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CONSTRUCTION AND PURE INFINITENESS OF
C∗-ALGEBRAS ASSOCIATED WITH

LAMBDA-GRAPH SYSTEMS

KENGO MATSUMOTO

Abstract

A λ-graph system is a labeled Bratteli diagram with shift transformation. It is a generalization of
finite labeled graphs and presents a subshift. In [16] the author has introduced a C∗-algebra O�

associated with a λ-graph system � by using groupoid method as a generalization of the Cuntz-
Krieger algebras. In this paper, we concretely construct the C∗-algebra O� by using both creation
operators and projections on a sub Fock Hilbert space associated with �. We also introduce a new
irreducible condition on � under which the C∗-algebra O� becomes simple and purely infinite.

0. Introduction

For a finite set �, a subshift (�, σ) is a topological dynamics defined by a
closed shift-invariant subset�of the compact set�Z of all bi-infinite sequences
of � with shift transformation σ defined by σ((xi)i∈Z) = (xi+1)i∈Z.The author
has introduced the notions of symbolic matrix system and λ-graph system as
presentations of subshifts ([15]). They are generalized notions of symbolic
matrix and λ-graph (= labeled graph) for sofic subshifts. We henceforth denote
by Z+ and by N the set of all nonnegative integers and the set of all positive
integers respectively. A symbolic matrix system (M, I ) over � consists of two
sequences of rectangular matrices (Ml,l+1, Il,l+1), l ∈ Z+. The matrices Ml,l+1

have their entries in formal sums of � and the matrices Il,l+1 have their entries
in {0, 1}. They satisfy the following commutation relations

Il,l+1Ml+1,l+2 = Ml,l+1Il+1,l+2, l ∈ Z+.

It is required that each row of Il,l+1 has at least one 1 and each column of Il,l+1

has exactly one 1. A λ-graph system � = (V ,E, λ, ι) over � consists of a
vertex set V = V0 ∪ V1 ∪ V2 ∪ · · ·, an edge set E = E0,1 ∪ E1,2 ∪ E2,3 ∪ · · ·,
a labeling map λ : E → � and a surjective map ι (= ιl,l+1) : Vl+1 → Vl

for each l ∈ Z+. It naturally arises from a symbolic matrix system (M, I ).
The labeled edges from a vertex vl

i ∈ Vl to a vertex vl+1
j ∈ Vl+1 are given by
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the (i, j)-component Ml,l+1(i, j) of Ml,l+1. The map ι (= ιl,l+1) is defined by
ιl,l+1(v

l+1
j ) = vl

i precisely if Il,l+1(i, j) = 1. The symbolic matrix systems
and the λ-graph systems are the same objects and give rise to subshifts by
gathering label sequences appearing in the labeled Bratteli diagrams of the λ-
graph systems. Conversely we have a canonical method to construct a symbolic
matrix system and a λ-graph system from an arbitrary subshift [15].

In [16], the author has constructed C∗-algebras from λ-graph systems as
groupoid C∗-algebras by using continuous graphs in the sense of Deaconu
(cf. [5], [19]) and studied their structure. Let � = (V ,E, λ, ι) be a λ-graph
system over �. Let {vl

1, . . . , v
l
m(l)} be the vertex set Vl . The C∗-algebra O�

is generated by partial isometries Sα corresponding to the symbols α ∈ �

and projections El
i corresponding to the vertices vl

i ∈ Vl , i = 1, . . . , m(l),
l ∈ Z+. It is realized as a universal uniqueC∗-algebra subject to certain operator
relations among Sα, α ∈ � and El

i , i = 1, . . . , m(l), l ∈ Z+ encoded by the
structure of �. A condition on �, called condition (I), has been introduced
([16]). Irreducibility and aperiodicity for � have been also defined so that if
� satisfies condition (I) and is irreducible, the C∗-algebra O� is shown to be
simple. It is also proved that if in particular � is aperiodic, O� is simple and
purely infinite ([16, Theorem 4.7 and Proposition 4.9]).

In this paper, we will first introduce a new construction of the C∗-algebras
O�. We will construct a sub Fock Hilbert space associated with a λ graph
system � and define creation operators and sequence of projections. We will
then show that O� is canonically isomorphic to the quotient C∗-algebra of the
C∗-algebra generated by the creation operators and the projections by an ideal
(Theorem 2.6). This construction is a generalization of a construction of Cuntz-
Krieger algebras [3] by [7], [8] and C∗-algebras associated with subshifts [14].
We will next introduce a new irreducible condition and new condition (I) on
� such that O� becomes simple and purely infinite (Theorem 3.9). The new
conditions are called λ-irreducible condition and λ-condition (I) respectively.
In the previously proved result [16, Theorem 4.7 and Proposition 4.9], we
needed aperiodicity condition on � for O� to be simple and purely infinite. It
is well-known that the Cuntz-Krieger algebra OA is simple and purely infinite
if the matrix A is irreducible with condition (I). Since the C∗-algebras O� are
a generalization of the Cuntz-Krieger algebras OA, the aperiodicity condition
on � is too strong such that O� becomes simple and purely infinite. From
this point of view, the λ-irreducible condition with λ-condition (I) on � is
an exact generalization of the irreducible condition with condition (I) on the
nonnegative matrices A.

