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C*-ALGEBRAS ASSOCIATED WITH THE
FUNDAMENTAL GROUPS OF
GRAPHS OF GROUPS

RUI OKAYASU

Abstract

We construct a nuclear C*-algebra associated with the fundamental group of a graph of groups of
finite type. It is well-known that every word-hyperbolic group with zero-dimensional boundary,
in other words, every group acting trees with finite stabilizers is given by the fundamental group
of such a graph of groups. We show that our C*-algebra is *-isomorphic to the crossed product
arising from the associated boundary action and is also given by a Cuntz-Pimsner algebra. We
also compute the K-groups and determine the ideal structures of our C*-algebras.

1. Introduction

There are a lot of examples of dynamical systems giving simple C*-algebras.
In these cases, we next expect the C*-algebras to be purely infinite, because of
the celebrated classification theorem of purely infinite simple separable nuclear
C*-algebras due to E. Kirchberg and N. C. Phillips [20]. For example, by the
works of M. Laca and J. Spielberg [18], or C. Anantharaman-Delaroche [2],
the word-hyperbolic groups, which are introduced by M. Gromov [13], acting
on their boundary give such C*-algebras, (see also [1] or [3, Appendix B] for
their nuclearity). However their K-theory is unknown very well. Thus one of
our purposes is to compute their K-groups and to study them through out the
above mentioned Kirchberg-Phillips classification theorem.

In former work [19], we construct C*-algebras associated with certain am-
algamated free product groups by mimicking the Fock space construction (see
[11], [12] for Cuntz-Krieger algebras in [9]) and give explicit formulae of
their K-groups by using the method for Cuntz-Krieger algebras in [8]. The
constructed C*-algebras are *-isomorphic to the crossed products arising from
boundary actions as word-hyperbolic groups. This is a generalization of works
of M. D. Choi [7] for Z, % Z3 and J. Spielberg [27] for the free products of
cyclic groups.

The aim of this paper is to generalize the above mentioned results of [19] to
the class of word-hyperbolic groups with zero-dimensional boundary and to
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investigate the crossed products arising from boundary actions of such word-
hyperbolic groups by using the x-isomorphism to our constructed C*-algebras.
In other words, it means that we study the crossed products of the boundary
actions arising from groups acting on trees (without inversions) with finite sta-
bilizers. The key of our construction is the well-known result that such a group
is given by the fundamental group of a graph of groups in the sense of [4] and
[25]. By using graph structures (with groups) and similar techniques of Fock
space construction, we will construct nuclear C*-algebras associated with the
fundamental groups of graphs of groups, which have a certain universal prop-
erty. Thanks to this property, we can give other descriptions of our C*-algebras.
For instance, our C*-algebras are *-isomorphic to the crossed products arising
from the boundary actions. We will also show that our C*-algebras can be
realized by Cuntz-Pimsner algebras, which are defined by M. V. Pimsner in
[22].

We will next give explicit formulae of the K-groups of our C*-algebras.
Since every word-hyperbolic group with zero-dimensional boundary acts on a
tree, to obtain the K-groups, one can apply six-term exact sequences in [21]. As
the above mentioned, our C*-algebras are also x-isomorphic to Cuntz-Pimsner
algebras. Thus one can also apply six-term exact sequences in [22]. However
these are not trivial tasks to compute K-groups of our C*-algebras for certain
examples. We will give another formula of the K-groups of our C*-algebras by
using the method for Cuntz-Krieger algebras [8] in the similar way of [19]. The
K-groups of our C*-algebras are given by integer-valued matrices, which are
determined by the representation theory of edge groups. Moreover by using
the obtained matrices, we will completely determine ideal structures of our
C*-algebras by similar arguments as in the case of Cuntz-Krieger algebras
with condition (II) in [8], (see also [15]). As a consequence, we also give a
necessary and sufficient condition of the simplicity of our C*-algebras in the
term of the corresponding matrices. We remark that if our C*-algebra is simple,
then it is also purely infinite by [18] or [2]. Therefore, in this case, we can apply
the Kirchberg-Phillips classification theorem to our C*-algebras. Finally we
consider the case of HNN-extensions and their examples.

ACKNOWLEDGMENT. The author wishes to express his gratitude to Masaki
Izumi for his constant encouragement and important suggestions.

2. Preliminaries

2.1. Graphs of groups

We give a quick introduction on the theory of H. Bass and J-P. Serre of graphs
of groups. We refer the reader to [4] and [25] for more details.
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A graph of groups T consists of a connected graph (I, I'"), the origin and
terminus o, ¢ : I'' — T'°, a fixed point free involution e +— ¢ of I'! satisfying
o(e) = t(e) with vertex groups I', (v € I'?), edge groups I', = I'; (e € T'!)
and monomorphisms i, : ', — T', for v = o(e). We write I'* for the set of
edge paths € = e ...e, with t(e;) = o(e;4+1) for 1 <i < n, and the maps o
and ¢ extend to I'* in an obvious way. For £ = e, ...e, € I'*, we also define
source and range maps s,r : I'* — TI'l by s(§) = e; and r(£§) = e,. For
&, n € I'* with 1(§) = o(n), we write the concatenation £7n. An edge path
E=e;...e, € '™iscalled reduced if e;| # ¢; for1 <i <n.

