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C∗-ALGEBRAS ASSOCIATED WITH THE
FUNDAMENTAL GROUPS OF

GRAPHS OF GROUPS

RUI OKAYASU

Abstract
We construct a nuclear C∗-algebra associated with the fundamental group of a graph of groups of
finite type. It is well-known that every word-hyperbolic group with zero-dimensional boundary,
in other words, every group acting trees with finite stabilizers is given by the fundamental group
of such a graph of groups. We show that our C∗-algebra is ∗-isomorphic to the crossed product
arising from the associated boundary action and is also given by a Cuntz-Pimsner algebra. We
also compute the K-groups and determine the ideal structures of our C∗-algebras.

1. Introduction

There are a lot of examples of dynamical systems giving simple C∗-algebras.
In these cases, we next expect the C∗-algebras to be purely infinite, because of
the celebrated classification theorem of purely infinite simple separable nuclear
C∗-algebras due to E. Kirchberg and N. C. Phillips [20]. For example, by the
works of M. Laca and J. Spielberg [18], or C. Anantharaman-Delaroche [2],
the word-hyperbolic groups, which are introduced by M. Gromov [13], acting
on their boundary give such C∗-algebras, (see also [1] or [3, Appendix B] for
their nuclearity). However their K-theory is unknown very well. Thus one of
our purposes is to compute their K-groups and to study them through out the
above mentioned Kirchberg-Phillips classification theorem.

In former work [19], we construct C∗-algebras associated with certain am-
algamated free product groups by mimicking the Fock space construction (see
[11], [12] for Cuntz-Krieger algebras in [9]) and give explicit formulae of
their K-groups by using the method for Cuntz-Krieger algebras in [8]. The
constructedC∗-algebras are ∗-isomorphic to the crossed products arising from
boundary actions as word-hyperbolic groups. This is a generalization of works
of M. D. Choi [7] for Z2 ∗ Z3 and J. Spielberg [27] for the free products of
cyclic groups.

The aim of this paper is to generalize the above mentioned results of [19] to
the class of word-hyperbolic groups with zero-dimensional boundary and to
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investigate the crossed products arising from boundary actions of such word-
hyperbolic groups by using the ∗-isomorphism to our constructedC∗-algebras.
In other words, it means that we study the crossed products of the boundary
actions arising from groups acting on trees (without inversions) with finite sta-
bilizers. The key of our construction is the well-known result that such a group
is given by the fundamental group of a graph of groups in the sense of [4] and
[25]. By using graph structures (with groups) and similar techniques of Fock
space construction, we will construct nuclear C∗-algebras associated with the
fundamental groups of graphs of groups, which have a certain universal prop-
erty. Thanks to this property, we can give other descriptions of ourC∗-algebras.
For instance, ourC∗-algebras are ∗-isomorphic to the crossed products arising
from the boundary actions. We will also show that our C∗-algebras can be
realized by Cuntz-Pimsner algebras, which are defined by M. V. Pimsner in
[22].

We will next give explicit formulae of the K-groups of our C∗-algebras.
Since every word-hyperbolic group with zero-dimensional boundary acts on a
tree, to obtain the K-groups, one can apply six-term exact sequences in [21]. As
the above mentioned, ourC∗-algebras are also ∗-isomorphic to Cuntz-Pimsner
algebras. Thus one can also apply six-term exact sequences in [22]. However
these are not trivial tasks to compute K-groups of our C∗-algebras for certain
examples. We will give another formula of the K-groups of ourC∗-algebras by
using the method for Cuntz-Krieger algebras [8] in the similar way of [19]. The
K-groups of our C∗-algebras are given by integer-valued matrices, which are
determined by the representation theory of edge groups. Moreover by using
the obtained matrices, we will completely determine ideal structures of our
C∗-algebras by similar arguments as in the case of Cuntz-Krieger algebras
with condition (II) in [8], (see also [15]). As a consequence, we also give a
necessary and sufficient condition of the simplicity of our C∗-algebras in the
term of the corresponding matrices. We remark that if ourC∗-algebra is simple,
then it is also purely infinite by [18] or [2]. Therefore, in this case, we can apply
the Kirchberg-Phillips classification theorem to our C∗-algebras. Finally we
consider the case of HNN-extensions and their examples.

Acknowledgment. The author wishes to express his gratitude to Masaki
Izumi for his constant encouragement and important suggestions.

2. Preliminaries

2.1. Graphs of groups

We give a quick introduction on the theory of H. Bass and J-P. Serre of graphs
of groups. We refer the reader to [4] and [25] for more details.
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A graph of groups � consists of a connected graph (�0, �1), the origin and
terminus o, t : �1 → �0, a fixed point free involution e �→ e of �1 satisfying
o(e) = t (e) with vertex groups �v (v ∈ �0), edge groups �e = �e (e ∈ �1)
and monomorphisms ıe : �e → �v for v = o(e). We write �∗ for the set of
edge paths ξ = e1 . . . en with t (ei) = o(ei+1) for 1 ≤ i < n, and the maps o
and t extend to �∗ in an obvious way. For ξ = e1 . . . en ∈ �∗, we also define
source and range maps s, r : �∗ → �1 by s(ξ) = e1 and r(ξ) = en. For
ξ, η ∈ �∗ with t (ξ) = o(η), we write the concatenation ξη. An edge path
ξ = e1 . . . en ∈ �∗ is called reduced if ei+1 �= ei for 1 ≤ i < n.

The path group π� is defined by

π� = [(�v∈�0�v) � F(�1)]/R,

where F(�1) denotes the free group with basis�1 and R is the normal subgroup
which imposes the relations e = e−1 and eıe(g)e−1 = ıe(g) for all e ∈ �1

and g ∈ �e = �e. A path γ = g0e1g1e2 . . . gn−1engn is given by an edge path
ξ = e1 . . . en and a sequence µ = g0g1 . . . gn of elements of vertex groups,
where gi ∈ �vi with vi = t (ei) = o(ei+1) for 1 ≤ i < n. We often express a
path γ by a pair (ξ, µ) and we write �ξ for the set of group paths µ of type
ξ . The maps o, t, s and r extend to the set of paths by o(γ ) = o(ξ), t (γ ) =
t (ξ), s(γ ) = s(ξ) and r(γ ) = r(ξ) if γ = (ξ, µ), respectively. We denote by
1ξ the trivial group path 1 . . . 1 of type ξ . An edge path ξ may be confused with
a path (ξ, 1ξ ). Note that any path γ gives an element in π� . For v,w ∈ �0,
we write π�[v,w] for the set of elements in π� given by paths from v to w.
A path γ = g0e1g1 . . . engn is said to be reduced if either n = 0 and g0 �= 1,
or else n > 0 and whenever ei+1 = ei , we have gi �∈ ıei (�ei ). Note that if
γ is a reduced path, then γ �= 1 in π� . Thus the canonical homomorphisms
: �v → π� are injective.