The author would like to thank the referee who named the terms λ-irredu-
cible and λ-condition (I) instead of the originally used terms (new) irreducible
and (new) condition (I), and for his useful comments.
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1. Review of C∗-algebras associated with λ-graph systems

For a λ-graph system � = (V ,E, λ, ι) over �, the vertex sets Vl , l ∈ Z+ and
the edge sets El,l+1, l ∈ Z+ are finite disjoint sets. An edge e in El,l+1 has its
source vertex s(e) in Vl and its terminal vertex t (e) in Vl+1. Every vertex in V

has outgoing edges and every vertex in V , except V0, has incoming edges. The
label of an edge e ∈ E means λ(e) ∈ �. It is then required that there exists
an edge in El,l+1 with label α and its terminal is v ∈ Vl+1 if and only if there
exists an edge in El−1,l with label α and its terminal is ι(v) ∈ Vl . For u ∈ Vl−1

and v ∈ Vl+1, we put

Eι(u, v) = {e ∈ El,l+1 | t (e) = v, ι(s(e)) = u},
Eι(u, v) = {e ∈ El−1,l | s(e) = u, t (e) = ι(v)}.

Then there exists a bijective correspondence betweenEι(u, v) andEι(u, v) that
preserves labels for every pair (u, v) ∈ Vl−1 × Vl+1. This property is called
the local property of the λ-graph system. A finite sequence (e1, e2, . . . , en) of
edges such that t (ei) = s(ei+1), i = 1, 2, . . . , n − 1 is called a path. We put
�i = � and define

�+
� =

{
(λ(e1), λ(e2), . . .) ∈

∏
i∈N

�i | ei ∈ Ei−1,i , t (ei) = s(ei+1), i ∈ N
}

and
�� =

{
(αi)i∈Z ∈

∏
i∈Z

�i | (αi, αi+1, . . .) ∈ �+
� , i ∈ Z

}
.

Then �� is a subshift over � called the subshift presented by �. A finite se-
quence µ = (µ1, . . . , µk) of µj ∈ � that appears in �� is called an admissible
word of � of length |µ| = k. Denote by �k

� the set of all admissible words of
length k of � and put �∗

� = ∪∞
k=0�

k
� where �0

� denotes the empty word ∅.
We briefly review the C∗-algebra O� associated with λ-graph system �,

that has been originally constructed in [16] to be a groupoid C∗-algebra of a
groupoid of a continuous graph obtained by � (cf. [5], [6], [19]).

Let � = (V ,E, λ, ι) be a left-resolving λ-graph system over �, that is,
for e, e′ ∈ E, λ(e) = λ(e′), t (e) = t (e′) implies e = e′. The vertex set Vl is
denoted by {vl

1, . . . , v
l
m(l)}. Define the transition matrices Al,l+1, Il,l+1 of � by

setting for i = 1, 2, . . . , m(l), j = 1, 2, . . . , m(l + 1), α ∈ �,

Al,l+1(i, α, j) =
{

1 if s(e)= vl
i , λ(e)=α, t (e)= vl+1

j for some e∈El,l+1,

0 otherwise,

Il,l+1(i, j) =
{

1 if ιl,l+1(v
l+1
j ) = vl

i ,

0 otherwise.
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The C∗-algebra O� is realized as the universal unital C∗-algebra generated by
partial isometries Sα , α ∈ � and projections El

i , i = 1, 2, . . . , m(l), l ∈ Z+
subject to the following operator relations called (�):∑

α∈�
SαS

∗
α = 1,(1.1)

m(l)∑
i=1

El
i = 1, El

i =
m(l+1)∑
j=1

Il,l+1(i, j)E
l+1
j ,(1.2)

SβS
∗
βE

l
i = El

iSβS
∗
β,(1.3)

S∗
βE

l
iSβ =

m(l+1)∑
j=1

Al,l+1(i, β, j)E
l+1
j ,(1.4)

for β ∈ �, i = 1, 2, . . . , m(l), l ∈ Z+.
For a vertex vl

i ∈ Vl , we denote by �+(vl
i ) the set

�+(vl
i ) = {

(λ(e1), λ(e2), . . .) ∈ �+
� | s(e1) = vl

i , t (ej ) = s(ej+1), j ∈ N
}

of all infinite label sequences in � starting at vl
i . We say that � satisfies condition

(I) if for each vl
i ∈ V , the set �+(vl

i ) contains at least two distinct label
sequences.