The path group nr is defined by

7r = [Goperoly) % F(TH1/ R,

where F(I'!) denotes the free group with basis I'' and £ is the normal subgroup
which imposes the relations ¢ = e~! and eiz(g)e™! = 1.(g) forall e € T'!
andg e I', =T's. Apath y = goe1g1€2 ... gn—1€48n 1s given by an edge path
& =e...e, and a sequence u = gogi - - - &» of elements of vertex groups,
where g; € Iy, with v; = #(e;) = o(e;4+1) for 1 < i < n. We often express a
path y by a pair (§, ) and we write I'z for the set of group paths  of type
&. The maps o, t, s and r extend to the set of paths by o(y) = 0(§),t(y) =
t(&),s(y) =sE)andr(y) =r)if y = (&, u), respectively. We denote by
1¢ the trivial group path 1. .. 1 of type &£. An edge path & may be confused with
a path (&, 1¢). Note that any path y gives an element in 7rr. For v, w € I'°,
we write wrr[v, w] for the set of elements in 7 given by paths from v to w.
A path y = goe1g1 ...e,g, 1s said to be reduced if either n = 0 and gy # 1,
or else n > 0 and whenever ¢;1; = ¢;, we have g; & 15(I'z). Note that if
y is a reduced path, then y # 1 in zp. Thus the canonical homomorphisms
: 'y — 7r are injective.

For each ¢ € T'' with o(e) = v, we choose a set A, € T, of coset
representatives for I, /1.(I",) with 1 € A,. Relative to these choices, a path y
is called (A-)normalized if it has the form y = gie; ... g,e,8, where g; € A,,
(1 <i <n),gel, and y is reduced, i.e., e,_; = ¢; implies g; # 1.
For v, w € I'Y, every element of 7-[v, w] can be represented by the unique
normalized path from v to w.

DEFINITION 2.1.
(i) The fundamental group of T at a base vy € T is given by

[y := 7r[vo, vol.

(ii) The fundamental group of T relative to a maximal subtree (T°, T') of
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(I, T'!) is defined by

'y :=nar/(relations : e = 1 forall e € .

The above two definitions give the same group essentially because the nat-
ural projection g : mp — I'7 restricts to an isomorphism g7 : I'g — ['7. The
inverse of gr is given as follows. For v, w € 'Y let &, denote the reduced
edge path in T from v to w. Then we have

61;1((](8)) = va—)v -8 gvr—wo for geT,,
77" (q(€) = Evyote) - € * Ererug for eeT".

Hence we often denote by 71 (I") or I' for simplicity, the fundamental group
of I
Finally we introduce the tree X called universal cover of T'. The vertices
X0 are given by _
X" = [ [ mrlvo. vl/ T

vel®

and the edges X! are certain ordered pairs & = (yT',, y'Ty,) of distinct ver-
tices, where y; € mr[vg, v1] and ¥, € mr[vg, v2] such that yl_lyz = gieg
withe e T'!, 0(e) = vy, t(e) = v, g1 € I'y, and g, € I'y,. Then we can define
the origin and terminus and the orientation on (% 0 X 1) in an obvious way.
Moreover there is a natural left action of 'y on X, which is oriented preserved.
Then the graph X constructed above is, in fact, a tree.

EXAMPLE 2.2.
() If ', = {1} for all v € T'°, then

Ir=m@L,TH:=FTY/e=e'and e=1if ec T,

which is a free group based on half the edges of I'! \ T
(ii) f T, = {1} foralle € T'!, then 'y = (xpepoly) * m (C'L, T,

(iii) IfT isthetree of Figure 1, then the fundamental group is the amalgamated
free product group I'y, *r, I'y,.

(iv) If I" is the loop of Figure 2, then the fundamental group is the HNN-
extension

Gxy 0 =(G,x | hx =x60(h) for h € H),

where G =T, H = 1,(T",), H = 1(T'y) and 6 : H — H C G given

by 6 =101l
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(v) A group G acts on a tree Y without inversion. Let (I'°, I'') = G\Y
and T', (resp. I',) denote the stabilizer of a vertex v € Y (resp. an
edge e € Y'). Then I" becomes a graph of groups in the natural way,
(see [25] for more details). Moreover the f~undamental group of this I" is
isomorphic to G and the universal cover X of I' coincides with Y.

V2 V X
P 0

Yo

FIGURE 1 FIGURE 2

2.2. Hyperbolic groups with zero-dimensional boundary

For the definition and basic properties of word-hyperbolic groups and hy-
perbolic boundaries, we refer the reader to [13], [14] and [16]. Let G be a
word-hyperbolic group with the hyperbolic boundary dG. If G has infinitely
many points, G contains a subgroup isomorphic to the free group F, and 9G is
a infinite perfect compact metrizable space. In this paper, we focus on word-
hyperbolic groups with zero-dimensional boundary, which are equivalent to
virtually free, i.e., groups containing a free subgroup of finite index. Moreover,
a virtually free group can be also given by the fundamental group of a graph
of groups of finite type, i.e., (I'°, I'!) is a finite graph and T, is a finite group
for every v € I'°.

THEOREM 2.3 (cf. Theorem 7.3 in [24]). A finitely generated group G has
a free subgroup F, of finite index if and only if G is the fundamental group of
a graph of groups T of finite type, where Fo = {1} and F is the integer group
Z

Let I" be a graph of groups of finite type with a base vy. Notice that each
vertex in X can be represented by the unique normalized path. It is well-known
that the hyperbolic boundary 3X can be identified with the end space. Namely
if X # (), then 3X can be expressed by the infinite normalized path space

o(e1) =, t(e;)) = o0(ejq1), i € Ag,, i = 1,2,---}

g1€182€3 . .. _
{ ei1=¢ = g #1

with the natural left action of I'g. Moreover the following fact is easily checked,
(see [14], [16]) and we use this later.

