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A CHARACTERIZATION OF CONVEX
HYPERSURFACES IN HADAMARD

MANIFOLDS

MEHMET ERDOĞAN and GÜLŞEN YILMAZ

Abstract

The aim of this paper is to give a characterization of strictly convex hypersurfaces in a Hadamard
manifold.

1. Introduction

Convex hypersurfaces in any space have interesting properties. Metrics of
curvature bounded below arose initially in papers by A. D. Alexandrov as non-
negatively curved metrics on two-dimensional surfaces [3] and he also studied
convex surfaces in Lobachevsky space [2]. After that Burago and Zalgaller
gave some results about convex sets in Riemannian manifolds [8], [9]. On the
other hand, it is a natural question to ask for the relations between curvature
properties of the metric and the geometrical shape of the hypersurface. This
question is especially interesting for the hypersurfaces of negatively curved
spaces. A very nice paper had been written for locally convex hypersurfaces
of negatively curved spaces by S. B. Alexander [1], and after him many others
appeared. Most beautiful papers which have been written on this matter in the
last decade belong to A. A. Borisenko [6], [7].

A well-known theorem due to Hadamard [13] states that if the second fun-
damental form of a compact immersed hypersurface M of Euclidean space
En+1(n ≥ 2) is positive definite, then M is imbedded as the boundary of a
convex body. Hadamard’s theorem also implies that the following statements
are equivalent:

(i) The second fundamental form σ of M is definite everywhere on M .

(ii) M is orientable and the spherical map of Gauss M → Sn is a diffeo-
morphism.

(iii) The Gaussian curvature of M never vanishes on M .
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In the present paper, we will extend the results above to hypersurfaces in a
Hadamard manifold N . In fact, we will prove

Theorem. For a connected compact hypersurface M in an (n + 1)-
dimensional Hadamard manifold N (n ≥ 2) the following conditions are
equivalent :

(i) The second fundamental form σ of M is definite everywhere on M .

(ii) If the sectional curvatures ofN satisfyK ≤ −k < 0, then for a suitably
chosen continuous unit normal ζ of M , the eigenvalues of the second
fundamental form σ satisfy λ > −√

k and λ �= 0.

(iii) If M is a compact orientable immersed hypersurface of a Hadamard
manifold N , then M is locally convex and homeomorphic to the sphere.

Moreover, any of the conditions above implies that M is a strictly convex
hypersurface in N .

2. Preliminaries

LetM be an n-dimensional hypersurface in an (n+1)-dimensional Hadamard
manifold N , that is, M is an n-dimensional Riemannian submanifold embed-
ded inN with the induced Riemannian structure. We will denote by g (resp. g̃)
the Riemannian metric tensor of M (resp. N ). Let TxM be the tangent space
toM at x and TxM⊥ be the normal space toM at x. We denote by ∇ (resp. ∇̃)
the covariant differentiation onM (resp.N ). Then, for tangent vector fieldsX,
Y and the unit normal field ζ on M , as is well known, the formulas of Gauss
and Weingarten are

∇̃XY = ∇XY + σ(X, Y ),(1)

∇̃Xζ = −A(X),(2)

where σ is the second fundamental form of M and satisfies

σ(X, Y ) = σ(Y,X)

and A is the symmetric linear transformation on each tangent space to M ,
which is called the shape operator.

Since M is a hypersurface we may write

σ(X, Y ) = h(X, Y )ζ.

Then, we easily see that

h(X, Y ) = g̃(σ (X, Y ), ζ ) = g(A(X), Y ).
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The eigenvalues λ1, λ2, . . . , λn of the shape operator A are called principal
curvatures of M , and an orthonormal basis e1, e2, . . . , en such that

Aei = λiei, 1 ≤ i ≤ n,

are called principal vectors on M . In this case,

λi = h(ei, ei), i = 1, 2, . . . , n.

Furthermore,
Kn = λ1λ2 . . . λn

is called the Gaussian curvature of M
The second fundamental form σ is definite at x ∈ M if σ(X,X) �= 0 for

all nonzero vectors X ∈ TxM , that is, h is either positive definite or negative
definite. σ is said to be non-degenerate at x if h is non-degenerate at x.