Theorem 1.1 ([16]). Suppose that � satisfies condition (I). Let Ŝα , α ∈ �

and Êl
i , i = 1, 2, . . . , m(l), l ∈ Z+ be another family of nonzero partial

isometries and nonzero projections satisfying the relations (�). Then the map
Sα → Ŝα , El

i → Êl
i extends to an isomorphism from O� onto the C∗-algebra

Ô � generated by Ŝα , α ∈ � and Êl
i , i = 1, 2, . . . , m(l), l ∈ Z+.

Hence the C∗-algebra O� under the condition that � satisfies condition (I)
is the unique C∗-algebra subject to the above relations (�). By the uniqueness
of O�, the correspondence Sα → zSα , El

i → El
i for z ∈ T = {z ∈ C | |z| = 1}

yields an actionα� of T called the gauge action. Let F l
k be the finite dimensional

C∗-subalgebra of O� generated by SµE
l
iS

∗
ν , µ, ν ∈ �k

�, i = 1, 2, . . . , m(l).
Let F� be the C∗-subalgebra of O� generated by the algebras F l

k , k ≤ l. It is
an AF-algebra realized as the fixed point algebra O

α�

� of O� under α�.
A λ-graph system � is said to be irreducible if for a vertex vl

i ∈ Vl and a
sequence (u0, u1, . . .) of vertices un ∈ Vn with ιn,n+1(u

n+1) = un, n ∈ Z+,
there exists a path starting at vl

i and terminating at ul+N for some N ∈ N.
� is said to be aperiodic if for a vertex vl

i ∈ Vl there exists an N ∈ N such
that there exist paths starting at vl

i and terminating at all vertices of Vl+N .
These properties for λ-graph systems are generalizations of the corresponding
properties for finite directed graphs.
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Theorem 1.2 ([16], Proposition 4.9). Suppose that a λ-graph system �
satisfies condition (I). If � is irreducible, the C∗-algebra O� is simple. If in
particular � is aperiodic, O� is simple and purely infinite.

In what follows, we fix a left-resolving λ-graph system � = (V ,E, λ, ι)

over �.

2. Fock space construction

In this section, we will construct a family of partial isometries and projections
satisfying the relations (�) in a concrete way. Let #� be the projective limit

#� =
{
(ul)l∈Z+ ∈

∏
l∈Z+

Vl | ιl,l+1(u
l+1) = ul, l ∈ Z+

}

of the system ιl,l+1 : Vl+1 → Vl , l ∈ Z+. We endow #� with the projective
limit topology from the discrete topologies on Vl , l ∈ Z+ so that it is a compact
Hausdorff space. An element u in #� is called a vertex. Let E� be the set of all
triplets (u, α,w) ∈ #�×�×#� such that there exists el,l+1 ∈ El,l+1 satisfying
ul = s(el,l+1), wl+1 = t (el,l+1) and α = λ(el,l+1) for each l ∈ Z+ where
u = (ul)l∈Z+ , w = (wl)l∈Z+ ∈ #�. The set E� ⊂ #� ×�×#� is a continuous
graph in the sense of Deaconu ([14, Proposition 2.1]). For w = (wl)l∈Z+ ∈ #�

and α ∈ �, the local property of � ensures that if there exists e0,1 ∈ E0,1

satisfying w1 = t (e0,1), α = λ(e0,1), there uniquely exist el,l+1 ∈ El,l+1 and
u = (ul)l∈Z+ ∈ #� satisfying ul = s(el,l+1), wl+1 = t (el,l+1), α = λ(el,l+1)

for all l ∈ Z+. Hence for every w ∈ #�, there exist α ∈ � and u ∈ #� such
that (u, α,w) ∈ E�. Let us consider the finite path spaces of the graph E� as
follows:

W 0
� = #�,

W 1
� = E�,

W 2
� = {(u0, α1, u1, α2, u2) | (u0, α1, u1), (u1, α2, u2) ∈ E�},
. . .

Wk
� = {(u0, α1, u1, α2, . . . , αk, uk) | (ui−1, αi, ui) ∈ E�, i = 1, 2, . . . , k},
. . .

We assign to a finite path η ∈ Wk
� the vector eη. For each k ∈ Z+, let �k

� be the
Hilbert space spanned by the complete orthonomal basis {eη | η ∈ Wk

�}. The
Hilbert space �� is defined by their direct sums

�� = ⊕∞
k=0�k

�.
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We define creation operators Tβ for β ∈ � and projections P l
i for vl

i ∈ V on
�� by setting

Tβe(u0,α1,u1,α2,...,αk,uk) =



e(u−1,β,u0,α1,u1,α2,...,αk,uk) if there exists u−1 ∈#�

such that (u−1,β,u0)∈E�,

0 otherwise,

P l
i e(u0,α1,u1,α2,...,αk,uk) =




e(u0,α1,u1,α2,...,αk,uk) if ul
0 = vl

i , where
u0 = (ul

0)l∈Z+∈#�,

0 otherwise.

Note that the vertex u−1 ∈ #� satisfying (u−1, β, u0) ∈ E� is unique for β

and u0 if it exists, because � is left-resolving. It is direct to see that

T ∗
β e(u0,α1,u1,α2,...,αk,uk) =

{
e(u1,α2,...,αk,uk) if k ≥ 1 and α1 = β,

0 otherwise.