PrOPOSITION 2.4. Let I" be a graph of groups of finite type. Let X be the
universal cover of . If X = (), then the hyperbolic boundary 01" is homeo-
morphic to the end space X of the tree X, and two actions of ' on oT" and
3X are conjugate.
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This is a reason why we can construct C*-algebras, such as Cuntz-Krieger
algebras, which is x-isomorphic to the crossed products C(dI") x I' arising
from the boundary actions of word-hyperbolic groups with zero-dimensional
boundary, because the end space structure of trees is similar to the Fock space.

3. Construction

Let I be a graph of groups of finite type. We fix a base vy and a maximal
subtree T of I". From now, we identify 1,(I",) with I',, and so I", may not be
equal to I'z, but ', >~ I'z via 15 o ze_l. For each e € T'! with o(e) = v, we
choose a set A, € I';, of coset representatives for I',/T', with 1 € A,.

Now we assume that 3 X # ¢ and (I'°, ') is a finite graph. Let w € X,
which is expressed by the infinite normalized path ge;gse; . . .. Then there is
no such that either g,, # 1 ore,, ¢ T! holds with g = 1, ¢, € T! forall k <

no — 1. We put yp = gie1 ... gng—1€n,-1 = (60, 1) Where &g = e ... ;51
Since ("%, T'!) is finite, there is n; > ng such that either €, | = e,, or
en, & T! holds with €ngtls -5 €n—1 € T'. Then we set y; = (&, i), where

& = ey, ...en—1 and w1 = gy, ... 8 —1. By repeating this argument, we
obtain infinite sequence {y;}2, of (finite) normalized paths such that

(i) w is represented by the normalized path ypy; . . .,
(1) yo = (%o, 1g,) is a reduced edge path in T with o(&) = vo,

L @) (@)
(iii) y; is given by a reduced edge path §; = e, "¢, .

wi=ggy ... g®,
(iv) e, ....e¥ e T' fori > 1,
(v) either s(&) = r(&_;) with g\’ # Lors(&) ¢ T' fori > 1,

(vi) either g\ # 1 ors(&) ¢ T'.

..el” and

We denote by Ny the set of all normalized paths of the form yx . . . Yk4,—1 and
by W the set of all pair (e, f) of edges with e = 7 (i), f = s(¥x41) for some
o =1{y}7, € 9X and k > 1. Forn > 1, we write W[ for the set of reduced
paths ¥ = (£, ) such that y =1y’ e I for some vy’ = (§, u') € Np. We
put Ef ={& e I'" | (§, u) € Nt for some u}. We set

Ne=JnE owi={Uwe and  Ef = EL
n>1 n>1 n>1

For a, B € W, we denote o ~ B if t(a) = o(B) and af is reduced. For
eeTl! wedenote I'(e) =T, ife € T'and I'(e) = [y, ife ¢ T'.

DErINITION 3.1. A Cuntz-Krieger I'-family (with respect to T) in a C*-
algebra consists of a family {S(y) | y € W/} of partial isometries and a family
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{U(g) | geTl(e),ecs( Wll)} of partial unitaries satisfying the Cuntz-Krieger
["-relations (with respect to T): We denote by P(y) the range projection of
S(y).Leta, B € W/ and g € T'(e) with e € s(W}).

P(a) = P(B) ifal ) = Bl (),
0 otherwise,

) P(a)P(B) = {

2  S@*S@= Y Py,

yeN]L
a~ay
(3) I=>" Py,
yENL
@ U@U@=UQ@UE@" = Y. Py (=Pe),
e
5) U(g)S(a) = S(ga) if e =s(a),
(6) S(@)U(g) = S(ag)P(e) 1if t(a) =o0(e) and g € F@,

where g = (gg0)e181 - - - engnandag = goe181 - .. €,(gng) if @ = goe1g1 ...
e,8n € Wll.

Fory =y)...y, € Wl withy; € Wll, we define

SW)=SWy)...S5).

REMARK 3.2. The above relations (2), (3) and (4) may be infinite sums
even if (I'°, T'!) is finite. For simplicity, we always assume that I" is of finite
type. In this case, the above sums are finite. This assumption corresponds
to finiteness of associated 0-1 matrices of Cuntz-Krieger algebras. As many
generalizations of Cuntz-Krieger algebras, for example, Exel-Laca algebras
[10], graph algebras [5], [17], Cuntz-Pimsner algebras [22] and so on, we might
define C*-algebras associated with graphs of groups without the assumption
of finiteness. However, for investigations of crossed products arising from
boundary actions, which we focus on in this paper, it is not necessary.

DErFINITION 3.3. We define the universal C*-algebra Or generated by a
universal Cuntz-Krieger I'-family {S,,, U,}. In other words, the C*-algebra Or
is generated by a Cuntz-Krieger I'-family {S,,, U,} such that for every Cuntz-
Krieger I'-family {S(y), U(g)} on a Hilbert space # there is a canonical
*-representation 7w : Or — %B(H') with (S,) = S(y) and 7 (Uy) = U(g).

Next we will introduce the “Fock space construction”, which gives the
existence of non-zero Cuntz-Krieger I'-family and hence it allows us to define
the above universal C*-algebra Or.
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DEFINITION 3.4. We define a Hilbert space #'(T", T') by
H (T, T) =PI, T),
n>0

where 1
Ho(I', T) = span{ér, | v € t(Np)},

76,(U, T) =span{d,r,,, | ¥ € Np}.

