CONSTRUCTION AND PURE INFINITENESS OF C*-ALGEBRAS ASSOCIATED WITH LAMBDA-GRAPH SYSTEMS

KENGO MATSUMOTO

Abstract
A \(\lambda \)-graph system is a labeled Bratteli diagram with shift transformation. It is a generalization of finite labeled graphs and presents a subshift. In [16] the author has introduced a C*-algebra \(\mathcal{O}_\mathcal{V} \) associated with a \(\lambda \)-graph system \(\mathcal{V} \) by using groupoid method as a generalization of the Cuntz-Krieger algebras. In this paper, we concretely construct the C*-algebra \(\mathcal{O}_\mathcal{V} \) by using both creation operators and projections on a sub Fock Hilbert space associated with \(\mathcal{V} \). We also introduce a new irreducible condition on \(\mathcal{V} \) under which the C*-algebra \(\mathcal{O}_\mathcal{V} \) becomes simple and purely infinite.

0. Introduction
For a finite set \(\Sigma \), a subshift \((\Lambda, \sigma)\) is a topological dynamics defined by a closed shift-invariant subset \(\Lambda \) of the compact set \(\Sigma^\mathbb{Z} \) of all bi-infinite sequences of \(\Sigma \) with shift transformation \(\sigma \) defined by \(\sigma((x_i)_{i \in \mathbb{Z}}) = (x_{i+1})_{i \in \mathbb{Z}} \). The author has introduced the notions of symbolic matrix system and \(\lambda \)-graph system as presentations of subshifts ([15]). They are generalized notions of symbolic matrix and \(\lambda \)-graph (= labeled graph) for sofic subshifts. We henceforth denote by \(\mathbb{Z}_+ \) and by \(\mathbb{N} \) the set of all nonnegative integers and the set of all positive integers respectively. A symbolic matrix system \((\mathcal{M}, I)\) over \(\Sigma \) consists of two sequences of rectangular matrices \((M_{l,l+1}, I_{l,l+1})_{l \in \mathbb{Z}_+}\). The matrices \(M_{l,l+1}\) have their entries in formal sums of \(\Sigma \) and the matrices \(I_{l,l+1}\) have their entries in \(\{0, 1\} \). They satisfy the following commutation relations
\[
I_{l,l+1} M_{l+1,l+2} = M_{l,l+1} I_{l+1,l+2}, \quad l \in \mathbb{Z}_+.
\]
It is required that each row of \(I_{l,l+1} \) has at least one 1 and each column of \(I_{l,l+1} \) has exactly one 1. A \(\lambda \)-graph system \(\mathcal{V} = (V, E, \lambda, \iota) \) over \(\Sigma \) consists of a vertex set \(V = V_0 \cup V_1 \cup V_2 \cup \cdots \), an edge set \(E = E_{0,1} \cup E_{1,2} \cup E_{2,3} \cup \cdots \), a labeling map \(\lambda : E \to \Sigma \) and a surjective map \(\iota (= \iota_{l,l+1}) : V_{l+1} \to V_l \) for each \(l \in \mathbb{Z}_+ \). It naturally arises from a symbolic matrix system \((\mathcal{M}, I)\). The labeled edges from a vertex \(v_i^l \in V_l \) to a vertex \(v_j^{l+1} \in V_{l+1} \) are given by

Received August 16, 2004.
the \((i, j)\)-component \(M_{l,l+1}(i, j)\) of \(M_{l,l+1}\). The map \(\iota = \iota_{l,l+1}\) is defined by
\[
\iota_{l,l+1}(v_{i,j}^{I_{l,l+1}}) = v_i^j \text{ precisely if } I_{l,l+1}(i, j) = 1.
\]
The symbolic matrix systems and the \(\lambda\)-graph systems are the same objects and give rise to subshifts by gathering label sequences appearing in the labeled Bratteli diagrams of the \(\lambda\)-graph systems. Conversely we have a canonical method to construct a symbolic matrix system and a \(\lambda\)-graph system from an arbitrary subshift [15].

In [16], the author has constructed \(C^*\)-algebras from \(\lambda\)-graph systems as groupoid \(C^*\)-algebras by using continuous graphs in the sense of Deaconu (cf. [5], [19]) and studied their structure. Let \(\mathcal{U} = (V, E, \lambda, \iota)\) be a \(\lambda\)-graph system over \(\Sigma\). Let \(\{v_1^I, \ldots, v_m^I\}\) be the vertex set \(V_I\). The \(C^*\)-algebra \(O_\mathcal{U}\) is generated by partial isometries \(S_\alpha\) corresponding to the symbols \(\alpha \in \Sigma\) and projections \(E_{l,i}\) corresponding to the vertices \(v_i^l \in V_l, i = 1, \ldots, m(l), l \in \mathbb{Z}_+\). It is realized as a universal unique \(C^*\)-algebra subject to certain operator relations among \(S_\alpha, \alpha \in \Sigma\) and \(E_{l,i}\), \(i = 1, \ldots, m(l), l \in \mathbb{Z}_+\) encoded by the structure of \(\mathcal{U}\). A condition on \(\mathcal{U}\), called condition (I), has been introduced ([16]). Irreducibility and aperiodicity for \(\mathcal{U}\) have been also defined so that if \(\mathcal{U}\) satisfies condition (I) and is irreducible, the \(C^*\)-algebra \(O_\mathcal{U}\) is shown to be simple. It is also proved that if in particular \(\mathcal{U}\) is aperiodic, \(O_\mathcal{U}\) is simple and purely infinite ([16, Theorem 4.7 and Proposition 4.9]).

In this paper, we will first introduce a new construction of the \(C^*\)-algebras \(O_\mathcal{U}\). We will construct a sub Fock Hilbert space associated with a \(\lambda\) graph system \(\mathcal{U}\) and define creation operators and sequence of projections. We will then show that \(O_\mathcal{U}\) is canonically isomorphic to the quotient \(C^*\)-algebra of the \(C^*\)-algebra generated by the creation operators and the projections by an ideal (Theorem 2.6). This construction is a generalization of a construction of Cuntz-Krieger algebras [3] by [7], [8] and \(C^*\)-algebras associated with subshifts [14]. We will next introduce a new irreducible condition and new condition (I) on \(\mathcal{U}\) such that \(O_\mathcal{U}\) becomes simple and purely infinite (Theorem 3.9). The new conditions are called \(\lambda\)-irreducible condition and \(\lambda\)-condition (I) respectively. In the previously proved result [16, Theorem 4.7 and Proposition 4.9], we needed aperiodicity condition on \(\mathcal{U}\) for \(O_\mathcal{U}\) to be simple and purely infinite. It is well-known that the Cuntz-Krieger algebra \(O_A\) is simple and purely infinite if the matrix \(A\) is irreducible with condition (I). Since the \(C^*\)-algebras \(O_\mathcal{U}\) are a generalization of the Cuntz-Krieger algebras \(O_A\), the aperiodicity condition on \(\mathcal{U}\) is too strong such that \(O_\mathcal{U}\) becomes simple and purely infinite. From this point of view, the \(\lambda\)-irreducible condition with \(\lambda\)-condition (I) on \(\mathcal{U}\) is an exact generalization of the irreducible condition with condition (I) on the nonnegative matrices \(A\).