Lemma 2.1. For β ∈ �

(i) TβT
∗
β is the projection onto the subspace spanned by the vectors eη such

that η = (u0, α1, u1, α2, . . . , αk, uk) ∈ Wk
� , α1 = β, k ∈ N,

(ii) T ∗
β Tβ is the projection onto the subspace spanned by the vectors eξ such

that ξ = (u0, α1, u1, α2, . . . , αk, uk) ∈ Wk
� , k ∈ Z+, (u−1, β, u0) ∈ E�

for some u−1 ∈ #�.

Let P0 denote the projection on �� onto the subspace �0
�. It is immediate

to see that P0Tβ = 0 for β ∈ � and P0P
l
i = P l

i P0 for vl
i ∈ V . We then have

Lemma 2.2. ∑
α∈�

TαT
∗
α + P0 = 1,(2.1)

m(l)∑
i=1

P l
i = 1, P l

i =
m(l+1)∑
j=1

Il,l+1(i, j)P
l+1
j ,(2.2)

TβT
∗
β P

l
i = P l

i TβT
∗
β ,(2.3)

T ∗
β P

l
i Tβ =

m(l+1)∑
j=1

Al,l+1(i, β, j)P
l+1
j ,(2.4)

for β ∈ �, i = 1, 2, . . . , m(l), l ∈ Z+.
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Proof. We will show the relation (2.4). Other relations are direct. For β ∈
�, vl

i ∈ V , (u0, α1, u1, α2, . . . , αk, uk) ∈ Wk
� , it follows that

T ∗
β P

l
i Tβe(u0,α1,u1,α2,...,αk,uk)

=



e(u0,α1,u1,α2,...,αk,uk) if (u−1, β, u0) ∈ E� for some u−1 ∈ #�

and ul
−1 = vl

i where u−1 = (ul
−1)l∈Z+

∈ #�,

0 otherwise,

=



e(u0,α1,u1,α2,...,αk,uk) if s(e) = vl
i , t (e) = ul+1

0 , λ(e) = β

for some e ∈ El,l+1,

0 otherwise,

=
m(l+1)∑
j=1

Al,l+1(i, β, j)P
l+1
j e(u0,α1,u1,α2,...,αk,uk).

Hence the relation (2.4) holds.

For a word ν = α1 · · ·αk ∈ �∗
�, we set Tν = Tα1 · · · Tαk

.

Lemma 2.3. Every polynomial of Tα , P l
i , α ∈ �, i = 1, 2, . . . , m(l), l ∈ Z+

is a finite linear combination of elements of the form TµP
l
i T

∗
ν for µ, ν ∈ �∗

�,
i = 1, 2, . . . , m(l), l ∈ Z+.

Proof. It follows that by (2.3) and (2.4)

P l
i Tα = TαT

∗
α P

l
i Tα =

m(l+1)∑
j=1

Al,l+1(i, α, j)TαP
l+1
j

and hence

T ∗
α P

l
i =

m(l+1)∑
j=1

Al,l+1(i, α, j)P
l+1
j T ∗

α .

The assertion is immediately seen by these equations.

Let T� be the C∗-algebra on �� generated by Tα , P l
i , P0, α ∈ �, i =

1, 2, . . . , m(l), l ∈ Z+ and I the closed two-sided ideal of T� generated by
P0.

Lemma 2.4. I is the closure of the algebra of all finite linear combinations
of elements of the form TµP

l
i P0T

∗
ν for µ, ν ∈ �∗

�, i = 1, 2, . . . , m(l), l ∈ Z+.

Proof. Since P0Tβ = 0, one sees TµP
l
i T

∗
ν P0 = P0TµP

l
i T

∗
ν = 0. As

the algebra T� is generated by elements of the form TµP
l
i T

∗
ν and P0, by
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using the relation P0P
l
i = P l

i P0, T� is the closure of the algebra of all linear
combinations of elements of the forms TµP

l
i P0T

∗
ν and TµP

l
i T

∗
ν . Since I =

T�P0T�, one concludes that I is the closure of the algebra of all finite linear
combinations of elements of the form TµP

l
i P0T

∗
ν .

Lemma 2.5. Tβ, P
l
i �∈ I .

