# CONSTRUCTION AND PURE INFINITENESS OF $C^{*}$-ALGEBRAS ASSOCIATED WITH LAMBDA-GRAPH SYSTEMS 

KENGO MATSUMOTO


#### Abstract

A $\lambda$-graph system is a labeled Bratteli diagram with shift transformation. It is a generalization of finite labeled graphs and presents a subshift. In [16] the author has introduced a $C^{*}$-algebra $\mathcal{O}_{\Omega}$ associated with a $\lambda$-graph system $\mathfrak{Z}$ by using groupoid method as a generalization of the CuntzKrieger algebras. In this paper, we concretely construct the $C^{*}$-algebra $\mathscr{O}_{\mathfrak{2}}$ by using both creation operators and projections on a sub Fock Hilbert space associated with $\mathfrak{R}$. We also introduce a new irreducible condition on $\mathfrak{Z}$ under which the $C^{*}$-algebra $\mathcal{O}_{\mathfrak{Z}}$ becomes simple and purely infinite.


## 0. Introduction

For a finite set $\Sigma$, a subshift $(\Lambda, \sigma)$ is a topological dynamics defined by a closed shift-invariant subset $\Lambda$ of the compact set $\Sigma^{\mathrm{Z}}$ of all bi-infinite sequences of $\Sigma$ with shift transformation $\sigma$ defined by $\sigma\left(\left(x_{i}\right)_{i \in Z}\right)=\left(x_{i+1}\right)_{i \in Z}$. The author has introduced the notions of symbolic matrix system and $\lambda$-graph system as presentations of subshifts ([15]). They are generalized notions of symbolic matrix and $\lambda$-graph (= labeled graph) for sofic subshifts. We henceforth denote by $\mathbf{Z}_{+}$and by $\mathbf{N}$ the set of all nonnegative integers and the set of all positive integers respectively. A symbolic matrix system $(\mathscr{M}, I)$ over $\Sigma$ consists of two sequences of rectangular matrices $\left(\mathscr{M}_{l, l+1}, I_{l, l+1}\right), l \in Z_{+}$. The matrices $\mathscr{M}_{l, l+1}$ have their entries in formal sums of $\Sigma$ and the matrices $I_{l, l+1}$ have their entries in $\{0,1\}$. They satisfy the following commutation relations

$$
I_{l, l+1} \mathscr{M}_{l+1, l+2}=\mathscr{M}_{l, l+1} I_{l+1, l+2}, \quad l \in Z_{+}
$$

It is required that each row of $I_{l, l+1}$ has at least one 1 and each column of $I_{l, l+1}$ has exactly one 1 . A $\lambda$-graph system $\mathbb{R}=(V, E, \lambda, \iota)$ over $\Sigma$ consists of a vertex set $V=V_{0} \cup V_{1} \cup V_{2} \cup \cdots$, an edge set $E=E_{0,1} \cup E_{1,2} \cup E_{2,3} \cup \cdots$, a labeling map $\lambda: E \rightarrow \Sigma$ and a surjective map $\iota\left(=\iota_{l, l+1}\right): V_{l+1} \rightarrow V_{l}$ for each $l \in \mathbf{Z}_{+}$. It naturally arises from a symbolic matrix system $(\mathscr{M}, I)$. The labeled edges from a vertex $v_{i}^{l} \in V_{l}$ to a vertex $v_{j}^{l+1} \in V_{l+1}$ are given by

[^0]the $(i, j)$-component $\mathscr{M}_{l, l+1}(i, j)$ of $\mathscr{M}_{l, l+1}$. The map $\iota\left(=\iota_{l, l+1}\right)$ is defined by $\iota_{l, l+1}\left(v_{j}^{l+1}\right)=v_{i}^{l}$ precisely if $I_{l, l+1}(i, j)=1$. The symbolic matrix systems and the $\lambda$-graph systems are the same objects and give rise to subshifts by gathering label sequences appearing in the labeled Bratteli diagrams of the $\lambda$ graph systems. Conversely we have a canonical method to construct a symbolic matrix system and a $\lambda$-graph system from an arbitrary subshift [15].

In [16], the author has constructed $C^{*}$-algebras from $\lambda$-graph systems as groupoid $C^{*}$-algebras by using continuous graphs in the sense of Deaconu (cf. [5], [19]) and studied their structure. Let $\mathcal{R}=(V, E, \lambda, \iota)$ be a $\lambda$-graph system over $\Sigma$. Let $\left\{v_{1}^{l}, \ldots, v_{m(l)}^{l}\right\}$ be the vertex set $V_{l}$. The $C^{*}$-algebra $\mathcal{O}_{\mathbb{R}}$ is generated by partial isometries $S_{\alpha}$ corresponding to the symbols $\alpha \in \Sigma$ and projections $E_{i}^{l}$ corresponding to the vertices $v_{i}^{l} \in V_{l}, i=1, \ldots, m(l)$, $l \in \mathbf{Z}_{+}$. It is realized as a universal unique $C^{*}$-algebra subject to certain operator relations among $S_{\alpha}, \alpha \in \Sigma$ and $E_{i}^{l}, i=1, \ldots, m(l), l \in \mathrm{Z}_{+}$encoded by the structure of $\mathfrak{Z}$. A condition on $\mathfrak{Z}$, called condition (I), has been introduced ([16]). Irreducibility and aperiodicity for $\mathfrak{R}$ have been also defined so that if $\mathfrak{Z}$ satisfies condition (I) and is irreducible, the $C^{*}$-algebra $\mathscr{O}_{\mathfrak{Z}}$ is shown to be simple. It is also proved that if in particular $\mathfrak{R}$ is aperiodic, $\mathscr{O}_{\mathfrak{Z}}$ is simple and purely infinite ([16, Theorem 4.7 and Proposition 4.9]).

In this paper, we will first introduce a new construction of the $C^{*}$-algebras $\mathcal{O}_{\mathfrak{2}}$. We will construct a sub Fock Hilbert space associated with a $\lambda$ graph system $\mathfrak{R}$ and define creation operators and sequence of projections. We will then show that $\mathscr{O}_{\mathfrak{Z}}$ is canonically isomorphic to the quotient $C^{*}$-algebra of the $C^{*}$-algebra generated by the creation operators and the projections by an ideal (Theorem 2.6). This construction is a generalization of a construction of CuntzKrieger algebras [3] by [7], [8] and $C^{*}$-algebras associated with subshifts [14]. We will next introduce a new irreducible condition and new condition (I) on $\mathfrak{Z}$ such that $\mathscr{O}_{\mathfrak{Z}}$ becomes simple and purely infinite (Theorem 3.9). The new conditions are called $\lambda$-irreducible condition and $\lambda$-condition (I) respectively. In the previously proved result [16, Theorem 4.7 and Proposition 4.9], we needed aperiodicity condition on $\mathfrak{R}$ for $\mathscr{O}_{\mathfrak{Z}}$ to be simple and purely infinite. It is well-known that the Cuntz-Krieger algebra $\mathscr{O}_{A}$ is simple and purely infinite if the matrix $A$ is irreducible with condition (I). Since the $C^{*}$-algebras $\mathscr{O}_{\mathfrak{Z}}$ are a generalization of the Cuntz-Krieger algebras $\mathscr{O}_{A}$, the aperiodicity condition on $\mathbb{Z}$ is too strong such that $\mathscr{O}_{\mathfrak{Z}}$ becomes simple and purely infinite. From this point of view, the $\lambda$-irreducible condition with $\lambda$-condition (I) on $\mathbb{R}$ is an exact generalization of the irreducible condition with condition (I) on the nonnegative matrices $A$.

The author would like to thank the referee who named the terms $\lambda$-irreducible and $\lambda$-condition (I) instead of the originally used terms (new) irreducible and (new) condition (I), and for his useful comments.

