated by partial isometries S_α corresponding to the symbols $\alpha \in \Sigma$ and projections E_i^l corresponding to the vertices $v_i^l \in V_l$, $i = 1, \ldots, m(l)$, $l \in \mathbb{Z}_+$. It is realized as a universal unique C^* -algebra subject to certain operator relations among $S_\alpha, \alpha \in \Sigma$ and E_i^l , $i = 1, \ldots, m(l)$, $l \in \mathbb{Z}_+$ encoded by the structure of \mathfrak{L} . A condition on \mathfrak{L} , called condition (I), has been introduced ([16]). Irreducibility and aperiodicity for \mathfrak{L} have been also defined so that if \mathfrak{L} satisfies condition (I) and is irreducible, the C^* -algebra $\mathcal{O}_{\mathfrak{L}}$ is shown to be simple. It is also proved that if in particular \mathfrak{L} is aperiodic, $\mathcal{O}_{\mathfrak{L}}$ is simple and purely infinite ([16, Theorem 4.7 and Proposition 4.9]).

In this paper, we will first introduce a new construction of the C^* -algebras $\mathcal{O}_{\mathfrak{D}}$. We will construct a sub Fock Hilbert space associated with a λ graph system \mathfrak{L} and define creation operators and sequence of projections. We will then show that $\mathcal{O}_{\mathfrak{L}}$ is canonically isomorphic to the quotient C^* -algebra of the C^* -algebra generated by the creation operators and the projections by an ideal (Theorem 2.6). This construction is a generalization of a construction of Cuntz-Krieger algebras [3] by [7], [8] and C^* -algebras associated with subshifts [14]. We will next introduce a new irreducible condition and new condition (I) on \mathfrak{L} such that $\mathcal{O}_{\mathfrak{L}}$ becomes simple and purely infinite (Theorem 3.9). The new conditions are called λ -irreducible condition and λ -condition (I) respectively. In the previously proved result [16, Theorem 4.7 and Proposition 4.9], we needed aperiodicity condition on \mathfrak{L} for $\mathcal{O}_{\mathfrak{L}}$ to be simple and purely infinite. It is well-known that the Cuntz-Krieger algebra \mathcal{O}_A is simple and purely infinite if the matrix A is irreducible with condition (I). Since the C*-algebras $\mathcal{O}_{\mathfrak{X}}$ are a generalization of the Cuntz-Krieger algebras \mathcal{O}_A , the aperiodicity condition on \mathfrak{L} is too strong such that $\mathcal{O}_{\mathfrak{L}}$ becomes simple and purely infinite. From this point of view, the λ -irreducible condition with λ -condition (I) on \mathfrak{L} is an exact generalization of the irreducible condition with condition (I) on the nonnegative matrices A.

The author would like to thank the referee who named the terms λ -irreducible and λ -condition (I) instead of the originally used terms (new) irreducible and (new) condition (I), and for his useful comments.

1. Review of C^* -algebras associated with λ -graph systems

For a λ -graph system $\mathfrak{L} = (V, E, \lambda, \iota)$ over Σ , the vertex sets $V_l, l \in \mathbb{Z}_+$ and the edge sets $E_{l,l+1}, l \in \mathbb{Z}_+$ are finite disjoint sets. An edge e in $E_{l,l+1}$ has its source vertex s(e) in V_l and its terminal vertex t(e) in V_{l+1} . Every vertex in Vhas outgoing edges and every vertex in V, except V_0 , has incoming edges. The label of an edge $e \in E$ means $\lambda(e) \in \Sigma$. It is then required that there exists an edge in $E_{l,l+1}$ with label α and its terminal is $v \in V_{l+1}$ if and only if there exists an edge in $E_{l-1,l}$ with label α and its terminal is $\iota(v) \in V_l$. For $u \in V_{l-1}$ and $v \in V_{l+1}$, we put

$$E^{\iota}(u, v) = \{e \in E_{l,l+1} \mid t(e) = v, \iota(s(e)) = u\},\$$

$$E_{\iota}(u, v) = \{e \in E_{l-1,l} \mid s(e) = u, t(e) = \iota(v)\}.$$

Then there exists a bijective correspondence between $E^i(u, v)$ and $E_i(u, v)$ that preserves labels for every pair $(u, v) \in V_{l-1} \times V_{l+1}$. This property is called the local property of the λ -graph system. A finite sequence (e_1, e_2, \ldots, e_n) of edges such that $t(e_i) = s(e_{i+1}), i = 1, 2, \ldots, n-1$ is called a path. We put $\Sigma_i = \Sigma$ and define

$$\Lambda_{\mathfrak{L}}^{+} = \left\{ (\lambda(e_1), \lambda(e_2), \ldots) \in \prod_{i \in \mathbb{N}} \Sigma_i \mid e_i \in E_{i-1,i}, t(e_i) = s(e_{i+1}), \ i \in \mathbb{N} \right\}$$

and

$$\Lambda_{\mathfrak{L}} = \left\{ (\alpha_i)_{i \in \mathsf{Z}} \in \prod_{i \in \mathsf{Z}} \Sigma_i \mid (\alpha_i, \alpha_{i+1}, \ldots) \in \Lambda_{\mathfrak{L}}^+, \ i \in \mathsf{Z} \right\}.$$

Then $\Lambda_{\mathfrak{L}}$ is a subshift over Σ called the subshift presented by \mathfrak{L} . A finite sequence $\mu = (\mu_1, \ldots, \mu_k)$ of $\mu_j \in \Sigma$ that appears in $\Lambda_{\mathfrak{L}}$ is called an admissible word of \mathfrak{L} of length $|\mu| = k$. Denote by $\Lambda_{\mathfrak{L}}^k$ the set of all admissible words of length k of \mathfrak{L} and put $\Lambda_{\mathfrak{L}}^* = \bigcup_{k=0}^{\infty} \Lambda_{\mathfrak{L}}^k$ where $\Lambda_{\mathfrak{L}}^0$ denotes the empty word \emptyset .

We briefly review the C^* -algebra $\mathcal{O}_{\mathfrak{L}}$ associated with λ -graph system \mathfrak{L} , that has been originally constructed in [16] to be a groupoid C^* -algebra of a groupoid of a continuous graph obtained by \mathfrak{L} (cf. [5], [6], [19]).

