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RELATIONSHIPS BETWEEN MONOTONICITY
AND COMPLEX ROTUNDITY PROPERTIES

WITH SOME CONSEQUENCES

HENRYK HUDZIK and AGATA NARLOCH

Abstract

It is proved that a point f of the complexification EC of a real Köthe space E is a complex extreme
point if and only if |f | is a point of upper monotonicity in E. As a corollary it follows that E
is strictly monotone if and only if EC is complex rotund. It is also shown that E is uniformly
monotone if and only if EC is uniformly complex rotund. Next, the fact that |x| ∈ S(E+) is a
ULUM-point of E whenever x is a C-LUR-point of S(EC) is proved, whence the relation that
E is a ULUM-space whenever EC is C-LUR is concluded. In the second part of this paper these
general results are applied to characterize complex rotundity of properties Calderón-Lozanovskiı̆
spaces, generalized Calderón-Lozanovskiı̆ spaces and Orlicz-Lorentz spaces.

0. Introduction

First we introduce the notations and define the notions used in this paper. Let
(T ,	,µ) be a complete and σ -finite measure space and L0 = L0(T ,	,µ) be
the space of all (equivalence classes of) 	-measurable real functions defined
on T . A Banach space (E, ‖ ‖E) is said to be a real Köthe space if E ⊂ L0

and:

(i) for every x ∈ L0 and y ∈ E with |x(t)| � |y(t)| µ-a.e. in T , we have
x ∈ E and ‖x‖E � ‖y‖E ,

(ii) there is a function x ∈ E such that x(t) > 0 for any t ∈ T .

In the whole paper, if a real Köthe space E is fixed, S(E) and B(E) denote
the unit sphere and the unit ball of E, respectively. The same notations are
used for complex Köthe spaces defined bellow. In this paper global and local
monotonicity properties are considered for real Köthe spaces only although
these properties can be also defined for abstract Banach lattices (see [2]).

We say that E is strictly monotone (E ∈ (SM) for short) if for every
x, y in the positive cone E+ = {x ∈ E : x � 0} we have ‖x‖E < ‖y‖E

whenever x � y and x 	= y. E is said to be uniformly monotone (E ∈ (UM))
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if for every ε ∈ (0, 1) there is δ(ε) ∈ (0, 1) such that ‖x − y‖E � 1 − δ(ε)

whenever 0 � y � x, ‖x‖E = 1 and ‖y‖E � ε. A point x ∈ E+ is called
a point of upper monotonicity (UM-point) if for every y ∈ E+ \ {0} we have
‖x‖E < ‖x + y‖E . We say that x ∈ S(E+) := E+ ∩ S(E) is a point of upper
local uniform monotonicity (ULUM-point) if for any sequence (xn) such that
x � xn (n ∈ N) there holds ‖x − xn‖E → 0 if ‖xn‖E → 1. If every point
in S(E+) is a ULUM-point, then we say that E is an upper locally uniformly
monotone space (ULUM-space).

We refer to [2] for the definitions of SM and UM, to [16] for various
characterizations of the monotonicity properties in Köthe spaces, to [3], [4],
[5], [9], [10], [11], [12], [14], [15], [16], [17], [19] and [20] for criteria of
monotonicity properties in various classes of Köthe spaces and to [1] for the
application of the uniform monotonicity in ergodic theory.

We say that the Köthe space E has Fatou property (E ∈ (FP) for short) if
for any x ∈ L0 and (xn) in E+ such that xn ↑ x µ-a.e. and supn ‖xn‖E < ∞,
we have x ∈ E and ‖xn‖E → ‖x‖E .

The Köthe space E is said to be order continuous (E ∈ (OC) for short) if
for any x ∈ E and any sequence (xn) in E+ such that xn � |x| (n ∈ N) and
xn ↓ 0 µ-a.e., we have ‖xn‖E → 0.

For a real Köthe space (E, ‖ ‖E) we define its complexification

EC = {f : T → C : f = x + iy with x, y ∈ E}
endowed with the norm

‖f ‖ = ∥∥√
x2 + y2

∥∥
E

= ‖|f |‖E.