For each e ∈ �1 with o(e) = v, we choose a set �e ⊆ �v of coset
representatives for �v/ıe(�e) with 1 ∈ �e. Relative to these choices, a path γ
is called (�-)normalized if it has the form γ = g1e1 . . . gneng, where gi ∈ �ei
(1 ≤ i ≤ n), g ∈ �vn and γ is reduced, i.e., ei−1 = ei implies gi �= 1.
For v,w ∈ �0, every element of π�[v,w] can be represented by the unique
normalized path from v to w.

Definition 2.1.
(i) The fundamental group of � at a base v0 ∈ �0 is given by

�0 := π�[v0, v0].

(ii) The fundamental group of � relative to a maximal subtree (T 0, T 1) of



52 rui okayasu

(�0, �1) is defined by

�T := π�/(relations : e = 1 for all e ∈ T 1).

The above two definitions give the same group essentially because the nat-
ural projection q : π� → �T restricts to an isomorphism qT : �0 → �T . The
inverse of qT is given as follows. For v,w ∈ �0, let ξv �→w denote the reduced
edge path in T from v to w. Then we have

q−1
T (q(g)) = ξv0 �→v · g · ξv �→v0 for g ∈ �v,
q−1
T (q(e)) = ξv0 �→o(e) · e · ξt(e)�→v0 for e ∈ �1.

Hence we often denote by π1(�) or � for simplicity, the fundamental group
of �.

Finally we introduce the tree X̃ called universal cover of �. The vertices
X̃0 are given by

X̃0 =
∐
v∈�0

π�[v0, v]/�v.

and the edges X̃1 are certain ordered pairs E = (γ�v, γ ′�w) of distinct ver-
tices, where γ1 ∈ π�[v0, v1] and γ2 ∈ π�[v0, v2] such that γ−1

1 γ2 = g1eg2

with e ∈ �1, o(e) = v1, t (e) = v2, g1 ∈ �v1 and g2 ∈ �v2 . Then we can define
the origin and terminus and the orientation on (X̃0, X̃1) in an obvious way.
Moreover there is a natural left action of �0 on X̃, which is oriented preserved.
Then the graph X̃ constructed above is, in fact, a tree.

Example 2.2.
(i) If �v = {1} for all v ∈ �0, then

�T = π1(�
1, T 1) := F(�1)/(e = e−1 and e = 1 if e ∈ T 1),

which is a free group based on half the edges of �1 \ T 1.

(ii) If �e = {1} for all e ∈ �1, then �T = (�v∈�0�v) � π1(�
1, T 1).

(iii) If� is the tree of Figure 1, then the fundamental group is the amalgamated
free product group �v1 ��e �v2 .

(iv) If � is the loop of Figure 2, then the fundamental group is the HNN-
extension

G �H θ = 〈G, x | hx = xθ(h) for h ∈ H 〉,
where G = �v0 , H = ıx(�x), H = ıx(�x) and θ : H → H ⊆ G given
by θ = ıx ◦ ı−1

x .
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(v) A group G acts on a tree Y without inversion. Let (�0, �1) = G\Y
and �v (resp. �e) denote the stabilizer of a vertex v ∈ Y 0 (resp. an
edge e ∈ Y 1). Then � becomes a graph of groups in the natural way,
(see [25] for more details). Moreover the fundamental group of this � is
isomorphic to G and the universal cover X̃ of � coincides with Y .

v1 v2e v0 x

Figure 1 Figure 2

2.2. Hyperbolic groups with zero-dimensional boundary

For the definition and basic properties of word-hyperbolic groups and hy-
perbolic boundaries, we refer the reader to [13], [14] and [16]. Let G be a
word-hyperbolic group with the hyperbolic boundary ∂G. If ∂G has infinitely
many points,G contains a subgroup isomorphic to the free group F2 and ∂G is
a infinite perfect compact metrizable space. In this paper, we focus on word-
hyperbolic groups with zero-dimensional boundary, which are equivalent to
virtually free, i.e., groups containing a free subgroup of finite index. Moreover,
a virtually free group can be also given by the fundamental group of a graph
of groups of finite type, i.e., (�0, �1) is a finite graph and �v is a finite group
for every v ∈ �0.

Theorem 2.3 (cf. Theorem 7.3 in [24]). A finitely generated group G has
a free subgroup Fn of finite index if and only if G is the fundamental group of
a graph of groups � of finite type, where F0 = {1} and F1 is the integer group
Z.

Let � be a graph of groups of finite type with a base v0. Notice that each
vertex in X̃ can be represented by the unique normalized path. It is well-known
that the hyperbolic boundary ∂X̃ can be identified with the end space. Namely
if ∂X̃ �= ∅, then ∂X̃ can be expressed by the infinite normalized path space{

g1e1g2e2 . . .

∣∣∣∣ o(e1) = v0, t (ei) = o(ei+1), µi ∈ �ei , i = 1, 2, . . .

ei−1 = ei �⇒ gi �= 1

}
with the natural left action of�0. Moreover the following fact is easily checked,
(see [14], [16]) and we use this later.

Proposition 2.4. Let � be a graph of groups of finite type. Let X̃ be the
universal cover of �. If ∂X̃ �= ∅, then the hyperbolic boundary ∂� is homeo-
morphic to the end space ∂X̃ of the tree X̃, and two actions of � on ∂� and
∂X̃ are conjugate.
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This is a reason why we can construct C∗-algebras, such as Cuntz-Krieger
algebras, which is ∗-isomorphic to the crossed products C(∂�) � � arising
from the boundary actions of word-hyperbolic groups with zero-dimensional
boundary, because the end space structure of trees is similar to the Fock space.

3. Construction

Let � be a graph of groups of finite type. We fix a base v0 and a maximal
subtree T of �. From now, we identify ıe(�e) with �e, and so �e may not be
equal to �e, but �e � �e via ıe ◦ ı−1

e . For each e ∈ �1 with o(e) = v, we
choose a set �e ⊆ �v of coset representatives for �v/�e with 1 ∈ �e.