We say that two unit geodesic

γi : R → N, i = 1, 2,

are asymptotic if
d(γ1(t), γ2(t)) ≤ c, ∀t ∈ R,

for some constant c ∈ R. The equivalence classes of this relation are called
points at infinity and are denoted by N(∞). Also, we will denote by

γ (∞) ∈ N(∞)

the corresponding class for a geodesic γ . As is well known, for two points
p ∈ N and z ∈ N(∞), there exists a unique unit speed geodesic γ with
γ (0) = p and γ (∞) = z. A horoball in a Hadamard manifold N is the
domain obtained as the limit of the balls with their centers in a geodesic ray
going to infinity and their corresponding geodesic spheres containing a fixed
point. Namely, for a unit speed geodesic ray γ the union of balls

⋃
t>0

Bt(γ (t))

is the horoball HB(p, z) with center γ (∞) = z and its boundary HS(p, z)
is called a horosphere with center z. In this case, we define the Busemann
function by

!γ (p) = lim
t→∞(d(p, γ (t))− t)

for the geodesic γ . Then, for the unit speed geodesic ray

γ (0) = p, γ (∞) = z ∈ N(∞),
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the following results are well known (see [4], [14]):

(3) HB(p, z) = !−1
γ (−∞, 0), HS(p, z) = !−1

γ (0).

For a unit speed geodesic ray γ , if

γ (0) = x ∈ M, γ (∞) = z ∈ N(∞)

and
γ ′(0) ∈ TxM⊥,

then the horosphere HS(x, z) is called the tangent horosphere HS(x) to M at
x ∈ M . A hypersurface M in N is said to be convex at a point x ∈ M if the
tangent horosphere at x does not seperate a neighborhood of x into two parts.
Moreover, if x is the only point of a neighborhood which lies on HS(x), then
M is said to be strictly convex at x. A convex set by horoballs in a Hadamard
manifold N is a subset D in N with boundary ∂D satisfying that, for every
x ∈ ∂D there is a horosphere of N through x such that D is locally contained
in the horoball of N bounded by the horosphere. This horosphere is called
a supporting horosphere of D. For Hadamard manifolds N with sectional
curvature K satisfying

−k2
1 ≥ K ≥ −k2

2, k1, k2 > 0,

if HS is a horosphere, at each point of HS where the normal curvature k is well
defined, it satisfies

k1 ≤ k ≤ k2.

At other points in HS, the lower and upper normal curvatures k and k are well
defined, and they still satisfy

k1 ≤ k ≤ k ≤ k2.

An orientable regular hypersurfaceM of a Hadamard manifoldN is said to
be λ-convex if, for a suitably chosen unit normal vector ζ , the normal curvature
k ≥ λ. A domain D in N is λ-convex if, for every point x ∈ ∂D, there is a
regular λ-convex hypersurface M through x leaving a neighborhood of x in
the convex side (the side where the unit normal vector points) of M . If ∂D is
regular, then it is a regular λ-convex hypersurface. We will also recall that if
D is convex in N , then ∂D is a topological embedded hypersurface which is
smooth except for a set of zero measure.

Moreover, we have the following result:
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Theorem 2.1 ([1] and [6]). If M is a compact orientable, locally convex
and immersed hypersurface of a Hadamard manifoldN , thenM is embedded,
homeomorphic to sphere, and is the boundary of a convex set D.

By the definition and (3) we easily have

Lemma 2.2. M is convex (resp. strictly convex) at x ∈ M if and only if the
Busemann function !γ (y) takes non-negative value in a neighborhood V of
x in M (resp. moreover !γ (y) > 0 for all y ∈ V, y �= x).

Now let Snp be the unit sphere in TpN at a point p ∈ N . For s ∈ Snp let
γs : R → N be the unit speed geodesic ray with γs(0) = p, γ ′

s (0) = s. Then,
the mapping 'p : Snp → N(∞), 'p(s) := γs(∞) is a homeomorphism [12].
Supposing thatM is orientable inN , we may take a unique outward unit normal
vector ζx ∈ TxM⊥ and so we can define the mapping j : M → N(∞), j (x) :=
x(∞) = γ (∞), where γ is a unit speed geodesic ray emanating from x

satisfying γ ′(0) ∈ TxM⊥. Thus, when M is orientable, denoting Sn = Snq for
a fixed point q ∈ N , we get the mappingG = '−1

q ◦ j : M → Sn, which may
be called the Gauss map. Now, the unit normal vector field ζ on M may be
considered a differentiable mapping which corresponds at a point x ∈ M to the
unit normal vector ζx toM at x. Therefore, the mapping'−1