The space (EC, ‖ ‖) is called in this paper a complex Köthe space. If (F, ‖ ‖)
is a complex Köthe space, then the space

Fr = {f ∈ F : Im(f ) = 0}
under the norm induced from F is a real Köthe space. It is easy to see that
E = (EC)r and F = (Fr)

C for any real Köthe space E and any complex Köthe
space F .

Let X be a complex Banach space and S(X) be the unit sphere in X. A point
x ∈ S(X) is called a complex extreme point (C-extreme point or x ∈ C-Ext(X)

for short) if for any y ∈ X with y 	= 0 there holds sup|λ|�1 ‖x + λy‖X > 1.
A complex Banach space X is said to be complex rotund (C-rotund) if every
x ∈ S(X) is a C-extreme point. Considering complex local or global rotundity
properties of a Banach space X, we always assume that X is a complex Banach
space. We say that X is uniformly complex rotund (uniformly C-rotund) if for



relationships between monotonicity and complex . . . 291

every ε ∈ (0, 1) there exists δ(ε) ∈ (0, 1) such that ‖x‖X � 1−δ(ε) whenever
‖y‖X � ε and sup|λ|�1 ‖x + λy‖X � 1. This definition is equivalent to the
following one:

∀ε>0 ∃δ(ε)>0 ∀x,y∈X ‖x‖ = 1, ‖y‖ � ε ⇒ sup
|λ|�1

‖x + λy‖ � 1 + δ(ε).

A point x ∈ S(X) is called a point of complex local uniform rotundity (C-LUR-
point) if for every ε > 0 there exists δ(x, ε) > 0 such that sup|λ|�1 ‖x+λy‖ �
1 + δ(x, ε) for every y ∈ X satisfying ‖y‖ � ε. If every point of the unit
sphere of X is a C-LUR-point, then X is called a C-LUR-space.

The notion of complex rotundity was introduced by Thorp and Whitley
in [23], where they showed that the complex space L1(	,µ) is C-rotund.
Globevnik [13] introduced the notion of uniform C-rotundity and showed that
the complex space L1(	,µ) has this property. Next Wang and Teng [27]
introduced the notion of locally uniform C-rotundity, obtaining criteria for this
property in the class of Musielak-Orlicz spaces.

It is well known that monotonicity properties have various applications,
among others in ergodic theory (see [1]) and in dominated best approximation
problems (see [17] and [19]). Complex rotundity properties have applications
in the theory of vector-valued analytic functions. It is known that if f is a
function from the unit disc B(C) (in the field of complex numbers C) into a
complex Banach spaceX and f is analytic, i.e. x∗◦f is analytic in the classical
sense for any x∗ ∈ X∗ (the dual space of X) and the maximum of the function
F(z) = ‖f (z)‖ is attained in an interior point z0 ∈ B(C), then F is a constant
function. But, in the case when X is C-rotund, more can be deduced, namely
that f is a constant function (see [23]).

From our results it follows that for any real Köthe space E strict mono-
tonicity and uniform monotonicity of E coincide, respectively, with complex
rotundity and complex uniform rotundity of EC. On the basis of this observa-
tion, most of the results from [24], [25] and [26] concerning complex rotundity
properties can be easily deduced from the results of [17], [19] and [20]. In sec-
tion 2 some other results are also deduced.

1. Results

Theorem 1. For any real Köthe space E a point f ∈ S(EC) is a C-extreme
point of B(EC) if and only if |f | is a UM-point in E.

Proof. For the sufficiency let us pick f ∈ S(EC), g ∈ EC and suppose
that |f | is a UM-point and ‖f + λg‖ � 1 for all λ ∈ C with |λ| � 1. We need
to show that g = 0. First we show that g(t) = 0 for µ-a.e. t ∈ T \ G, where
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G = supp f . We have the inequality

1 = ‖f ‖ = ‖|f |‖E � ‖|f | + |g|χT \G‖E

�
∥∥ 1

2 |f + gχG| + 1
2 |f − gχG| + |g|χT \G

∥∥
E

= 1
2‖|f + g| + |f − g|‖E

� 1
2‖|f + g|‖E + 1

2‖|f − g|‖E = 1
2‖f + g‖ + 1

2‖f − g‖ � 1.