Now we assume that ∂X̃ �= ∅ and (�0, �1) is a finite graph. Let ω ∈ ∂X̃,
which is expressed by the infinite normalized path g1e1g2e2 . . .. Then there is
n0 such that either gn0 �= 1 or en0 �∈ T 1 holds with gk = 1, ek ∈ T 1 for all k ≤
n0 − 1. We put γ0 = g1e1 . . . gn0−1en0−1 = (ξ0, 1ξ0) where ξ0 = e1 . . . en0−1.
Since (�0, �1) is finite, there is n1 > n0 such that either en1−1 = en1 or
en1 �∈ T 1 holds with en0+1, . . . , en1−1 ∈ T 1. Then we set γ1 = (ξ1, µi), where
ξ1 = en0 . . . en1−1 and µ1 = gn0 . . . gn1−1. By repeating this argument, we
obtain infinite sequence {γi}∞i=0 of (finite) normalized paths such that

(i) ω is represented by the normalized path γ0γ1 . . .,

(ii) γ0 = (ξ0, 1ξ0) is a reduced edge path in T with o(ξ0) = v0,

(iii) γi is given by a reduced edge path ξi = e(i)1 e
(i)
2 . . . e(i)ni and

µi = g(i)1 g
(i)
2 . . . g(i)ni ,

(iv) e(i)2 , . . . , e
(i)
ni
∈ T 1 for i ≥ 1,

(v) either s(ξi) = r(ξi−1) with g(i)1 �= 1 or s(ξi) �∈ T 1 for i ≥ 1,

(vi) either g(1)1 �= 1 or s(ξ1) �∈ T 1.

We denote byNn� the set of all normalized paths of the formγk . . . γk+n−1 and
byW 0

� the set of all pair (e, f ) of edges with e = r(γk), f = s(γk+1) for some
ω = {γi}∞i=0 ∈ ∂X̃ and k ≥ 1. For n ≥ 1, we write Wn

� for the set of reduced
paths γ = (ξ, µ) such that γ−1γ ′ ∈ �r(γ ′) for some γ ′ = (ξ, µ′) ∈ Nn� . We
put En� = {ξ ∈ �∗ | (ξ, µ) ∈ Nn� for some µ}. We set

N∗� =
⋃
n≥1

Nn�, W ∗
� =

⋃
n≥1

Wn
�, and E∗� =

⋃
n≥1

En�.

For α, β ∈ W ∗
� , we denote α ❀ β if t (α) = o(β) and αβ is reduced. For

e ∈ �1, we denote �(e) = �e if e ∈ T 1 and �(e) = �o(e) if e �∈ T 1.

Definition 3.1. A Cuntz-Krieger �-family (with respect to T ) in a C∗-
algebra consists of a family {S(γ ) | γ ∈ W 1

�} of partial isometries and a family
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{U(g) | g ∈ �(e), e ∈ s(W 1
�)} of partial unitaries satisfying the Cuntz-Krieger

�-relations (with respect to T ): We denote by P(γ ) the range projection of
S(γ ). Let α, β ∈ W 1

� and g ∈ �(e) with e ∈ s(W 1
�).

P(α)P (β) =
{
P(α) = P(β) if α�r(α) = β�r(β),
0 otherwise,

(1)

S(α)∗S(α) =
∑
γ∈N1

�
α❀γ

P (γ ),(2)

I =
∑
γ∈N1

�

P (γ ),(3)

U(g)∗U(g) = U(g)U(g)∗ =
∑
γ∈N1

�

s(γ )=e

P (γ )(= P(e)),(4)

U(g)S(α) = S(gα) if e = s(α),(5)

S(α)U(g) = S(αg)P (e) if t (α) = o(e) and g ∈ �r(α),(6)

where gα = (gg0)e1g1 . . . engn andαg = g0e1g1 . . . en(gng) ifα = g0e1g1 . . .

engn ∈ W 1
� .

For γ = γ1 . . . γn ∈ Wn
� with γi ∈ W 1

� , we define

S(γ ) = S(γ1) . . . S(γn).

Remark 3.2. The above relations (2), (3) and (4) may be infinite sums
even if (�0, �1) is finite. For simplicity, we always assume that � is of finite
type. In this case, the above sums are finite. This assumption corresponds
to finiteness of associated 0-1 matrices of Cuntz-Krieger algebras. As many
generalizations of Cuntz-Krieger algebras, for example, Exel-Laca algebras
[10], graph algebras [5], [17], Cuntz-Pimsner algebras [22] and so on, we might
define C∗-algebras associated with graphs of groups without the assumption
of finiteness. However, for investigations of crossed products arising from
boundary actions, which we focus on in this paper, it is not necessary.

Definition 3.3. We define the universal C∗-algebra O� generated by a
universal Cuntz-Krieger�-family {Sγ , Ug}. In other words, theC∗-algebra O�
is generated by a Cuntz-Krieger �-family {Sγ , Ug} such that for every Cuntz-
Krieger �-family {S(γ ), U(g)} on a Hilbert space H there is a canonical
∗-representation π : O� → B(H ) with π(Sγ ) = S(γ ) and π(Ug) = U(g).

Next we will introduce the “Fock space construction”, which gives the
existence of non-zero Cuntz-Krieger �-family and hence it allows us to define
the above universal C∗-algebra O� .
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Definition 3.4. We define a Hilbert space H (�, T ) by

H (�, T ) =
⊕
n≥0

Hn(�, T ),

where
H0(�, T ) = span{δ�v | v ∈ t (N1

�)},
Hn(�, T ) = span{δγ�t(γ ) | γ ∈ Nn�}.

Then we define the partial isometries TFock(α) for α ∈ W 1
� and partial unitaries

VFock(g) for g ∈ �(e) with e ∈ s(W 1
�) by

TFock(α) · δ�v =
{
δα�v if t (α) = v,
0 otherwise,

TFock(α) · δγ�t(γ ) =
{
δαγ�t(γ ) if α❀ γ ,
0 otherwise,

VFock(g) · δ�v =
{
δ�v if g ∈ �v ,
0 otherwise,

VFock(g) · δγ�t(γ ) =
{
δgγ�t(γ ) if g ∈ �(s(γ )),
0 otherwise.

Then let πFock : B(H (�, T )) → B(H (�, T ))/K (H (�, T )) be a quotient
and we set SFock(γ ) = πFock(TFock(γ )) and UFock(g) = πFock(VFock(g)).

One can easily check the following and hence we can obtain the universal
C∗-algebra O� , (the reader may refer to the relevant proof in [15] or [17]).

Proposition 3.5. The above family {SFock(γ ), UFock(g)} is a non-zero
Cuntz-Krieger �-family.

For a group G, we denote by C∗(G) the full group C∗-algebra. We get
another property of the family {SFock(γ ), UFock(g)}.