The author would like to thank the referee who named the terms \(\lambda\)-irreducible and \(\lambda\)-condition (I) instead of the originally used terms (new) irreducible and (new) condition (I), and for his useful comments.
1. Review of C^*-algebras associated with λ-graph systems

For a λ-graph system $\mathcal{U} = (V, E, \lambda, i)$ over Σ, the vertex sets $V_l, l \in \mathbb{Z}_+$ and the edge sets $E_{l,l+1}, l \in \mathbb{Z}_+$ are finite disjoint sets. An edge e in $E_{l,l+1}$ has its source vertex $s(e)$ in V_l and its terminal vertex $t(e)$ in V_{l+1}. Every vertex in V has outgoing edges and every vertex in V_l except V_0, has incoming edges. The label of an edge $e \in E$ means $\lambda(e) \in \Sigma$. It is then required that there exists an edge in $E_{l,l+1}$ with label α and its terminal is $v \in V_{l+1}$ if and only if there exists an edge in $E_{l-1,l}$ with label α and its terminal is $i(v) \in V_l$. For $u \in V_{l-1}$ and $v \in V_{l+1}$, we put

$$E'(u, v) = \{ e \in E_{l,l+1} \mid t(e) = v, t(s(e)) = u \},$$

$$E_l(u, v) = \{ e \in E_{l-1,l} \mid s(e) = u, t(e) = i(v) \}.$$

Then there exists a bijective correspondence between $E'(u, v)$ and $E_l(u, v)$ that preserves labels for every pair $(u, v) \in V_{l-1} \times V_{l+1}$. This property is called the local property of the λ-graph system. A finite sequence (e_1, e_2, \ldots, e_n) of edges such that $t(e_i) = s(e_{i+1})$, $i = 1, 2, \ldots, n-1$ is called a path. We put $\Sigma_i = \Sigma$ and define

$$\Lambda_{\mathcal{U}}^+ = \{ (\lambda(e_1), \lambda(e_2), \ldots) \in \prod_{i \in \mathbb{N}} \Sigma_i \mid \alpha_i \in E_{i-1,i}, t(e_i) = s(e_{i+1}), i \in \mathbb{N} \}$$

and

$$\Lambda_{\mathcal{U}} = \{ (\alpha_i)_{i \in \mathbb{Z}} \in \prod_{i \in \mathbb{Z}} \Sigma_i \mid (\alpha_i, \alpha_{i+1}, \ldots) \in \Lambda_{\mathcal{U}}^+, i \in \mathbb{Z} \}.$$

Then $\Lambda_{\mathcal{U}}$ is a subshift over Σ called the subshift presented by \mathcal{U}. A finite sequence $\mu = (\mu_1, \ldots, \mu_k)$ of $\mu_j \in \Sigma$ that appears in $\Lambda_{\mathcal{U}}$ is called an admissible word of \mathcal{U} of length $|\mu| = k$. Denote by $\Lambda_{\mathcal{U}}^k$ the set of all admissible words of length k of \mathcal{U} and put $\Lambda_{\mathcal{U}}^\alpha = \bigcup_{k=0}^{\infty} \Lambda_{\mathcal{U}}^k$ where $\Lambda_{\mathcal{U}}^0$ denotes the empty word \emptyset.

We briefly review the C^*-algebra $\mathcal{O}_\mathcal{U}$ associated with λ-graph system \mathcal{U}, that has been originally constructed in [16] to be a groupoid C^*-algebra of a groupoid of a continuous graph obtained by \mathcal{U} (cf. [5], [6], [19]).

Let $\mathcal{U} = (V, E, \lambda, i)$ be a left-resolving λ-graph system over Σ, that is, for $e, e' \in E$, $\lambda(e) = \lambda(e')$, $t(e) = t(e')$ implies $e = e'$. The vertex set V_l is denoted by $\{v_{1}^l, \ldots, v_{m(l)}^l\}$. Define the transition matrices $A_{l,l+1}, I_{l,l+1}$ of \mathcal{U} by setting for $i = 1, 2, \ldots, m(l), j = 1, 2, \ldots, m(l+1), \alpha \in \Sigma$,

$$A_{l,l+1}(i, \alpha, j) = \begin{cases} 1 & \text{if } s(e) = v_{j}^l, \lambda(e) = \alpha, t(e) = v_{j+1}^l \text{ for some } e \in E_{l,l+1}, \\ 0 & \text{otherwise}, \end{cases}$$

$$I_{l,l+1}(i, j) = \begin{cases} 1 & \text{if } t_{l,l+1}(v_{j+1}^l) = v_{j}^l, \\ 0 & \text{otherwise}. \end{cases}$$
The C^*-algebra \mathcal{O}_U is realized as the universal unital C^*-algebra generated by partial isometries S_α, $\alpha \in \Sigma$ and projections E_i^l, $i = 1, 2, \ldots, m(l)$, $l \in \mathbb{Z}_+$ subject to the following operator relations called (\mathcal{U}):

\begin{align}
(1.1) & \quad \sum_{\alpha \in \Sigma} S_\alpha S_\alpha^* = 1, \\
(1.2) & \quad \sum_{i=1}^{m(l)} E_i^l = 1, \quad E_i^l = \sum_{j=1}^{m(l+1)} I_{l,j+1}(i, j)E_j^{l+1}, \\
(1.3) & \quad S_\beta S_\beta^* E_i^l = E_i^l S_\beta S_\beta^*, \\
(1.4) & \quad S_\beta^* E_i^l S_\beta = \sum_{j=1}^{m(l+1)} A_{l,j+1}(i, \beta, j)E_j^{l+1},
\end{align}

for $\beta \in \Sigma$, $i = 1, 2, \ldots, m(l)$, $l \in \mathbb{Z}_+$.

For a vertex $v_i^l \in V_l$, we denote by $\Gamma^+(v_i^l)$ the set

$$\Gamma^+(v_i^l) = \{ (\lambda(e_1), \lambda(e_2), \ldots) \in \Lambda^+_U \mid s(e_1) = v_i^l, t(e_j) = s(e_{j+1}), j \in \mathbb{N} \}$$

of all infinite label sequences in \mathcal{U} starting at v_i^l. We say that \mathcal{U} satisfies condition (I) if for each $v_i^l \in V$, the set $\Gamma^+(v_i^l)$ contains at least two distinct label sequences.