Let $\mathfrak{L} = (V, E, \lambda, \iota)$ be a left-resolving λ -graph system over Σ , that is, for $e, e' \in E$, $\lambda(e) = \lambda(e')$, t(e) = t(e') implies e = e'. The vertex set V_l is denoted by $\{v_1^l, \ldots, v_{m(l)}^l\}$. Define the transition matrices $A_{l,l+1}$, $I_{l,l+1}$ of \mathfrak{L} by setting for $i = 1, 2, \ldots, m(l), j = 1, 2, \ldots, m(l+1), \alpha \in \Sigma$,

$$A_{l,l+1}(i, \alpha, j) = \begin{cases} 1 & \text{if } s(e) = v_i^l, \, \lambda(e) = \alpha, \, t(e) = v_j^{l+1} \text{ for some } e \in E_{l,l+1}, \\ 0 & \text{otherwise}, \end{cases}$$
$$I_{l,l+1}(i, j) = \begin{cases} 1 & \text{if } \iota_{l,l+1}(v_j^{l+1}) = v_i^l, \\ 0 & \text{otherwise}. \end{cases}$$

The *C**-algebra $\mathcal{O}_{\mathfrak{L}}$ is realized as the universal unital *C**-algebra generated by partial isometries S_{α} , $\alpha \in \Sigma$ and projections E_i^l , i = 1, 2, ..., m(l), $l \in \mathbb{Z}_+$ subject to the following operator relations called (\mathfrak{L}):

(1.1) $\sum_{\alpha \in \Sigma} S_{\alpha} S_{\alpha}^* = 1,$

(1.2)
$$\sum_{i=1}^{m(l)} E_i^l = 1, \qquad E_i^l = \sum_{j=1}^{m(l+1)} I_{l,l+1}(i,j) E_j^{l+1},$$

(1.3)
$$S_{\beta}S_{\beta}^{*}E_{i}^{l} = E_{i}^{l}S_{\beta}S_{\beta}^{*},$$

(1.4)
$$S_{\beta}^{*}E_{i}^{l}S_{\beta} = \sum_{j=1}^{m(l+1)} A_{l,l+1}(i,\beta,j)E_{j}^{l+1},$$

for $\beta \in \Sigma$, $i = 1, 2, ..., m(l), l \in Z_+$. For a vertex $v_i^l \in V_l$, we denote by $\Gamma^+(v_i^l)$ the set

$$\Gamma^{+}(v_{i}^{l}) = \left\{ (\lambda(e_{1}), \lambda(e_{2}), \ldots) \in \Lambda_{\Re}^{+} \mid s(e_{1}) = v_{i}^{l}, t(e_{i}) = s(e_{i+1}), j \in \mathbb{N} \right\}$$

of all infinite label sequences in \mathfrak{D} starting at v_i^l . We say that \mathfrak{D} satisfies condition (I) if for each $v_i^l \in V$, the set $\Gamma^+(v_i^l)$ contains at least two distinct label sequences.

THEOREM 1.1 ([16]). Suppose that \mathfrak{L} satisfies condition (I). Let \widehat{S}_{α} , $\alpha \in \Sigma$ and \widehat{E}_{i}^{l} , i = 1, 2, ..., m(l), $l \in \mathbb{Z}_{+}$ be another family of nonzero partial isometries and nonzero projections satisfying the relations (\mathfrak{L}). Then the map $S_{\alpha} \to \widehat{S}_{\alpha}$, $E_{i}^{l} \to \widehat{E}_{i}^{l}$ extends to an isomorphism from $\mathcal{O}_{\mathfrak{L}}$ onto the C*-algebra $\widehat{\mathcal{O}}_{\mathfrak{L}}$ generated by \widehat{S}_{α} , $\alpha \in \Sigma$ and \widehat{E}_{i}^{l} , i = 1, 2, ..., m(l), $l \in \mathbb{Z}_{+}$.

Hence the C^* -algebra $\mathcal{O}_{\mathfrak{D}}$ under the condition that \mathfrak{D} satisfies condition (I) is the unique C^* -algebra subject to the above relations (\mathfrak{D}). By the uniqueness of $\mathcal{O}_{\mathfrak{D}}$, the correspondence $S_{\alpha} \to zS_{\alpha}$, $E_i^l \to E_i^l$ for $z \in \mathsf{T} = \{z \in \mathsf{C} \mid |z| = 1\}$ yields an action $\alpha_{\mathfrak{D}}$ of T called the gauge action. Let \mathscr{F}_k^l be the finite dimensional C^* -subalgebra of $\mathcal{O}_{\mathfrak{D}}$ generated by $S_{\mu}E_i^lS_{\nu}^*$, $\mu, \nu \in \Lambda_{\mathfrak{D}}^k$, $i = 1, 2, \ldots, m(l)$. Let $\mathscr{F}_{\mathfrak{D}}$ be the C^* -subalgebra of $\mathcal{O}_{\mathfrak{D}}$ generated by the algebras \mathscr{F}_k^l , $k \leq l$. It is an AF-algebra realized as the fixed point algebra $\mathcal{O}_{\mathfrak{D}}^{\alpha_{\mathfrak{D}}}$ of $\mathcal{O}_{\mathfrak{D}}$ under $\alpha_{\mathfrak{D}}$.

A λ -graph system \mathfrak{L} is said to be *irreducible* if for a vertex $v_i^l \in V_l$ and a sequence (u^0, u^1, \ldots) of vertices $u^n \in V_n$ with $\iota_{n,n+1}(u^{n+1}) = u^n$, $n \in \mathbb{Z}_+$, there exists a path starting at v_i^l and terminating at u^{l+N} for some $N \in \mathbb{N}$. \mathfrak{L} is said to be *aperiodic* if for a vertex $v_i^l \in V_l$ there exists an $N \in \mathbb{N}$ such that there exist paths starting at v_i^l and terminating at all vertices of V_{l+N} . These properties for λ -graph systems are generalizations of the corresponding properties for finite directed graphs.

THEOREM 1.2 ([16], Proposition 4.9). Suppose that a λ -graph system \mathfrak{L} satisfies condition (I). If \mathfrak{L} is irreducible, the C*-algebra $\mathcal{O}_{\mathfrak{L}}$ is simple. If in particular \mathfrak{L} is aperiodic, $\mathcal{O}_{\mathfrak{L}}$ is simple and purely infinite.

In what follows, we fix a left-resolving λ -graph system $\mathfrak{L} = (V, E, \lambda, \iota)$ over Σ .

2. Fock space construction

In this section, we will construct a family of partial isometries and projections satisfying the relations (\mathfrak{A}) in a concrete way. Let $\Omega_{\mathfrak{A}}$ be the projective limit

$$\Omega_{\mathfrak{L}} = \left\{ (u^l)_{l \in \mathsf{Z}_+} \in \prod_{l \in \mathsf{Z}_+} V_l \mid \iota_{l,l+1}(u^{l+1}) = u^l, l \in \mathsf{Z}_+ \right\}$$

of the system $\iota_{l,l+1} : V_{l+1} \to V_l, l \in Z_+$. We endow $\Omega_{\mathfrak{L}}$ with the projective limit topology from the discrete topologies on $V_l, l \in Z_+$ so that it is a compact Hausdorff space. An element u in $\Omega_{\mathfrak{L}}$ is called a vertex. Let $E_{\mathfrak{L}}$ be the set of all triplets $(u, \alpha, w) \in \Omega_{\mathfrak{L}} \times \Sigma \times \Omega_{\mathfrak{L}}$ such that there exists $e_{l,l+1} \in E_{l,l+1}$ satisfying $u^l = s(e_{l,l+1}), w^{l+1} = t(e_{l,l+1})$ and $\alpha = \lambda(e_{l,l+1})$ for each $l \in Z_+$ where $u = (u^l)_{l \in \mathbb{Z}_+}, w = (w^l)_{l \in \mathbb{Z}_+} \in \Omega_{\mathfrak{L}}$. The set $E_{\mathfrak{L}} \subset \Omega_{\mathfrak{L}} \times \Sigma \times \Omega_{\mathfrak{L}}$ is a continuous graph in the sense of Deaconu ([14, Proposition 2.1]). For $w = (w^l)_{l \in \mathbb{Z}_+} \in \Omega_{\mathfrak{L}}$ and $\alpha \in \Sigma$, the local property of \mathfrak{L} ensures that if there exists $e_{0,1} \in E_{0,1}$ satisfying $w^1 = t(e_{0,1}), \alpha = \lambda(e_{0,1})$, there uniquely exist $e_{l,l+1} \in E_{l,l+1}$ and $u = (u^l)_{l \in \mathbb{Z}_+} \in \Omega_{\mathfrak{L}}$ satisfying $u^l = s(e_{l,l+1}), w^{l+1} = t(e_{l,l+1}), \alpha = \lambda(e_{l,l+1})$ for all $l \in \mathbb{Z}_+$. Hence for every $w \in \Omega_{\mathfrak{L}}$, there exist $\alpha \in \Sigma$ and $u \in \Omega_{\mathfrak{L}}$ such that $(u, \alpha, w) \in E_{\mathfrak{L}}$. Let us consider the finite path spaces of the graph $E_{\mathfrak{L}}$ as follows:

$$\begin{split} W_{\mathfrak{L}}^{0} &= \Omega_{\mathfrak{L}}, \\ W_{\mathfrak{L}}^{1} &= E_{\mathfrak{L}}, \\ W_{\mathfrak{L}}^{2} &= \{(u_{0}, \alpha_{1}, u_{1}, \alpha_{2}, u_{2}) \mid (u_{0}, \alpha_{1}, u_{1}), (u_{1}, \alpha_{2}, u_{2}) \in E_{\mathfrak{L}}\}, \\ & \dots \\ W_{\mathfrak{L}}^{k} &= \{(u_{0}, \alpha_{1}, u_{1}, \alpha_{2}, \dots, \alpha_{k}, u_{k}) \mid (u_{i-1}, \alpha_{i}, u_{i}) \in E_{\mathfrak{L}}, i = 1, 2, \dots, k\}, \\ & \dots \end{split}$$

We assign to a finite path $\eta \in W_{\mathfrak{Q}}^k$ the vector e_{η} . For each $k \in \mathbb{Z}_+$, let $\mathfrak{F}_{\mathfrak{Q}}^k$ be the Hilbert space spanned by the complete orthonomal basis $\{e_{\eta} \mid \eta \in W_{\mathfrak{Q}}^k\}$. The Hilbert space $\mathfrak{F}_{\mathfrak{Q}}$ is defined by their direct sums

$$\mathfrak{H}_{\mathfrak{L}} = \oplus_{k=0}^{\infty} \mathfrak{F}_{\mathfrak{L}}^k.$$

We define creation operators T_{β} for $\beta \in \Sigma$ and projections P_i^l for $v_i^l \in V$ on $\mathfrak{H}_{\mathfrak{D}}$ by setting

$$T_{\beta}e_{(u_{0},\alpha_{1},u_{1},\alpha_{2},...,\alpha_{k},u_{k})} = \begin{cases} e_{(u_{-1},\beta,u_{0},\alpha_{1},u_{1},\alpha_{2},...,\alpha_{k},u_{k})} & \text{if there exists } u_{-1} \in \Omega_{\mathfrak{D}} \\ & \text{such that } (u_{-1},\beta,u_{0}) \in E_{\mathfrak{D}}, \\ 0 & \text{otherwise}, \end{cases}$$
$$P_{i}^{l}e_{(u_{0},\alpha_{1},u_{1},\alpha_{2},...,\alpha_{k},u_{k})} = \begin{cases} e_{(u_{0},\alpha_{1},u_{1},\alpha_{2},...,\alpha_{k},u_{k})} & \text{if } u_{0}^{l} = v_{i}^{l}, \text{ where} \\ & u_{0} = (u_{0}^{l})_{l \in \mathsf{Z}_{+}} \in \Omega_{\mathfrak{D}}, \\ 0 & \text{otherwise}. \end{cases}$$

Note that the vertex $u_{-1} \in \Omega_{\mathfrak{L}}$ satisfying $(u_{-1}, \beta, u_0) \in E_{\mathfrak{L}}$ is unique for β and u_0 if it exists, because \mathfrak{L} is left-resolving. It is direct to see that

$$T_{\beta}^* e_{(u_0,\alpha_1,u_1,\alpha_2,\dots,\alpha_k,u_k)} = \begin{cases} e_{(u_1,\alpha_2,\dots,\alpha_k,u_k)} & \text{if } k \ge 1 \text{ and } \alpha_1 = \beta, \\ 0 & \text{otherwise.} \end{cases}$$

LEMMA 2.1. For $\beta \in \Sigma$

- (i) $T_{\beta}T_{\beta}^{*}$ is the projection onto the subspace spanned by the vectors e_{η} such that $\eta = (u_{0}, \alpha_{1}, u_{1}, \alpha_{2}, \dots, \alpha_{k}, u_{k}) \in W_{\Sigma}^{k}, \alpha_{1} = \beta, k \in \mathbb{N},$
- (ii) $T_{\beta}^*T_{\beta}$ is the projection onto the subspace spanned by the vectors e_{ξ} such that $\xi = (u_0, \alpha_1, u_1, \alpha_2, \dots, \alpha_k, u_k) \in W_{\mathfrak{L}}^k$, $k \in \mathbb{Z}_+$, $(u_{-1}, \beta, u_0) \in E_{\mathfrak{L}}$ for some $u_{-1} \in \Omega_{\mathfrak{L}}$.

Let P_0 denote the projection on $\mathfrak{H}_{\mathfrak{L}}$ onto the subspace $\mathfrak{H}_{\mathfrak{L}}^0$. It is immediate to see that $P_0T_\beta = 0$ for $\beta \in \Sigma$ and $P_0P_i^l = P_i^lP_0$ for $v_i^l \in V$. We then have

Lemma 2.2.

(2.1)
$$\sum_{\alpha \in \Sigma} T_{\alpha} T_{\alpha}^* + P_0 = 1,$$

(2.2)
$$\sum_{i=1}^{m(l)} P_i^l = 1, \qquad P_i^l = \sum_{j=1}^{m(l+1)} I_{l,l+1}(i,j) P_j^{l+1},$$

(2.3)
$$T_{\beta}T_{\beta}^{*}P_{i}^{l} = P_{i}^{l}T_{\beta}T_{\beta}^{*},$$

(2.4)
$$T_{\beta}^{*}P_{i}^{l}T_{\beta} = \sum_{j=1}^{m(l+1)} A_{l,l+1}(i,\beta,j)P_{j}^{l+1},$$

for $\beta \in \Sigma$, $i = 1, 2, \ldots, m(l), l \in \mathsf{Z}_+$.