Let {S(γ ), U(g)} be a Cuntz-Krieger �-family. For (e, f ) ∈ W 0
� , we define

P(e, f ) =
∑

γ∈N1
�,s(γ )=f

eγ : reduced

P(γ ).

Proposition 3.6. For (e, f ) ∈ W 0
� , the canonical ∗-isomorphism

C∗(�e) � C∗(UFock(g)PFock(e, f ) | g ∈ �e)
holds.
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Proof. For (e, f ) ∈ W 0
� , we define the projectionQFock(e, f ) on H (�, T )

by
QFock(e, f ) =

∑
γ∈N1

�,s(γ )=f
eγ : reduced

TFock(γ )TFock(γ )
∗.

Note that for g ∈ �e, every VFock(g) commutes with QFock(e, f ) and
πFock(QFock(e, f )) = PFock(e, f ). Since the unitary representation VFock(f, ·)
QFock(e, f ) of �e contains the left regular representation of �e with infinite
multiplicity, we obtain the required result.

Corollary 3.7. For (e, f ) ∈ W 0
� , then the canonical ∗-isomorphism

C∗(�e) � C∗(UgPe,f | g ∈ �e)
holds.

The following proposition can be easily proved by using the Cuntz-Krieger
�-relations.

Proposition 3.8.

O� = span

{
SαUgPe,f S

∗
β

∣∣∣∣ α, β ∈ W ∗
�, e = r(α) = r(β),

(e, f ) ∈ W 0
�, g ∈ �e

}
.

Definition 3.9. We define the action 5 of T = {z ∈ C | |z| = 1} on O� ,
which is called the gauge action, by

5z(Sγ ) = zSγ ,
5z(Ug) = Ug,

for z ∈ T. We define the conditional expectation on O� by

7(·) =
∫

T
5(·) dz,

where dz is the Haar measure on T.

Lemma 3.10. The fixed-point subalgebra F� of O� under the gauge action
is an AF-algebra.

Proof. For n ∈ N, (e, f ) ∈ W 0
� , we define the C∗-algebra

Fn(e, f ) = span
{
SαUgPe,f S

∗
β | α, β ∈ Wn

�, e = r(α) = r(β), g ∈ �e
}
.
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Since the family {SαPe,f S∗β}α,β∈Nn� gives the matrix units, we have

Fn(e, f ) � MKn(e,f ) ⊗ C∗(�e)
for some Kn(e, f ) ∈ N. We set

Fn =
⊕

(e,f )∈W 0
�

Fn(e, f ).

Since the Cuntz-Krieger �-relation gives the embedding Fn ↪→ Fn+1, we
have an AF-algebra ⋃

n≥1

Fn.

By using the conditional expectation 7, one can show that it is, in fact, the
fixed-point subalgebra F� under the gauge action 5.

Theorem 3.11. Let � be a graph of groups of finite type such that the
end space ∂X̃ has infinitely many ends, which is equivalent to that the funda-
mental group π1(�) is virtually free. Let {S(α), U(g)} be a non-zero Cuntz-
Krieger �-family and π be the canonical surjective ∗-homomorphism from O�
onto the C∗-algebra generated by the family {S(α), U(g)}. If the canonical
∗-isomorphism

C∗(�e) � C∗(U(g)P (e, f ) | g ∈ �e)
holds for any (e, f ) ∈ W 0

� , then π is ∗-isomorphic.

Proof. One can easily show that π is faithful on the fixed-point subalgebra
F� under the gauge action5 by the similar arguments as in the proof of Lemma
3.10.

We will show that ‖π(7(X))‖ ≤ ‖π(X)‖ for any X ∈ O� . By Proposi-
tion 3.8, it suffices to check it for a finite sum

X =
∑
e,f,g

∑
α,β

C
α,β

e,f,gSαUgPe,f S
∗
β, (♠)

where Cα,βe,f,g ∈ C. Let n ∈ N be sufficiently large. We may assume that if
α ∈ Wk

� and β ∈ Wl
� in the above sum (♠), then min{k, l} = n holds. Note

that there are e0, f0 such that

‖π(7(X))‖ =
∥∥∥∥∑
g

∑
α,β

C
α,β

e0,f0,g
S(α)U(g)P (e0, f0)S(β)

∗
∥∥∥∥.
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By the assumptions, the fundamental group π1(�) contains a free group Fr
(r ≥ 2). Hence we can take a sufficiently long aperiodic normalized path γ0

with s(γ0) = f0 and r(γ0) = e1. Now we put a non-zero projection

Q =
∑
γ∈Nn�

S(γ )S(γ0)S(γ0)
∗S(γ )∗.

If α, β ∈ Nn� , then

Q(S(α)P (e0, f0)S(β)
∗)Q = S(α)S(γ0)S(γ0)

∗S(β).

Note that {S(α)S(γ0)S(γ0)
∗S(β)∗}α,β∈Nn� is a family of matrix units. Hence

the argument as in the proof of Lemma 3.10 gives the faithfulness of A �→
Qπ(A)Q on Fn. In particular we get ‖π(7(X))‖ = ‖Qπ(7(X))Q‖.

We next claim thatQπ(7(X))Q = Qπ(X)Q. Let α ∈ Wk
�, β ∈ Wl

� be in
the sum (♠) with k �= l. We may assume that k = n and l > n without loss of
generality. Then

QS(α)U(g)P (e, f )S(β)∗Q
= QS(α)U(g)P (e, f )S(β2)

∗S(γ0)S(γ0)
∗S(β1)

∗,

where β = β1β2. The above element is non-zero if

S(γ0)
∗U(g)P (e, f )S(β2)

∗S(γ0) �= 0.

However it is impossible by the choice ofγ0. ThusQS(α)U(g)P (e, f )S(β)∗Q
= 0 if k �= l, namely we have shown our claim. Hence we can obtain

‖π(7(X))‖ = ‖Qπ(7(X))Q‖ = ‖Qπ(X)Q‖ ≤ ‖π(X)‖.
Therefore the proof is complete, thanks to [6].

Corollary 3.12. The C∗-algebra generated by {SFock(γ ), UFock(g)} is ∗-
isomorphic to the C∗-algebra O� via SFock(γ ) �→ Sγ and UFock(g) �→ Ug .

We can also prove the following by the same arguments as in the proof of
Theorem 3.11. We will use this to get the ideal structure theorem for O� in
Section 6.