Theorem 1.1 ([16]). Suppose that \mathcal{U} satisfies condition (I). Let \hat{S}_α, $\alpha \in \Sigma$ and \hat{E}_i^l, $i = 1, 2, \ldots, m(l)$, $l \in \mathbb{Z}_+$ be another family of nonzero partial isometries and nonzero projections satisfying the relations (\mathcal{U}). Then the map $S_\alpha \rightarrow \hat{S}_\alpha$, $E_i^l \rightarrow \hat{E}_i^l$ extends to an isomorphism from \mathcal{O}_U onto the C^*-algebra \mathcal{O}_U generated by \hat{S}_α, $\alpha \in \Sigma$ and \hat{E}_i^l, $i = 1, 2, \ldots, m(l)$, $l \in \mathbb{Z}_+$.

Hence the C^*-algebra \mathcal{O}_U under the condition that \mathcal{U} satisfies condition (I) is the unique C^*-algebra subject to the above relations (\mathcal{U}). By the uniqueness of \mathcal{O}_U, the correspondence $S_\alpha \rightarrow zS_\alpha$, $E_i^l \rightarrow E_i^l$ for $z \in T = \{ z \in \mathbb{C} \mid |z| = 1 \}$ yields an action α_U of T called the gauge action. Let \mathcal{F}_k^l be the finite dimensional C^*-subalgebra of \mathcal{O}_U generated by $\hat{S}_\mu E_i^l S_\mu^*$, $\mu, v \in \Lambda^+_U$, $i = 1, 2, \ldots, m(l)$. Let \mathcal{F}_k be the C^*-subalgebra of \mathcal{O}_U generated by the algebras \mathcal{F}_k^l, $k \leq l$. It is an AF-algebra realized as the fixed point algebra $\mathcal{O}_U^{\alpha_U}$ of \mathcal{O}_U under α_U.

A λ-graph system \mathcal{U} is said to be **irreducible** if for a vertex $v_i^l \in V_l$ and a sequence (u^0, u^1, \ldots) of vertices $u^n \in V_n$ with $t_{n,n+1}(u^{n+1}) = u^n$, $n \in \mathbb{Z}_+$, there exists a path starting at v_i^l and terminating at u^{l+N} for some $N \in \mathbb{N}$. \mathcal{U} is said to be **aperiodic** if for a vertex $v_i^l \in V_l$ there exists an $N \in \mathbb{N}$ such that there exist paths starting at v_i^l and terminating at all vertices of V_{l+N}. These properties for λ-graph systems are generalizations of the corresponding properties for finite directed graphs.
THEOREM 1.2 ([16], Proposition 4.9). Suppose that a \(\lambda \)-graph system \(\mathcal{L} \) satisfies condition (I). If \(\mathcal{L} \) is irreducible, the \(C^* \)-algebra \(\mathcal{O}_\mathcal{L} \) is simple. If in particular \(\mathcal{L} \) is aperiodic, \(\mathcal{O}_\mathcal{L} \) is simple and purely infinite.

In what follows, we fix a left-resolving \(\lambda \)-graph system \(\mathcal{L} = (V, E, \lambda, \iota) \) over \(\Sigma \).

2. Fock space construction

In this section, we will construct a family of partial isometries and projections satisfying the relations (\(\mathcal{L} \)) in a concrete way. Let \(\Omega_\mathcal{L} \) be the projective limit

\[
\Omega_\mathcal{L} = \left\{ (u^l)_{l \in \mathbb{Z}_+} \in \prod_{l \in \mathbb{Z}_+} V_l \mid u_{l+1}(u^{l+1}) = u^l, l \in \mathbb{Z}_+ \right\}
\]

of the system \(u_{l+1} : V_{l+1} \to V_l, l \in \mathbb{Z}_+ \). We endow \(\Omega_\mathcal{L} \) with the projective limit topology from the discrete topologies on \(V_l, l \in \mathbb{Z}_+ \) so that it is a compact Hausdorff space. An element \(u \) in \(\Omega_\mathcal{L} \) is called a vertex. Let \(E_\mathcal{L} \) be the set of all triplets \((u, \alpha, w) \in \Omega_\mathcal{L} \times \Sigma \times \Omega_\mathcal{L}\) such that there exists \(e_{l+1} \in E_{l+1} \) satisfying \(u^l = s(e_{l+1}), w^{l+1} = t(e_{l+1}) \) and \(\alpha = \lambda(e_{l+1}) \) for each \(l \in \mathbb{Z}_+ \) where \(u = (u^l)_{l \in \mathbb{Z}_+}, w = (w^l)_{l \in \mathbb{Z}_+} \in \Omega_\mathcal{L} \). The set \(E_\mathcal{L} \subset \Omega_\mathcal{L} \times \Sigma \times \Omega_\mathcal{L} \) is a continuous graph in the sense of Deaconu ([14, Proposition 2.1]). For \(w = (w^l)_{l \in \mathbb{Z}_+} \in \Omega_\mathcal{L} \) and \(\alpha \in \Sigma \), the local property of \(\mathcal{L} \) ensures that if there exists \(e_{0,1} \in E_{0,1} \) satisfying \(w^1 = e_{0,1}, \alpha = \lambda(e_{0,1}) \), there uniquely exist \(e_{l+1} \in E_{l+1} \) and \(u = (u^l)_{l \in \mathbb{Z}_+} \in \Omega_\mathcal{L} \) satisfying \(u^l = s(e_{l+1}), w^{l+1} = t(e_{l+1}) \) and \(\alpha = \lambda(e_{l+1}) \) for all \(l \in \mathbb{Z}_+ \). Hence for every \(w \in \Omega_\mathcal{L} \), there exist \(\alpha \in \Sigma \) and \(u \in \Omega_\mathcal{L} \) such that \((u, \alpha, w) \in E_\mathcal{L} \). Let us consider the finite path spaces of the graph \(E_\mathcal{L} \) as follows:

\[
W_\mathcal{L}^0 = \Omega_\mathcal{L},
W_\mathcal{L}^1 = E_\mathcal{L},
W_\mathcal{L}^2 = \{(u_0, \alpha_1, u_1, \alpha_2, u_2) \mid (u_0, \alpha_1, u_1), (u_1, \alpha_2, u_2) \in E_\mathcal{L}\},
\]

\[
\ldots
W_\mathcal{L}^k = \{(u_0, \alpha_1, u_1, \alpha_2, \ldots, \alpha_k, u_k) \mid (u_{i-1}, \alpha_i, u_i) \in E_\mathcal{L}, i = 1, 2, \ldots, k\},
\]

\[
\ldots
\]