Then we define the partial isometries Tgockx (o) for o € Wll and partial unitaries
Viock (g) for g € T'(e) with e € s(er) by

Sqr, ift(a) =0,

Troek (@) - or, = 0 otherwise

J if o ~ .
TFOCk (O() . Syr[(y) = O‘XVF!(V) Y

otherwise,
5 ifgel,,
Vrock (g) - 01, = ()Fv otlferwisve

. — 58)’Fr(y) lfg € F(S()/)),
Vrock(8) - Oy = 0 otherwise.
Then let wgoex : BH (L, T)) — B (T, T))/H (K ([, T)) be a quotient
and we set Srock (V) = Rock (Trock (V) and Uroek (&) = TFock (VFock (8))-

One can easily check the following and hence we can obtain the universal
C*-algebra Or, (the reader may refer to the relevant proof in [15] or [17]).

PropoSITION 3.5. The above family {Spock(Y), Urock(g)} is a non-zero
Cuntz-Krieger I'-family.

For a group G, we denote by C*(G) the full group C*-algebra. We get
another property of the family {Spock (), Urock (8)}-
Let {S(y), U(g)} be a Cuntz-Krieger I'-family. For (e, f) € W}) , we define

Pe,/)= ), PW.

YeNLs()=f
ey :reduced

PROPOSITION 3.6. For (e, f) € W2, the canonical x-isomorphism

C*(FE) x~ C*(UFock(g)PFock(ea f) | 8 € FE)

holds.
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Proor. For (e, f) € W2, we define the projection Qpock (e, f)on (', T)
by
Orock(e: /)= D Troa(¥) Trock (¥)".

YeNLs()=f
ey :reduced

Note that for g € Tz every Vgok(g) commutes with Qpok(e, f) and

TFock (QFock (€, ) = Prock (e, f). Since the unitary representation Vo (f, )
Orock (e, f) of I'z contains the left regular representation of I'z; with infinite
multiplicity, we obtain the required result.

COROLLARY 3.7. For (e, f) € WP, then the canonical *-isomorphism
C*'(I'e) = C*(UgPe s | g € To)
holds.

The following proposition can be easily proved by using the Cuntz-Krieger
["-relations.

PRrOPOSITION 3.8.

Or = span{Sa UgPe,fS;

a,BeWie=r(a)= r(,B),}
(e, /e Wl geTls '

DEFINITION 3.9. We define the action ® of T = {z € C| |z| = 1} on O,
which is called the gauge action, by

0.(S,) =1zS8,,
0., =U,,

for z € T. We define the conditional expectation on O by
o0 = [00)dz
T

where dz is the Haar measure on T.

LEMMA 3.10. The fixed-point subalgebra Fr of Or under the gauge action
is an AF-algebra.

Proor. Forn € N, (e, f) € W2, we define the C *-algebra

Fule, f) = Span {S,Uy Po Sy |, p € Wi e =r(a) = r(B). g € Te}.
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Since the family {S, P, ¢ S;;}a, penp gives the matrix units, we have
Fule, ) = Mg, r) @ C*(Tg)

for some K, (e, f) € N. We set

Fn= P Fule ).

(e, ))EWP

Since the Cuntz-Krieger I'-relation gives the embedding &, — %,.,, we
have an AF-algebra

U7

n>1

By using the conditional expectation ®, one can show that it is, in fact, the
fixed-point subalgebra & under the gauge action ©.

THEOREM 3.11. Let T" be a graph of groups of finite type such that the
end space 0X has infinitely many ends, which is equivalent to that the funda-
mental group (") is virtually free. Let {S(), U(g)} be a non-zero Cuntz-
Krieger T'-family and 7 be the canonical surjective x-homomorphism from Or
onto the C*-algebra generated by the family {S(a), U(g)}. If the canonical
x-isomorphism

C*(I'p) ~C*(U(g)P(e, f) 1 g €T?)

holds for any (e, f) € WY, then 7 is *-isomorphic.

PROOF. One can easily show that 7 is faithful on the fixed-point subalgebra
Zr under the gauge action ® by the similar arguments as in the proof of Lemma
3.10.

We will show that ||7(®(X))|| < ||#(X)| for any X € Or. By Proposi-
tion 3.8, it suffices to check it for a finite sum

X=X Y SRS ®
e f.g ap

where C:f ¢ € C. Let n € N be sufficiently large. We may assume that if

o € Wﬁ and B € Wﬁ in the above sum (#), then min{k, /} = »n holds. Note
that there are eq, fy such that

YN e S@U)Peo. f)S(B)”

7w (PX)| = ’
g ap
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By the assumptions, the fundamental group 7, (I") contains a free group F,
(r > 2). Hence we can take a sufficiently long aperiodic normalized path yy
with s(yp) = fo and r(yy) = e;. Now we put a non-zero projection

0= SMSH)SH)*S()".
yeNp
If o, B € N{, then
Q(S(@) P(eo, f0)S(BY)Q = S@)S(10)S(10)*S(B).

Note that {S(c)S(0)S(¥0)*S(B)*}a.peny is a family of matrix units. Hence
the argument as in the proof of Lemma 3.10 gives the faithfulness of A
Qm(A)Q on &%,. In particular we get ||7(P(X))| = |Qn (P (X)) Q|-

We next claim that Q7 (P (X))0 = OQn(X)0. Leta € W}‘, B e Wf be in
the sum (#) with k # [. We may assume that k = n and [ > n without loss of
generality. Then

OS(@U(g)P(e, fISB)*Q
= 0S(@)U(g)P(e, HS(B)"S()S(r0)*S(B1",

where 8 = B18,. The above element is non-zero if

S(0)*U()P (e, [)S(B2)"S(y0) # 0.
However itis impossible by the choice of 3. Thus QS(x)U (g) P(e, f)S(B)*Q
= 0 if k # [, namely we have shown our claim. Hence we can obtain
[ (PN =127 (P (X)) QI = 197 (X) Q| < [lw(X)]|.
Therefore the proof is complete, thanks to [6].