Theorem 3.13. Let {S1(γ ), U1(g)} and {S2(γ ), U2(g)} be two non-zero
Cuntz-Krieger � families. If the canonical ∗-isomorphism

C∗(U1(g)P1(e, f ) | g ∈ �e) � C∗(U2(g)P2(e, f ) | g ∈ �e)
holds for any (e, f ) ∈ W 0

� , then the C∗-algebras C∗(S1(γ ), U1(g)) and
C∗(S2(γ ), U2(g)) are ∗-isomorphic via S1(γ ) �→ S2(γ ) andU1(g) �→ U2(g).
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Remark 3.14. We consider the C∗-algebra O� associated with � in Ex-
ample 2.2. In the case of Example 2.2 (i), � is the free group and O� is some
Cuntz-Krieger algebra, which is given in [27]. In the case of Example 2.2 (ii) or
(iii), � is an amalgamated free product groups and O� is the same one defined
in [19]. The case of Example 2.2 (iv) is discussed in Section 7.

4. Other descriptions

4.1. Cuntz-Pimsner algebras

Definition 4.1. Let e ∈ s(W 0
�). If e ∈ T 1, then we define the C∗-algebra

Be = C∗(�e) = span{g ∈ �e}.
If e �∈ T 1 with v = o(e), then we consider the right action of �v on �v/�e
and define the C∗-algebra

Be = C(�v/�e)� �v = span{pe(x)g | x ∈ �e, g ∈ �v},
where pe(x) ∈ C(�v/�e) is defined by

pe(x)(y�e) =
{

1 if x−1y ∈ �e,
0 otherwise,

and gpe(x)g−1 = pe(y) for y ∈ �e with gx�e = y�e.
Let ξ ∈ E1

� be fixed. We define the right Hilbert C∗(�r(ξ))-module

Hξ = span{µ ∈ �ξ | (ξ, µ) ∈ W 1
�}

with the natural right action of C∗(�r(ξ)) and the inner product

〈µ1, µ2〉Hξ =
{
γ−1

1 γ2 if γ−1
1 γ2 ∈ �r(ξ),

0 otherwise,

where γi = (ξ, µi) for i = 1, 2. Moreover we define the left action of Bs(ξ)
on Hξ in the following way. If s(ξ) ∈ T 1, then g · µ = (gg0) . . . gn, and if
s(ξ) �∈ T 1, then

pe(s)g · g0 . . . gn =
{
(gg0) . . . gn if s−1gg0 ∈ �s(ξ),
0 otherwise,

where µ = g0g1 . . . gn ∈ Hξ . Hence we obtain the Hilbert Bs(ξ)-C∗(�r(ξ))
bimodule Hξ .
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Next let (r(ξ), e) ∈ W 0
� . If e �= r(ξ), then e �∈ T 1 and C∗(�r(ξ)) ⊂ Be.

Thus we put

E(ξ,e) = Hξ ⊗C∗(�r(ξ)) Be = span{µ} ⊗ span{pe(x)g}.

If e = r(ξ) and e ∈ T 1, then Be = C∗(�r(ξ)) and we set

E(ξ,e) = Hξ ⊗C∗(�r(ξ)) Be = span{µ} ⊗ span{g}(= Hξ).

If e = r(ξ) and e �∈ T 1, then we define

E(ξ,e) = Hξ ⊗φe Be = span{µ} ⊗ span{pe(x)g | 1 �= x ∈ �e},

where φe(g)b = g∑1�=y∈�e pe(y)b for g ∈ �e and b ∈ Be. Note that E(ξ,e) is
a Hilbert Bs(ξ)-Be bimodule. Then we define

B =
⊕
e

Be,

E =
⊕
ξ

⊕
e

E(ξ,e).

Note that E is a Hilbert B-bimodule.

Remark 4.2. The above constructed E may be not full, in general. So to
identify O� with the Cuntz-Pimsner algebra associated with E, we have to
consider ÕE . (See [22, Remark 1.2 (3)].)

Theorem 4.3. Let � be a graph of groups of finite type with infinitely
many ends. Let ÕE be the Cuntz-Pimsner algebra associated with the above
B-bimodule E. Then O� is canonically ∗-isomorphic to ÕE .

Proof. Note that ÕE is generated by {Sµ⊗Ie} and the C∗-algebra B, where
Ie is the unit of the C∗-algebra Be. One can easily show that the universality
gives an ∗-isomorphism between O� and ÕE .

Sγ ←→
∑
e

Sµ⊗Ie if γ = (ξ, µ) ∈ W 1
�,

Ue,g ←→ g if g ∈ �(e).
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4.2. Crossed products of the boundary actions

Theorem 4.4. Let � be a graph of groups of finite type with infinitely many
ends. Then

O� � C(∂�)� �.

Proof. In this proof, we will confuse the fundamental groups �0 =
π1(�, v0) and �T = π1(�, T ) via the isomorphism qT and the boundaries
∂� and ∂X̃. (See Definition 2.1 below and Proposition 2.4.) Let us denote by
λ the implementing unitary in C(∂�) � �. We write p(γ ) ∈ C(∂X̃) for the
characteristic function of the set of all infinite normalized paths with beginning
of the form γ .

Let γ = (ξ, µ) ∈ W 1
� . We define the partial isometry S(γ ) in C(∂X̃)� �0

by
S(γ ) = λ(ξv0 �→o(ξ) · γ · ξt(ξ)�→v0)

∑
(r(ξ),e)∈W 0

�

∑
g

p(ξv0 �→t (ξ)ge),

where g runs over all elements in�e\{1} if e = r(ξ) and in�e if e �= r(ξ). Let
e ∈ s(W ∗

�) and g ∈ �(e). We define the partial unitary U(g) in C(∂X̃) � �0

by
U(g) = λ(ξv0 �→o(e) · g · ξt(e)�→v0)

∑
α

S(α)S(α)∗,

where α runs over all elements α = (η, ν) ∈ N1
� with s(α) = e. Then one

can show that {S(γ ), U(g)} is a Cuntz-Krieger �-family. Thus there is the
canonical ∗-homomorphism from O� to C(∂X̃)� �0.

Conversely, to define a unitary u(g) ∈ O� for g ∈ �v with v ∈ �0, we
introduce some notations and definitions. Let g ∈ �v for v ∈ �0 and γ =
(ξ, µ) ∈ N∗� with µ = g0g1 . . . gn. Consider the path g · γ , which is given by
the edge path ξv �→o(ξ)ξ and the sequence (g, 1, . . . , 1, g0, g1, . . . , gn) of vertex
groups. Note that g · γ is reduced, but it may be not inW ∗

� . If v �= o(γ ), then
g · γ = γ0γ1, where γ0 is a path (ξ0, 1ξ0) in T and γ1 ∈ W ∗

� . In this case we
define Sg·γ = Sγ1 . If v = o(γ ), then g · γ may be in �r(γ ). For any α ∈ N1

�

with γ ❀ α, g · γα = α0α1, where α0 is a path (η0, 1η0) in T and α1 ∈ W ∗
� . In

this case we define Sg·γα = Sα1 .
Now we define the unitary u(g) ∈ O� for g ∈ �v with v ∈ �0 by

u(g) =
∑
γ∈N1

�

v �=o(γ )

Sg·γ S∗γ +
∑
γ∈N1

�

v=o(γ )

∑
α∈N1

�

γ❀α

Sg·γαS∗γα =
∑
γ∈N2

�

Sgγ S
∗
γ .