Then, by the upper monotonicity of |f |, we have gχT \G = 0. This means that
supp g ⊂ supp f . Therefore, to finish the proof of the sufficiency, we need
only to show that the set

S = {t ∈ T : f (t) 	= 0 and g(t) 	= 0}
is a nullset. For every |λ| � 1, we have

2 = ‖2f ‖ = ‖|f + λg + f − λg|‖E

� ‖|f + λg| + |f − λg|‖E � ‖f + λg‖ + ‖f − λg‖ � 2.

Hence the assumption that |f | is a UM-point yields that

|(f (t) + λg(t)) + (f (t) − λg(t))| = |f (t) + λg(t)| + |f (t) − λg(t)|
forµ-a.e. t ∈ T and, in consequence, arg(f (t)+λg(t)) = arg(f (t)−λg(t))+
2kπ , k ∈ Z. Therefore, the function hλ : supp(f + λg)∩ supp(f − λg) → R,
where

(1) hλ(t) = f (t) + λg(t)

f (t) − λg(t)

has positive values for every λ ∈ C with |λ| � 1. Let us define A1 = {t ∈
S : f (t) + g(t) 	= 0}, A2 = {t ∈ S : f (t) − g(t) 	= 0}, A3 = {t ∈ S :
f (t) + ig(t) 	= 0}, A4 = {t ∈ S : f (t) − ig(t) 	= 0} and Bj = S \ Aj for
j ∈ {1, 2, 3, 4}. We see at once thatBk∩Bl = ∅ for k 	= l and k, l ∈ {1, 2, 3, 4}.

Let us take now arbitrary t ∈ B1. Since B1 ⊂ A3 ∩ A4, so

ig(t) = f (t)(hi(t) − 1)

hi(t) + 1
and f (t) + g(t) = 0

for any t ∈ B1. This implies that

i = 1 − hi(t)

hi(t) + 1
∈ R

for any t ∈ B1, which is a contradiction. So B1 = ∅. We can prove in a similar
way that B2 = B3 = B4 = ∅.
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Next for any t ∈ A := ⋂4
k=1 Ak , by (1), we have

g(t) = f (t)(h1(t) − 1)

h1(t) + 1
,

because t ∈ A1 ∩ A2. So, we see that

(2) g(t)f (t) = |f (t)|2(h1(t) − 1)

h1(t) + 1
∈ R.

But since we also have t ∈ A3 ∩ A4 for t ∈ A, we get

ig(t) = f (t)(hi(t) − 1)

hi(t) + 1
,

and so the condition

(3) ig(t)f (t) = |f (t)|2(hi(t) − 1)

hi(t) + 1
∈ R

follows. Properties (2) and (3) show that g(t)f (t) = 0 for any t ∈ ⋂4
k=1 Ak .

Since f (t) 	= 0 for t ∈ ⋂4
k=1 Ak , we get g(t) = 0 for such t , a contradiction.

Therefore
⋂4

k=1 Ak = ∅. Consequently, S = ⋂4
k=1 Ak ∪ ⋃4

k=1 Bk = ∅.
Necessity. Suppose that |f | is not a UM-point. Then there exist y ∈ E+

such that |f | � y, |f | 	= y and ‖|f |‖E = ‖y‖E = 1. By Lemma 1 from [6],
|f | cannot be an extreme point of the unit ball in E, so there is g ∈ E+ \ {0}
such that ‖|f | ± g‖E = 1. Consequently,

‖f + λg‖ = ‖|f + λg|‖E � ‖|f | + g‖E = 1

for any |λ| � 1. Hence f /∈ C-Ext(EC).

A real Köthe space E is strictly monotone if and only if every point in
S(E+) is a UM-point. Therefore we have

Corollary 1. For any real Köthe space E, its complexification EC is a
C-rotund space if and only if E is strictly monotone.

Theorem 2. For any real Köthe spaceE, the spaceEC is uniformly C-rotund
if and only if E is uniformly monotone.