We assign to a finite path \(\eta \in W_\mathcal{L}^k \) the vector \(e_\eta \). For each \(k \in \mathbb{Z}_+ \), let \(\mathcal{H}_\mathcal{L}^k \) be the Hilbert space spanned by the complete orthonormal basis \(\{e_\eta \mid \eta \in W_\mathcal{L}^k\} \). The Hilbert space \(\mathcal{H}_\mathcal{L} \) is defined by their direct sums

\[
\mathcal{H}_\mathcal{L} = \bigoplus_{k=0}^{\infty} \mathcal{H}_\mathcal{L}^k.
\]
We define creation operators T_β for $\beta \in \Sigma$ and projections P_i^l for $v_i^l \in V$ on \mathcal{H} by setting

$$T_\beta e(u_0, \alpha_1, u_1, \alpha_2, \ldots, \alpha_k, u_k) = \begin{cases} e(u_{-1}, \beta, u_0, \alpha_1, u_1, \alpha_2, \ldots, \alpha_k, u_k) & \text{if there exists } u_{-1} \in \Omega \text{ such that } (u_{-1}, \beta, u_0) \in E, \\ 0 & \text{otherwise,} \end{cases}$$

and

$$P_i^l e(u_0, \alpha_1, u_1, \alpha_2, \ldots, \alpha_k, u_k) = \begin{cases} e(u_0, \alpha_1, u_1, \alpha_2, \ldots, \alpha_k, u_k) & \text{if } u_0^l = v_i^l, \text{ where } u_0 = (u_0^l)_{l \in \mathbb{Z}} \in \Omega, \\ 0 & \text{otherwise.} \end{cases}$$

Note that the vertex $u_{-1} \in \Omega$ satisfying $(u_{-1}, \beta, u_0) \in E$ is unique for β and u_0 if it exists, because \mathcal{L} is left-resolving. It is direct to see that

$$T_\beta^* e(u_0, \alpha_1, u_1, \alpha_2, \ldots, \alpha_k, u_k) = \begin{cases} e(u_1, \alpha_2, \ldots, \alpha_k, u_k) & \text{if } k \geq 1 \text{ and } \alpha_1 = \beta, \\ 0 & \text{otherwise.} \end{cases}$$

Lemma 2.1. For $\beta \in \Sigma$

(i) $T_\beta T_\beta^*$ is the projection onto the subspace spanned by the vectors e_η such that $\eta = (u_0, \alpha_1, u_1, \alpha_2, \ldots, \alpha_k, u_k) \in W_\mathcal{L}, \alpha_1 = \beta, k \in \mathbb{N}$,

(ii) $T_\beta^* T_\beta$ is the projection onto the subspace spanned by the vectors e_ξ such that $\xi = (u_0, \alpha_1, u_1, \alpha_2, \ldots, \alpha_k, u_k) \in W_\mathcal{L}$, $k \in \mathbb{Z}_+$, $(u_{-1}, \beta, u_0) \in E$ for some $u_{-1} \in \Omega$.

Let P_0 denote the projection on \mathcal{H} onto the subspace \mathcal{H}^0. It is immediate to see that $P_0 T_\beta = 0$ for $\beta \in \Sigma$ and $P_0 P_i^l = P_i^l P_0$ for $v_i^l \in V$. We then have

Lemma 2.2.

(2.1) $\sum_{\alpha \in \Sigma} T_\alpha^* T_\alpha + P_0 = 1$,

(2.2) $\sum_{i=1}^{m(l)} P_i^l = 1, \quad P_i^l = \sum_{j=1}^{m(l+1)} I_{l+1}(i, j) P_j^{l+1}$,

(2.3) $T_\beta T_\beta^* P_i^l = P_i^l T_\beta T_\beta^*$,

(2.4) $T_\beta^* P_i^l T_\beta = \sum_{j=1}^{m(l+1)} A_{l+1}(i, \beta, j) P_j^{l+1}$,

for $\beta \in \Sigma$, $i = 1, 2, \ldots, m(l)$, $l \in \mathbb{Z}_+$.
Proof. We will show the relation (2.4). Other relations are direct. For \(\beta \in \Sigma, v^j_i \in V, (u_0, \alpha_1, u_1, \alpha_2, \ldots, \alpha_k, u_k) \in W^k_{\beta}, \) it follows that

\[
T^*_\beta P^j_i T^*_\alpha e_{(u_0, \alpha_1, u_1, \alpha_2, \ldots, \alpha_k, u_k)} = \begin{cases}
 e_{(u_0, \alpha_1, u_1, \alpha_2, \ldots, \alpha_k, u_k)} & \text{if } (u_{-1}, \beta, u_0) \in E_{v_j_i} \text{ for some } u_{-1} \in \Omega_{v_j_i} \\
 0 & \text{otherwise},
\end{cases}
\]

if \(s(e) = v^j_i, t(e) = u^i_{l+1}, \lambda(e) = \beta \) for some \(e \in E_{l,l+1}, \)

\[
= \begin{cases}
 0 & \text{otherwise},
\end{cases}
\]

\[
= \sum_{j=1}^{m(l+1)} A_{l,l+1}(i, \beta, j) P^{l+1}_j e_{(u_0, \alpha_1, u_1, \alpha_2, \ldots, \alpha_k, u_k)}.
\]

Hence the relation (2.4) holds.

For a word \(v = \alpha_1 \cdots \alpha_k \in \Lambda^*_\beta, \) we set \(T_v = T_{\alpha_1} \cdots T_{\alpha_k}. \)

Lemma 2.3. Every polynomial of \(T_\alpha, P^j_i, \alpha \in \Sigma, i = 1, 2, \ldots, m(l), l \in \mathbb{Z}_+, \)

is a finite linear combination of elements of the form \(T_\mu P^j_i T^*_v \) for \(\mu, v \in \Lambda^*_\beta, \)

\(i = 1, 2, \ldots, m(l), l \in \mathbb{Z}_+. \)

Proof. It follows that by (2.3) and (2.4)

\[
P^j_i T^*_\alpha = T^*_\alpha T^*_\mu P^j_i T^*_\alpha = \sum_{j=1}^{m(l+1)} A_{l,l+1}(i, \alpha, j) T^*_\alpha P^{l+1}_j
\]

and hence

\[
T^*_\alpha P^j_i = \sum_{j=1}^{m(l+1)} A_{l,l+1}(i, \alpha, j) P^{l+1}_j T^*_\alpha.
\]

The assertion is immediately seen by these equations.