COROLLARY 3.12. The C*-algebra generated by {Sgock (), Upock (8)} is *-
isomorphic to the C*-algebra Or via Sgock (v) > Sy and Uroek (8) — Us,.

We can also prove the following by the same arguments as in the proof of
Theorem 3.11. We will use this to get the ideal structure theorem for Or in
Section 6.

THEOREM 3.13. Let {S1(y), Ui(g)} and {S>(y), U2(g)} be two non-zero
Cuntz-Krieger I families. If the canonical x-isomorphism

C*(Ui(g)Pi(e, [) | g €Te) = C*(Ua(g) Pale, /)1 g €T?)

holds for any (e, f) € WIQ, then the C*-algebras C*(S1(y), U1(g)) and
C*(82(y), Ua(g)) are x-isomorphic via S (y) — Sy(y) and U (g) — U,(g).
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REMARK 3.14. We consider the C*-algebra Or associated with I' in Ex-
ample 2.2. In the case of Example 2.2 (i), I is the free group and O is some
Cuntz-Krieger algebra, which is given in [27]. In the case of Example 2.2 (ii) or
(iii), " is an amalgamated free product groups and Or is the same one defined
in [19]. The case of Example 2.2 (iv) is discussed in Section 7.

4. Other descriptions

4.1. Cuntz-Pimsner algebras
DEFINITION 4.1. Lete € s(W})). If e € T', then we define the C*-algebra

B, = C*(",) = span{g € I'.}.

If e ¢ T! with v = o(e), then we consider the right action of ', on ",/ T,
and define the C*-algebra

B, =C(I,/T) x 'y =span{p.(x)g | x € A,, g € ['}},
where p.(x) € C(I'y/T',) is defined by

1 if x’ly erl,,
0 otherwise,

pe(x)(yre) = {

and gp.(x)g~' = p.(y) for y € T, with gxI", = yT.

Leté e E 11“ be fixed. We define the right Hilbert C*(I" +&)-module

H; = span{u € T | (§, ) € Wy}

with the natural right action of C*(I';%) and the inner product

vwin ifyime e

(1, m2) g, = {
¢ 0 otherwise,

where y; = (§, u;) fori = 1,2. Moreover we define the left action of B,
on H: in the following way. If s(§) € T!, then g - u = (ggo)...gn, and if
s(&) ¢ T', then

(880) ---8gn ifs7'ggo € Tye)s

Pe($)8-80---8 :{ .
‘ " 0 otherwise,

where i = gog1...8» € He. Hence we obtain the Hilbert Bs(g)—C*(F@)
bimodule H.
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Next let (r(€),e) € W2 If e # r(£), thene ¢ T'! and C*(T';@) C B..
Thus we put

E¢.e) = Hy ®c+(ry) Be = span{u} ® span{p,(x)g}.
Ife=r()ande € T', then B, = C*(I',(s)) and we set
E¢.e) = He ®c+(r,)) Be = span{u} ® span{g}(= H).
Ife=r(€)ande & T', then we define
E¢.e) = He ®9, Be = span{u} ® span{p.(x)g | | # x € A},

where ¢.(g)b = g ZlﬂeAe De(y)bfor g € I', and b € B,. Note that E ) is
a Hilbert By)-B, bimodule. Then we define

B = @ B,,
e
E=PPE¢..
& e

Note that E is a Hilbert B-bimodule.

REMARK 4.2. The above constructed £ may be not full, in general. So to
identify Or with the Cuntz-Pimsner algebra associated with E, we have to
consider Og. (See [22, Remark 1.2 (3)].)

THEOREM 4.3. Let T" be a graph of groups of finite type with infinitely
many ends. Let Og be the Cuntz-Pimsner algebra associated with the above
B-bimodule E. Then Oy is canonically *-isomorphic to Og.

ProoF. Note that O £ is generated by {S, g, } and the C*-algebra B, where

I, is the unit of the C*-algebra B,. One can easily show that the universality
gives an *x-isomorphism between Or and Of.

Sy < Y Suer, if y = (& n) e Wi,

Uy < ¢ if g €(e).
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4.2. Crossed products of the boundary actions

THEOREM 4.4. Let " be a graph of groups of finite type with infinitely many

ends. Then
Or ~C@TI") xT.

PRrROOF. In this proof, we will confuse the fundamental groups I’y =
(I, vp) and I'r = 7 (I', T) via the isomorphism gy and the boundaries
T and 3X. (See Definition 2.1 below and Proposition 2.4.) Let us denote by
A the implementing unitary in C(dI") x I'. We write p(y) € C (8§ ) for the
characteristic function of the set of all infinite normalized paths with beginning
of the form y.

Lety =(&,n) € Wll. We define the partial isometry S(y) in C (8)? ) x Ty
by

S) = AoV Eiron) D D PEwi) 80,

(r€),e)ew? 8

where g runs over all elementsin A, \ {1} ife = r(&)andin A, ife #* r(&). Let
e € s(W) and g € I'(e). We define the partial unitary U (g) in C(af) x o
by

U(g) = MEuw o) - & - Ertory) ) S(@)S(@)*,

where « runs over all elements ¢ = (n, V) € Nll with s(a) = e. Then one
can show that {S(y), U(g)} is a Cuntz-Krieger I"-family. Thus there is the
canonical x-homomorphism from Or to C (8% ) % I

Conversely, to define a unitary u(g) € Or for g € T, with v € T, we
introduce some notations and definitions. Let g € T', forv € '’ and y =
(¢, n) € N with & = gogi . . . g». Consider the path g - y, which is given by
the edge path &, ,+)& and the sequence (g, 1, ..., 1, o, g1, . . ., &) of vertex
groups. Note that g - y is reduced, but it may be not in W{. If v # o(y), then
g -V = Yov1, where y is a path (§, 15,) in T and y; € W{. In this case we
define S,., = S,,. If v = o(y), then g - y may be in I';;y. For any o € N}
with y ~a, g - ya = apay, where o is a path (59, 1,,) in T and o) € W, In
this case we define S, = S, .