Proof. Necessity. Suppose that E is not a uniformly monotone space. The-
orem 6 in [16] shows that there exist sequences (xn), (yn) ⊂ E+ and a number
ε > 0 such that

(i) ‖xn‖E = 1,
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(ii) ‖yn‖E � ε,

(iii) ‖xn + yn‖E � 1 + 1
n

for every n ∈ N. We have ‖xn‖ = 1 = ‖xn‖E for any n ∈ N and

‖xn + λyn‖ � ‖ |xn| + |yn| ‖E = ‖xn + yn‖E � 1 + 1

n

for any λ ∈ C satisfying |λ| � 1. Hence sup|λ|�1 ‖xn + λyn‖ � 1 + 1
n

for any
n ∈ N , which means that EC is not uniformly C-rotund.

Sufficiency. Let us assume that E is uniformly monotone. Let f, g ∈ EC,
ε be arbitrary positive number less than 1 and ‖g‖ � ε. Suppose that sup|λ|�1
‖f + λg‖ � 1. We will show that there exists a number δ ∈ (0, 1), depending
only on ε, such that ‖f ‖ � 1− δ. Put K = {1,−1, i,−i}. Proposition 5.17 in
[5] implies that there exists a number β ∈ (0, 1) (depending only on ε) such
that the following implication is true for arbitrary u, v ∈ C:

(4) |u| � ε

8
max
k∈K

|v + ku| �⇒ |v| � 1 − β

4

∑
k∈K

|v + ku|.

Let A = {t ∈ T : |g(t)| � ε
8 maxk∈K |f (t) + kg(t)|}. For every t ∈ T \ A we

have 8

ε
|g(t)| < max

k∈K
|f (t) + kg(t)|,

so, taking into account the assumption that sup|λ|�1 ‖f + λg‖ � 1, we get

‖gχT \A‖ = ε

8

∥∥∥8

ε
|g|χT \A

∥∥∥
E

� ε

8

∥∥∥max
k∈K

|f + kg|χT \A
∥∥∥
E

� ε

8

∑
k∈K

∥∥|f + kg|χT \A
∥∥
E

� ε

2
.

Since ‖g‖ � ε, by the triangle inequality, it follows that

‖gχA‖ � ε

2
.

By the fact that the set K is equal to its own inverse,
{

1
k

: k ∈ K
}
, it follows

that

|g(t)| � 1

4

∑
k∈K

|g(t) + kf (t)|

= 1

4

∑
k∈K

|k|
∣∣∣∣1

k
g(t) + f (t)

∣∣∣∣ � 1

4

∑
k∈K

|f (t) + kg(t)|
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for any t ∈ A, whence

ε

2
� ‖gχA‖ �

∥∥∥∥1

4

∑
k∈K

|f + kg|χA

∥∥∥∥
E

.

Consequently,

(5)

∥∥∥∥β4
∑
k∈K

|f + kg|χA

∥∥∥∥
E

� εβ

2
.

By implication (4) and the definition of the set A, we have

(6) ‖f ‖ = ‖|f |χT \A + |f |χA‖E

�
∥∥∥∥1

4

∑
k∈K

|f + kg|χT \A + 1 − β

4

∑
k∈K

|f + kg|χA

∥∥∥∥
E

=
∥∥∥∥1

4

∑
k∈K

|f + kg|χT − β

4

∑
k∈K

|f + kg|χA

∥∥∥∥
E

.

Now properties (5) and (6) and uniform monotonicity of E show that there
exists δ > 0, depending only on ε, such that ‖f ‖ � 1 − δ.

Lemma 1. Let E be any real Köthe space. If x ∈ S(EC) is a C-LUR-point,
then |x| is a ULUM-point in E.

Proof. It is obvious that |x| ∈ S(E) whenever x ∈ S(EC). Suppose that
|x| is not a ULUM-point. Then there exists a sequence (yn) ⊂ E+ satisfying
‖yn‖E → 1, |x| � yn and ‖yn − |x|‖E � δ for any n ∈ N and some δ > 0. If
we denote zn = yn − |x|, then we have ‖zn‖ � δ and

1 � sup
|λ|�1

‖x + λzn‖ � sup
|λ|�1

‖|x| + |λzn|‖E

= ‖|x| + |zn|‖E = ‖|x| + yn − |x|‖E = ‖yn‖E → 1.