q ◦'x : Snx → Sn

is clearly a homeomorphism. By these mappings, the Gauss map G may be
considered as the composed mapping G(x) = ('−1

q ◦'x ◦ ζ )(x) : M → Sn,
for ∀x ∈ M . Since M is compact orientable immersed hypersurface of the
Hadamard manifold N , M lies in some metric ball B and K < 0 implies that
expx is a diffeomorphism onto N , for any x ∈ N , and metric balls are convex.
So, for any y ∈ M , the geodesic ray γy in N with initial direction ζ(y) strikes
∂B once and transversely at a point of ∂B. If M has no focal points on γy ,
then the mapM → ∂B is a diffeomorphism, since ∂B is diffeomorphic to Sn.
Therefore, we have the following theorem by utilizing the Rauch comparision
theorem.

Theorem 2.3 ([1]). IfM is a compact orientable locally convex immersed
hypersurface of a Hadamard manifold N and if the sectional curvatures of N
satisfy K ≤ −k ≤ 0 and the continuous unit normal ζ of M may be chosen
so that the eigenvalues of the second fundamental form σ satisfy λ ≥ −√

k,
thenM is embedded, diffeomorphic to the sphere Sn, and is the boundary of a
convex set.

Let h : [0, l]×I → N be a differentiable map. A differentiable vector field
along h is a differentiable mapV : [0, l]×I → N such thatV (s, ε) ∈ Th(s,ε)N
for each (s, ε) ∈ [0, l] × I . In what follows the following proposition will be
needed.
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Proposition 2.4 ([10]). A regular parametrized curve γ : [0, l] → N ,
where the parameter s ∈ [0, l] is the arc length of γ , is a geodesic curve if and
only if for every proper variation h : [0, l] × I → N of γ , L′(0) = 0 where L
is the arc length of the variational curve hε for ε ∈ I .

By theorem 2.1 together with above, we easily see that the mapping Sn →
N(∞) is a diffeomorphism.

3. Proof of the Theorem

Now we will prove our assertions in the theorem. In our proof geodesic vari-
ations will be the basic tool. Let us assume that the second fundamental form
σ of M be definite on a neighborhood U of a point x of M . Then, since the
second fundamental form σ will be non-degenerate on U , so definite on U for
a suitably chosen unit normal ζ , it is clear that the eigenvalues λ of the second
fundamental form σ satisfy λ > −√

k. Now, before continuing the proof we
will prove

Lemma 3.1. LetM be an n-dimensional compact submanifold in an (n+m)-
dimensional Hadamard manifold N . Then there exists a point x0 ∈ M such
that σ is definite at x0.

Proof. Let us take a point y0 of N and fix it. Since M is compact, there
is a point x0 of M so that the distance function dist(y0, y) = d(y) takes
maximum value at this point. After that, we may take a unit speed geodesic
ray γ : [0, l] → N, γ (0) = x0, γ

′(0) = ζ0 ∈ Tx0M
⊥, and a tangent vector

X0 ∈ Tx0M . Then, we consider a curve y(ε) such that y(0) = y0, y ′(0) = X0

and y(ε) ∈ M for ε ∈ I , where I is an open interval around the origin of
R. Thus, we can consider a variation h of γ , that is, a differentiable mapping
h : [0, l] × I → N such that h(s, 0) = γ (s) for each s ∈ [0, l] and h(l, ε) =
γ (l) for each ε ∈ I and each variational curve hε(s) = h(s, ε) is a geodesic
curve from y(ε) to γ (l). Let L(ε) = L(hε) be the arc length of a variational
curve hε . As is well known, the function L is differentiable, and so we have
the variational equations of L in a neighborhood of zero as the following:

L′(0) = [
g̃(X, ζ )(s, 0)

]l
0(4)

L′′(0) =
∫ l

0

[
g̃(∇̃∂1X̃, ∇̃∂1X̃)− g̃(R̃(X, ζ )ζ )(s, 0)

]
ds(5)

+ [
g̃(∇̃∂2X, ζ )(s, 0)l0

]
,

where R̃ is the Riemannian curvature tensor of N , ζ = h∗∂1, X = h∗∂2, and
X̃ = X − g̃(X, ζ )ζ . For this variation, it is well known that X0 = X(0, 0) =
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h∗(∂2(0, 0)) and X(s, 0) = h∗(∂2(s, 0)) is a Jacobi field along γ , that is,
X′′(0) + R̃(X(s, 0), ζ(s, 0))ζ(s, 0) = 0. Since ζ(s, 0) = γ ′(s), X̃(s, 0) =
X(s, 0),X(l, ε) = 0 and g̃(X(0, 0), ζ(0, 0)) = 0, from Proposition 2.4 we
have L′(0) = 0 and

L′′ =
∫ l

0

[
g̃(X′, X′)+ g̃(X′′, X)

]
(s, 0) ds − g̃(σ (X0, X0), ζ0)

= g̃(X′, X)(l, 0)− g̃(X′, X)(0, 0)− g̃(σ (X0, X0), ζ )

= −g̃(σ (X0, X0), ζ0).