## 1. Review of $\boldsymbol{C}^{*}$-algebras associated with $\lambda$-graph systems

For a $\lambda$-graph system $\mathbb{R}=(V, E, \lambda, \iota)$ over $\Sigma$, the vertex sets $V_{l}, l \in \mathbf{Z}_{+}$and the edge sets $E_{l, l+1}, l \in \mathbf{Z}_{+}$are finite disjoint sets. An edge $e$ in $E_{l, l+1}$ has its source vertex $s(e)$ in $V_{l}$ and its terminal vertex $t(e)$ in $V_{l+1}$. Every vertex in $V$ has outgoing edges and every vertex in $V$, except $V_{0}$, has incoming edges. The label of an edge $e \in E$ means $\lambda(e) \in \Sigma$. It is then required that there exists an edge in $E_{l, l+1}$ with label $\alpha$ and its terminal is $v \in V_{l+1}$ if and only if there exists an edge in $E_{l-1, l}$ with label $\alpha$ and its terminal is $\iota(v) \in V_{l}$. For $u \in V_{l-1}$ and $v \in V_{l+1}$, we put

$$
\begin{aligned}
E^{\iota}(u, v) & =\left\{e \in E_{l, l+1} \mid t(e)=v, \iota(s(e))=u\right\} \\
E_{\iota}(u, v) & =\left\{e \in E_{l-1, l} \mid s(e)=u, t(e)=\iota(v)\right\}
\end{aligned}
$$

Then there exists a bijective correspondence between $E^{\iota}(u, v)$ and $E_{\iota}(u, v)$ that preserves labels for every pair $(u, v) \in V_{l-1} \times V_{l+1}$. This property is called the local property of the $\lambda$-graph system. A finite sequence $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ of edges such that $t\left(e_{i}\right)=s\left(e_{i+1}\right), i=1,2, \ldots, n-1$ is called a path. We put $\Sigma_{i}=\Sigma$ and define

$$
\Lambda_{\mathfrak{Z}}^{+}=\left\{\left(\lambda\left(e_{1}\right), \lambda\left(e_{2}\right), \ldots\right) \in \prod_{i \in \mathrm{~N}} \Sigma_{i} \mid e_{i} \in E_{i-1, i}, t\left(e_{i}\right)=s\left(e_{i+1}\right), i \in \mathrm{~N}\right\}
$$

and

$$
\Lambda_{\mathfrak{R}}=\left\{\left(\alpha_{i}\right)_{i \in \mathrm{Z}} \in \prod_{i \in \mathrm{Z}} \Sigma_{i} \mid\left(\alpha_{i}, \alpha_{i+1}, \ldots\right) \in \Lambda_{\mathfrak{Z}}^{+}, i \in \mathrm{Z}\right\}
$$

Then $\Lambda_{\mathbb{R}}$ is a subshift over $\Sigma$ called the subshift presented by $\mathbb{R}$. A finite sequence $\mu=\left(\mu_{1}, \ldots, \mu_{k}\right)$ of $\mu_{j} \in \Sigma$ that appears in $\Lambda_{\mathfrak{Z}}$ is called an admissible word of $\mathfrak{R}$ of length $|\mu|=k$. Denote by $\Lambda_{\mathfrak{Z}}^{k}$ the set of all admissible words of length $k$ of $\mathfrak{R}$ and put $\Lambda_{\mathfrak{Z}}^{*}=\cup_{k=0}^{\infty} \Lambda_{\mathfrak{Z}}^{k}$ where $\Lambda_{\mathfrak{Z}}^{0}$ denotes the empty word $\emptyset$.

We briefly review the $C^{*}$-algebra $\mathcal{O}_{\mathfrak{Z}}$ associated with $\lambda$-graph system $\mathfrak{R}$, that has been originally constructed in [16] to be a groupoid $C^{*}$-algebra of a groupoid of a continuous graph obtained by $\mathbb{R}$ (cf. [5], [6], [19]).

Let $\mathbb{R}=(V, E, \lambda, \iota)$ be a left-resolving $\lambda$-graph system over $\Sigma$, that is, for $e, e^{\prime} \in E, \lambda(e)=\lambda\left(e^{\prime}\right), t(e)=t\left(e^{\prime}\right)$ implies $e=e^{\prime}$. The vertex set $V_{l}$ is denoted by $\left\{v_{1}^{l}, \ldots, v_{m(l)}^{l}\right\}$. Define the transition matrices $A_{l, l+1}, I_{l, l+1}$ of $\mathbb{R}$ by setting for $i=1,2, \ldots, m(l), j=1,2, \ldots, m(l+1), \alpha \in \Sigma$,

$$
\begin{aligned}
A_{l, l+1}(i, \alpha, j) & = \begin{cases}1 & \text { if } s(e)=v_{i}^{l}, \lambda(e)=\alpha, t(e)=v_{j}^{l+1} \text { for some } e \in E_{l, l+1}, \\
0 & \text { otherwise }\end{cases} \\
I_{l, l+1}(i, j) & = \begin{cases}1 & \text { if } l_{l, l+1}\left(v_{j}^{l+1}\right)=v_{i}^{l} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

The $C^{*}$-algebra $\mathscr{O}_{\mathfrak{Z}}$ is realized as the universal unital $C^{*}$-algebra generated by partial isometries $S_{\alpha}, \alpha \in \Sigma$ and projections $E_{i}^{l}, i=1,2, \ldots, m(l), l \in \mathbf{Z}_{+}$ subject to the following operator relations called ( $\mathfrak{Z}$ ):

$$
\begin{align*}
& \sum_{\alpha \in \Sigma} S_{\alpha} S_{\alpha}^{*}=1  \tag{1.1}\\
& \sum_{i=1}^{m(l)} E_{i}^{l}=1, \quad E_{i}^{l}=\sum_{j=1}^{m(l+1)} I_{l, l+1}(i, j) E_{j}^{l+1} \\
& S_{\beta} S_{\beta}^{*} E_{i}^{l}=E_{i}^{l} S_{\beta} S_{\beta}^{*} \\
& S_{\beta}^{*} E_{i}^{l} S_{\beta}=\sum_{j=1}^{m(l+1)} A_{l, l+1}(i, \beta, j) E_{j}^{l+1}
\end{align*}
$$

for $\beta \in \Sigma, i=1,2, \ldots, m(l), l \in \mathbf{Z}_{+}$.
For a vertex $v_{i}^{l} \in V_{l}$, we denote by $\Gamma^{+}\left(v_{i}^{l}\right)$ the set

$$
\Gamma^{+}\left(v_{i}^{l}\right)=\left\{\left(\lambda\left(e_{1}\right), \lambda\left(e_{2}\right), \ldots\right) \in \Lambda_{\mathfrak{Z}}^{+} \mid s\left(e_{1}\right)=v_{i}^{l}, t\left(e_{j}\right)=s\left(e_{j+1}\right), j \in \mathrm{~N}\right\}
$$

of all infinite label sequences in $\mathbb{R}$ starting at $v_{i}^{l}$. We say that $\mathbb{R}$ satisfies condition (I) if for each $v_{i}^{l} \in V$, the set $\Gamma^{+}\left(v_{i}^{l}\right)$ contains at least two distinct label sequences.

Theorem 1.1 ([16]). Suppose that $\mathbb{R}$ satisfies condition (I). Let $\widehat{S}_{\alpha}, \alpha \in \Sigma$ and $\widehat{E}_{i}^{l}, i=1,2, \ldots, m(l), l \in \mathbf{Z}_{+}$be another family of nonzero partial isometries and nonzero projections satisfying the relations $(\mathbb{R})$. Then the map $S_{\alpha} \rightarrow \widehat{S}_{\alpha}, E_{i}^{l} \rightarrow \widehat{E}_{i}^{l}$ extends to an isomorphism from $\mathcal{O}_{\mathfrak{Z}}$ onto the $C^{*}$-algebra $\widehat{\mathcal{O}}_{\mathfrak{Z}}$ generated by $\widehat{S}_{\alpha}, \alpha \in \Sigma$ and $\widehat{E}_{i}^{l}, i=1,2, \ldots, m(l), l \in \mathbf{Z}_{+}$.

Hence the $C^{*}$-algebra $\mathcal{O}_{\mathfrak{Z}}$ under the condition that $\mathfrak{R}$ satisfies condition (I) is the unique $C^{*}$-algebra subject to the above relations ( $\mathfrak{R}$ ). By the uniqueness of $\mathcal{O}_{\mathfrak{R}}$, the correspondence $S_{\alpha} \rightarrow z S_{\alpha}, E_{i}^{l} \rightarrow E_{i}^{l}$ for $z \in \mathrm{~T}=\{z \in \mathrm{C}| | z \mid=1\}$ yields an action $\alpha_{\mathfrak{Z}}$ of T called the gauge action. Let $\mathscr{F}_{k}^{l}$ be the finite dimensional $C^{*}$-subalgebra of $\mathscr{O}_{\mathfrak{z}}$ generated by $S_{\mu} E_{i}^{l} S_{v}^{*}, \mu, v \in \Lambda_{\mathfrak{R}}^{k}, i=1,2, \ldots, m(l)$. Let $\mathscr{F}_{\mathfrak{Z}}$ be the $C^{*}$-subalgebra of $\mathscr{O}_{\mathfrak{Z}}$ generated by the algebras $\mathscr{F}_{k}^{l}, k \leq l$. It is an AF-algebra realized as the fixed point algebra $\mathscr{O}_{\mathbb{Z}}^{\alpha_{2}}$ of $\mathscr{O}_{\mathbb{Z}}$ under $\alpha_{\Omega}$.