This means that x is not a C-LUR-point.

Corollary 2. If E is a real Köthe space such that EC is a C-LUR space,
then E is a ULUM-space.

2. Some consequences

In this section we will apply the results of the first section to get some res-
ults on the complex rotundity properties in Orlicz-Lorentz spaces, Calderón-
Lozanovskiı̆ spaces and generalized Calderón-Lozanovskiı̆ spaces. To do this
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we will also complete results from [14] on the monotonicity properties of
Lorentz spaces and we will extend them to Orlicz-Lorentz spaces.

A function ϕ : T × R → [0,∞] is said to be a Musielak-Orlicz function if
ϕ(t, .) is convex, even, vanishing and continuous at zero, not identically equal
to zero for µ-a.e. t ∈ T and ϕ(., u) is a 	-measurable function for any u ∈ R.
If sup{u � 0 : ϕ(t, u) = 0} = 0 for µ-a.e. t ∈ T , then we will write ϕ > 0. If
ϕ(t, .) takes only finite values for µ-a.e. t ∈ T , then we will write ϕ < ∞. For
a Musielak-Orlicz function ϕ and x ∈ L0, we define ϕ ◦ x(t) = ϕ(t, x(t)).

Given a real Köthe space E and a Musielak-Orlicz function ϕ, we define
on L0 the convex semimodular

,E
ϕ (x) =

{ ‖ϕ ◦ |x|‖E, if ϕ ◦ |x| ∈ E

∞, otherwise.

The generalized Calderón-Lozanovskiı̆ space Eϕ generated by the couple
(E, ϕ) is defined as the set of those x ∈ L0 such that ,E

ϕ (λx) < +∞ for
some λ > 0. The norm in Eϕ is defined by

‖x‖E
ϕ = inf{λ > 0 : ,E

ϕ (x/λ) � 1}.
If ϕ does not depend on t ∈ T , that is, ϕ is an Orlicz function, then Eϕ is called
the Calderón-Lozanovskiı̆ space. If E has the Fatou property, then Eϕ also has
this property, whence Eϕ is a Banach space (see [11]).

The generalized Calderón-Lozanovskiı̆ space can be complex or real ac-
cording to whether one considers real or complex L0. Denote by EC

ϕ and Eϕ

the complex and the real Calderón-Lozanovskiı̆ spaces, respectively. It is ob-
vious that EC

ϕ = (Eϕ)
C, that is, EC

ϕ is the complexification of real Eϕ .
In this section we will consider C-rotundity and uniform C-rotundity of

generalized Calderón-Lozanovskiı̆ spaces. We will restrict ourselves to the
cases of a non-atomic measure space and counting measure space (N, 2N, µ),
where µ(A) = Card(A). It is well known that any σ -finite measure space is
the direct sum of two measure spaces (A,	 ∩ A,µ|A) and (B,	 ∩ B,µ|B),
where A ∩ B = ∅, A ∪ B = T , (A,	 ∩ A,µ|A) is a non-atomic meas-
ure space, (B,	 ∩ B,µ|B) is a purely atomic measure space with B be-
ing a finite or infinite counting set (so, if B is infinite, we can identify B

with N and 	 ∩ B with 2N). The generalized Calderón-Lozanovskiı̆ space
Eϕ over a σ -finite measure space (T ,	,µ) can be written as the direct sum
Eϕ(A,	∩A,µ|A)⊕Eϕ(B,	∩B,µ|B). Consequently, ifEϕ(T ,	,µ) has an
appropriate monotonicity property (analogouslyEC

ϕ (T ,	,µ) has an appropri-
ate C-rotundity property) then bothEϕ(A,	∩A,µ |A) andEϕ(B,	∩B,µ|B)
(analogously EC