Proof. SupposeTβ ∈ I . By Lemma 2.4, there exists a finite linear combin-
ation X = ∑

µ,ν,i,l cµ,ν,i,lTµP
l
i P0T

∗
ν of TµP

l
i P0T

∗
ν , µ, ν ∈ �∗

�, i = 1, 2, . . . ,
m(l), l ∈ Z+ such that ‖X − Tβ‖ < 1

2 . Let K denote the maximum length
of the words ν that appear in the element

∑
µ,ν,i,l cµ,ν,i,lTµP

l
i P0T

∗
ν . Take a

finite path ξ = (u0, α1, u1, α2, . . . , αK+1, uK+1) ∈ WK+1
� such that there ex-

ists a vertex u−1 ∈ #� satisfying (u−1, β, u0) ∈ E�. We have Xeξ = 0 and
Tβeξ = e(u−1,β,u0,...,αK+1,uK+1) so that

‖(X − Tβ)eξ‖ = ‖e(u−1,β,u0,...,αK+1,uK+1)‖ = 1,

a contradiction.
Suppose next P l

i ∈I . There exists similarly an element Y = ∑
µ,ν,i,l cµ,ν,i,l

TµP
l
i P0T

∗
ν such that ‖Y −P l

i ‖ < 1
2 . Take a finite path η = (u0, α1, u1, α2, . . . ,

αK+1, uK+1) ∈ WK+1
� such that ul

0 = vl
i , where u0 = (ul

0)l∈Z+ ∈ #� so that

Yeη = 0 and P l
i eη = eη a contradiction.

Definition. Let Ô � be the quotientC∗-algebra T�/I of T� by the ideal I ,
and the operators Ŝα and Êl

i the quotient images ofTα andP l
i in Ô � respectively.

By Lemma 2.5, the elements Ŝα and Êl
i are not zeros for each α ∈ � and

vl
i ∈ V , and satisfy the relations (�) by Lemma 2.2. Thus by Theorem 1.1 we

obtain

Theorem 2.6. Suppose that � satisfies condition (I). Then the C∗-algebra
Ô � is canonically isomorphic to the C∗-algebra O� associated with λ-graph
system �.

Define a unitary representation U of the circle group T on the Hilbert space
�� by Uzeη = zkeη for η ∈ Wk

� . It is easy to see that the automorphisms
Ad(Uz), z ∈ T on the algebra of all bounded linear operators on �� leave
invariant globally both the algebras T� and I . They give rise to an action on
the C∗-algebra Ô � that is the gauge action α� on O�.

This construction of the C∗-algebra Ô � is inspired by the construction of
the C∗-algebras of Hilbert C∗-bimodules by [18] and [10] (cf. [9]). Our con-
structoin can work for the construction of the C∗-algebras of general continu-
ous graphs of Deaconu [5].
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3. λ-irreducibility and pure infiniteness

As in Section 1, it has been proved in [16] that if � is aperiodic, the C∗-algebra
O� becomes simple and purely infinite. The aperiodic condition on � however
is too strong such that the algebra O� is simple and purely infinite. In fact,
the Cuntz-Krieger algebra OA is simple and purely infinite if the matrix A is
irreducible with condition (I). In this section, we introduce a new irreducible
condition along with a new condition (I) on � under which the C∗-algebra
O� is simple and purely infinite. The new conditions are called λ-irreducible
condition and λ-condition (I) respectively. They are exact generalization of the
corresponding conditions on a finite square matrix A with entries in {0, 1}.

Definition. A λ-graph system � is λ-irreducible if for an ordered pair of
vertices vl

i , v
l
j ∈ Vl , there exists a number Ll(i, j) ∈ N such that for a vertex

v
l+Ll(i,j)

h ∈ Vl+Ll(i,j) with ιLl(i,j)(v
l+Ll(i,j)

h ) = vl
i , there exists a path γ in �

such that
s(γ ) = vl

j , t (γ ) = v
l+Ll(i,j)

h ,

where ιLl(i,j) means theLl(i, j)-times compositions of ι, and s(γ ), t (γ ) denote
the source vertex, the terminal vertex of γ respectively. It is obvious that if � is
λ-irreducible, then it is irreducible in the sense of Section 1. Let G be a finite
directed graph and �G the associated λ-graph system defined in [16, Section 7].
It is then immediate that G is irreducible if and only if �G is λ-irreducible.

The following lemma is direct from the local property of λ-graph system.

Lemma 3.1. Suppose that a λ-graph system � is λ-irreducible. For a vertex
vl
i ∈ Vl , let L be the number Ll(i, i) as in the definition of λ-irreducible for

the pair (vl
i , v

l
i ).

(i) For a number k ∈ N and a vertex vl+kL
j ∈ Vl+kL with ιkL(vl+kL

j ) = vl
i ,

there exists a path π in � such that s(π) = vl
i and t (π) = vl+kL

j .

(ii) If every pathπ in � of lengthLwith s(π) = vl
i must satisfy ιL(t (π)) = vl

i ,
then every path γ in � of length kL for some k ∈ N with s(γ ) = vl

i must
satisfy ιkL(t (γ )) = vl

i .

We will introduce λ-condition (I).

Definition. A λ-graph system � is said to satisfy λ-condition (I) if for a
vertex vl

i ∈ Vl there exist two distinct paths γ1, γ2 in � such that

s(γ1) = s(γ2) = vl
i , t (γ1) = t (γ2), λ(γ1) �= λ(γ2).