A $\lambda$-graph system $\mathbb{R}$ is said to be irreducible if for a vertex $v_{i}^{l} \in V_{l}$ and a sequence ( $u^{0}, u^{1}, \ldots$ ) of vertices $u^{n} \in V_{n}$ with $\iota_{n, n+1}\left(u^{n+1}\right)=u^{n}, n \in \mathbf{Z}_{+}$, there exists a path starting at $v_{i}^{l}$ and terminating at $u^{l+N}$ for some $N \in \mathbf{N}$. $\mathcal{Z}$ is said to be aperiodic if for a vertex $v_{i}^{l} \in V_{l}$ there exists an $N \in \mathrm{~N}$ such that there exist paths starting at $v_{i}^{l}$ and terminating at all vertices of $V_{l+N}$. These properties for $\lambda$-graph systems are generalizations of the corresponding properties for finite directed graphs.

Theorem 1.2 ([16], Proposition 4.9). Suppose that a $\lambda$-graph system $\mathbb{R}$ satisfies condition (I). If $\mathbb{Z}$ is irreducible, the $C^{*}$-algebra $\mathscr{O}_{\mathfrak{Z}}$ is simple. If in particular $\mathfrak{Z}$ is aperiodic, $\mathscr{O}_{\mathfrak{Z}}$ is simple and purely infinite.

In what follows, we fix a left-resolving $\lambda$-graph system $\mathfrak{R}=(V, E, \lambda, \iota)$ over $\Sigma$.

## 2. Fock space construction

In this section, we will construct a family of partial isometries and projections satisfying the relations $(\mathfrak{R})$ in a concrete way. Let $\Omega_{\mathfrak{\Omega}}$ be the projective limit

$$
\Omega_{\mathfrak{R}}=\left\{\left(u^{l}\right)_{l \in \mathbf{Z}_{+}} \in \prod_{l \in \mathbf{Z}_{+}} V_{l} \mid l_{l, l+1}\left(u^{l+1}\right)=u^{l}, l \in \mathbf{Z}_{+}\right\}
$$

of the system $\iota_{l, l+1}: V_{l+1} \rightarrow V_{l}, l \in \mathbf{Z}_{+}$. We endow $\Omega_{\mathfrak{Z}}$ with the projective limit topology from the discrete topologies on $V_{l}, l \in \mathbf{Z}_{+}$so that it is a compact Hausdorff space. An element $u$ in $\Omega_{\mathbb{Z}}$ is called a vertex. Let $E_{\mathbb{Z}}$ be the set of all triplets $(u, \alpha, w) \in \Omega_{\mathfrak{Z}} \times \Sigma \times \Omega_{\mathfrak{Z}}$ such that there exists $e_{l, l+1} \in E_{l, l+1}$ satisfying $u^{l}=s\left(e_{l, l+1}\right), w^{l+1}=t\left(e_{l, l+1}\right)$ and $\alpha=\lambda\left(e_{l, l+1}\right)$ for each $l \in Z_{+}$where $u=\left(u^{l}\right)_{l \in Z_{+}}, w=\left(w^{l}\right)_{l \in Z_{+}} \in \Omega_{\mathfrak{R}}$. The set $E_{\mathfrak{Z}} \subset \Omega_{\mathfrak{Z}} \times \Sigma \times \Omega_{\mathfrak{Z}}$ is a continuous graph in the sense of Deaconu ([14, Proposition 2.1]). For $w=\left(w^{l}\right)_{l \in \mathbf{Z}_{+}} \in \Omega_{\mathfrak{Z}}$ and $\alpha \in \Sigma$, the local property of $\mathfrak{R}$ ensures that if there exists $e_{0,1} \in E_{0,1}$ satisfying $w^{1}=t\left(e_{0,1}\right), \alpha=\lambda\left(e_{0,1}\right)$, there uniquely exist $e_{l, l+1} \in E_{l, l+1}$ and $u=\left(u^{l}\right)_{l \in \mathbf{Z}_{+}} \in \Omega_{\mathfrak{Z}}$ satisfying $u^{l}=s\left(e_{l, l+1}\right), w^{l+1}=t\left(e_{l, l+1}\right), \alpha=\lambda\left(e_{l, l+1}\right)$ for all $l \in \mathbf{Z}_{+}$. Hence for every $w \in \Omega_{\mathfrak{R}}$, there exist $\alpha \in \Sigma$ and $u \in \Omega_{\mathfrak{I}}$ such that $(u, \alpha, w) \in E_{\Omega}$. Let us consider the finite path spaces of the graph $E_{\Omega}$ as follows:

$$
\begin{aligned}
W_{\mathfrak{R}}^{0} & =\Omega_{\mathfrak{R}} \\
W_{\mathfrak{R}}^{1} & =E_{\mathfrak{R}} \\
W_{\mathfrak{R}}^{2} & =\left\{\left(u_{0}, \alpha_{1}, u_{1}, \alpha_{2}, u_{2}\right) \mid\left(u_{0}, \alpha_{1}, u_{1}\right),\left(u_{1}, \alpha_{2}, u_{2}\right) \in E_{\mathfrak{R}}\right\}, \\
& \ldots \\
W_{\mathfrak{R}}^{k} & =\left\{\left(u_{0}, \alpha_{1}, u_{1}, \alpha_{2}, \ldots, \alpha_{k}, u_{k}\right) \mid\left(u_{i-1}, \alpha_{i}, u_{i}\right) \in E_{\mathfrak{R}}, i=1,2, \ldots, k\right\},
\end{aligned}
$$

We assign to a finite path $\eta \in W_{\mathfrak{R}}^{k}$ the vector $e_{\eta}$. For each $k \in \mathbf{Z}_{+}$, let $\mathfrak{F}_{\mathfrak{R}}^{k}$ be the Hilbert space spanned by the complete orthonomal basis $\left\{e_{\eta} \mid \eta \in W_{\mathfrak{Z}}^{k}\right\}$. The Hilbert space $\mathscr{S}_{2}$ is defined by their direct sums

$$
\mathfrak{S}_{\mathfrak{R}}=\oplus_{k=0}^{\infty} \mathcal{X}_{\mathfrak{R}}^{k} .
$$

We define creation operators $T_{\beta}$ for $\beta \in \Sigma$ and projections $P_{i}^{l}$ for $v_{i}^{l} \in V$ on $\mathrm{F}_{\mathrm{I}}$ by setting
$T_{\beta} e_{\left(u_{0}, \alpha_{1}, u_{1}, \alpha_{2}, \ldots, \alpha_{k}, u_{k}\right)}= \begin{cases}e_{\left(u_{-1}, \beta, u_{0}, \alpha_{1}, u_{1}, \alpha_{2}, \ldots, \alpha_{k}, u_{k}\right)} & \text { if there exists } u_{-1} \in \Omega_{\mathfrak{R}} \\ & \text { such that }\left(u_{-1}, \beta, u_{0}\right) \in E_{\mathfrak{R}}, \\ 0 & \text { otherwise, }\end{cases}$
$P_{i}^{l} e_{\left(u_{0}, \alpha_{1}, u_{1}, \alpha_{2}, \ldots, \alpha_{k}, u_{k}\right)}= \begin{cases}e_{\left(u_{0}, \alpha_{1}, u_{1}, \alpha_{2}, \ldots, \alpha_{k}, u_{k}\right)} & \text { if } u_{0}^{l}=v_{i}^{l}, \text { where } \\ & u_{0}=\left(u_{0}^{l}\right)_{l \in \mathrm{Z}_{+} \in \Omega_{\mathfrak{R}}}, \\ 0 & \text { otherwise } .\end{cases}$
Note that the vertex $u_{-1} \in \Omega_{\mathfrak{Z}}$ satisfying $\left(u_{-1}, \beta, u_{0}\right) \in E_{\mathfrak{Z}}$ is unique for $\beta$ and $u_{0}$ if it exists, because $\mathbb{Z}$ is left-resolving. It is direct to see that

$$
T_{\beta}^{*} e_{\left(u_{0}, \alpha_{1}, u_{1}, \alpha_{2}, \ldots, \alpha_{k}, u_{k}\right)}= \begin{cases}e_{\left(u_{1}, \alpha_{2}, \ldots, \alpha_{k}, u_{k}\right)} & \text { if } k \geq 1 \text { and } \alpha_{1}=\beta \\ 0 & \text { otherwise }\end{cases}
$$

Lemma 2.1. For $\beta \in \Sigma$
(i) $T_{\beta} T_{\beta}^{*}$ is the projection onto the subspace spanned by the vectors $e_{\eta}$ such that $\eta=\left(u_{0}, \alpha_{1}, u_{1}, \alpha_{2}, \ldots, \alpha_{k}, u_{k}\right) \in W_{2}^{k}, \alpha_{1}=\beta, k \in \mathbf{N}$,
(ii) $T_{\beta}^{*} T_{\beta}$ is the projection onto the subspace spanned by the vectors $e_{\xi}$ such that $\xi=\left(u_{0}, \alpha_{1}, u_{1}, \alpha_{2}, \ldots, \alpha_{k}, u_{k}\right) \in W_{\mathfrak{R}}^{k}, k \in \mathbf{Z}_{+},\left(u_{-1}, \beta, u_{0}\right) \in E_{\mathfrak{R}}$ for some $u_{-1} \in \Omega_{\Omega}$.