78

PROOF. We will show the relation (2.4). Other relations are direct. For $\beta \in \Sigma$, $v_i^l \in V$, $(u_0, \alpha_1, u_1, \alpha_2, \dots, \alpha_k, u_k) \in W_{\Omega}^k$, it follows that

 $T_{\beta}^{*} P_{i}^{l} T_{\beta} e_{(u_{0},\alpha_{1},u_{1},\alpha_{2},...,\alpha_{k},u_{k})}^{l} \quad \text{if } (u_{-1},\beta,u_{0}) \in E_{\mathfrak{D}} \text{ for some } u_{-1} \in \Omega_{\mathfrak{D}}$ and $u_{-1}^{l} = v_{i}^{l} \text{ where } u_{-1} = (u_{-1}^{l})_{l \in \mathbb{Z}_{+}} \in \Omega_{\mathfrak{D}},$ $0 \quad \text{otherwise,}$ $= \begin{cases} e_{(u_{0},\alpha_{1},u_{1},\alpha_{2},...,\alpha_{k},u_{k})} & \text{if } s(e) = v_{i}^{l}, t(e) = u_{0}^{l+1}, \lambda(e) = \beta \\ for \text{ some } e \in E_{l,l+1}, \\ 0 & \text{otherwise,} \end{cases}$ $= \sum_{j=1}^{m(l+1)} A_{l,l+1}(i,\beta,j) P_{j}^{l+1} e_{(u_{0},\alpha_{1},u_{1},\alpha_{2},...,\alpha_{k},u_{k})}.$

Hence the relation (2.4) holds.

For a word $\nu = \alpha_1 \cdots \alpha_k \in \Lambda_{\Omega}^*$, we set $T_{\nu} = T_{\alpha_1} \cdots T_{\alpha_k}$.

LEMMA 2.3. Every polynomial of T_{α} , P_i^l , $\alpha \in \Sigma$, i = 1, 2, ..., m(l), $l \in \mathsf{Z}_+$ is a finite linear combination of elements of the form $T_{\mu}P_i^lT_{\nu}^*$ for $\mu, \nu \in \Lambda_{\mathfrak{L}}^*$, i = 1, 2, ..., m(l), $l \in \mathsf{Z}_+$.

PROOF. It follows that by (2.3) and (2.4)

$$P_{i}^{l}T_{\alpha} = T_{\alpha}T_{\alpha}^{*}P_{i}^{l}T_{\alpha} = \sum_{j=1}^{m(l+1)} A_{l,l+1}(i,\alpha,j)T_{\alpha}P_{j}^{l+1}$$

and hence

$$T_{\alpha}^* P_i^l = \sum_{j=1}^{m(l+1)} A_{l,l+1}(i,\alpha,j) P_j^{l+1} T_{\alpha}^*.$$

The assertion is immediately seen by these equations.

Let $\mathscr{T}_{\mathfrak{L}}$ be the C^* -algebra on $\mathfrak{H}_{\mathfrak{L}}$ generated by T_{α} , P_i^l , P_0 , $\alpha \in \Sigma$, $i = 1, 2, ..., m(l), l \in \mathbb{Z}_+$ and \mathscr{I} the closed two-sided ideal of $\mathscr{T}_{\mathfrak{L}}$ generated by P_0 .

LEMMA 2.4. \mathscr{I} is the closure of the algebra of all finite linear combinations of elements of the form $T_{\mu}P_{i}^{l}P_{0}T_{\nu}^{*}$ for $\mu, \nu \in \Lambda_{\Omega}^{*}$, $i = 1, 2, ..., m(l), l \in \mathbb{Z}_{+}$.

PROOF. Since $P_0 T_\beta = 0$, one sees $T_\mu P_i^l T_\nu^* P_0 = P_0 T_\mu P_i^l T_\nu^* = 0$. As the algebra $\mathcal{T}_{\mathfrak{L}}$ is generated by elements of the form $T_\mu P_i^l T_\nu^*$ and P_0 , by

using the relation $P_0 P_i^l = P_i^l P_0$, $\mathcal{T}_{\mathfrak{L}}$ is the closure of the algebra of all linear combinations of elements of the forms $T_{\mu} P_i^l P_0 T_{\nu}^*$ and $T_{\mu} P_i^l T_{\nu}^*$. Since $\mathscr{I} = \overline{\mathcal{T}_{\mathfrak{L}} P_0 \mathcal{T}_{\mathfrak{L}}}$, one concludes that \mathscr{I} is the closure of the algebra of all finite linear combinations of elements of the form $T_{\mu} P_i^l P_0 T_{\nu}^*$.

LEMMA 2.5. $T_{\beta}, P_i^l \notin \mathscr{I}$.

PROOF. Suppose $T_{\beta} \in \mathscr{I}$. By Lemma 2.4, there exists a finite linear combination $X = \sum_{\mu,\nu,i,l} c_{\mu,\nu,i,l} T_{\mu} P_i^l P_0 T_{\nu}^*$ of $T_{\mu} P_i^l P_0 T_{\nu}^*$, $\mu, \nu \in \Lambda_{\mathfrak{L}}^*$, $i = 1, 2, ..., m(l), l \in \mathbb{Z}_+$ such that $||X - T_{\beta}|| < \frac{1}{2}$. Let *K* denote the maximum length of the words ν that appear in the element $\sum_{\mu,\nu,i,l} c_{\mu,\nu,i,l} T_{\mu} P_i^l P_0 T_{\nu}^*$. Take a finite path $\xi = (u_0, \alpha_1, u_1, \alpha_2, ..., \alpha_{K+1}, u_{K+1}) \in W_{\mathfrak{L}}^{K+1}$ such that there exists a vertex $u_{-1} \in \Omega_{\mathfrak{L}}$ satisfying $(u_{-1}, \beta, u_0) \in E_{\mathfrak{L}}$. We have $Xe_{\xi} = 0$ and $T_{\beta}e_{\xi} = e_{(u_{-1},\beta,u_0,...,\alpha_{K+1},u_{K+1})}$ so that

$$||(X - T_{\beta})e_{\xi}|| = ||e_{(u_{-1},\beta,u_0,\dots,\alpha_{K+1},u_{K+1})}|| = 1,$$

a contradiction.

Suppose next $P_i^l \in \mathscr{I}$. There exists similarly an element $Y = \sum_{\mu,\nu,i,l} c_{\mu,\nu,i,l} c_{\mu,\nu,i,l} d_{\mu,\nu,i,l} T_{\mu} P_i^l P_0 T_{\nu}^*$ such that $||Y - P_i^l|| < \frac{1}{2}$. Take a finite path $\eta = (u_0, \alpha_1, u_1, \alpha_2, \dots, \alpha_{K+1}, u_{K+1}) \in W_{\mathfrak{L}}^{K+1}$ such that $u_0^l = v_i^l$, where $u_0 = (u_0^l)_{l \in \mathbb{Z}_+} \in \Omega_{\mathfrak{L}}$ so that $Ye_{\eta} = 0$ and $P_i^l e_{\eta} = e_{\eta}$ a contradiction.

DEFINITION. Let $\widehat{\mathcal{O}}_{\mathfrak{D}}$ be the quotient C^* -algebra $\mathscr{T}_{\mathfrak{D}}/\mathscr{I}$ of $\mathscr{T}_{\mathfrak{D}}$ by the ideal \mathscr{I} , and the operators \widehat{S}_{α} and \widehat{E}_i^l the quotient images of T_{α} and P_i^l in $\widehat{\mathcal{O}}_{\mathfrak{D}}$ respectively.

By Lemma 2.5, the elements \widehat{S}_{α} and \widehat{E}_{i}^{l} are not zeros for each $\alpha \in \Sigma$ and $v_{i}^{l} \in V$, and satisfy the relations (\mathfrak{Q}) by Lemma 2.2. Thus by Theorem 1.1 we obtain

THEOREM 2.6. Suppose that \mathfrak{L} satisfies condition (1). Then the C^* -algebra $\widehat{\mathcal{O}}_{\mathfrak{L}}$ is canonically isomorphic to the C^* -algebra $\mathcal{O}_{\mathfrak{L}}$ associated with λ -graph system \mathfrak{L} .