Now we define the unitary u(g) € Or for g € T, with v € T'? by

W@ = D SeySi+ Y D SeyaSia= D SeS;.

yeN} yeNL aeN] yENE
v#o(y) v=o(y) y~a

Lete e '\ T'and y = (&, ) € N: withé = ey ...¢, and i = gog - . - gn-
Consider the path e - y, which is given by the edge path e, ))& and the
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sequence (1,...,1, go, g1, ..., &) of vertex groups. If s(§) = e and gy = 1,
then e - y has the form either ¥y, or &', where vy = (&, 1g,), 1 € N} and
& = ey...e, is the reduced edge path in T. In this case we define either
Sey = Sy, or S, = I, respectively. In other cases, e - y € NJ. Then we

define u(e) € Or by
w(e) =Y SeyS;.

yeNL

One can show that the conjugates of the family {P,} by I'g generates a
commutative C*-algebra. Hence they give a covariant representation of the C*-
dynamical system (C (0 X ), ['g). Thus there is the canonical *-homomorphism
from C (9 X ) x ['g to Or. One can check that the above two x-homomorphism
are mutual inverse *x-isomorphisms.

REMARK 4.5. We do not need to care about the deference between the full
and the reduced crossed product on the above, because of the amenability of
the action of I" on 9I" (see [1] or Appendix B by E. Germain in [3]). The
amenability also follows from next lemma.

The following can be easily proved by using the gauge-invariant uniqueness
theorem. (See [15] and [26].)

LEMMA 4.6. If T is a graph of groups of finite type and 3X has infinitely

many ends, then
0[‘ ~ g;]'* x N.

5. K-theory

Let I be a graph of groups of finite type with infinitely many ends. In this
section, we give a formula of the K-groups of Or-.

Let {xZ}aca, be the set of characters corresponding with all irreducible
unitary representations of the finite groups I', and I'z with degrees {d.(a)}4ca, -
For (e, f) € WIQ and a € A,, we write

de(a)

Pe,f(a) = ﬁrf

Z X;(g)UgPe,f-
gelz

Fory = (&, ) € N% with t(e) = o(y) let us denote
IFe(y) ={g €Tzl gylip) =vTipl

For g € I'z(y), thereis h € oy such that gy = yh. We write F, (g) = h.
For & € E} and (e, s(&)) € W2, we choose a set N (e, &) of double coset
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representatives for

Ta\{y = (6, w) | € Te, ey is reduced}/ Iy g
such that N (e, &) C N|.
DEFINITION 5.1. We set an index set
E={e fa)| (e, f) e WhaeAl}
and m = 3. We define the m x m-matrix M with Z-valued entries by

M((e, e, a), (f, f'. b))

Y evee X | X 0 F)rg)  if thereis o = (£, 1) € N}
= Withs(é):e’,r(é):f,

0 otherwise,

where

il o By = —— (@) x)] (Fy(2)).
PARTEY T ﬁnW%;%M@uwy@»

PROPOSITION 5.2.

Ko(Fr) =lim{M' : Z" — Z"}.

Proor. Note that

g;n (6, 6/) i MKn(e,e’) &® C*(FE) i @ MK,,(e,e’) ® Md(,(a)-

acA,
We can express the projection e;; ® I in Mg, ..y ® Mg, ) by
P =S4P. . (a)S,

for some o € Ny, where e;; is a minimal projection in the matrix algebras.
The unit of MKnJrl(f,f') ® Mdf (b) in g;n—i-l (f, f/) is given by

Q= Y SgPrp(b)S;.

n+1
BeNL
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It therefore suffices to compute Tr(P Q)/d.(a).

Tr(PQ) 1
Tr (SqUg Pe.o S,
7. ﬁrige[‘— x5(®) Tr ( 0)
Z Y K@ Tr (Say Ur, (o) Prp (0)Ss,)
Tz Y gela(y)
Z > x@xi (Fy (), ()
Iz Y gelz(y)

where y runs over all elements in N% such that s(y) = ¢/, r(y) = f and ey
is reduced. Note that F, (g) = y ' gy in the above. By the same argument as
in [19, Section 7], we have

(&) = Z (x5 | X;{OF)/)F;(V)'

YEN(e.8)

Therefore we obtain the K-groups of the C*-algebra Or by the Pimsner-
Voiculescu exact sequence [23].

THEOREM 5.3. Let T be a graph of groups of finite type with infinitely many
ends and M be as above. Then the K-groups of the C*-algebra Or are given
b

’ Ko(Or) = 2" /(I — M")Z",

Ki(Or) =Ker{l —M': 7" — 7).

6. Ideal structure

By the same argument as the Cuntz-Krieger algebras with condition (II) in [8],
we can give the ideal structure theorem for Or by using the matrix M, which
is obtained in Section 5. Here, we do not need the condition (II) of the matrix
M, thanks to our uniqueness theorem (Theorem 3.11).