Let $P_{0}$ denote the projection on $\mathscr{F}_{\mathcal{I}}$ onto the subspace $\mathfrak{F}_{\mathfrak{D}}^{0}$. It is immediate to see that $P_{0} T_{\beta}=0$ for $\beta \in \Sigma$ and $P_{0} P_{i}^{l}=P_{i}^{l} P_{0}$ for $v_{i}^{l} \in V$. We then have

Lemma 2.2.

$$
\begin{align*}
& \sum_{\alpha \in \Sigma} T_{\alpha} T_{\alpha}^{*}+P_{0}=1  \tag{2.1}\\
& \sum_{i=1}^{m(l)} P_{i}^{l}=1, \quad P_{i}^{l}=\sum_{j=1}^{m(l+1)} I_{l, l+1}(i, j) P_{j}^{l+1}  \tag{2.2}\\
& T_{\beta} T_{\beta}^{*} P_{i}^{l}=P_{i}^{l} T_{\beta} T_{\beta}^{*}  \tag{2.3}\\
& T_{\beta}^{*} P_{i}^{l} T_{\beta}=\sum_{j=1}^{m(l+1)} A_{l, l+1}(i, \beta, j) P_{j}^{l+1} \tag{2.4}
\end{align*}
$$

for $\beta \in \Sigma, i=1,2, \ldots, m(l), l \in \mathbf{Z}_{+}$.

Proof. We will show the relation (2.4). Other relations are direct. For $\beta \in$ $\Sigma, v_{i}^{l} \in V,\left(u_{0}, \alpha_{1}, u_{1}, \alpha_{2}, \ldots, \alpha_{k}, u_{k}\right) \in W_{\mathfrak{Z}}^{k}$, it follows that

$$
\begin{aligned}
& T_{\beta}^{*} P_{i}^{l} T_{\beta} e_{\left(u_{0}, \alpha_{1}, u_{1}, \alpha_{2}, \ldots, \alpha_{k}, u_{k}\right)} \\
& \quad= \begin{cases}e_{\left(u_{0}, \alpha_{1}, u_{1}, \alpha_{2}, \ldots, \alpha_{k}, u_{k}\right)} & \text { if }\left(u_{-1}, \beta, u_{0}\right) \in E_{\mathbb{Z}} \text { for some } u_{-1} \in \Omega_{\mathbb{Z}} \\
\text { and } u_{-1}^{l}=v_{i}^{l} \text { where } u_{-1}=\left(u_{-1}^{l}\right)_{l \in Z_{+}} \in \Omega_{\mathbb{R}}, \\
0 & \text { otherwise, }\end{cases} \\
& \quad= \begin{cases}e_{\left(u_{0}, \alpha_{1}, u_{1}, \alpha_{2}, \ldots, \alpha_{k}, u_{k}\right)} & \text { if } s(e)=v_{i}^{l}, t(e)=u_{0}^{l+1}, \lambda(e)=\beta \\
0 & \text { or some } e \in E_{l, l+1},\end{cases} \\
& \quad=\sum_{j=1}^{m(l+1)} A_{l, l+1}(i, \beta, j) P_{j}^{l+1} e_{\left(u_{0}, \alpha_{1}, u_{1}, \alpha_{2}, \ldots, \alpha_{k}, u_{k}\right)}
\end{aligned}
$$

Hence the relation (2.4) holds.
For a word $v=\alpha_{1} \cdots \alpha_{k} \in \Lambda_{2}^{*}$, we set $T_{\nu}=T_{\alpha_{1}} \cdots T_{\alpha_{k}}$.
Lemma 2.3. Every polynomial of $T_{\alpha}, P_{i}^{l}, \alpha \in \Sigma, i=1,2, \ldots, m(l), l \in \mathbf{Z}_{+}$ is a finite linear combination of elements of the form $T_{\mu} P_{i}^{l} T_{v}^{*}$ for $\mu, v \in \Lambda_{2}^{*}$, $i=1,2, \ldots, m(l), l \in \mathbf{Z}_{+}$.

Proof. It follows that by (2.3) and (2.4)

$$
P_{i}^{l} T_{\alpha}=T_{\alpha} T_{\alpha}^{*} P_{i}^{l} T_{\alpha}=\sum_{j=1}^{m(l+1)} A_{l, l+1}(i, \alpha, j) T_{\alpha} P_{j}^{l+1}
$$

and hence

$$
T_{\alpha}^{*} P_{i}^{l}=\sum_{j=1}^{m(l+1)} A_{l, l+1}(i, \alpha, j) P_{j}^{l+1} T_{\alpha}^{*}
$$

The assertion is immediately seen by these equations.
Let $\mathscr{T}_{\mathbb{R}}$ be the $C^{*}$-algebra on $\mathscr{S}_{2}$ generated by $T_{\alpha}, P_{i}^{l}, P_{0}, \alpha \in \Sigma, i=$ $1,2, \ldots, m(l), l \in \mathbf{Z}_{+}$and $\mathscr{I}$ the closed two-sided ideal of $\mathscr{T}_{\mathfrak{Z}}$ generated by $P_{0}$.

Lemma 2.4. $\mathscr{I}$ is the closure of the algebra of all finite linear combinations of elements of the form $T_{\mu} P_{i}^{l} P_{0} T_{\nu}^{*}$ for $\mu, v \in \Lambda_{2}^{*}, i=1,2, \ldots, m(l), l \in \mathbf{Z}_{+}$.

Proof. Since $P_{0} T_{\beta}=0$, one sees $T_{\mu} P_{i}^{l} T_{\nu}^{*} P_{0}=P_{0} T_{\mu} P_{i}^{l} T_{\nu}^{*}=0$. As the algebra $\mathscr{T}_{\mathfrak{R}}$ is generated by elements of the form $T_{\mu} P_{i}^{l} T_{v}^{*}$ and $P_{0}$, by
using the relation $P_{0} P_{i}^{l}=P_{i}^{l} P_{0}, \mathscr{T}_{\mathfrak{R}}$ is the closure of the algebra of all linear combinations of elements of the forms $T_{\mu} P_{i}^{l} P_{0} T_{v}^{*}$ and $T_{\mu} P_{i}^{l} T_{v}^{*}$. Since $\mathscr{I}=$ $\overline{\mathscr{T}_{\mathbb{2}} P_{0} \mathscr{T}_{\mathfrak{R}}}$, one concludes that $\mathscr{I}$ is the closure of the algebra of all finite linear combinations of elements of the form $T_{\mu} P_{i}^{l} P_{0} T_{v}^{*}$.

Lemma 2.5. $T_{\beta}, P_{i}^{l} \notin \mathscr{I}$.
Proof. Suppose $T_{\beta} \in \mathscr{I}$. By Lemma 2.4, there exists a finite linear combination $X=\sum_{\mu, v, i, l} c_{\mu, v, i, l} T_{\mu} P_{i}^{l} P_{0} T_{v}^{*}$ of $T_{\mu} P_{i}^{l} P_{0} T_{v}^{*}, \mu, v \in \Lambda_{\mathfrak{R}}^{*}, i=1,2, \ldots$, $m(l), l \in \mathrm{Z}_{+}$such that $\left\|X-T_{\beta}\right\|<\frac{1}{2}$. Let $K$ denote the maximum length of the words $v$ that appear in the element $\sum_{\mu, \nu, i, l} c_{\mu, \nu, i, l} T_{\mu} P_{i}^{l} P_{0} T_{v}^{*}$. Take a finite path $\xi=\left(u_{0}, \alpha_{1}, u_{1}, \alpha_{2}, \ldots, \alpha_{K+1}, u_{K+1}\right) \in W_{\Omega}^{K+1}$ such that there exists a vertex $u_{-1} \in \Omega_{\mathbb{Z}}$ satisfying $\left(u_{-1}, \beta, u_{0}\right) \in E_{\Omega}$. We have $X e_{\xi}=0$ and $T_{\beta} e_{\xi}=e_{\left(u_{-1}, \beta, u_{0}, \ldots, \alpha_{K+1}, u_{K+1}\right)}$ so that