It is obvious that if � satisfies λ-condition (I), it satisfies condition (I) in the
sense of Section 1. One immediately sees that the adjacency matrix of a finite
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directed graph G satisfies condition (I) in the sense of Cuntz-Krieger [3] if and
only if �G satisfies λ-condition (I).

Let Al,l+1, Il,l+1 be the transition matrices of � as in Section 1. Define
the matrices Al,l+k, Il,l+k for k ∈ N by setting for i = 1, 2, . . . , m(l), j =
1, 2, . . . , m(l + k), µ ∈ �k

�,

Al,l+k(i, µ, j) =



1 if s(γ ) = vl
i , λ(γ ) = µ, t (γ ) = vl+k

j

for some path γ in �,

0 otherwise,

Il,l+k(i, j) =
{

1 if ιk(vl+k
j ) = vl

i ,

0 otherwise,

where λ(γ ) = λ(γ1) · · · λ(γk) for γ = (γ1, . . . , γk), γi ∈ E, 1 ≤ i ≤ k.

Lemma 3.2. Suppose that � is λ-irreducible and satisfies λ-condition (I).
For a vertex vl

i ∈ Vl , let L be the number as in Lemma 3.1. Then one of the
following two conditions holds:

(1) There exist a word η∈�L
� and a vertex vl+L

j ∈Vl+L such thatAl,l+L(i,η,j)

= 1, Il,l+L(i, j) = 0.

(2) There exists k ∈ N such that Il,l+kL(i, h) = 1 implies Al,l+kL(i, µ, h) =
1 for some µ ∈ �kL

� , and there exists h ∈ {1, . . . , m(l + L)} such that∑
µ∈�kL

�
Al,l+kL(i, µ, h) ≥ 2.

Proof. Suppose that the condition (1) does not hold. As � is λ-irreducible,
it satisfies the assumption of Lemma 3.1(ii). By the λ-condition (I), we may
take a number k ∈ N and a vertex vl+kL

h ∈ Vl+kL and two distinct paths γ1, γ2

in � such that

s(γ1) = s(γ2) = vl
i , t (γ1) = t (γ2) = vl+kL

h , λ(γ1) �= λ(γ2).

Hence we have Al,l+kL(i, γ1, h) = Al,l+kL(i, γ2, h) = 1 so that∑
µ∈�kL

�

Al,l+kL(i, µ, h) ≥ 2

and the condition (2) holds.

Proposition 3.3. Assume that � is λ-irreducible and satisfies λ-condition
(I). For the projection El

i in the C∗-algebra O� corresponding to the vertex
vl
i ∈ Vl , there exists a number L ∈ N such that for every vertex vl+L

h ∈ Vl+L
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with ιL(vl+L
h ) = vl

i , there exists an admissible word µ(h) in �L
� such that

Sµ(h)E
l+L
h S∗

µ(h) �= 0 and
m(l+L)∑
h=1

Il,l+L(i, h)Sµ(h)E
l+L
h S∗

µ(h) < El
i .

Proof. For vl
i ∈ Vl, let L be the number as in Lemma 3.1. One of the two

conditions (1) and (2) in the preceding lemma holds. Suppose that (1) holds.
As � is λ-irreducible, for a vertex vl+L

h ∈ Vl+L with ιL(vl+L
h ) = vl

i , there exists
a path γ (h) in � of length L such that s(γ (h)) = vl

i , t (γ (h)) = vl+L
h . Put

µ(h) = λ(γ (h)) ∈ �L
� so that Sµ(h)E

l+L
h S∗

µ(h) �= 0. By the condition (1), there
exists a word η ∈ �L

� such that Al,l+L(i, η, j) = 1, Il,l+L(i, j) = 0 for some
j = 1, . . . , m(l + L). Hence one has

m(l+L)∑
h=1

Il,l+L(i, h)Sµ(h)E
l+L
h S∗

µ(h) + SηE
l+L
j S∗

η

≤
m(l+L)∑
h=1

∑
ν∈�L

�

Al,l+L(i, ν, h)SνE
l+L
h S∗

ν .

Now Al,l+L(i, η, j) = 1 so that SηE
l+L
h S∗

η �= 0. By (1.1), (1.3) and (1.4), the
equality

(3.1)
m(l+L)∑
h=1

∑
ν∈�L

�

Al,l+L(i, ν, h)SνE
l+L
h S∗

ν = El
i

holds so that
m(l+L)∑
h=1

Il,l+L(i, h)Sµ(h)E
l+L
h S∗

µ(h) < El
i .

We next assume that the condition (2) holds. There exists k ∈ N such that
Il,l+kL(i, h) = 1 implies Al,l+kL(i, µ, h) = 1 for some µ ∈ �kL

� , and there
exists h = 1, . . . , m(l + L) such that

∑
µ∈�kL

�
Al,l+kL(i, µ, h) ≥ 2. By (3.1)

we obtain
m(l+kL)∑

h=1

Il,l+kL(i, h)Sµ(h)E
l+kL
h S∗

µ(h) < El
i .

Take L as kL so that we get the desired assertion.