Let \(\mathcal{T}_\beta \) be the \(C^* \)-algebra on \(\mathfrak{H}_\beta \) generated by \(T_\alpha, P^j_i, P_0, \alpha \in \Sigma, i = 1, 2, \ldots, m(l), l \in \mathbb{Z}_+ \) and \(\mathcal{I} \) the closed two-sided ideal of \(\mathcal{T}_\beta \) generated by \(P_0. \)

Lemma 2.4. \(\mathcal{I} \) is the closure of the algebra of all finite linear combinations of elements of the form \(T_\mu P^j_i T^*_v \) for \(\mu, v \in \Lambda^*_\beta, i = 1, 2, \ldots, m(l), l \in \mathbb{Z}_+. \)

Proof. Since \(P_0 T_\beta = 0, \) one sees \(T_\mu P^j_i T^*_v P_0 = P_0 T^*_\mu T^*_v = 0. \) As the algebra \(\mathcal{T}_\beta \) is generated by elements of the form \(T_\mu P^j_i T^*_v \) and \(P_0, \) by
using the relation $P_0 P_i^l = P_i^l P_0$, \mathcal{T}_λ is the closure of the algebra of all linear combinations of elements of the forms $T_\mu P_i^l P_0 T_\nu^*$ and $T_\mu P_i^l T_\nu^*$. Since $\mathcal{I} = \mathcal{T}_\lambda P_0 \mathcal{T}_\lambda$, one concludes that \mathcal{I} is the closure of the algebra of all finite linear combinations of elements of the form $T_\mu P_i^l P_0 T_\nu^*$.

Lemma 2.5. $T_\beta, P_i^l \notin \mathcal{I}$.

Proof. Suppose $T_\beta \in \mathcal{I}$. By Lemma 2.4, there exists a finite linear combination $X = \sum_{\mu,v,l,i} c_{\mu,v,i,l} T_\mu P_i^l P_0 T_\nu^*$ of $T_\mu P_i^l P_0 T_\nu^*$, $\mu, v \in \Lambda^*_\nu, i = 1, 2, \ldots, m(l), l \in \mathbb{Z}_+$. Let K denote the maximum length of the words v that appear in the element $\sum_{\mu,v,l,i} c_{\mu,v,i,l} T_\mu P_i^l P_0 T_\nu^*$. Take a finite path $\xi = (u_0, \alpha_1, u_1, \alpha_2, \ldots, \alpha_{K+1}, u_{K+1}) \in W^K_{\nu_{K+1}}$ such that there exists a vertex $u_{-1} \in \Omega_\nu$ satisfying $(u_{-1}, \beta, u_0) \in E_\nu$. We have $X e_\xi = 0$ and $T_\beta e_\xi = e_{(u_{-1}, \beta, u_0, \ldots, u_{K+1})}$ so that
\[
(X - T_\beta) e_\xi = \| e_{(u_{-1}, \beta, u_0, \ldots, u_{K+1})} \| = 1,
\] a contradiction.

Suppose next $P_i^l \in \mathcal{I}$. There exists similarly an element $Y = \sum_{\mu,v,l,i} c_{\mu,v,i,l} T_\mu P_i^l P_0 T_\nu^*$ such that $\| Y - P_i^l \| < \frac{1}{2}$. Take a finite path $\eta = (u_0, \alpha_1, u_1, \alpha_2, \ldots, \alpha_{K+1}, u_{K+1}) \in W^K_{\nu_{K+1}}$ such that $u_0 = u_i^l$, where $u_0 = (u_i^l)_{l \in \mathbb{Z}_+} \in \Omega_\nu$ so that $Y e_\eta = 0$ and $P_i^l e_\eta = e_\eta$ a contradiction.

Definition. Let $\widehat{\mathcal{T}}_\lambda$ be the quotient C^*-algebra $\mathcal{T}_\lambda / \mathcal{I}$ of \mathcal{T}_λ by the ideal \mathcal{I}, and the operators \widehat{S}_α and \widehat{E}_i^l the quotient images of S_α and P_i^l in $\widehat{\mathcal{T}}_\lambda$ respectively.

By Lemma 2.5, the elements \widehat{S}_α and \widehat{E}_i^l are not zeros for each $\alpha \in \Sigma$ and $v_i^l \in V$, and satisfy the relations \mathcal{L} by Lemma 2.2. Thus by Theorem 1.1 we obtain

Theorem 2.6. Suppose that \mathcal{L} satisfies condition (I). Then the C^*-algebra $\widehat{\mathcal{T}}_\lambda$ is canonically isomorphic to the C^*-algebra \mathcal{O}_ν associated with λ-graph system \mathcal{L}.

Define a unitary representation U of the circle group T on the Hilbert space \mathcal{H}_λ by $U z e_\eta = z^e_\eta$ for $\eta \in W^K_{\nu_{K+1}}$. It is easy to see that the automorphisms $Ad(U z)$, $z \in T$ on the algebra of all bounded linear operators on \mathcal{H}_λ leave invariant globally both the algebras \mathcal{T}_λ and \mathcal{I}. They give rise to an action on the C^*-algebra $\widehat{\mathcal{T}}_\lambda$ that is the gauge action α_ν on \mathcal{O}_ν.

This construction of the C^*-algebra $\widehat{\mathcal{T}}_\lambda$ is inspired by the construction of the C^*-algebras of Hilbert C^*-bimodules by [18] and [10] (cf. [9]). Our construction can work for the construction of the C^*-algebras of general continuous graphs of Deaconu [5].
3. \(\lambda\)-irreducibility and pure infiniteness

As in Section 1, it has been proved in [16] that if \(\mathcal{U}\) is aperiodic, the \(C^*\)-algebra \(\mathcal{O}_{\mathcal{U}}\) becomes simple and purely infinite. The aperiodic condition on \(\mathcal{U}\) however is too strong such that the algebra \(\mathcal{O}_{\mathcal{U}}\) is simple and purely infinite. In fact, the Cuntz-Krieger algebra \(\mathcal{O}_A\) is simple and purely infinite if the matrix \(A\) is irreducible with condition (I). In this section, we introduce a new irreducible condition along with a new condition (I) on \(\mathcal{U}\) under which the \(C^*\)-algebra \(\mathcal{O}_{\mathcal{U}}\) is simple and purely infinite. The new conditions are called \(\lambda\)-irreducible condition and \(\lambda\)-condition (I) respectively. They are exact generalization of the corresponding conditions on a finite square matrix \(A\) with entries in \(\{0, 1\}\).

Definition. A \(\lambda\)-graph system \(\mathcal{U}\) is \(\lambda\)-irreducible if for an ordered pair of vertices \(v_i, v_i^j \in V\), there exists a number \(L_l(i, j) \in N\) such that for a vertex \(v_i^L_l(i,j) \in V_{l+L_l(i,j)}\) with \(t_{l(i,j)}(v_i^L_l(i,j)) = v_i^j\), there exists a path \(\gamma\) in \(\mathcal{U}\) such that

\[
\gamma = v_i^j, \quad t(\gamma) = v_i^L_l(i,j),
\]

where \(t_{l(i,j)}\) means the \(L_l(i, j)\)-times compositions of \(t\), and \(s(\gamma)\), \(t(\gamma)\) denote the source vertex, the terminal vertex of \(\gamma\) respectively. It is obvious that if \(\mathcal{U}\) is \(\lambda\)-irreducible, then it is irreducible in the sense of Section 1. Let \(\mathcal{G}\) be a finite directed graph and \(\mathcal{G}_\mathcal{U}\) the associated \(\lambda\)-graph system defined in [16, Section 7]. It is then immediate that \(\mathcal{G}\) is irreducible if and only if \(\mathcal{G}_\mathcal{U}\) is \(\lambda\)-irreducible.