$$
\left\|\left(X-T_{\beta}\right) e_{\xi}\right\|=\left\|e_{\left(u_{-1}, \beta, u_{0}, \ldots, \alpha_{K+1}, u_{K+1}\right)}\right\|=1
$$

a contradiction.
Suppose next $P_{i}^{l} \in \mathscr{I}$. There exists similarly an element $Y=\sum_{\mu, \nu, i, l} c_{\mu, \nu, i, l}$ $T_{\mu} P_{i}^{l} P_{0} T_{v}^{*}$ such that $\left\|Y-P_{i}^{l}\right\|<\frac{1}{2}$. Take a finite path $\eta=\left(u_{0}, \alpha_{1}, u_{1}, \alpha_{2}, \ldots\right.$, $\left.\alpha_{K+1}, u_{K+1}\right) \in W_{\mathfrak{Z}}^{K+1}$ such that $u_{0}^{l}=v_{i}^{l}$, where $u_{0}=\left(u_{0}^{l}\right)_{l \in Z_{+}} \in \Omega_{\mathfrak{Z}}$ so that $Y e_{\eta}=0$ and $P_{i}^{l} e_{\eta}=e_{\eta}$ a contradiction.
 and the operators $\widehat{S}_{\alpha}$ and $\widehat{E}_{i}^{l}$ the quotient images of $T_{\alpha}$ and $P_{i}^{l}$ in $\widehat{\mathcal{O}}_{\imath}$ respectively.

By Lemma 2.5 , the elements $\widehat{S}_{\alpha}$ and $\widehat{E}_{i}^{l}$ are not zeros for each $\alpha \in \Sigma$ and $v_{i}^{l} \in V$, and satisfy the relations ( $(\mathfrak{R})$ by Lemma 2.2. Thus by Theorem 1.1 we obtain

Theorem 2.6. Suppose that $\mathbb{R}$ satisfies condition (I). Then the $C^{*}$-algebra $\widehat{\mathcal{O}}_{\mathfrak{Z}}$ is canonically isomorphic to the $C^{*}$-algebra $\mathcal{O}_{\mathfrak{Z}}$ associated with $\lambda$-graph system R .

Define a unitary representation $U$ of the circle group T on the Hilbert space $\mathfrak{F}_{\mathfrak{I}}$ by $U_{z} e_{\eta}=z^{k} e_{\eta}$ for $\eta \in W_{\mathbb{Z}}^{k}$. It is easy to see that the automorphisms $\operatorname{Ad}\left(U_{z}\right), z \in \mathrm{~T}$ on the algebra of all bounded linear operators on $\mathscr{S}_{\mathfrak{R}}$ leave invariant globally both the algebras $\mathscr{T}_{\mathbb{Z}}$ and $\mathscr{I}$. They give rise to an action on the $C^{*}$-algebra $\widehat{\mathcal{O}_{\mathfrak{R}}}$ that is the gauge action $\alpha_{\mathfrak{R}}$ on $\mathscr{O}_{\mathfrak{R}}$.

This construction of the $C^{*}$-algebra $\widehat{\mathcal{O}}_{\mathfrak{R}}$ is inspired by the construction of the $C^{*}$-algebras of Hilbert $C^{*}$-bimodules by [18] and [10] (cf. [9]). Our constructoin can work for the construction of the $C^{*}$-algebras of general continuous graphs of Deaconu [5].

## 3. $\lambda$-irreducibility and pure infiniteness

As in Section 1, it has been proved in [16] that if $\mathcal{Z}$ is aperiodic, the $C^{*}$-algebra $\mathcal{O}_{\mathfrak{R}}$ becomes simple and purely infinite. The aperiodic condition on $\mathfrak{R}$ however is too strong such that the algebra $\mathcal{O}_{\mathfrak{Z}}$ is simple and purely infinite. In fact, the Cuntz-Krieger algebra $\mathscr{O}_{A}$ is simple and purely infinite if the matrix $A$ is irreducible with condition (I). In this section, we introduce a new irreducible condition along with a new condition (I) on $\mathfrak{Z}$ under which the $C^{*}$-algebra $\mathcal{O}_{\mathfrak{Z}}$ is simple and purely infinite. The new conditions are called $\lambda$-irreducible condition and $\lambda$-condition (I) respectively. They are exact generalization of the corresponding conditions on a finite square matrix $A$ with entries in $\{0,1\}$.

Definition. A $\lambda$-graph system $\mathbb{R}$ is $\lambda$-irreducible if for an ordered pair of vertices $v_{i}^{l}, v_{j}^{l} \in V_{l}$, there exists a number $L_{l}(i, j) \in \mathrm{N}$ such that for a vertex $v_{h}^{l+L_{l}(i, j)} \in V_{l+L_{l}(i, j)}$ with $\iota^{L_{l}(i, j)}\left(v_{h}^{l+L_{l}(i, j)}\right)=v_{i}^{l}$, there exists a path $\gamma$ in $\mathbb{R}$ such that

$$
s(\gamma)=v_{j}^{l}, \quad t(\gamma)=v_{h}^{l+L_{l}(i, j)}
$$

where $\iota^{L_{l}(i, j)}$ means the $L_{l}(i, j)$-times compositions of $\iota$, and $s(\gamma), t(\gamma)$ denote the source vertex, the terminal vertex of $\gamma$ respectively. It is obvious that if $\Omega$ is $\lambda$-irreducible, then it is irreducible in the sense of Section 1 . Let $G$ be a finite directed graph and $\mathfrak{R}_{G}$ the associated $\lambda$-graph system defined in [16, Section 7]. It is then immediate that $G$ is irreducible if and only if $\mathfrak{R}_{G}$ is $\lambda$-irreducible.

The following lemma is direct from the local property of $\lambda$-graph system.
Lemma 3.1. Suppose that a $\lambda$-graph system $\mathbb{Z}$ is $\lambda$-irreducible. For a vertex $v_{i}^{l} \in V_{l}$, let $L$ be the number $L_{l}(i, i)$ as in the definition of $\lambda$-irreducible for the pair $\left(v_{i}^{l}, v_{i}^{l}\right)$.
(i) For a number $k \in \mathrm{~N}$ and a vertex $v_{j}^{l+k L} \in V_{l+k L}$ with $\iota^{k L}\left(v_{j}^{l+k L}\right)=v_{i}^{l}$, there exists a path $\pi$ in $\mathfrak{R}$ such that $s(\pi)=v_{i}^{l}$ and $t(\pi)=v_{j}^{l+k L}$.
(ii) If everypath $\pi$ in $\mathfrak{R}$ oflength $L$ with $s(\pi)=v_{i}^{l}$ mustsatisfy $l^{L}(t(\pi))=v_{i}^{l}$, then every path $\gamma$ in $\mathfrak{R}$ of length $k L$ for some $k \in \mathbf{N}$ with $s(\gamma)=v_{i}^{l}$ must satisfy $\iota^{k L}(t(\gamma))=v_{i}^{l}$.
We will introduce $\lambda$-condition (I).
Definition. A $\lambda$-graph system $\mathcal{Z}$ is said to satisfy $\lambda$-condition (I) if for a vertex $v_{i}^{l} \in V_{l}$ there exist two distinct paths $\gamma_{1}, \gamma_{2}$ in $\mathcal{R}$ such that

$$
s\left(\gamma_{1}\right)=s\left(\gamma_{2}\right)=v_{i}^{l}, \quad t\left(\gamma_{1}\right)=t\left(\gamma_{2}\right), \quad \lambda\left(\gamma_{1}\right) \neq \lambda\left(\gamma_{2}\right)
$$

It is obvious that if $\mathfrak{Z}$ satisfies $\lambda$-condition (I), it satisfies condition (I) in the sense of Section 1 . One immediately sees that the adjacency matrix of a finite
directed graph $G$ satisfies condition (I) in the sense of Cuntz-Krieger [3] if and only if $\mathfrak{Z}_{G}$ satisfies $\lambda$-condition (I).