Define a unitary representation U of the circle group T on the Hilbert space $\mathfrak{F}_{\mathfrak{P}}$ by $U_z e_{\eta} = z^k e_{\eta}$ for $\eta \in W_{\mathfrak{P}}^k$. It is easy to see that the automorphisms $Ad(U_z), z \in \mathsf{T}$ on the algebra of all bounded linear operators on $\mathfrak{F}_{\mathfrak{P}}$ leave invariant globally both the algebras $\mathcal{F}_{\mathfrak{P}}$ and \mathscr{I} . They give rise to an action on the C^* -algebra $\widehat{\mathcal{O}}_{\mathfrak{P}}$ that is the gauge action $\alpha_{\mathfrak{P}}$ on $\mathcal{O}_{\mathfrak{P}}$.

This construction of the C^* -algebra $\widehat{\mathcal{O}}_{\mathfrak{L}}$ is inspired by the construction of the C^* -algebras of Hilbert C^* -bimodules by [18] and [10] (cf. [9]). Our construction can work for the construction of the C^* -algebras of general continuous graphs of Deaconu [5].

3. λ -irreducibility and pure infiniteness

As in Section 1, it has been proved in [16] that if \mathfrak{Q} is aperiodic, the C^* -algebra $\mathcal{O}_{\mathfrak{Q}}$ becomes simple and purely infinite. The aperiodic condition on \mathfrak{Q} however is too strong such that the algebra $\mathcal{O}_{\mathfrak{Q}}$ is simple and purely infinite. In fact, the Cuntz-Krieger algebra \mathcal{O}_A is simple and purely infinite if the matrix A is irreducible with condition (I). In this section, we introduce a new irreducible condition along with a new condition (I) on \mathfrak{Q} under which the C^* -algebra $\mathcal{O}_{\mathfrak{Q}}$ is simple and purely infinite. The new conditions are called λ -irreducible condition and λ -condition (I) respectively. They are exact generalization of the corresponding conditions on a finite square matrix A with entries in $\{0, 1\}$.

DEFINITION. A λ -graph system \mathfrak{L} is λ -*irreducible* if for an ordered pair of vertices $v_i^l, v_j^l \in V_l$, there exists a number $L_l(i, j) \in \mathbb{N}$ such that for a vertex $v_h^{l+L_l(i,j)} \in V_{l+L_l(i,j)}$ with $\iota^{L_l(i,j)}(v_h^{l+L_l(i,j)}) = v_i^l$, there exists a path γ in \mathfrak{L} such that $s(\gamma) = v_i^l, \quad t(\gamma) = v_h^{l+L_l(i,j)},$

where $\iota^{L_l(i,j)}$ means the $L_l(i, j)$ -times compositions of ι , and $s(\gamma)$, $t(\gamma)$ denote the source vertex, the terminal vertex of γ respectively. It is obvious that if \mathfrak{L} is λ -irreducible, then it is irreducible in the sense of Section 1. Let G be a finite directed graph and \mathfrak{L}_G the associated λ -graph system defined in [16, Section 7]. It is then immediate that G is irreducible if and only if \mathfrak{L}_G is λ -irreducible.

The following lemma is direct from the local property of λ -graph system.

LEMMA 3.1. Suppose that a λ -graph system \mathfrak{L} is λ -irreducible. For a vertex $v_i^l \in V_l$, let L be the number $L_l(i, i)$ as in the definition of λ -irreducible for the pair (v_i^l, v_i^l) .

- (i) For a number $k \in \mathbb{N}$ and a vertex $v_j^{l+kL} \in V_{l+kL}$ with $\iota^{kL}(v_j^{l+kL}) = v_i^l$, there exists a path π in \mathfrak{L} such that $s(\pi) = v_i^l$ and $t(\pi) = v_i^{l+kL}$.
- (ii) If every path π in Ω of length L with $s(\pi) = v_i^l$ must satisfy $\iota^L(t(\pi)) = v_i^l$, then every path γ in Ω of length kL for some $k \in \mathbb{N}$ with $s(\gamma) = v_i^l$ must satisfy $\iota^{kL}(t(\gamma)) = v_i^l$.

We will introduce λ -condition (I).

DEFINITION. A λ -graph system \mathfrak{L} is said to satisfy λ -condition (I) if for a vertex $v_i^l \in V_l$ there exist two distinct paths γ_1, γ_2 in \mathfrak{L} such that

$$s(\gamma_1) = s(\gamma_2) = v_i^l, \qquad t(\gamma_1) = t(\gamma_2), \qquad \lambda(\gamma_1) \neq \lambda(\gamma_2).$$

It is obvious that if \mathfrak{L} satisfies λ -condition (I), it satisfies condition (I) in the sense of Section 1. One immediately sees that the adjacency matrix of a finite

directed graph *G* satisfies condition (I) in the sense of Cuntz-Krieger [3] if and only if \mathfrak{L}_G satisfies λ -condition (I).

Let $A_{l,l+1}$, $I_{l,l+1}$ be the transition matrices of \mathfrak{L} as in Section 1. Define the matrices $A_{l,l+k}$, $I_{l,l+k}$ for $k \in \mathbb{N}$ by setting for i = 1, 2, ..., m(l), j = 1, 2, ..., m(l+k), $\mu \in \Lambda_{\mathfrak{L}}^k$,

$$A_{l,l+k}(i, \mu, j) = \begin{cases} 1 & \text{if } s(\gamma) = v_i^l, \lambda(\gamma) = \mu, t(\gamma) = v_j^{l+k} \\ & \text{for some path } \gamma \text{ in } \mathfrak{L}, \\ 0 & \text{otherwise}, \end{cases}$$
$$I_{l,l+k}(i, j) = \begin{cases} 1 & \text{if } \iota^k(v_j^{l+k}) = v_i^l, \\ 0 & \text{otherwise}, \end{cases}$$

where $\lambda(\gamma) = \lambda(\gamma_1) \cdots \lambda(\gamma_k)$ for $\gamma = (\gamma_1, \dots, \gamma_k), \gamma_i \in E, 1 \le i \le k$.

LEMMA 3.2. Suppose that \mathfrak{L} is λ -irreducible and satisfies λ -condition (I). For a vertex $v_i^l \in V_l$, let L be the number as in Lemma 3.1. Then one of the following two conditions holds:

- (1) There exist a word $\eta \in \Lambda_{\mathfrak{L}}^{L}$ and a vertex $v_{j}^{l+L} \in V_{l+L}$ such that $A_{l,l+L}(i,\eta,j) = 1$, $I_{l,l+L}(i,j) = 0$.
- (2) There exists $k \in \mathbb{N}$ such that $I_{l,l+kL}(i,h) = 1$ implies $A_{l,l+kL}(i,\mu,h) = 1$ for some $\mu \in \Lambda_{\mathcal{Q}}^{kL}$, and there exists $h \in \{1, \ldots, m(l+L)\}$ such that $\sum_{\mu \in \Lambda_{\mathcal{Q}}^{kL}} A_{l,l+kL}(i,\mu,h) \ge 2.$

PROOF. Suppose that the condition (1) does not hold. As \mathfrak{L} is λ -irreducible, it satisfies the assumption of Lemma 3.1(ii). By the λ -condition (I), we may take a number $k \in \mathbb{N}$ and a vertex $v_h^{l+kL} \in V_{l+kL}$ and two distinct paths γ_1, γ_2 in \mathfrak{L} such that

$$s(\gamma_1) = s(\gamma_2) = v_i^l, \qquad t(\gamma_1) = t(\gamma_2) = v_h^{l+kL}, \qquad \lambda(\gamma_1) \neq \lambda(\gamma_2).$$

Hence we have $A_{l,l+kL}(i, \gamma_1, h) = A_{l,l+kL}(i, \gamma_2, h) = 1$ so that

$$\sum_{\mu \in \Lambda_{\mathfrak{L}}^{kL}} A_{l,l+kL}(i,\mu,h) \ge 2$$

and the condition (2) holds.