DEFINITION 6.1 (cf. [8]). We denote by #3; = W3 (X) the set of finite
admissible words (o7, ..., 0,) witho; € ¥ and M(0;,0;41) = 1. Foro, t €
¥, we write o > 7 if there is a admissible word (o1, ..., 0,) € Wy with
op=cando, =t.Foro € X,letusdenote [c]={te X |o >t >0}
Notice that the relation > is a well-defined partial order on T = {lo] | o € Z}.

A subset A C T is hereditary if A; € A and A| > A, implies A, € A. We
put

T(A) = {o >

Ty >0 > 1, forsome 11,7, € UA}
AEA
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The saturation T (A) is the smallest subset £’ of ¥ which contains X (A)
and is saturated in the sense that it contains every element o € X for which
M(o, ) # 0implies T € ¥'.

For any hereditary subset A of £, we denote by 5 the two-sided closed
ideal of Or generated by P, s(a) with (e, f,a) € X(A). We write P, =
P, r(a) wheno = (e, f,a) € Z.

LEmMMA 6.2 (cf. Lemma 3.1 in[15]). Let A be a hereditary subset of 5.
Then

fA =
ae Wi BeWe=s()=s(p)
g €lg (e, f,a) € Z(N)
span | So.aUgPe, 1 (@)S7 5| 0 = (01, ...,00), T = (11, ..., 1) € Wi, ’

k,leN
o; = (e, fi,a;)) € Z,e; =r(aj—1), fi = s(a;)

where Sg oy = Py, Sa, - .- PoSoy fora =y ...a, witha; € Wllfor 1 <i<k.

ProoF. We first show that if o € X (A), then P, € .#,. It suffices to see
that the set {o € ¥ | P, € %5} is saturated. We take 0 = (e, ¢/, a) € X such
that P, € #, whenever M (o, t) # 0. Then

PO' = Pe,e’ (a)Pe,e’
=Peola) > 5,8

yENL,s(y)=¢
ey :reduced

=Pecla) Y (Z Zsfo,f/(b)S;).

YENLs(y)=¢ \(f.f)eWQ beA;
ey :reduced f=r(y)

Thus it suffices to show that

> Pov(@)SuPrp(b)S; € I,

where o runs over all elements (&, u) € Nll such that e« is reduced for
each (f, f) € Wb € Ay and & € E| with s(§) = ¢ and r(§) = f. If
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X =Y, Pou(@)SuPsp(b)S: # 0, then

d,
Tr(XX*) = (“) Z 3 X @) Tr(Uy . Py (0)ST)

a gelz

de(a) T e N "
=i Yo Y K@ Tr(SeUr, ) Pr.y(b)S;)
¢ a gela)

— d,(@M(0,7) £0,

where t© = (f, f’, b). Hence we have X € %, and thus P, € %,.
One can easily check that the right hand on the equation of the statement is
a two-sided closed ideal. The proof is complete.

LEMMA 6.3 (cf. Lemma 3.4 in [15]). The elements

En:PA—I- Z ZSU,)/PHS:;,V

0=(01,...,00)EWA(S\Z(A)) YENE

give an approximate unit for %, where

> p,.

oceX(A)

Proor. By Lemma 6.2, it suffices to check the lemma for the form X =
So.yUg P, f(a)S;"y. One can show that £, X = X for a sufficiently large n by
the same arguments of the proof of [15, Lemma 3.4].

THEOREM 6.4 (cf. Theorem 2.5 in [8] and Theorem 3.5 in [15]). Let " be a
graph of groups of finite type with infinitely many ends. Then the map A +—> Py
is an inclusion preserving bijection from the set of hereditary subsets of s onto
the set of two-sided closed ideals of Or-.

PRrROOF. Let £ be a two-sided closed ideal of Or and C = {0 € ¥ | P, €
£}

We first show that if o = (e,¢’,a) € Cand T = (f, f',b) € X with
M(o, 1) #0,thent € C.WeputX = P, > S, P, € Swiths(§) =€
andr(¢) = f. Then

Tr(X*X) = 8( ) Zxa(g)Tr< P,y Sk Ug.ZS,,PI)
v’ 14

gEF

yEN(e§)

XE(@) Tt (Ur, () Pr)

1",
ﬁ v gela(y)

=cAr(0,7) #0,
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for some non-zero positive constant c. Hence we have

_d
- ﬁ;")z 3" UrP: #0.

v gela(y)

Thus Pt € 4 and t € C. One can check that C is saturated by the same
argument as in the proof of Lemma 6.2. Therefore C is saturated and contains
Y (A),where A = {[0] | 0 € C, 0 > o}isahereditary subset of £. Moreover
we can prove that C = X (A) as in the same proof of the case of Cuntz-Krieger
algebras (cf. [8], [15]).

Now we claim that # = .#,. By the same argument of the case of Cuntz-
Krieger algebras with Lemma 6.3, we can check that .# and .#, contain pre-
cisely the same generators {P, | 0 € X(A)} = C. Then both Or/% and
Or / #x are generated by Cuntz-Krieger I'-families. Therefore they are canon-
ically *-isomorphic by Theorem 3.13. This is only possible if & = #.

COROLLARY 6.5. Let I" be a graph of groups of finite type with infinitely
many ends and M be the matrix defined in Definition 5.1. Then the C*-algebra
Or is simple if and only if M is irreducible and not a permutation.

REMARK 6.6. If Or is simple, then it is purely infinite by [18]. (See also
(2].)

7. HNN-extension

We consider the case of HNN-extensions in this section. The fundamental
group associated with the graph of Figure 2 in Section 2 is the HNN-extension
group

=Gy 60 =(G,x | hx =x60(h)forh € H),

where G = T, H = 1,(T,), H = (T'y) and # : H — H given by
6 = iz o1 !. We assume that G is finite. Note that 9" has infinitely many
points if and only if A, # {1}. In this case, every element N} has the form
either gx or gx.