Let N
l+n,n
h be the number of paths γ in � starting at a vertex in Vl and

terminating at vl+n
h . As � is left-resolving, it is the number of admissible words
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µ in �� of length n such that SµE
l+n
h S∗

µ �= 0. It satisfies the equality

N
l+n,n
h El+n

h =
( ∑

µ∈�n
�

S∗
µSµ

)
El+n

h .

By the local property ofλ-graph system, we haveNl+n,n
h = N

l+n,n
k if ιn(vl+n

h ) =
ιn(vl+n

k ). For a vertex vl+n
h ∈ Vl+n, define a projection P

l+n,n
h by setting

P
l+n,n
h = 1

N
l+n,n
h

∑
µ,ν∈�n

�

SµE
l+n
h S∗

ν .

Lemma 3.4. Take µ ∈ �n
� satisfying SµE

l+n
h S∗

µ �= 0. Then there exists a

partial isometry Ul+n
h,µ in O� such that

Ul+n
h,µ Ul+n

h,µ

∗ = Ul+n
h,µ

∗
Ul+n

h,µ =
∑
ν∈�n

�

SνE
l+n
h S∗

ν ,

U l+n
h,µ P

l+n,n
h U l+n

h,µ

∗ = SµE
l+n
h S∗

µ.

Proof. The elements SξE
l+n
h S∗

η , ξ, η ∈ �n
� form a matrix units of the C∗-

subalgebra of O� generated by SξE
l+n
h S∗

η , ξ, η ∈ �n
� that is isomorphic to the

full matrix algebra of size N
l+n,n
h . As P

l+n,n
h is a projection of rank one in

the subalgebra, one can find a desired partial isometry by elementary linear
algebra.

The following lemma is straightforward.

Lemma 3.5. Put VL = 1√
N

l+L,L
h

∑
µ∈�L

�
SµE

l+L
h . Then we have

V ∗
LVL = 1, VLE

l
iV

∗
L =

m(l+L)∑
h=1

Il,l+L(i, h)P
l+L,L
h .

Proposition 3.6. Assume that � is λ-irreducible and satisfies λ-condition
(I). Then the projection El

i for vl
i ∈ V is an infinite projection in O�.

Proof. Suppose that the number m(l) of the vertex set Vl is one for all
l ∈ Z+. Then we have El

i = 1. Since � satisfies λ-condition (I), the alphabet
� is not singleton. Now 1 = ∑

α∈� SαS
∗
α and Al,l+1(i, α, j) = 1 for all i, α, j .

Hence we see by the relations (�),

S∗
αSα =

∑
α∈�

SαS
∗
α = 1.
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This implies that the unit 1 is an infinite projection. In this case, the C∗-algebra
O� is isomorphic to the Cuntz algebra O|�| of order |�| the number of �.

Suppose next that there exists l0 ∈ Z+ such that m(l0) ≥ 2. Hence m(l) ≥ 2
for l ≥ l0. For a projection El

i with l ≥ l0, by Proposition 3.3 for h =
1, . . . , m(l + L) with Il,l+L(i, h) = 1, there exists an admissible word µ(h)

in �L
� such that

Sµ(h)E
l+L
h S∗

µ(h) �= 0 and
m(l+L)∑
h=1

Il,l+L(i, h)Sµ(h)E
l+L
h S∗

µ(h) < El
i .

Let VL be the isometry as in Lemma 3.5 and Ul+L
h,µ(h) the partial isometry as in

Lemma 3.4. Then we set Wl
i = (∑m(l+L)

h=1 Ul+L
h,µ(h)

)
VL. As Ul+L

k,µ(k)P
l+L
h = 0 for

k �= h, it follows that Wl
i

∗
Wl

i = 1 and

Wl
i E

l
iW

l
i

∗ =
m(l+L)∑
h=1

Il,l+L(i, h)U
l+L
h,µ(h)P

l+L
h Ul+L

h,µ(h)

∗

=
m(l+L)∑
h=1

Il,l+L(i, h)Sµ(h)E
l+L
h S∗

µ(h) < El
i .

Hence El
i is an infinite projection.

Lemma 3.7. Assume that � is λ-irreducible and satisfies λ-condition (I).
Then for the projection El

i ∈ O� for vl
i ∈ V , there exists an element U ∈ O�

such that UU ∗ = 1 and UEl
iU

∗ = 1.

Proof. Assume that � is λ-irreducible and satisfies λ-condition (I), so
that � is irreducible and satisfies condition (I). Hence O� is simple. By [4,
Lemma V.5.4] with Proposition 3.6, the unit 1 of O� is equivalent to a subpro-
jection of El

i . Take an element U ∈ O� such that UU ∗ = 1 and U ∗U ≤ El
i .

This implies UEl
iU

∗ = 1.

Theorem 3.8. If � is λ-irreducible and satisfies λ-condition (I), for any
nonzero X ∈ O� there exist A,B ∈ O� such that AXB = 1.