The following lemma is direct from the local property of \(\lambda\)-graph system.

Lemma 3.1. Suppose that a \(\lambda\)-graph system \(\mathcal{U}\) is \(\lambda\)-irreducible. For a vertex \(v_i^j \in V\), let \(L\) be the number \(L_l(i, i) \in N\) such that for a vertex \(v_i^{L+L_l(i,i)} \in V_{l+L_l(i,i)}\) with \(t_{L_l(i,i)}(v_i^{L+L_l(i,i)}) = v_i^j\), there exists a path \(\gamma\) in \(\mathcal{U}\) such that

\[
s(\gamma) = v_i^j, \quad t(\gamma) = v_i^{L+L_l(i,i)},
\]

We will introduce \(\lambda\)-condition (I).

Definition. A \(\lambda\)-graph system \(\mathcal{U}\) is said to satisfy \(\lambda\)-condition (I) if for a vertex \(v_i^j \in V\) there exist two distinct paths \(\gamma_1, \gamma_2\) in \(\mathcal{U}\) such that

\[
s(\gamma_1) = s(\gamma_2) = v_i^j, \quad t(\gamma_1) = t(\gamma_2), \quad \lambda(\gamma_1) \neq \lambda(\gamma_2).
\]

It is obvious that if \(\mathcal{U}\) satisfies \(\lambda\)-condition (I), it satisfies condition (I) in the sense of Section 1. One immediately sees that the adjacency matrix of a finite
directed graph G satisfies condition (I) in the sense of Cuntz-Krieger [3] if and only if G satisfies λ-condition (I).

Let $A_{l,l+1}, I_{l,l+1}$ be the transition matrices of \mathcal{U} as in Section 1. Define the matrices $A_{l,l+k}, I_{l,l+k}$ for $k \in \mathbb{N}$ by setting for $i = 1, 2, \ldots, m(l), j = 1, 2, \ldots, m(l+k), \mu \in \Lambda^k_\mathcal{U}$,

$$A_{l,l+k}(i, \mu, j) = \begin{cases}
1 & \text{if } s(\gamma) = v^l_i, \lambda(\gamma) = \mu, t(\gamma) = v^{l+k}_j \\
& \text{for some path } \gamma \text{ in } \mathcal{U}, \\
0 & \text{otherwise,}
\end{cases}$$

$$I_{l,l+k}(i, j) = \begin{cases}
1 & \text{if } t^k(v^{l+k}_j) = v^l_i, \\
0 & \text{otherwise,}
\end{cases}$$

where $\lambda(\gamma) = \lambda(\gamma_1) \cdots \lambda(\gamma_k)$ for $\gamma = (\gamma_1, \ldots, \gamma_k), \gamma_i \in E, 1 \leq i \leq k$.

Lemma 3.2. Suppose that \mathcal{U} is λ-irreducible and satisfies λ-condition (I). For a vertex $v^l_i \in V_l$, let L be the number as in Lemma 3.1. Then one of the following two conditions holds:

1. There exist a word $\eta \in \Lambda^L_\mathcal{U}$ and a vertex $v^{l+L}_h \in V_{l+L}$ such that $A_{l,l+L}(i, \eta, j) = 1, I_{l,l+L}(i, j) = 0$.

2. There exists $k \in \mathbb{N}$ such that $I_{l,l+kL}(i, h) = 1$ implies $A_{l,l+kL}(i, \mu, h) = 1$ for some $\mu \in \Lambda^k_\mathcal{U}$, and there exists $h \in \{1, \ldots, m(l+L)\}$ such that $\sum_{\mu \in \Lambda^k_\mathcal{U}} A_{l,l+kL}(i, \mu, h) \geq 2$.

Proof. Suppose that the condition (1) does not hold. As \mathcal{U} is λ-irreducible, it satisfies the assumption of Lemma 3.1(ii). By the λ-condition (I), we may take a number $k \in \mathbb{N}$ and a vertex $v^{l+kL}_h \in V_{l+kL}$ and two distinct paths γ_1, γ_2 in \mathcal{U} such that

$$s(\gamma_1) = s(\gamma_2) = v^l_i, \quad t(\gamma_1) = t(\gamma_2) = v^{l+kL}_h, \quad \lambda(\gamma_1) \neq \lambda(\gamma_2).$$

Hence we have $A_{l,l+kL}(i, \gamma_1, h) = A_{l,l+kL}(i, \gamma_2, h) = 1$ so that

$$\sum_{\mu \in \Lambda^k_\mathcal{U}} A_{l,l+kL}(i, \mu, h) \geq 2$$

and the condition (2) holds.

Proposition 3.3. Assume that \mathcal{U} is λ-irreducible and satisfies λ-condition (I). For the projection E_i^l in the C^*-algebra $\mathcal{O}_\mathcal{U}$ corresponding to the vertex $v^l_i \in V_l$, there exists a number $L \in \mathbb{N}$ such that for every vertex $v^{l+L}_h \in V_{l+L}$
with \(t^L(v_h^{i+L}) = v_i^j \), there exists an admissible word \(\mu(h) \) in \(\Lambda^L_\mathcal{L} \) such that

\[
S_{\mu(h)} E_{h}^{i+L} S_{\mu(h)}^* \neq 0 \quad \text{and} \quad \sum_{h=1}^{m(l+L)} I_{i,j+L}(i, h) S_{\mu(h)} E_{h}^{i+L} S_{\mu(h)}^* < E_i^j,
\]

Proof. For \(v_i^j \in V_l \), let \(L \) be the number as in Lemma 3.1. One of the two conditions (1) and (2) in the preceding lemma holds. Suppose that (1) holds. As \(\mathcal{L} \) is \(\lambda \)-irreducible, for a vertex \(v_h^{i+L} \in V_{l+L} \) with \(t^L(v_h^{i+L}) = v_i^j \), there exists an admissible word \(\mu(h) \) in \(\Lambda^L_\mathcal{L} \) such that \(S_{\mu(h)} E_{h}^{i+L} S_{\mu(h)}^* \neq 0 \) and

\[
\sum_{h=1}^{m(l+L)} I_{i,j+L}(i, h) S_{\mu(h)} E_{h}^{i+L} S_{\mu(h)}^* < E_i^j.
\]