Let e ∈ �1 \ T 1 and γ = (ξ, µ) ∈ N1
� with ξ = e1 . . . en and µ = g0g1 . . . gn.

Consider the path e · γ , which is given by the edge path eξt(e)�→o(ξ)ξ and the
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sequence (1, . . . , 1, g0, g1, . . . , gn) of vertex groups. If s(ξ) = e and g0 = 1,
then e · γ has the form either γ0γ1 or ξ ′, where γ0 = (ξ0, 1ξ0), γ1 ∈ N1

� and
ξ ′ = e2 . . . en is the reduced edge path in T . In this case we define either
Se·γ = Sγ1 or Se·γ = I , respectively. In other cases, e · γ ∈ N∗γ . Then we
define u(e) ∈ O� by

u(e) =
∑
γ∈N1

�

Se·γ S∗γ .

One can show that the conjugates of the family {Pγ } by �0 generates a
commutativeC∗-algebra. Hence they give a covariant representation of theC∗-
dynamical system (C(∂X̃), �0). Thus there is the canonical ∗-homomorphism
from C(∂X̃)��0 to O� . One can check that the above two ∗-homomorphism
are mutual inverse ∗-isomorphisms.

Remark 4.5. We do not need to care about the deference between the full
and the reduced crossed product on the above, because of the amenability of
the action of � on ∂� (see [1] or Appendix B by E. Germain in [3]). The
amenability also follows from next lemma.

The following can be easily proved by using the gauge-invariant uniqueness
theorem. (See [15] and [26].)

Lemma 4.6. If � is a graph of groups of finite type and ∂X̃ has infinitely
many ends, then

O� � F� � N.

5. K-theory

Let � be a graph of groups of finite type with infinitely many ends. In this
section, we give a formula of the K-groups of O� .

Let {χea }a∈Ae be the set of characters corresponding with all irreducible
unitary representations of the finite groups�e and�e with degrees {de(a)}a∈Ae .
For (e, f ) ∈ W 0

� and a ∈ Ae, we write

Pe,f (a) = de(a)

G�e

∑
g∈�e

χea (g)UgPe,f .

For γ = (ξ, µ) ∈ N1
� with t (e) = o(γ ) let us denote

�e(γ ) = {g ∈ �e | gγ�t(γ ) = γ�t(γ )}.
For g ∈ �e(γ ), there is h ∈ �r(γ ) such that gγ = γ h. We write Fγ (g) = h.
For ξ ∈ E1

� and (e, s(ξ)) ∈ W 0
� , we choose a set N(e, ξ) of double coset
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representatives for

�e\{γ = (ξ, µ) | µ ∈ �ξ , eγ is reduced}/�t(ξ)
such that N(e, ξ) ⊂ N1

� .

Definition 5.1. We set an index set

I = {
(e, f, a) | (e, f ) ∈ W 0

�, a ∈ Ae
}

and m = GI. We define the m×m-matrixM with Z-valued entries by

M((e, e′, a), (f, f ′, b))

=


∑
γ∈N(e,ξ)〈χea | χfb ◦ Fγ 〉�e(γ ) if there is α = (ξ, µ) ∈ N1

�

with s(ξ) = e′, r(ξ) = f ,

0 otherwise,

where

〈χea | χfb ◦ Fγ 〉�e(γ ) =
1

G�e(γ )

∑
g∈�e(γ )

χea (g)χ
f

b (Fγ (g)).

Proposition 5.2.

K0(F�) = lim−→{M
t : Zm → Zm}.

Proof. Note that

Fn(e, e
′) � MKn(e,e′) ⊗ C∗(�e) �

⊕
a∈Ae

MKn(e,e′) ⊗Mde(a).

We can express the projection e11 ⊗ I in MKn(e,e′) ⊗Mde(a) by

P = SαPe,e′(a)S∗α
for some α ∈ Nn� , where e11 is a minimal projection in the matrix algebras.
The unit of MKn+1(f,f ′) ⊗Mdf (b) in Fn+1(f, f

′) is given by

Q =
∑
β∈Nn+1

�

SβPf,f ′(b)S
∗
β.
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It therefore suffices to compute Tr(PQ)/de(a).

Tr(PQ)

de(a)
= 1

G�e

∑
g∈�e

χea (g)Tr
(
SαUgPe,e′S

∗
αQ

)
= 1

G�e

∑
γ

∑
g∈�e(γ )

χea (g)Tr
(
SαγUFγ (g)Pf,f ′(b)S

∗
αγ

)
= 1

G�e

∑
γ

∑
g∈�e(γ )

χea (g)χ
f

b (Fγ (g)), . . . (♣)

where γ runs over all elements in N1
� such that s(γ ) = e′, r(γ ) = f and eγ

is reduced. Note that Fγ (g) = γ−1gγ in the above. By the same argument as
in [19, Section 7], we have

(♣) =
∑

γ∈N(e,ξ)
〈χea | χfb ◦ Fγ 〉�e(γ ).

Therefore we obtain the K-groups of the C∗-algebra O� by the Pimsner-
Voiculescu exact sequence [23].

Theorem 5.3. Let � be a graph of groups of finite type with infinitely many
ends and M be as above. Then the K-groups of the C∗-algebra O� are given
by

K0(O�) = Zm/(I −Mt)Zm,

K1(O�) = Ker{I −Mt : Zm → Zm}.

6. Ideal structure

By the same argument as the Cuntz-Krieger algebras with condition (II) in [8],
we can give the ideal structure theorem for O� by using the matrix M , which
is obtained in Section 5. Here, we do not need the condition (II) of the matrix
M , thanks to our uniqueness theorem (Theorem 3.11).

Definition 6.1 (cf. [8]). We denote by WM = WM(I) the set of finite
admissible words (σ1, . . . , σn) with σi ∈ I and M(σi, σi+1) = 1. For σ, τ ∈
I, we write σ ≥ τ if there is a admissible word (σ1, . . . , σn) ∈ WM with
σ1 = σ and σn = τ . For σ ∈ I, let us denote [σ ] = {τ ∈ I | σ ≥ τ ≥ σ }.
Notice that the relation≥ is a well-defined partial order on Ĩ = {[σ ] | σ ∈ I}.