Proof. Let E : O� → F� be the canonical conditional expectation given
by

E(X) =
∫

T
(α�)t (X) dt, X ∈ O�.

Since E is faithful, we may assume that ‖E(X∗X)‖ = 1. Let P� be the ∗-
algebra generated algebraically by the generators Sα,E

l
i , α ∈ �, vl

i ∈ V . For
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any 0 < ε < 1
4 , we may find 0 ≤ Y ∈ P� such that ‖X∗X − Y‖ < ε

2 so that
‖E(Y )‖ > 1 − ε

2 . As in the discussion in [16, Section 3], the element Y is
expressed as

Y =
∑
|ν|≥1

Y−νS
∗
ν + Y0 +

∑
|µ|≥1

SµYµ for some Y−ν, Y0, Yµ ∈ F� ∩ P�.

Take k ≤ l such that Y−ν, Y0, Yµ ∈ F l
k for all µ, ν in the above expression.

Now � satisfies condition (I). By [16, Lemma 3.1 and Lemma 4.2] there exists
a projection Ql

k in the diagonal algebra of F� for k ≤ l satisfying the following
properties

(1) Ql
k commutes with F l

k .

(2) The map X ∈ F l
k → Ql

kXQl
k ∈ Ql

kF l
kQ

l
k is an isomorphism.

(3) Ql
kSµQ

l
k = Ql

kS
∗
νQ

l
k = 0 for 1 ≤ |µ|, |ν| ≤ k.

As E(Y ) = Y0, it follows that by (1) and (3),

Ql
kYQl

k =
∑
|ν|≥1

Y−νQ
l
kS

∗
νQ

l
k + Ql

kY0Q
l
k +

∑
|µ|≥1

Ql
kSµQ

l
kYµ = Ql

kE(Y )Ql
k.

Since Ql
kE(Y )Ql

k ∈ F�, there exists 0 ≤ Z ∈ F l′
k′ for some k′ ≤ l′ such that

‖Ql
kE(Y )Ql

k − Z‖ < ε
2 . By (2), we note ‖Ql

kE(Y )Ql
k‖ = ‖E(Y )‖ so that

‖Z‖ ≥ ‖E(Y )‖ − ε

2
> 1 − ε

and

‖Z‖ < ‖Ql
kE(Y )Ql

k‖ + ε

2
= ‖E(Y )‖ + ε

2
≤ ‖E(X∗X)‖ + ε

2
+ ε

2
< 1 + ε.

As the algebra F l′
k′ is finite dimensional, we have spectral decomposition Z =∑s

i=1 λiRi of Z for some real numbers λi ≥ 0 and minimal projections Ri ∈
F l′

k′ . Since 1−ε < ‖Z‖ < 1+ε, we may find i0 such that 1−ε < λi0 < 1+ε,
and may assume that Ri0 = Sµ0E

l′
i0
S∗
µ0

for some |µ0| = k′ and vl′
i0

∈ Vl′ . By

Lemma 3.7, there exists U ∈ O� such that UU ∗ = 1, UEl′
i0
U ∗ = 1. Put

A = US∗
µ0
Ri0Q

l
k . It follows that

‖AX∗XA∗ − 1‖ ≤ ‖AX∗XA∗ − AYA∗‖
+ ‖AYA∗ − US∗

µ0
Ri0ZRi0Sµ0U

∗‖ + ‖US∗
µ0
Ri0ZRi0Sµ0U

∗ − 1‖.
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One then sees

‖AX∗XA∗ − AYA∗‖ ≤ ‖X∗X − Y‖ <
ε

2
,

2‖AYA∗ − US∗
µ0
Ri0ZRi0Sµ0U

∗‖ = ‖US∗
µ0
Ri0(Q

l
kYQl

k − Z)Ri0Sµ0U
∗‖ <

ε

2
,

US∗
µ0
Ri0ZRi0Sµ0U

∗ = λi0UEl′
i0
U ∗ = λi0 .

Thus we obtain

‖AX∗XA∗ − 1‖ <
ε

2
+ ε

2
+ |λi0 − 1| < 2ε <

1

4
.

Hence AX∗XA∗ is invertible so that we have an element C ∈ O� such that
AX∗XA∗C = 1.

Therefore we conclude by [4, Theorem V.5.5]

Theorem 3.9. If � is λ-irreducible and satisfies λ-condition (I), then the
C∗-algebra O� is simple and purely infinite.

LetAbe a finite square matrix with entries in {0, 1} andGA its corresponding
directed graph. By considering the associated λ-graph system �GA

, we have
the following well-known result:

Corollary 3.10 ([1], [2], [3]). If A satisfies condition (I) in the sense of
Cuntz-Krieger [3] and is irreducible, the Cuntz-Krieger algebra OA is simple
and purely infinite.

In [12], [16, Theorem 7.7] and [17], examples of λ-graph systems that are
λ-irreducible and satisfy λ-condition (I) are presented and the K-groups for
the associated C∗-algebras are computed.
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