Now \(A_{i,j+L}(i, \eta, j) = 1 \) so that \(S_{\eta} E_{h}^{i+L} S_{\eta}^* \neq 0 \). By (1.1), (1.3) and (1.4), the equality

\[
(3.1) \quad \sum_{h=1}^{m(l+L)} \sum_{\eta \in \Lambda^L_\mathcal{L}} A_{i,j+L}(i, \eta, h) S_{\mu(h)} E_{h}^{i+L} S_{\eta}^* = E_i^j,
\]

holds so that

\[
\sum_{h=1}^{m(l+L)} I_{i,j+L}(i, h) S_{\mu(h)} E_{h}^{i+L} S_{\mu(h)}^* < E_i^j.
\]

We next assume that the condition (2) holds. There exists \(k \in \mathbb{N} \) such that \(I_{i,j+kL}(i, h) = 1 \) implies \(A_{i,j+kL}(i, \mu, h) = 1 \) for some \(\mu \in \Lambda^L_\mathcal{L} \), and there exists \(h = 1, \ldots, m(l+L) \) such that \(\sum_{\mu \in \Lambda^L_\mathcal{L}} A_{i,j+kL}(i, \mu, h) \geq 2 \). By (3.1) we obtain

\[
\sum_{h=1}^{m(l+kL)} I_{i,j+kL}(i, h) S_{\mu(h)} E_{h}^{i+kL} S_{\mu(h)}^* < E_i^j.
\]

Take \(L \) as \(kL \) so that we get the desired assertion.

Let \(\Lambda_{h}^{i+n,n} \) be the number of paths \(\gamma \) in \(\mathcal{L} \) starting at a vertex in \(V_l \) and terminating at \(v_h^{i+n} \). As \(\mathcal{L} \) is left-resolving, it is the number of admissible words
μ in $Λ_Ω$ of length n such that $S_μ E^{l+n}_h S_μ^*$ $≠$ 0. It satisfies the equality

$$N^{l+n}_h E^{l+n}_h = \left(\sum_{μ} S_μ S_μ^* \right) E^{l+n}_h.$$

By the local property of $λ$-graph system, we have $N^{l+n}_h = N^{l+n}_h$ if $t^a (v^{l+n}_k) = t^a (v^{l+n}_k)$. For a vertex $v^{l+n}_i ∈ V_{l+n}$, define a projection P^{l+n}_h by setting

$$P^{l+n}_h = \frac{1}{N^{l+n}_h} \sum_{μ, v ∈ Λ_Ω^*} S_μ E^{l+n}_h S_μ^*.$$

Lemma 3.4. Take $μ ∈ Λ_Ω^n$ satisfying $S_μ E^{l+n}_h S_μ^* ≠ 0$. Then there exists a partial isometry $U^{l+n}_{h,μ}$ in O_{H_5222} such that

$$U^{l+n}_{h,μ} U^{l+n}_{h,μ}^* = \sum_{v ∈ Λ_Ω^*} S_v E^{l+n}_h S_v^*,$$

$$U^{l+n}_{h,μ} P^{l+n}_h U^{l+n}_{h,μ}^* = S_μ E^{l+n}_h S_μ^*.$$

Proof. The elements $S_ξ E^{l+n}_h S_η^*$, $ξ, η ∈ Λ_Ω^n$ form a matrix units of the C^*-subalgebra of O_{H_5222} generated by $S_ξ E^{l+n}_h S_η^*$, $ξ, η ∈ Λ_Ω^n$ that is isomorphic to the full matrix algebra of size N^{l+n}_h. As P^{l+n}_h is a projection of rank one in the subalgebra, one can find a desired partial isometry by elementary linear algebra.

The following lemma is straightforward.

Lemma 3.5. Put $V_L = \frac{1}{\sqrt{N^{l+n}_h}} \sum_{μ} S_μ E^{l+n}_h$. Then we have

$$V^*_L V_L = 1, \quad V_L E^{l+n}_h V^*_L = \sum_{h=1}^{m(l+n)} I_{i,l+n}(i, h) P^{l+n,L}_h.$$

Proposition 3.6. Assume that $Ω$ is $λ$-irreducible and satisfies $λ$-condition (I). Then the projection E^i_h for $v^i_i ∈ V$ is an infinite projection in $O_Ω$.

Proof. Suppose that the number $m(l)$ of the vertex set V_l is one for all $l ∈ Z_+$. Then we have $E^i_l = 1$. Since $Ω$ satisfies $λ$-condition (I), the alphabet $Σ$ is not singleton. Now $1 = \sum_{α ∈ Σ} S_α S_α^*$ and $A_{l,l+1}(i, α, j) = 1$ for all $i, α, j$. Hence we see by the relations ($Ω$),

$$S_α S_α^* = \sum_{α ∈ Σ} S_α S_α^* = 1.$$
This implies that the unit 1 is an infinite projection. In this case, the C*-algebra \(O \) is isomorphic to the Cuntz algebra \(\mathcal{O}_{|\Sigma|} \) of order \(|\Sigma|\) the number of \(\Sigma \).

Suppose next that there exists \(l_0 \in \mathbb{Z}_+ \) such that \(m(l_0) \geq 2 \). Hence \(m(l) \geq 2 \) for \(l \geq l_0 \). For a projection \(E'_l \) with \(l \geq l_0 \), by Proposition 3.3 for \(h = 1, \ldots, m(l + L) \) with \(I_{l,l+L}(i,h) = 1 \), there exists an admissible word \(\mu(h) \) in \(\Lambda^L \) such that

\[
S_{\mu(h)}E'_hE'_{h}'S_{\mu(h)}^* \neq 0 \quad \text{and} \quad \sum_{h=1}^{m(l+L)} I_{l,l+L}(i,h)S_{\mu(h)}E'_hE'_{h}'S_{\mu(h)}^* < E'_l.
\]

Let \(V_L \) be the isometry as in Lemma 3.5 and \(U_{h,k}^{l+L} \) the partial isometry as in Lemma 3.4. Then we set \(W_i^l = (\sum_{h=1}^{m(l+L)} U_{h,k}^{l+L})V_L \). As \(U_{h,k}^{l+L}P_{h}^{l+L} = 0 \) for \(k \neq h \), it follows that \(W_i^l \) is an infinite projection.

Lemma 3.7. Assume that \(\mathcal{O} \) is \(\lambda \)-irreducible and satisfies \(\lambda \)-condition (I). Then for the projection \(E'_l \in \mathcal{O} \) for \(v'_l \in V \), there exists an element \(U \in \mathcal{O} \) such that \(UU^* = 1 \) and \(UE'_lU^* = 1 \).

Proof. Assume that \(\mathcal{O} \) is \(\lambda \)-irreducible and satisfies \(\lambda \)-condition (I), so that \(\mathcal{O} \) is irreducible and satisfies condition (I). Hence \(\mathcal{O} \) is simple. By [4, Lemma V.5.4] with Proposition 3.6, the unit 1 of \(\mathcal{O} \) is equivalent to a subprojection of \(E'_l \). Take an element \(U \in \mathcal{O} \) such that \(UU^* = 1 \) and \(U^*U \leq E'_l \). This implies \(UE'_lU^* = 1 \).