Let $A_{l, l+1}, I_{l, l+1}$ be the transition matrices of $\mathfrak{Z}$ as in Section 1. Define the matrices $A_{l, l+k}, I_{l, l+k}$ for $k \in \mathrm{~N}$ by setting for $i=1,2, \ldots, m(l), j=$ $1,2, \ldots, m(l+k), \mu \in \Lambda_{\Omega}^{k}$,

$$
\left.\begin{array}{rl}
A_{l, l+k}(i, \mu, j) & = \begin{cases}1 & \text { if } s(\gamma)=v_{i}^{l}, \lambda(\gamma)=\mu, t(\gamma)=v_{j}^{l+k} \\
\text { for some path } \gamma \text { in } \mathbb{R},\end{cases} \\
0 & \text { otherwise },
\end{array}\right\} \begin{array}{ll}
1 & \text { if } \iota^{k}\left(v_{j}^{l+k}\right)=v_{i}^{l}, \\
0 & \text { otherwise },
\end{array}
$$

where $\lambda(\gamma)=\lambda\left(\gamma_{1}\right) \cdots \lambda\left(\gamma_{k}\right)$ for $\gamma=\left(\gamma_{1}, \ldots, \gamma_{k}\right), \gamma_{i} \in E, 1 \leq i \leq k$.
Lemma 3.2. Suppose that $\mathfrak{R}$ is $\lambda$-irreducible and satisfies $\lambda$-condition (I). For a vertex $v_{i}^{l} \in V_{l}$, let $L$ be the number as in Lemma 3.1. Then one of the following two conditions holds:
(1) There exist a word $\eta \in \Lambda_{\mathfrak{Z}}^{L}$ and a vertex $v_{j}^{l+L} \in V_{l+L}$ such that $A_{l, l+L}(i, \eta, j)$ $=1, I_{l, l+L}(i, j)=0$.
(2) There exists $k \in \mathbf{N}$ such that $I_{l, l+k L}(i, h)=1$ implies $A_{l, l+k L}(i, \mu, h)=$ 1 for some $\mu \in \Lambda_{\mathfrak{Z}}^{k L}$, and there exists $h \in\{1, \ldots, m(l+L)\}$ such that $\sum_{\mu \in \Lambda_{\mathcal{Z}}^{k L}} A_{l, l+k L}(i, \mu, h) \geq 2$.

Proof. Suppose that the condition (1) does not hold. As $\mathfrak{R}$ is $\lambda$-irreducible, it satisfies the assumption of Lemma 3.1(ii). By the $\lambda$-condition (I), we may take a number $k \in \mathrm{~N}$ and a vertex $v_{h}^{l+k L} \in V_{l+k L}$ and two distinct paths $\gamma_{1}, \gamma_{2}$ in $\mathfrak{Z}$ such that

$$
s\left(\gamma_{1}\right)=s\left(\gamma_{2}\right)=v_{i}^{l}, \quad t\left(\gamma_{1}\right)=t\left(\gamma_{2}\right)=v_{h}^{l+k L}, \quad \lambda\left(\gamma_{1}\right) \neq \lambda\left(\gamma_{2}\right) .
$$

Hence we have $A_{l, l+k L}\left(i, \gamma_{1}, h\right)=A_{l, l+k L}\left(i, \gamma_{2}, h\right)=1$ so that

$$
\sum_{\mu \in \Lambda_{z}^{k L}} A_{l, l+k L}(i, \mu, h) \geq 2
$$

and the condition (2) holds.
Proposition 3.3. Assume that $\mathfrak{R}$ is $\lambda$-irreducible and satisfies $\lambda$-condition (I). For the projection $E_{i}^{l}$ in the $C^{*}$-algebra $\mathscr{O}_{\mathfrak{R}}$ corresponding to the vertex $v_{i}^{l} \in V_{l}$, there exists a number $L \in \mathrm{~N}$ such that for every vertex $v_{h}^{l+L} \in V_{l+L}$
with $\iota^{L}\left(v_{h}^{l+L}\right)=v_{i}^{l}$, there exists an admissible word $\mu(h)$ in $\Lambda_{\mathfrak{Z}}^{L}$ such that

$$
S_{\mu(h)} E_{h}^{l+L} S_{\mu(h)}^{*} \neq 0 \quad \text { and } \quad \sum_{h=1}^{m(l+L)} I_{l, l+L}(i, h) S_{\mu(h)} E_{h}^{l+L} S_{\mu(h)}^{*}<E_{i}^{l}
$$

Proof. For $v_{i}^{l} \in V_{l}$, let $L$ be the number as in Lemma 3.1. One of the two conditions (1) and (2) in the preceding lemma holds. Suppose that (1) holds. As $\Omega$ is $\lambda$-irreducible, for a vertex $v_{h}^{l+L} \in V_{l+L}$ with $\iota^{L}\left(v_{h}^{l+L}\right)=v_{i}^{l}$, there exists a path $\gamma(h)$ in $\mathfrak{R}$ of length $L$ such that $s(\gamma(h))=v_{i}^{l}, t(\gamma(h))=v_{h}^{l+L}$. Put $\mu(h)=\lambda(\gamma(h)) \in \Lambda_{\mathbb{Z}}^{L}$ so that $S_{\mu(h)} E_{h}^{l+L} S_{\mu(h)}^{*} \neq 0$. By the condition (1), there exists a word $\eta \in \Lambda_{\mathfrak{\Omega}}^{L}$ such that $A_{l, l+L}(i, \eta, j)=1, I_{l, l+L}(i, j)=0$ for some $j=1, \ldots, m(l+L)$. Hence one has

$$
\begin{aligned}
& \sum_{h=1}^{m(l+L)} I_{l, l+L}(i, h) S_{\mu(h)} E_{h}^{l+L} S_{\mu(h)}^{*}+S_{\eta} E_{j}^{l+L} S_{\eta}^{*} \\
\leq & \sum_{h=1}^{m(l+L)} \sum_{v \in \Lambda_{2}^{L}} A_{l, l+L}(i, v, h) S_{v} E_{h}^{l+L} S_{v}^{*} .
\end{aligned}
$$

Now $A_{l, l+L}(i, \eta, j)=1$ so that $S_{\eta} E_{h}^{l+L} S_{\eta}^{*} \neq 0$. By (1.1), (1.3) and (1.4), the equality

$$
\begin{equation*}
\sum_{h=1}^{m(l+L)} \sum_{v \in \Lambda_{2}^{L}} A_{l, l+L}(i, v, h) S_{v} E_{h}^{l+L} S_{v}^{*}=E_{i}^{l} \tag{3.1}
\end{equation*}
$$

holds so that

$$
\sum_{h=1}^{m(l+L)} I_{l, l+L}(i, h) S_{\mu(h)} E_{h}^{l+L} S_{\mu(h)}^{*}<E_{i}^{l}
$$

We next assume that the condition (2) holds. There exists $k \in \mathbf{N}$ such that $I_{l, l+k L}(i, h)=1$ implies $A_{l, l+k L}(i, \mu, h)=1$ for some $\mu \in \Lambda_{\Omega}^{k L}$, and there exists $h=1, \ldots, m(l+L)$ such that $\sum_{\mu \in \Lambda_{\mathcal{Z}}^{k L}} A_{l, l+k L}(i, \mu, h) \geq 2$. By (3.1) we obtain

$$
\sum_{h=1}^{m(l+k L)} I_{l, l+k L}(i, h) S_{\mu(h)} E_{h}^{l+k L} S_{\mu(h)}^{*}<E_{i}^{l}
$$

Take $L$ as $k L$ so that we get the desired assertion.
Let $N_{h}^{l+n, n}$ be the number of paths $\gamma$ in $\mathbb{Z}$ starting at a vertex in $V_{l}$ and terminating at $v_{h}^{l+n}$. As $\mathbb{Z}$ is left-resolving, it is the number of admissible words
$\mu$ in $\Lambda_{\mathfrak{Z}}$ of length $n$ such that $S_{\mu} E_{h}^{l+n} S_{\mu}^{*} \neq 0$. It satisfies the equality

$$
N_{h}^{l+n, n} E_{h}^{l+n}=\left(\sum_{\mu \in \Lambda_{z}^{n}} S_{\mu}^{*} S_{\mu}\right) E_{h}^{l+n}
$$

By the local property of $\lambda$-graph system, we have $N_{h}^{l+n, n}=N_{k}^{l+n, n}$ if $\iota^{n}\left(v_{h}^{l+n}\right)=$ $\iota^{n}\left(v_{k}^{l+n}\right)$. For a vertex $v_{h}^{l+n} \in V_{l+n}$, define a projection $P_{h}^{l+n, n}$ by setting

$$
P_{h}^{l+n, n}=\frac{1}{N_{h}^{l+n, n}} \sum_{\mu, v \in \Lambda_{z}^{n}} S_{\mu} E_{h}^{l+n} S_{v}^{*}
$$

Lemma 3.4. Take $\mu \in \Lambda_{\mathfrak{Z}}^{n}$ satisfying $S_{\mu} E_{h}^{l+n} S_{\mu}^{*} \neq 0$. Then there exists a partial isometry $U_{h, \mu}^{l+n}$ in $\mathcal{O}_{\mathfrak{Z}}$ such that

$$
\begin{aligned}
& U_{h, \mu}^{l+n} U_{h, \mu}^{l+n^{*}}=U_{h, \mu}^{l+n^{*}} U_{h, \mu}^{l+n}=\sum_{v \in \Lambda_{z}^{n}} S_{v} E_{h}^{l+n} S_{v}^{*} \\
& U_{h, \mu}^{l+n} P_{h}^{l+n, n} U_{h, \mu}^{l+n^{*}}=S_{\mu} E_{h}^{l+n} S_{\mu}^{*}
\end{aligned}
$$

Proof. The elements $S_{\xi} E_{h}^{l+n} S_{\eta}^{*}, \xi, \eta \in \Lambda_{\mathfrak{Z}}^{n}$ form a matrix units of the $C^{*}$ subalgebra of $\mathscr{O}_{\mathfrak{2}}$ generated by $S_{\xi} E_{h}^{l+n} S_{\eta}^{*}, \xi, \eta \in \Lambda_{\mathfrak{Z}}^{n}$ that is isomorphic to the full matrix algebra of size $N_{h}^{l+n, n}$. As $P_{h}^{l+n, n}$ is a projection of rank one in the subalgebra, one can find a desired partial isometry by elementary linear algebra.