PROPOSITION 3.3. Assume that \mathfrak{L} is λ -irreducible and satisfies λ -condition (I). For the projection E_i^l in the C^* -algebra $\mathcal{O}_{\mathfrak{L}}$ corresponding to the vertex $v_i^l \in V_l$, there exists a number $L \in \mathbb{N}$ such that for every vertex $v_h^{l+L} \in V_{l+L}$

with $\iota^L(v_h^{l+L}) = v_i^l$, there exists an admissible word $\mu(h)$ in $\Lambda_{\mathfrak{L}}^L$ such that

$$S_{\mu(h)}E_{h}^{l+L}S_{\mu(h)}^{*} \neq 0 \quad and \quad \sum_{h=1}^{m(l+L)} I_{l,l+L}(i,h)S_{\mu(h)}E_{h}^{l+L}S_{\mu(h)}^{*} < E_{i}^{l}$$

PROOF. For $v_i^l \in V_l$, let *L* be the number as in Lemma 3.1. One of the two conditions (1) and (2) in the preceding lemma holds. Suppose that (1) holds. As \mathfrak{Q} is λ -irreducible, for a vertex $v_h^{l+L} \in V_{l+L}$ with $\iota^L(v_h^{l+L}) = v_i^l$, there exists a path $\gamma(h)$ in \mathfrak{Q} of length *L* such that $s(\gamma(h)) = v_i^l$, $t(\gamma(h)) = v_h^{l+L}$. Put $\mu(h) = \lambda(\gamma(h)) \in \Lambda_{\mathfrak{Q}}^L$ so that $S_{\mu(h)} E_h^{l+L} S_{\mu(h)}^* \neq 0$. By the condition (1), there exists a word $\eta \in \Lambda_{\mathfrak{Q}}^L$ such that $A_{l,l+L}(i, \eta, j) = 1$, $I_{l,l+L}(i, j) = 0$ for some $j = 1, \ldots, m(l + L)$. Hence one has

$$\sum_{h=1}^{m(l+L)} I_{l,l+L}(i,h) S_{\mu(h)} E_h^{l+L} S_{\mu(h)}^* + S_\eta E_j^{l+L} S_\eta^*$$

$$\leq \sum_{h=1}^{m(l+L)} \sum_{\nu \in \Lambda_{\mathfrak{V}}^L} A_{l,l+L}(i,\nu,h) S_\nu E_h^{l+L} S_\nu^*.$$

Now $A_{l,l+L}(i, \eta, j) = 1$ so that $S_{\eta} E_h^{l+L} S_{\eta}^* \neq 0$. By (1.1), (1.3) and (1.4), the equality

(3.1)
$$\sum_{h=1}^{m(l+L)} \sum_{\nu \in \Lambda_{\mathcal{Q}}^{L}} A_{l,l+L}(i,\nu,h) S_{\nu} E_{h}^{l+L} S_{\nu}^{*} = E_{i}^{l}$$

holds so that

$$\sum_{h=1}^{m(l+L)} I_{l,l+L}(i,h) S_{\mu(h)} E_h^{l+L} S_{\mu(h)}^* < E_i^l.$$

We next assume that the condition (2) holds. There exists $k \in \mathbb{N}$ such that $I_{l,l+kL}(i, h) = 1$ implies $A_{l,l+kL}(i, \mu, h) = 1$ for some $\mu \in \Lambda_{\mathcal{Q}}^{kL}$, and there exists $h = 1, \ldots, m(l + L)$ such that $\sum_{\mu \in \Lambda_{\mathcal{Q}}^{kL}} A_{l,l+kL}(i, \mu, h) \ge 2$. By (3.1) we obtain m(l+kL)

$$\sum_{h=1}^{N} I_{l,l+kL}(i,h) S_{\mu(h)} E_h^{l+kL} S_{\mu(h)}^* < E_i^l.$$

Take L as kL so that we get the desired assertion.

Let $N_h^{l+n,n}$ be the number of paths γ in \mathfrak{L} starting at a vertex in V_l and terminating at v_h^{l+n} . As \mathfrak{L} is left-resolving, it is the number of admissible words

 μ in $\Lambda_{\mathfrak{L}}$ of length *n* such that $S_{\mu}E_{h}^{l+n}S_{\mu}^{*}\neq 0$. It satisfies the equality

$$N_h^{l+n,n} E_h^{l+n} = \left(\sum_{\mu \in \Lambda_{\mathcal{R}}^n} S_{\mu}^* S_{\mu}\right) E_h^{l+n}.$$

By the local property of λ -graph system, we have $N_h^{l+n,n} = N_k^{l+n,n}$ if $\iota^n(v_h^{l+n}) = \iota^n(v_k^{l+n})$. For a vertex $v_h^{l+n} \in V_{l+n}$, define a projection $P_h^{l+n,n}$ by setting

$$P_h^{l+n,n} = \frac{1}{N_h^{l+n,n}} \sum_{\mu,\nu \in \Lambda_{\mathfrak{Q}}^n} S_{\mu} E_h^{l+n} S_{\nu}^*.$$

LEMMA 3.4. Take $\mu \in \Lambda_{\mathfrak{Q}}^n$ satisfying $S_{\mu}E_h^{l+n}S_{\mu}^* \neq 0$. Then there exists a partial isometry $U_{h,\mu}^{l+n}$ in $\mathcal{O}_{\mathfrak{Q}}$ such that

$$U_{h,\mu}^{l+n}U_{h,\mu}^{l+n^*} = U_{h,\mu}^{l+n^*}U_{h,\mu}^{l+n} = \sum_{\nu \in \Lambda_{\mathcal{D}}^n} S_{\nu}E_{h}^{l+n}S_{\nu}^*,$$
$$U_{h,\mu}^{l+n}P_{h}^{l+n,n}U_{h,\mu}^{l+n^*} = S_{\mu}E_{h}^{l+n}S_{\mu}^*.$$

PROOF. The elements $S_{\xi} E_h^{l+n} S_{\eta}^*$, $\xi, \eta \in \Lambda_{\mathfrak{L}}^n$ form a matrix units of the C^* -subalgebra of $\mathcal{O}_{\mathfrak{L}}$ generated by $S_{\xi} E_h^{l+n} S_{\eta}^*$, $\xi, \eta \in \Lambda_{\mathfrak{L}}^n$ that is isomorphic to the full matrix algebra of size $N_h^{l+n,n}$. As $P_h^{l+n,n}$ is a projection of rank one in the subalgebra, one can find a desired partial isometry by elementary linear algebra.