A subset N ⊆ Ĩ is hereditary if λ1 ∈ N and λ1 ≥ λ2 implies λ2 ∈ N. We
put

I(N) =
{
σ ∈ I

∣∣∣∣ τ1 ≥ σ ≥ τ2 for some τ1, τ2 ∈
⋃
λ∈N
λ

}
.
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The saturation I(N) is the smallest subset I′ of I which contains I(N)
and is saturated in the sense that it contains every element σ ∈ I for which
M(σ, τ) �= 0 implies τ ∈ I′.

For any hereditary subset N of Ĩ, we denote by IN the two-sided closed
ideal of O� generated by Pe,f (a) with (e, f, a) ∈ I(N). We write Pσ =
Pe,f (a) when σ = (e, f, a) ∈ I.

Lemma 6.2 (cf. Lemma 3.1 in[15]). Let N be a hereditary subset of Ĩ.
Then

IN =

span


Sσ,αUgPe,f (a)S

∗
τ,β

α ∈ Wk
�, β ∈ Wl

�, e = s(α) = s(β)
g ∈ �e, (e, f, a) ∈ I(N)
σ = (σ1, . . . , σk), τ = (τ1, . . . , τl) ∈ WM,

k, l ∈ N

σi = (ei, fi, ai) ∈ I, ei = r(αi−1), fi = s(αi)


,

where Sσ,α = Pσ1Sα1 . . . PσkSαk for α = α1 . . . αn with αi ∈ W 1
� for 1 ≤ i ≤ k.

Proof. We first show that if σ ∈ I(N), then Pσ ∈ IN. It suffices to see
that the set {σ ∈ I | Pσ ∈ IN} is saturated. We take σ = (e, e′, a) ∈ I such
that Pτ ∈ IN wheneverM(σ, τ) �= 0. Then

Pσ = Pe,e′(a)Pe,e′
= Pe,e′(a)

∑
γ∈N1

�,s(γ )=e′
eγ : reduced

Sγ S
∗
γ

= Pe,e′(a)
∑

γ∈N1
�,s(γ )=e′

eγ : reduced

( ∑
(f,f ′)∈W 0

�

f=r(γ )

∑
b∈Af

Sγ Pf,f ′(b)S
∗
γ

)
.

Thus it suffices to show that∑
α

Pe,e′(a)SαPf,f ′(b)S
∗
α ∈ IN,

where α runs over all elements (ξ, µ) ∈ N1
� such that eα is reduced for

each (f, f ′) ∈ W 0
�, b ∈ Af and ξ ∈ E1

� with s(ξ) = e′ and r(ξ) = f . If
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X =∑
α Pe,e′(a)SαPf,f ′(b)S

∗
α �= 0, then

Tr(XX∗) = de(a)

G�e

∑
α

∑
g∈�e

χek (g)Tr(UgSαPf,f ′(b)S
∗
α)

= de(a)

G�e

∑
α

∑
g∈�e(α)

χek (g)Tr(SαUFα(g)Pf,f ′(b)S
∗
α)

= de(a)M(σ, τ) �= 0,

where τ = (f, f ′, b). Hence we have X ∈ IN and thus Pσ ∈ IN.
One can easily check that the right hand on the equation of the statement is

a two-sided closed ideal. The proof is complete.

Lemma 6.3 (cf. Lemma 3.4 in [15]). The elements

En = PN +
∑

σ=(σ1,...,σn)∈WN(I\I(N))

∑
γ∈Nn�

Sσ,γ PHS
∗
σ,γ

give an approximate unit for IN, where

PN =
∑

σ∈I(N)
Pσ .

Proof. By Lemma 6.2, it suffices to check the lemma for the form X =
Sσ,γ UgPe,f (a)S

∗
τ,γ . One can show that EnX = X for a sufficiently large n by

the same arguments of the proof of [15, Lemma 3.4].

Theorem 6.4 (cf. Theorem 2.5 in [8] and Theorem 3.5 in [15]). Let � be a
graph of groups of finite type with infinitely many ends. Then the mapN �→ IN
is an inclusion preserving bijection from the set of hereditary subsets of Ĩ onto
the set of two-sided closed ideals of O� .

Proof. Let I be a two-sided closed ideal of O� and C = {σ ∈ I | Pσ ∈
I }.

We first show that if σ = (e, e′, a) ∈ C and τ = (f, f ′, b) ∈ I with
M(σ, τ) �= 0, then τ ∈ C. We putX = Pσ ∑γ∈N(e,ξ) Sγ Pτ ∈ I with s(ξ) = e′
and r(ξ) = f . Then

Tr(X∗X) = de(a)

G�e

∑
g∈�e

χea (g)Tr

(
Pτ

∑
γ ′
S∗γ ′ · Ug ·

∑
γ

Sγ Pτ

)

= de(a)

G�e

∑
γ

∑
g∈�e(γ )

χea (g)Tr
(
UFγ (g)Pτ

)
= cAT (σ, τ ) �= 0,
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for some non-zero positive constant c. Hence we have

X∗X = de(a)

G�e

∑
γ

∑
g∈�e(γ )

UFγ (g)Pτ �= 0.

Thus Pτ ∈ I and τ ∈ C. One can check that C is saturated by the same
argument as in the proof of Lemma 6.2. Therefore C is saturated and contains
I(N), whereN = {[σ ] | σ ∈ C, σ ≥ σ } is a hereditary subset of Ĩ. Moreover
we can prove thatC = I(N) as in the same proof of the case of Cuntz-Krieger
algebras (cf. [8], [15]).

Now we claim that I = IN. By the same argument of the case of Cuntz-
Krieger algebras with Lemma 6.3, we can check that I and IN contain pre-
cisely the same generators {Pσ | σ ∈ I(N)} = C. Then both O�/I and
O�/IN are generated by Cuntz-Krieger �-families. Therefore they are canon-
ically ∗-isomorphic by Theorem 3.13. This is only possible if I = IN.

Corollary 6.5. Let � be a graph of groups of finite type with infinitely
many ends andM be the matrix defined in Definition 5.1. Then theC∗-algebra
O� is simple if and only ifM is irreducible and not a permutation.

Remark 6.6. If O� is simple, then it is purely infinite by [18]. (See also
[2].)