The following lemma is straightforward.
Lemma 3.5. Put $V_{L}=\frac{1}{\sqrt{N_{h}^{l+L, L}}} \sum_{\mu \in \Lambda_{\underline{z}}^{L}} S_{\mu} E_{h}^{l+L}$. Then we have

$$
V_{L}^{*} V_{L}=1, \quad V_{L} E_{i}^{l} V_{L}^{*}=\sum_{h=1}^{m(l+L)} I_{l, l+L}(i, h) P_{h}^{l+L, L}
$$

Proposition 3.6. Assume that $\mathfrak{R}$ is $\lambda$-irreducible and satisfies $\lambda$-condition (I). Then the projection $E_{i}^{l}$ for $v_{i}^{l} \in V$ is an infinite projection in $\mathcal{O}_{\Omega}$.

Proof. Suppose that the number $m(l)$ of the vertex set $V_{l}$ is one for all $l \in \mathrm{Z}_{+}$. Then we have $E_{i}^{l}=1$. Since $\mathbb{R}$ satisfies $\lambda$-condition (I), the alphabet $\Sigma$ is not singleton. Now $1=\sum_{\alpha \in \Sigma} S_{\alpha} S_{\alpha}^{*}$ and $A_{l, l+1}(i, \alpha, j)=1$ for all $i, \alpha, j$. Hence we see by the relations ( $\mathfrak{R}$ ),

$$
S_{\alpha}^{*} S_{\alpha}=\sum_{\alpha \in \Sigma} S_{\alpha} S_{\alpha}^{*}=1
$$

This implies that the unit 1 is an infinite projection. In this case, the $C^{*}$-algebra $\mathcal{O}_{\Omega}$ is isomorphic to the Cuntz algebra $\mathscr{O}_{|\Sigma|}$ of order $|\Sigma|$ the number of $\Sigma$.

Suppose next that there exists $l_{0} \in \mathbf{Z}_{+}$such that $m\left(l_{0}\right) \geq 2$. Hence $m(l) \geq 2$ for $l \geq l_{0}$. For a projection $E_{i}^{l}$ with $l \geq l_{0}$, by Proposition 3.3 for $h=$ $1, \ldots, m(l+L)$ with $I_{l, l+L}(i, h)=1$, there exists an admissible word $\mu(h)$ in $\Lambda_{\mathfrak{R}}^{L}$ such that

$$
S_{\mu(h)} E_{h}^{l+L} S_{\mu(h)}^{*} \neq 0 \quad \text { and } \quad \sum_{h=1}^{m(l+L)} I_{l, l+L}(i, h) S_{\mu(h)} E_{h}^{l+L} S_{\mu(h)}^{*}<E_{i}^{l} .
$$

Let $V_{L}$ be the isometry as in Lemma 3.5 and $U_{h, \mu(h)}^{l+L}$ the partial isometry as in Lemma 3.4. Then we set $W_{i}^{l}=\left(\sum_{h=1}^{m(l+L)} U_{h, \mu(h)}^{l+L}\right) V_{L}$. As $U_{k, \mu(k)}^{l+L} P_{h}^{l+L}=0$ for $k \neq h$, it follows that $W_{i}^{l^{*}} W_{i}^{l}=1$ and

$$
\begin{aligned}
W_{i}^{l} E_{i}^{l} W_{i}^{l^{*}} & =\sum_{h=1}^{m(l+L)} I_{l, l+L}(i, h) U_{h, \mu(h)}^{l+L} P_{h}^{l+L} U_{h, \mu(h)}^{l+L}{ }^{*} \\
& =\sum_{h=1}^{m(l+L)} I_{l, l+L}(i, h) S_{\mu(h)} E_{h}^{l+L} S_{\mu(h)}^{*}<E_{i}^{l} .
\end{aligned}
$$

Hence $E_{i}^{l}$ is an infinite projection.
Lemma 3.7. Assume that $\mathfrak{Z}$ is $\lambda$-irreducible and satisfies $\lambda$-condition (I). Then for the projection $E_{i}^{l} \in \mathcal{O}_{\mathfrak{Z}}$ for $v_{i}^{l} \in V$, there exists an element $U \in \mathcal{O}_{\mathfrak{R}}$ such that $U U^{*}=1$ and $U E_{i}^{l} U^{*}=1$.

Proof. Assume that $\mathbb{R}$ is $\lambda$-irreducible and satisfies $\lambda$-condition (I), so that $\mathbb{R}$ is irreducible and satisfies condition (I). Hence $\mathscr{O}_{\mathfrak{Z}}$ is simple. By [4, Lemma V.5.4] with Proposition 3.6, the unit 1 of $\mathscr{O}_{2}$ is equivalent to a subprojection of $E_{i}^{l}$. Take an element $U \in \mathcal{O}_{\mathfrak{Z}}$ such that $U U^{*}=1$ and $U^{*} U \leq E_{i}^{l}$. This implies $U E_{i}^{l} U^{*}=1$.

Theorem 3.8. If $\mathfrak{R}$ is $\lambda$-irreducible and satisfies $\lambda$-condition (I), for any nonzero $X \in \mathcal{O}_{\mathfrak{Z}}$ there exist $A, B \in \mathcal{O}_{\mathfrak{z}}$ such that $A X B=1$.

Proof. Let $E: \mathscr{O}_{\mathfrak{R}} \rightarrow \mathscr{F}_{\mathfrak{R}}$ be the canonical conditional expectation given by

$$
E(X)=\int_{T}\left(\alpha_{\mathfrak{R}}\right)_{t}(X) d t, \quad X \in \mathcal{O}_{\mathfrak{R}} .
$$

Since $E$ is faithful, we may assume that $\left\|E\left(X^{*} X\right)\right\|=1$. Let $\mathscr{P}_{\mathfrak{I}}$ be the $*-$ algebra generated algebraically by the generators $S_{\alpha}, E_{i}^{l}, \alpha \in \Sigma, v_{i}^{l} \in V$. For
any $0<\epsilon<\frac{1}{4}$, we may find $0 \leq Y \in \mathscr{P}_{\mathfrak{R}}$ such that $\left\|X^{*} X-Y\right\|<\frac{\epsilon}{2}$ so that $\|E(Y)\|>1-\frac{\epsilon}{2}$. As in the discussion in [16, Section 3], the element $Y$ is expressed as

$$
Y=\sum_{|\nu| \geq 1} Y_{-v} S_{v}^{*}+Y_{0}+\sum_{|\mu| \geq 1} S_{\mu} Y_{\mu} \quad \text { for some } \quad Y_{-v}, Y_{0}, Y_{\mu} \in \mathscr{F}_{\Omega} \cap \mathscr{P}_{\Omega}
$$

Take $k \leq l$ such that $Y_{-v}, Y_{0}, Y_{\mu} \in \mathscr{F}_{k}^{l}$ for all $\mu, \nu$ in the above expression. Now $\mathfrak{R}$ satisfies condition (I). By [16, Lemma 3.1 and Lemma 4.2] there exists a projection $Q_{k}^{l}$ in the diagonal algebra of $\mathscr{F}_{2}$ for $k \leq l$ satisfying the following properties
(1) $Q_{k}^{l}$ commutes with $\mathscr{F}_{k}^{l}$.
(2) The map $X \in \mathscr{F}_{k}^{l} \rightarrow Q_{k}^{l} X Q_{k}^{l} \in Q_{k}^{l} \mathscr{F}_{k}^{l} Q_{k}^{l}$ is an isomorphism.
(3) $Q_{k}^{l} S_{\mu} Q_{k}^{l}=Q_{k}^{l} S_{v}^{*} Q_{k}^{l}=0$ for $1 \leq|\mu|,|v| \leq k$.