Since the curve h0 = γ is the shortest geodesic segment among the all vari-
ational curves, we have L′′(0) > 0 and hence σ(X0, X0) �= 0. SinceX0 is any
tangent vector toM at γ (0) = x0, σ is definite at x0. Thus we have proved the
lemma.

Now, let us prove that (i) implies (ii). Since the second fundamental form
σ is non-degenerate on M , it is clear that K �= 0, and by the hypothesis
K ≤ −k < 0 we get that all the eigenvalues of σ are different from zero, that
is all λ �= 0. This proves (i) ⇒ (ii).

Now, let us show that (ii) implies (i). If the conditions in (ii) hold, then M
is diffeomorphic to the sphere Sn from Theorem 2.3. For Hadamard manifolds
with sectional curvatures K satisfying −k2

1 ≥ K ≥ −k2
2, k1, k2 > 0, if HS is

a horosphere, then at each point of HS where the normal curvature k is well
defined, it satisfies k1 ≤ k ≤ k2. At each point in HS the lower and upper normal
curvatures k and k are well defined, and they still satisfy k1 ≤ k ≤ k ≤ k2.
Since (HS ∩M) ⊂ N , this implies that all sectional curvatures at every point of
M are different from zero and so σ is non-degenerate everywhere onM . Since
M is connected and, from Lemma 3.1, σ is definite at x0, then σ is definite
everywhere on M . Thus, we completed the proof of (ii) ⇒ (i).

Now, for a suitably chosen continuous unit normal ζ of M the second
fundamental form σ ofM is definite everywhere onM . SinceM is compact, it
lies in some metric ball 2. Then, we have a diffeomorphism f : M → ∂2. If
we define P : M × (−ε,∞) → N,P (y(t), t) = exp ζ(y(t)), y(t) ∈ M , then
we have a geodesic ray γy(t) by fixing y(t). Now, if γ ′(0) = ζ0 ∈ Ty(t)M

⊥,
then any field X on M is orthogonal to ζ0 along γ and satisfies Xy(t)(0) =
γ∗0(X(y(t))). So along γ ,X is a Jacobi field, and therefore g(X,X) is convex
and so 2g(σζX,X) = ζ.g(X,X) is non-decreasing. Thus, by a theorem of
Bishop [5], at each point of M , γ is locally convex away from ζ(y(t), 0). By
the hypothesis of connectedness we get M is locally convex. This completes
the proof of (i) ⇒ (iii).

By the theorem of Borisenko [6], [7], M is a convex hypersurface. So, to
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complete the proof of theorem we only need to prove that one of the three
conditions implies that M is strictly convex.

Let us take a point x0 ∈ M and let γ be a unit speed geodesic ray emanating
from x0 with γ ′(0) = ζx0 , which is a outward unit normal vector to M at x0.
Then, we get the Busemann function !γ for the geodesic γ , and so the horo-
sphere HS(x0) = !−1

γ (0) at x0. We would like to show that the point x0 is an
isolated point inM∩HS(x0) andM−{x0} is in the region!−1

γ (0,∞). Suppose
that we have another point x ∈ M in the horoball HB(x0) = !−1

γ (−∞, 0].
Then, we have a subset U of M in HB(x0) = !−1

γ (−∞, 0]. The function !γ

attains its minimum at a point x1 ∈ U on M . Then the horosphere HS(x1) has
the same center γ (∞) as the one of HS(x0), and so we have G(x1) = G(x0),
which implies x1 = x0, because the Gauss mapG is a homeomorphism. Thus,
M−{x0} lies in the region!γ > 0, that is, x0 is an isolated point ofM∩HS(x0)

and M − {x0} is in the region !−1
γ (0,∞). Hence we have proved that M is a

strictly convex hypersurface of Hadamard manifold N .
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