7. HNN-extension

We consider the case of HNN-extensions in this section. The fundamental
group associated with the graph of Figure 2 in Section 2 is the HNN-extension
group

� = G ∗H θ = 〈G, x | hx = xθ(h) for h ∈ H 〉,

where G = �v0 , H = ıx(�x), H = ıx(�x) and θ : H → H given by
θ = ıx ◦ ı−1

x . We assume that G is finite. Note that ∂� has infinitely many
points if and only if �x �= {1}. In this case, every element N1

� has the form
either gx or gx.

Let {χa}sa=1 be the set of all characters corresponding with all irreducible
unitary representations of the finite groups H and H . We choose a set�′e,f ⊆
�f of double coset representatives of �e\�v0/�f and we set �e,f = �′e,f if

e = f and �e,f = �′e,f \ {1} if e = f . Then we define the matrix M� =
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[Me,f ]e,f∈�1 , whereMe,f is the s × s-matrix given by

Mx,x(a, b) =
∑
g∈�x,x

〈χa | χgb 〉H(gH),

Mx,x(a, b) =
∑
g∈�x,x

〈χa | χgb 〉H(gH),

Mx,x(a, b) =
∑
g∈�x,x

〈χa | χgb 〉H(gH),

Mx,x(a, b) =
∑
g∈�x,x

〈χa | χgb 〉H(gH),

where H1(gH2) is the stabilizers of left multiplication of H1 on gH2 for
H1, H2 = H or H , and χgb (·) = χb(g−1 · g). By Theorem 6.4, the K-groups
of C(∂�)� � are given as follows.

Proposition 7.1. Let � be a HNN-extension G ∗H θ such that G �= {e}
and H �= G. Let M� be as above. Then the K-groups of the crossed product
C(∂�)� � are given by

K0 = coker(I −Mt
�),

K1 = ker(I −Mt
�).

We next give a sufficient condition for simplicity of C(∂�)� �.

Proposition 7.2 (cf. Corollary 6.4 in [19]). Let � be the HNN-extension
G ∗H θ , where H � G are finite groups and θ is an endomorphism from H
into G. If the following condition (�) holds, then the C∗-algebra C(∂�)� �
is simple and purely infinite.⋂

g∈G
gHg−1 ∩ gHg−1 = {1}, (�).

Proof. It suffices to show that {UhSγ }h∈H , ({UhSγ }h∈H , {UhSγ }h∈H ,
{UhSγ }h∈H ) are mutually orthogonal ranges for some γ = (ξ, µ), (see the
proof of [19, Corollary 6.4]). Let 1 �= g ∈ �x . If gHg−1 ∩ H = {1},
then it is enough to set ξ = x and µ = (g, 1). Now we assume that there
is (1 �=)h ∈ gHg−1 ∩ H . Namely h ∈ gxHx−1g−1 ∩ H . By the con-
dition (�), there is g1 ∈ G such that (i) x−1g−1hgx �∈ g1Hg

−1
1 , or (ii)

�∈ g1Hg
−1
1 with g1 �∈ H . In the case (i), we have hgxg1x �∈ gxg1xH . Hence
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h �∈ gxg1xH(gxg1x)
−1 ∩ H . We put γ1 = (ξ1, µ1) where ξ1 = (x, x) and

µ1 = (g, g1). Then we obtain

γ1Hγ
−1
1 ∩H � gxH(gx)−1 ∩H.

In the case (ii), we obtain hgxg1x
−1 �∈ gxg1x

−1H . Thus h �∈ gxg1x
−1H(gxg1

x−1)−1 ∩H . We put γ1 = (ξ1, µ1) where ξ1 = (x, x) and µ1 = (g, g1). Then
we obtain

γ1Hγ
−1
1 ∩H � gxH(gx)−1 ∩H.

SinceH is finite, by repeating this argument, we eventually obtain γ = (ξ, µ)
such that γHγ−1 ∩ H = {1}. Hence we have proved that {UhSγ }h∈H are
mutually orthogonal ranges. One can also show the other cases. Therefore,
thanks to Theorem 3.11, the C∗-algebra C(∂�)� � is simple.

Finally we consider several certain examples of HNN-extensions.

Example7.3. LetH = Zq ⊆ G = Zpq withp �= 1 and θ = id, where Zn =
Z/nZ for positive integer n. We consider the HNN-extension � = Zpq ∗Zq id.
Then the corresponding C∗-algebra C(∂�)� � is ∗-isomorphic to

OA ⊕ · · · ⊕ OA︸ ︷︷ ︸
q times

,

where OA is the simple Cuntz-Krieger algebra associated with the (p + 1)×
(p + 1)-matrix

A =


1 0 1 · · · 1
0 1 1 · · · 1
1 1 0 · · · 0
...
...
...
. . .

...

1 1 0 · · · 0

.


More generally, let H be a finite group, G = Zp ×H , θ the natural inclusion
of H into G and � the corresponding HNN-extension. Then the C∗-algebra
C(∂�)� � is ∗-isomorphic to

OA ⊗ C∗(H).

Example 7.4. We put G = Z2 × Z2 = Hl × Hr . Let �2 be the HNN-
extension given by two inclusions of Z2 into Hl,Hr ⊆ G. Then C(∂�2) �
�2 is a purely infinite simple unital nuclear C∗-algebra, which is called a
unital Kirchberg algebra, with K0 = K1 = Z2 and satisfies the universal
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coefficient theorem (UCT). By the classification theorem of E. Kirchberg and
N. C. Phillips [20], we obtain

C(∂�2)� �2 � C(∂F2)� F2,

where F2 is the free group with two generators. More generally, for n ≥ 3,
let G = Zn × Zn with inclusions of Zn into the left and right hand sides of
G. We denote by �n the corresponding HNN-extension. Then the K-groups of
C(∂�n)��n areK0 = Zn−2⊕Zn−1 andK1 = Zn−1. Again by the classification
theorem, we moreover obtain

C(∂�3)� �3 � C(∂�2)� �2 � C(∂F2)� F2.

When n > 3, the C∗-algebra C(∂�n) � �n is the unital Kirchberg algebra
satisfying the UCT with (K0, [1]0,K1) = (Zn−2 ⊕ Zn−1, 0,Zn−1). Notice that
C(∂�n)� �n is stably ∗-isomorphic to C(∂Fn−1)� Fn−1, i.e.,

(C(∂�n)� �n)⊗ K � (C(∂Fn−1)� Fn−1)⊗ K,

where K is the C∗-algebra of compact operators on a separable infinite dimen-
sional Hilbert space, but they are not ∗-isomorphic.

Example 7.5. Let� = �4∗�3 id, where �4,�3 are the symmetric groups.
Then one can check thatC∗(∂�)�� is the unital Kirchberg algebra satisfying
the UCT with (K0, [1]0,K1) = (Z4, 0,Z4).
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