ϕ (A,	 ∩ A,µ|A) and EC
ϕ (B,	 ∩ B,µ|B)) have appropriate

properties if they are considered with the norm induced from the whole space.
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Conversely, if criteria for the monotonicity (resp. C-rotundity) properties are
known for both parts separately, then it is possible to deduce respective cri-
teria for the whole space although it is not automatic because it can happen that
both parts of the space (over A and over B) have a fixed geometric property
but the whole space has not. Moreover, in the case of generalized Calderón-
Lozanovskiı̆ spaces, we may assume without loss of generality that the purely
atomic part of T is the counting measure space (N, 2N, µ). Otherwise, instead
of a Musielak-Orlicz function ϕ = (ϕi)

∞
i=1 we consider the Musielak-Orlicz

function ψ = (ψi)
∞
i=1 with ψi(u) = ϕi(u)µ({i}) and the counting measure

space. For this reason, generalized Calderón-Lozanovskiı̆ spaces may be con-
sidered over a non-atomic measure space and over the counting measure space
only.

In the case of a non-atomic measure space we say a Musielak-Orlicz func-
tion ϕ satisfies the .E

2 -condition (ϕ ∈ .E
2 for short) if there are a positive

constant K > 0 and a nonnegative function h ∈ L0 such that ϕ ◦ h ∈ E and
ϕ(t, 2u) � Kϕ(t, u) for µ-a.e. t ∈ T and all u � h(t) (see [11]).

Theorem 3. Let (T ,	,µ) be a non-atomic σ -finite complete measure
space, E be an order continuous real Köthe function space with the Fatou
property and ϕ be a Musielak-Orlicz function. Then the generalized Calderón-
Lozanovskiı̆ spaceEC

ϕ is C-rotund if and only if ϕ > 0, ϕ ∈ .E
2 andE is strictly

monotone space.

Proof. The theorem follows by Corollary 1 and Theorem 1 in [10], where
criteria for strict monotonicity of Eϕ are presented.

We say an Orlicz function ϕ satisfies condition .2(0) (ϕ ∈ .2(0)) if there
exist K > 0, u0 > 0 such that 0 < ϕ(u0) and the inequality

(7) ϕ(2u) � Kϕ(u)

holds for u ∈ [0, u0]. We say, the function ϕ satisfies condition .2(∞) (ϕ ∈
.2(∞)) if there exist K > 0, u0 > 0 such that ϕ(u0) < ∞ and inequality (7)
holds for all u � u0. If there exists K > 0 such that ϕ(2u) � Kϕ(u) for all
u � 0, then we say that ϕ satisfies condition .2(R+) (ϕ ∈ .2(R+)).

Lemma 2. If (T ,	,µ) is a non-atomic σ -finite complete measure space, E
is a real Köthe space over the measure space (T ,	,µ) and ϕ is a Musielak-
Orlicz function not depending on the parameter t ∈ T , that is, ϕ is an Orlicz
function, then ϕ ∈ .E

2 is equivalent to:

(a) ϕ ∈ .2(∞) if L∞ ↪→ E,

(b) ϕ ∈ .2(R+) if L∞ 	↪→ E.
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Proof. Let us first prove (a). Assume ϕ ∈ .E
2 , that is, there is a constant

K > 0, a set A ∈ 	 with µ(A) = 0 and a nonnegative function h ∈ L0

such that ϕ ◦ h ∈ E and ϕ(2u) � Kϕ(u) for all t ∈ T \ A and u � h(t).
Consequently, ϕ(2u) � Kϕ(u) for all u � inf t∈T \A h(t). It is obvious that
a := inf t∈T \A h(t) < ∞ and ϕ(a) < ∞, whence we get that ϕ ∈ .2(∞).
On the other hand, assuming that ϕ(2u) � Kϕ(u) for some K > 0 and any
u � u0, where u0 > 0 is such that ϕ(u0) < ∞, by L∞ ↪→ E, we have
ϕ(u0)χT ∈ E, so ϕ ∈ .E