Let {x,};_, be the set of all characters corresponding with all irreducible
unitary representations of the finite groups H and H. We choose a set A;’ r &
Ay of double coset representatives of I',\I',,/ I's and we set A, = A/ ¢ if

e= fand A, 5y = A er \{1}if e = f. Then we define the matrix Mr =
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[M, t]e, fert, where M, ; is the s X s-matrix given by

Mx,x(as b) = Z (Xa | X1§>ﬁ(gH)’
8E€A% x

Mo x@.b)= Y (Xa | X)iem
8€Axx

Mz (a, b) = Z (Xa | X5 H(gH)>
gEAX,X

Mex(@.b) = Y (Xa | X§) ueem
gEAx,f

where H;(gH>) LS the stabilizers of left multiplication of H; on gH, for
H\, H, = H or H, and x;(-) = x»(g~" - g). By Theorem 6.4, the K-groups
of C(aI') x I' are given as follows.

PrROPOSITION 7.1. Let I be a HNN-extension G *y 6 such that G # {e}
and H # G. Let Mr be as above. Then the K-groups of the crossed product
C(I') x T are given by

Ko = coker(I — M}.),
K = ker(I — M}).

We next give a sufficient condition for simplicity of C(dI") x I'.

ProposiTiON 7.2 (cf. Corollary 6.4 in [19]). Let " be the HNN-extension
G xp 0, where H ; G are finite groups and 0 is an endomorphism from H
into G. If the following condition (%) holds, then the C*-algebra C(dT") x T’
is simple and purely infinite.

(NeHg ' ngHg™" = {1}, ).
geG

Proor. It suffices to show that {U,S,}hen, ({UrSyYzem, (UnSy Jnen,
{U7S, }cg) are mutually orthogonal ranges for some y = (&, ), (see the
proof of [19, Corollary 6.4]). Let 1 # g € A,. If gHg™' N H = {1},
then it is enough to set £ = x and u = (g, 1). Now we assume that there
is (1 #)h € gHg™' N H. Namely h € gxHx 'g~' N H. By the con-
dition (%), there is g € G such that (i) x'g~'hgx ¢ g Hg;', or (ii)
=4 glﬁgl_l with g, ¢ H. In the case (i), we have hgxgx & gxgix H. Hence
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h & gxgixH(gxgix)™ N H. We put y; = (§, ;) where § = (x, x) and
w1 = (g, g1). Then we obtain

nHy 'NH G gxH(gx) ' NH.

In the case (ii), we obtain hgxg1x ! & gxgix 'H.Thush & gxgix "H(gxgi
xH™'N H.We put y; = (&, ;) where & = (x, %) and u; = (g, g1). Then
we obtain

vHy 'NH C gxH(gx)"'NH.

Since H is finite, by repeating this argument, we eventually obtain y = (&, w)
such that y Hy~' N H = {1}. Hence we have proved that {UnS,) Yhen are
mutually orthogonal ranges. One can also show the other cases. Therefore,
thanks to Theorem 3.11, the C*-algebra C(9I") x I is simple.

Finally we consider several certain examples of HNN-extensions.

ExampLE7.3. LetH =2, € G =Z,, withp # land6 = id, whereZ, =
Z/nZ for positive integer n. We consider the HNN-extension I' = Z,,, 7z, id.
Then the corresponding C*-algebra C(dI") x T is x-isomorphic to

Op®--- @Oy,
— ——

g times

where 04 is the simple Cuntz-Krieger algebra associated with the (p + 1) x
(p + 1)-matrix

10 1 1
01 1 1
A=|1 10 0.
1 1.0 -+ 0

More generally, let H be a finite group, G = Z, x H, 0 the natural inclusion
of H into G and I" the corresponding HNN-extension. Then the C*-algebra
C(0T") x T is *-isomorphic to

04 @ C*(H).

ExampLE 7.4. We put G = Z, x Z, = H; x H,. Let I'; be the HNN-
extension given by two inclusions of Z, into H;, H. € G. Then C(3I;) x
I'; is a purely infinite simple unital nuclear C*-algebra, which is called a
unital Kirchberg algebra, with Ky = K; = Z? and satisfies the universal
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coefficient theorem (UCT). By the classification theorem of E. Kirchberg and
N. C. Phillips [20], we obtain

C(8F2) X FQ ~ C(an) X F2,

where F, is the free group with two generators. More generally, for n > 3,
let G = Z, x Z, with inclusions of Z, into the left and right hand sides of
G. We denote by I', the corresponding HNN-extension. Then the K-groups of
CT,)xT,are Ky = Z,_,®Z" " and K| = Z"~'. Again by the classification
theorem, we moreover obtain

C(8F3) X F3 ~ C(an) X Iy >~ C(an) X Fz.

When n > 3, the C*-algebra C(dI",,) x T, is the unital Kirchberg algebra
satisfying the UCT with (K, [1]o, K{) = (Z,_» ®Z"', 0, Z"!). Notice that
C(dI',) x Iy, is stably *-isomorphic to C(dF,_;) x F,_1, i.e.,

(C@I'y) x I'y) @ K~ (C@F,—1) x Frm) @K,

where K is the C*-algebra of compact operators on a separable infinite dimen-
sional Hilbert space, but they are not x-isomorphic.

EXAMPLE 7.5. LetI' = @4 xg, id, where ©4, &3 are the symmetric groups.
Then one can check that C*(dI") x I is the unital Kirchberg algebra satisfying
the UCT with (Ko, [1]o, K1) = (24,0, Z%).
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