The following lemma is straightforward.

LEMMA 3.5. Put
$$V_L = \frac{1}{\sqrt{N_h^{l+L,L}}} \sum_{\mu \in \Lambda_{\mathfrak{L}}^L} S_{\mu} E_h^{l+L}$$
. Then we have
 $V_L^* V_L = 1, \qquad V_L E_i^l V_L^* = \sum_{h=1}^{m(l+L)} I_{l,l+L}(i,h) P_h^{l+L,L}.$

PROPOSITION 3.6. Assume that \mathfrak{Q} is λ -irreducible and satisfies λ -condition (I). Then the projection E_i^l for $v_i^l \in V$ is an infinite projection in $\mathcal{O}_{\mathfrak{Q}}$.

PROOF. Suppose that the number m(l) of the vertex set V_l is one for all $l \in Z_+$. Then we have $E_i^l = 1$. Since \mathfrak{L} satisfies λ -condition (I), the alphabet Σ is not singleton. Now $1 = \sum_{\alpha \in \Sigma} S_\alpha S_\alpha^*$ and $A_{l,l+1}(i, \alpha, j) = 1$ for all i, α, j . Hence we see by the relations (\mathfrak{L}) ,

$$S^*_{\alpha}S_{\alpha} = \sum_{\alpha\in\Sigma} S_{\alpha}S^*_{\alpha} = 1.$$

84

This implies that the unit 1 is an infinite projection. In this case, the C^* -algebra \mathcal{O}_{Σ} is isomorphic to the Cuntz algebra $\mathcal{O}_{|\Sigma|}$ of order $|\Sigma|$ the number of Σ .

Suppose next that there exists $l_0 \in \mathbb{Z}_+$ such that $m(l_0) \ge 2$. Hence $m(l) \ge 2$ for $l \ge l_0$. For a projection E_i^l with $l \ge l_0$, by Proposition 3.3 for $h = 1, \ldots, m(l + L)$ with $I_{l,l+L}(i, h) = 1$, there exists an admissible word $\mu(h)$ in Λ_{Ω}^L such that

$$S_{\mu(h)}E_h^{l+L}S_{\mu(h)}^* \neq 0$$
 and $\sum_{h=1}^{m(l+L)} I_{l,l+L}(i,h)S_{\mu(h)}E_h^{l+L}S_{\mu(h)}^* < E_i^l.$

Let V_L be the isometry as in Lemma 3.5 and $U_{h,\mu(h)}^{l+L}$ the partial isometry as in Lemma 3.4. Then we set $W_i^l = \left(\sum_{h=1}^{m(l+L)} U_{h,\mu(h)}^{l+L}\right) V_L$. As $U_{k,\mu(k)}^{l+L} P_h^{l+L} = 0$ for $k \neq h$, it follows that $W_i^{l*} W_i^l = 1$ and

$$W_{i}^{l}E_{i}^{l}W_{i}^{l*} = \sum_{h=1}^{m(l+L)} I_{l,l+L}(i,h)U_{h,\mu(h)}^{l+L}P_{h}^{l+L}U_{h,\mu(h)}^{l+L}^{*}$$
$$= \sum_{h=1}^{m(l+L)} I_{l,l+L}(i,h)S_{\mu(h)}E_{h}^{l+L}S_{\mu(h)}^{*} < E_{i}^{l}.$$

Hence E_i^l is an infinite projection.

LEMMA 3.7. Assume that \mathfrak{L} is λ -irreducible and satisfies λ -condition (I). Then for the projection $E_i^l \in \mathcal{O}_{\mathfrak{L}}$ for $v_i^l \in V$, there exists an element $U \in \mathcal{O}_{\mathfrak{L}}$ such that $UU^* = 1$ and $UE_i^l U^* = 1$.

PROOF. Assume that \mathfrak{L} is λ -irreducible and satisfies λ -condition (I), so that \mathfrak{L} is irreducible and satisfies condition (I). Hence $\mathcal{O}_{\mathfrak{L}}$ is simple. By [4, Lemma V.5.4] with Proposition 3.6, the unit 1 of $\mathcal{O}_{\mathfrak{L}}$ is equivalent to a subprojection of E_i^l . Take an element $U \in \mathcal{O}_{\mathfrak{L}}$ such that $UU^* = 1$ and $U^*U \leq E_i^l$. This implies $U E_i^l U^* = 1$.

THEOREM 3.8. If \mathfrak{L} is λ -irreducible and satisfies λ -condition (I), for any nonzero $X \in \mathcal{O}_{\mathfrak{L}}$ there exist $A, B \in \mathcal{O}_{\mathfrak{L}}$ such that AXB = 1.

PROOF. Let $E: \mathcal{O}_{\mathfrak{D}} \to \mathscr{F}_{\mathfrak{D}}$ be the canonical conditional expectation given by

$$E(X) = \int_{\mathsf{T}} (\alpha_{\mathfrak{D}})_t(X) \, dt, \qquad X \in \mathcal{O}_{\mathfrak{D}}.$$

Since *E* is faithful, we may assume that $||E(X^*X)|| = 1$. Let $\mathscr{P}_{\mathfrak{D}}$ be the *algebra generated algebraically by the generators S_{α} , E_i^l , $\alpha \in \Sigma$, $v_i^l \in V$. For any $0 < \epsilon < \frac{1}{4}$, we may find $0 \le Y \in \mathscr{P}_{\mathfrak{L}}$ such that $||X^*X - Y|| < \frac{\epsilon}{2}$ so that $||E(Y)|| > 1 - \frac{\epsilon}{2}$. As in the discussion in [16, Section 3], the element Y is expressed as

$$Y = \sum_{|\nu| \ge 1} Y_{-\nu} S_{\nu}^* + Y_0 + \sum_{|\mu| \ge 1} S_{\mu} Y_{\mu} \quad \text{for some} \quad Y_{-\nu}, Y_0, Y_{\mu} \in \mathscr{F}_{\mathfrak{D}} \cap \mathscr{P}_{\mathfrak{D}}.$$

Take $k \leq l$ such that $Y_{-\nu}, Y_0, Y_{\mu} \in \mathscr{F}_k^l$ for all μ, ν in the above expression. Now \mathscr{L} satisfies condition (I). By [16, Lemma 3.1 and Lemma 4.2] there exists a projection Q_k^l in the diagonal algebra of $\mathscr{F}_{\mathscr{L}}$ for $k \leq l$ satisfying the following properties

- (1) Q_k^l commutes with \mathcal{F}_k^l .
- (2) The map $X \in \mathscr{F}_k^l \to Q_k^l X Q_k^l \in Q_k^l \mathscr{F}_k^l Q_k^l$ is an isomorphism.
- (3) $Q_k^l S_\mu Q_k^l = Q_k^l S_\nu^* Q_k^l = 0$ for $1 \le |\mu|, |\nu| \le k$.