2 . This means that (a) has been proved.
Let us prove (b). Letϕ ∈ .E

2 andK , h be as in the definition of the condition
.E

2 . Then for every t ∈ T \ A with µ(A) = 0 we have ϕ(2u) � Kϕ(u) if
u � h(t) and

ϕ(2u) � ϕ(2h(t)) � Kϕ(h(t)) � Kϕ(u) + Kϕ(h(t))

if u ∈ [0, h(t)]. Consequently,

ϕ(2u) � Kϕ(u) + K inf
t∈T \A ϕ(h(t))

for every u ∈ R+. We need to prove that a := inf t∈T \A ϕ(h(t)) = 0. Assume
on the contrary that a 	= 0 and define g = aχT \A. Then g � ϕ ◦ hχT \A. Since
L∞ 	↪→ E, we have g /∈ E and so ϕ ◦ hχT \A /∈ E, a contradiction.

It is obvious that ϕ ∈ .2(R+) implies that ϕ ∈ .E
2 , so (b) is proved.

Corollary 3. Let E be a real Köthe function space with the Fatou property
and with an order continuous norm, and let ϕ be an Orlicz function. Then the
Calderón-Lozanovskiı̆ space EC

ϕ is C-rotund if and only if ϕ > 0, ϕ ∈ .E
2 and

E is a strictly monotone space.

Proof. This is a consequence of Theorem 3. Note that by Lemma 2, for ϕ
being an Orlicz function ϕ ∈ .E

2 has a simpler meaning than in the case when
ϕ is a Musielak-Orlicz function. By Lemma 2, we can apply Theorems 1 and 2
from [15] to get ϕ ∈ .E

2 . Next, ϕ ∈ .E
2 implies that ϕ < ∞. From Theorem 1

in [4] it follows that if ϕ < ∞ and Eϕ ∈ (SM) (that is, if EC
ϕ is C-rotund),

then ϕ > 0 and E ∈ (SM).
The sufficiency follows from Theorem 1 in [4] and our Corollary 1.

In the sequence case, that is, in the case of counting measure and a Köthe
sequence space e, we say that a Musielak-Orlicz function ϕ = (ϕn)

∞
n=1 satisfies

condition δe2 (ϕ ∈ δe2 for short) if there exist constants a,K > 0 and a sequence
c = (cn)

∞
n=1 in e+ such that for all n ∈ N and u ∈ R+ the inequality ϕn(2u) �

Kϕn(u) + cn holds whenever ‖ϕn(u)en‖e � a, where we put en = χ{n} for
n ∈ N.
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We will say that ϕ = (ϕn)
∞
n=1 satisfies condition (+) if for any i ∈ N there

is ui > 0 such that ‖ϕ(ui)ei‖e = 1.

Theorem 4. Let e be a real Köthe sequence space with the Fatou property
and ϕ be a Musielak-Orlicz function. The generalized Calderón-Lozanovskiı̆
space eC

ϕ is C-rotund if and only if ϕ > 0, ϕ ∈ δe2, ϕ satisfies the condition (+)

and e is strictly monotone.

Proof. This is a consequence of our Corollary 1 and Theorem 5.1 in [12]
provided we can prove the necessity of the condition (+). So, let us prove
this. Assume on the contrary that the condition (+) is not satisfied, that is,
‖ϕj (aj )ej‖e < 1 for some j ∈ N, where aj = sup{u � 0 : ϕj (u) < ∞}.
Define x = aj ej and y = x + bel , where l 	= j and b > 0 is so small that
‖ϕj (aj )ej‖e + ‖ϕl(b)el‖e � 1. Then we easily get that ‖x‖e

ϕ = ‖y‖e
ϕ = 1.

Since x 	= y, this means that the space eϕ is not strictly monotone.

Let us say that ϕ = (ϕn)
∞
n=1 satisfies condition De

2 if there are positive
constants a and K and sequences (an)

∞
n=1 and (bn)

∞
n=1 of positive numbers

such that an < bn and ϕn(bn)‖en‖e = a for all n ∈ N, (ϕn(an))
∞
n=1 ∈ e and

ϕn(2u) � Kϕn(u) for all n ∈ N and u ∈ [an, bn].