As $E(Y)=Y_{0}$, it follows that by (1) and (3),

$$
Q_{k}^{l} Y Q_{k}^{l}=\sum_{|\nu| \geq 1} Y_{-v} Q_{k}^{l} S_{v}^{*} Q_{k}^{l}+Q_{k}^{l} Y_{0} Q_{k}^{l}+\sum_{|\mu| \geq 1} Q_{k}^{l} S_{\mu} Q_{k}^{l} Y_{\mu}=Q_{k}^{l} E(Y) Q_{k}^{l}
$$

Since $Q_{k}^{l} E(Y) Q_{k}^{l} \in \mathscr{F}_{\Omega}$, there exists $0 \leq Z \in \mathscr{F}_{k^{\prime}}^{\prime}$ for some $k^{\prime} \leq l^{\prime}$ such that $\left\|Q_{k}^{l} E(Y) Q_{k}^{l}-Z\right\|<\frac{\epsilon}{2}$. By (2), we note $\left\|Q_{k}^{l} E(Y) Q_{k}^{l}\right\|=\|E(Y)\|$ so that

$$
\|Z\| \geq\|E(Y)\|-\frac{\epsilon}{2}>1-\epsilon
$$

and
$\|Z\|<\left\|Q_{k}^{l} E(Y) Q_{k}^{l}\right\|+\frac{\epsilon}{2}=\|E(Y)\|+\frac{\epsilon}{2} \leq\left\|E\left(X^{*} X\right)\right\|+\frac{\epsilon}{2}+\frac{\epsilon}{2}<1+\epsilon$.
As the algebra $\mathscr{F}{ }_{k^{\prime}}^{l^{\prime}}$ is finite dimensional, we have spectral decomposition $Z=$ $\sum_{\mathscr{F}^{l}}^{s}=1 \lambda_{i} R_{i}$ of $Z$ for some real numbers $\lambda_{i} \geq 0$ and minimal projections $R_{i} \in$ $\mathscr{F}_{k^{\prime}}$. Since $1-\epsilon<\|Z\|<1+\epsilon$, we may find $i_{0}$ such that $1-\epsilon<\lambda_{i_{0}}<1+\epsilon$, and may assume that $R_{i_{0}}=S_{\mu_{0}} E_{i_{0}}^{l^{\prime}} S_{\mu_{0}}^{*}$ for some $\left|\mu_{0}\right|=k^{\prime}$ and $v_{i_{0}}^{l^{\prime}} \in V_{l^{\prime}}$. By Lemma 3.7, there exists $U \in \mathcal{O}_{\mathfrak{Z}}$ such that $U U^{*}=1, U E_{i_{0}}^{l^{\prime}} U^{*}=1$. Put $A=U S_{\mu_{0}}^{*} R_{i_{0}} Q_{k}^{l}$. It follows that

$$
\begin{aligned}
& \left\|A X^{*} X A^{*}-1\right\| \leq\left\|A X^{*} X A^{*}-A Y A^{*}\right\| \\
& \quad+\left\|A Y A^{*}-U S_{\mu_{0}}^{*} R_{i_{0}} Z R_{i_{0}} S_{\mu_{0}} U^{*}\right\|+\left\|U S_{\mu_{0}}^{*} R_{i_{0}} Z R_{i_{0}} S_{\mu_{0}} U^{*}-1\right\| .
\end{aligned}
$$

One then sees

$$
\begin{aligned}
\left\|A X^{*} X A^{*}-A Y A^{*}\right\| & \leq\left\|X^{*} X-Y\right\|<\frac{\epsilon}{2} \\
2\left\|A Y A^{*}-U S_{\mu_{0}}^{*} R_{i_{0}} Z R_{i_{0}} S_{\mu_{0}} U^{*}\right\| & =\left\|U S_{\mu_{0}}^{*} R_{i_{0}}\left(Q_{k}^{l} Y Q_{k}^{l}-Z\right) R_{i_{0}} S_{\mu_{0}} U^{*}\right\|<\frac{\epsilon}{2}, \\
U S_{\mu_{0}}^{*} R_{i_{0}} Z R_{i_{0}} S_{\mu_{0}} U^{*} & =\lambda_{i_{0}} U E_{i_{0}}^{l^{\prime}} U^{*}=\lambda_{i_{0}} .
\end{aligned}
$$

Thus we obtain

$$
\left\|A X^{*} X A^{*}-1\right\|<\frac{\epsilon}{2}+\frac{\epsilon}{2}+\left|\lambda_{i_{0}}-1\right|<2 \epsilon<\frac{1}{4}
$$

Hence $A X^{*} X A^{*}$ is invertible so that we have an element $C \in \mathcal{O}_{\mathfrak{z}}$ such that $A X^{*} X A^{*} C=1$.

Therefore we conclude by [4, Theorem V.5.5]
Theorem 3.9. If $\mathfrak{R}$ is $\lambda$-irreducible and satisfies $\lambda$-condition (I), then the $C^{*}$-algebra $\mathscr{O}_{2}$ is simple and purely infinite.

Let $A$ be a finite square matrix with entries in $\{0,1\}$ and $G_{A}$ its corresponding directed graph. By considering the associated $\lambda$-graph system $\mathfrak{R}_{G_{A}}$, we have the following well-known result:

Corollary 3.10 ([1], [2], [3]). If A satisfies condition (I) in the sense of Cuntz-Krieger [3] and is irreducible, the Cuntz-Krieger algebra $\mathscr{O}_{A}$ is simple and purely infinite.

In [12], [16, Theorem 7.7] and [17], examples of $\lambda$-graph systems that are $\lambda$-irreducible and satisfy $\lambda$-condition (I) are presented and the K-groups for the associated $C^{*}$-algebras are computed.

## REFERENCES

1. Cuntz, J., A class of $C^{*}$-algebras and topological Markov chains II: reducible chains and the Ext-functor for $C^{*}$-algebras, Invent. Math. 63 (1980), 25-40.
2. Cuntz, J., K-theory for certain $C^{*}$-algebras, Ann. of Math. 113 (1981), 181-197.
3. Cuntz, J., and Krieger, W., A class of $C^{*}$-algebras and topological Markov chains, Invent. Math. 56 (1980), 251-268.
4. Davidson, K., C*-algebras by example, Fields Inst. Monogr. 6, 1996.
5. Deaconu, V., Groupoids associated with endomorphisms, Trans. Amer. Math. Soc. 347 (1995), 1779-1786.
6. Deaconu, V., Generalized solenoids and C*-algebras, Pacific. J. Math. 190 (1999), 247-260.
7. Enomoto, M., Fujii, M., and Watatani, Y., Tensor algebras on the sub Fock space associated with $\mathscr{O}_{A}$, Math. Japon. 24 (1979), 463-468.
8. Evans, D., Gauge actions on $\mathscr{O}_{A}$, J. Operator Theory 7 (1982), 79-100.
9. Kajiwara, T., Pinzari, C., and Watatani, Y., Ideal structure and simplicity of the $C^{*}$-algebras generated by Hilbert modules, J. Funct. Anal. 159 (1998), 295-322.
10. Katayama, Y., Generalized Cuntz algebras $\mathscr{O}_{N}^{M}$, RIMS kokyuroku 858 (1994), 87-90.
11. Kitchens, B. P., Symbolic Dynamics, Springer-Verlag, Berlin, Heidelberg and New York, 1998.
12. Krieger, W., and Matsumoto, K., A lambda-graph system for the Dyck shift and its $K$-groups, Doc. Math. 8 (2003), 79-96.
13. Lind, D., and Marcus, B., An introduction to symbolic dynamics and coding, Cambridge University Press, 1995.
14. Matsumoto, K., On C ${ }^{*}$-algebras associated with subshifts, Internat. J. Math. 8 (1997), 357374.
15. Matsumoto, K., Presentations of subshifts and their topological conjugacy invariants, Doc. Math. 4 (1999), 285-340.
16. Matsumoto, K., C ${ }^{*}$-algebras associated with presentations of subshifts, Doc. Math. 7 (2002), $1-30$.
17. Matsumoto, K., A simple purely infinite $C^{*}$-algebra associated with a lambda-graph system of the Motzkin shift, Math. Z. 248 (2004), 369-394.
18. Pimsner, M. V., A class of $C^{*}$-algebras generalizing both Cuntz-Krieger algebras and crossed product by Z, in Free Probability Theory, Fields Inst. Commun. 12 (1996), 189-212.
19. Renault, J. N., A groupoid approach to $C^{*}$-algebras, Lecture Notes in Math. 793 (1980).

DEPARTMENT OF MATHEMATICAL SCIENCES YOKOHAMA CITY UNIVERSITY
SETO 22-2, KANAZAWA-KU, YOKOHAMA 236-0027
JAPAN
E-mail: kengo@yokohama-cu.ac.jp


[^0]:    Received August 16, 2004.