As $E(Y) = Y_0$, it follows that by (1) and (3),

$$Q_{k}^{l}YQ_{k}^{l} = \sum_{|\nu|\geq 1} Y_{-\nu}Q_{k}^{l}S_{\nu}^{*}Q_{k}^{l} + Q_{k}^{l}Y_{0}Q_{k}^{l} + \sum_{|\mu|\geq 1} Q_{k}^{l}S_{\mu}Q_{k}^{l}Y_{\mu} = Q_{k}^{l}E(Y)Q_{k}^{l}.$$

Since $Q_k^l E(Y) Q_k^l \in \mathscr{F}_{\mathfrak{Q}}$, there exists $0 \le Z \in \mathscr{F}_{k'}^{l'}$ for some $k' \le l'$ such that $\|Q_k^l E(Y) Q_k^l - Z\| < \frac{\epsilon}{2}$. By (2), we note $\|Q_k^l E(Y) Q_k^l\| = \|E(Y)\|$ so that

$$\|Z\| \ge \|E(Y)\| - \frac{\epsilon}{2} > 1 - \epsilon$$

and

$$||Z|| < ||Q_k^l E(Y)Q_k^l|| + \frac{\epsilon}{2} = ||E(Y)|| + \frac{\epsilon}{2} \le ||E(X^*X)|| + \frac{\epsilon}{2} + \frac{\epsilon}{2} < 1 + \epsilon.$$

As the algebra $\mathscr{F}_{k'}^{l'}$ is finite dimensional, we have spectral decomposition $Z = \sum_{i=1}^{s} \lambda_i R_i$ of Z for some real numbers $\lambda_i \ge 0$ and minimal projections $R_i \in \mathscr{F}_{k'}^{l'}$. Since $1 - \epsilon < \|Z\| < 1 + \epsilon$, we may find i_0 such that $1 - \epsilon < \lambda_{i_0} < 1 + \epsilon$, and may assume that $R_{i_0} = S_{\mu_0} E_{i_0}^{l'} S_{\mu_0}^*$ for some $|\mu_0| = k'$ and $v_{i_0}^{l'} \in V_{l'}$. By Lemma 3.7, there exists $U \in \mathcal{O}_{\mathfrak{P}}$ such that $UU^* = 1$, $UE_{i_0}^{l'}U^* = 1$. Put $A = US_{\mu_0}^* R_{i_0} Q_k^l$. It follows that

$$\begin{split} \|AX^*XA^* - 1\| &\leq \|AX^*XA^* - AYA^*\| \\ &+ \|AYA^* - US^*_{\mu_0}R_{i_0}ZR_{i_0}S_{\mu_0}U^*\| + \|US^*_{\mu_0}R_{i_0}ZR_{i_0}S_{\mu_0}U^* - 1\|. \end{split}$$

One then sees

$$\|AX^*XA^* - AYA^*\| \le \|X^*X - Y\| < \frac{\epsilon}{2},$$

$$2\|AYA^* - US^*_{\mu_0}R_{i_0}ZR_{i_0}S_{\mu_0}U^*\| = \|US^*_{\mu_0}R_{i_0}(Q^l_kYQ^l_k - Z)R_{i_0}S_{\mu_0}U^*\| < \frac{\epsilon}{2},$$

$$US^*_{\mu_0}R_{i_0}ZR_{i_0}S_{\mu_0}U^* = \lambda_{i_0}UE^{l'}_{i_0}U^* = \lambda_{i_0}.$$

Thus we obtain

$$||AX^*XA^* - 1|| < \frac{\epsilon}{2} + \frac{\epsilon}{2} + |\lambda_{i_0} - 1| < 2\epsilon < \frac{1}{4}.$$

Hence AX^*XA^* is invertible so that we have an element $C \in \mathcal{O}_{\mathfrak{L}}$ such that $AX^*XA^*C = 1$.

Therefore we conclude by [4, Theorem V.5.5]

THEOREM 3.9. If \mathfrak{L} is λ -irreducible and satisfies λ -condition (I), then the C^* -algebra $\mathcal{O}_{\mathfrak{L}}$ is simple and purely infinite.

Let *A* be a finite square matrix with entries in $\{0, 1\}$ and G_A its corresponding directed graph. By considering the associated λ -graph system \mathfrak{L}_{G_A} , we have the following well-known result:

COROLLARY 3.10 ([1], [2], [3]). If A satisfies condition (I) in the sense of Cuntz-Krieger [3] and is irreducible, the Cuntz-Krieger algebra \mathcal{O}_A is simple and purely infinite.

In [12], [16, Theorem 7.7] and [17], examples of λ -graph systems that are λ -irreducible and satisfy λ -condition (I) are presented and the K-groups for the associated *C**-algebras are computed.

REFERENCES

- Cuntz, J., A class of C*-algebras and topological Markov chains II: reducible chains and the Ext-functor for C*-algebras, Invent. Math. 63 (1980), 25–40.
- 2. Cuntz, J., K-theory for certain C*-algebras, Ann. of Math. 113 (1981), 181–197.
- Cuntz, J., and Krieger, W., A class of C*-algebras and topological Markov chains, Invent. Math. 56 (1980), 251–268.
- 4. Davidson, K., C*-algebras by example, Fields Inst. Monogr. 6, 1996.
- 5. Deaconu, V., Groupoids associated with endomorphisms, Trans. Amer. Math. Soc. 347 (1995), 1779–1786.
- 6. Deaconu, V., Generalized solenoids and C*-algebras, Pacific. J. Math. 190 (1999), 247-260.
- Enomoto, M., Fujii, M., and Watatani, Y., *Tensor algebras on the sub Fock space associated with O_A*, Math. Japon. 24 (1979), 463–468.
- 8. Evans, D., Gauge actions on \mathcal{O}_A , J. Operator Theory 7 (1982), 79–100.

87

- Kajiwara, T., Pinzari, C., and Watatani, Y., *Ideal structure and simplicity of the C*-algebras generated by Hilbert modules*, J. Funct. Anal. 159 (1998), 295–322.
- 10. Katayama, Y., Generalized Cuntz algebras \mathcal{O}_N^M , RIMS kokyuroku 858 (1994), 87–90.
- 11. Kitchens, B. P., Symbolic Dynamics, Springer-Verlag, Berlin, Heidelberg and New York, 1998.
- 12. Krieger, W., and Matsumoto, K., *A lambda-graph system for the Dyck shift and its K-groups*, Doc. Math. 8 (2003), 79–96.
- Lind, D., and Marcus, B., An introduction to symbolic dynamics and coding, Cambridge University Press, 1995.
- Matsumoto, K., On C*-algebras associated with subshifts, Internat. J. Math. 8 (1997), 357– 374.
- Matsumoto, K., Presentations of subshifts and their topological conjugacy invariants, Doc. Math. 4 (1999), 285–340.
- 16. Matsumoto, K., *C*-algebras associated with presentations of subshifts*, Doc. Math. 7 (2002), 1–30.
- 17. Matsumoto, K., A simple purely infinite C*-algebra associated with a lambda-graph system of the Motzkin shift, Math. Z. 248 (2004), 369–394.
- Pimsner, M. V., A class of C*-algebras generalizing both Cuntz-Krieger algebras and crossed product by Z, in Free Probability Theory, Fields Inst. Commun. 12 (1996), 189–212.
- 19. Renault, J. N., A groupoid approach to C*-algebras, Lecture Notes in Math. 793 (1980).

DEPARTMENT OF MATHEMATICAL SCIENCES YOKOHAMA CITY UNIVERSITY SETO 22-2, KANAZAWA-KU, YOKOHAMA 236-0027 JAPAN *E-mail:* kengo@yokohama-cu.ac.jp