Theorem 3.8. If \(\mathcal{O} \) is \(\lambda \)-irreducible and satisfies \(\lambda \)-condition (I), for any nonzero \(X \in \mathcal{O} \) there exist \(A,B \in \mathcal{O} \) such that \(AXB = 1 \).

Proof. Let \(E : \mathcal{O} \rightarrow \mathcal{F} \) be the canonical conditional expectation given by

\[
E(X) = \int_T (\alpha_t)(X) dt, \quad X \in \mathcal{O}.
\]

Since \(E \) is faithful, we may assume that \(\|E(X^*X)\| = 1 \). Let \(P_\mathcal{O} \) be the *-algebra generated algebraically by the generators \(S_\alpha, E'_l, \alpha \in \Sigma, v'_l \in V \). For
any $0 < \epsilon < \frac{1}{4}$, we may find $0 \leq Y \in \mathcal{P}_k$ such that $\| X^* X - Y \| < \frac{\epsilon}{2}$ so that $\| E(Y) \| > 1 - \frac{\epsilon}{2}$. As in the discussion in [16, Section 3], the element Y is expressed as

$$Y = \sum_{|\nu| \geq 1} Y_{-\nu} s^*_\nu Y_0 + \sum_{|\mu| \geq 1} S_\mu Y_\mu$$

for some $Y_{-\nu}, Y_0, Y_\mu \in \mathcal{F}_0 \cap \mathcal{P}_k$.

Take $k \leq l$ such that $Y_{-\nu}, Y_0, Y_\mu \in \mathcal{F}_l$ for all μ, ν in the above expression. Now \mathcal{U} satisfies condition (I). By [16, Lemma 3.1 and Lemma 4.2] there exists a projection Q_k^l in the diagonal algebra of \mathcal{F}_l for $k \leq l$ satisfying the following properties

1. Q_k^l commutes with \mathcal{F}_l.
2. The map $X \in \mathcal{F}_l \rightarrow Q_k^l X Q_k^l \in Q_k^l \mathcal{F}_l Q_k^l$ is an isomorphism.
3. $Q_k^l S_\mu Q_k^l = Q_k^l S^*_\mu Q_k^l = 0$ for $1 \leq |\mu|, |\nu| \leq k$.

As $E(Y) = Y_0$, it follows that by (1) and (3),

$$Q_k^l Y Q_k^l = \sum_{|\nu| \geq 1} Y_{-\nu} s^*_\nu Q_k^l + Q_k^l Y_0 Q_k^l + \sum_{|\mu| \geq 1} Q_k^l S_\mu Q_k^l Y_\mu = Q_k^l E(Y) Q_k^l.$$

Since $Q_k^l E(Y) Q_k^l \in \mathcal{U}$, there exists $0 \leq Z \in \mathcal{F}_l$ for some $k' \leq l$ such that $\| Q_k^l E(Y) Q_k^l - Z \| < \frac{\epsilon}{2}$. By (2), we note $\| Q_k^l E(Y) Q_k^l \| = \| E(Y) \|$ so that

$$\| Z \| \geq \| E(Y) \| - \frac{\epsilon}{2} > 1 - \epsilon$$

and

$$\| Z \| < \| Q_k^l E(Y) Q_k^l \| + \frac{\epsilon}{2} = \| E(Y) \| + \frac{\epsilon}{2} \leq \| E(X^* X) \| + \frac{\epsilon}{2} + \frac{\epsilon}{2} < 1 + \epsilon.$$

As the algebra \mathcal{F}_l is finite dimensional, we have spectral decomposition $Z = \sum_{j=1}^r \lambda_j R_j$ of Z for some real numbers $\lambda_j \geq 0$ and minimal projections $R_j \in \mathcal{F}_l$. Since $1 - \epsilon < \| Z \| < 1 + \epsilon$, we may find i_0 such that $1 - \epsilon < \lambda_{i_0} < 1 + \epsilon$, and may assume that $R_{i_0} = S_{\mu_0} E_{i_0}^l S^*_{\mu_0}$ for some $|\mu_0| = k'$ and $v_{i_0}^l \in V_l$. By Lemma 3.7, there exists $U \in \mathcal{O}_l$ such that $UU^* = 1, U E_{i_0}^l U^* = 1$. Put $A = U S^*_{\mu_0} R_{i_0} Q_k^l$. It follows that

$$\| AX^* A^* - 1 \| \leq \| AX^* A^* - AY A^* \| + \| AYA^* - US_{\mu_0} R_{i_0} Z R_{i_0} S_{\mu_0} U^* \| + \| US_{\mu_0} R_{i_0} Z R_{i_0} S_{\mu_0} U^* - 1 \|.$$
One then sees
\[
\|AX^*XA^* - AYA^*\| \leq \|X^*X - Y\| < \frac{\epsilon}{2},
\]
\[
2\|AY^* - US^*_\mu_0 R_0 Z R_0 S_{\mu_0} U^*\| = \|US^*_\mu_0 R_0 (Q^k_1 Y Q^k_1 - Z) R_0 S_{\mu_0} U^*\| < \frac{\epsilon}{2},
\]
\[
US^*_\mu_0 R_0 Z R_0 S_{\mu_0} U^* = \lambda_i_0 U E^i_0 U^* = \lambda_i_0.
\]

Thus we obtain
\[
\|AX^*XA^* - 1\| < \frac{\epsilon}{2} + \frac{\epsilon}{2} + |\lambda_i_0 - 1| < 2\epsilon < \frac{1}{4}.
\]

Hence AX^*XA^* is invertible so that we have an element $C \in \mathcal{O}_\mathcal{U}$ such that $AX^*XA^*C = 1$.

Therefore we conclude by [4, Theorem V.5.5]

Theorem 3.9. If \mathcal{U} is λ-irreducible and satisfies λ-condition (I), then the C^*-algebra $\mathcal{O}_\mathcal{U}$ is simple and purely infinite.

Let A be a finite square matrix with entries in $\{0, 1\}$ and G_A its corresponding directed graph. By considering the associated λ-graph system \mathcal{U}_{GA}, we have the following well-known result:

Corollary 3.10 ([1], [2], [3]). If A satisfies condition (I) in the sense of Cuntz-Krieger [3] and is irreducible, the Cuntz-Krieger algebra \mathcal{O}_A is simple and purely infinite.

In [12], [16, Theorem 7.7] and [17], examples of λ-graph systems that are λ-irreducible and satisfy λ-condition (I) are presented and the K-groups for the associated C^*-algebras are computed.

REFERENCES

4. Davidson, K., C^*-algebras by example, Fields Inst. Monogr. 6, 1996.