Remark 1. Note that if for all functions ϕn defining the function ϕ we have
aϕn

< bϕn
/2, where aϕn

= sup{u � 0 : ϕn(u) = 0} and bϕn
= sup{u � 0 :

ϕn(u) < ∞}, then ϕ = (ϕn)
∞
n=1 ∈ δe2 iff (ϕn)n>k ∈ δe2 for some (for any) k ∈ N

and ϕ = (ϕn)
∞
n=1 ∈ De

2 iff ϕ = (ϕn)n>k ∈ De
2 for some (for any) k ∈ N.

Lemma 3. Let ϕ = (ϕn)
∞
n=1 be a Musielak-Orlicz function and e be a

real sequence Köthe space. Then ϕ ∈ De
2 implies ϕ ∈ δe2. If in addition e is

continuously embedded into c0{‖en‖e}, then ϕ ∈ δe2 implies ϕ ∈ De
2.

Proof. Assume that ϕ ∈ De
2 and let K, a, (an)

∞
n=1 and (bn)

∞
n=1 be as in the

definition of the De
2-condition. Then

ϕn(2u) � Kϕn(u) + ϕn(2an) � Kϕn(u) + Kϕn(an)

for all n ∈ N and u ∈ [0, bn]. Since (ϕn(an))
∞
n=1 ∈ e and ϕn(bn)‖en‖e = a for

all n ∈ N, we conclude that ϕ ∈ δe2.
Assume now that e ↪→ c0{‖en‖e} and ϕ ∈ δe2. Let K, a and (cn)

∞
n=1 be as in

the definition of the δe2-condition. Define bn � 0 such that ϕn(bn)‖en‖e = a for
any n ∈ N. Without loss of generality we may assume that cn � ϕn(2bn) < ∞
(n ∈ N) because if cn > ϕn(2bn), then the inequality ϕn(2u) � ϕn(2bn) < cn
holds for any u ∈ [0, bn] automatically. So, for any n ∈ N there is an � 0 such
that ϕn(an) = cn. Since ϕn(an)‖en‖e → 0 as n → ∞ and ϕn(bn)‖en‖e = a,
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we get ϕn(an) < ϕn(bn) for n big enough (say for n > k), whence we conclude
that an < bn for all n > k. Moreover, we have for any n > k and u ∈ [an, bn],

ϕn(2u) � Kϕn(u) + cn = Kϕn(u) + ϕn(an)

� Kϕn(u) + ϕn(u) = (K + 1)ϕn(u),

which means that (ϕn)n>k ∈ De
2. Since condition δe2 implies that

sup{u � 0 : ϕn(u) = 0} < 1
2 sup{u � 0 : ϕn(u) < ∞}

for every n ∈ N, we get ϕ ∈ De
2.

Remark 2. Any order continuous real Köthe sequence space e is continu-
ously embedded into c0{‖en‖e}.

Proof. It follows from e ∈ (OC) that ‖(xk)k�n‖e → 0 as n → ∞ for
any x ∈ e. In consequence, |xn|‖en‖e � ‖(xk)k�n‖e → 0 as n → ∞, that
is, x ∈ c0{‖en‖e}. The continuity of the embedding follows from the last
inequality.

Lemma 4. If a real Köthe sequence space e is continuously embedded into
both spaces l∞ and c0{‖en‖e}, ϕ > 0 and all Orlicz functions ϕn defining the
Musielak-Orlicz function ϕ = (ϕn)

∞
n=1 are the same, then ϕ ∈ δe2 is equivalent

to ϕ ∈ .2(0).

Proof. Let ϕn = ϕ for any n ∈ N. First, we will prove the implication
δe2 ⇒ .2(0). By Lemma 3, we have ϕ(2u) � Kϕ(u) for u ∈ [an, bn], n ∈ N,
where (ϕ(an))

∞
n=1 ∈ e, ϕ(bn)‖en‖e = a > 0 and an < bn for all n ∈ N.

Consequently, we have that ϕ(2u) � Kϕ(u) for any u ∈ [infn an, supn bn].
The condition that (ϕ(an))∞n=1 ∈ e implies that ϕ(an)‖en‖e → 0 as n → ∞.
Since the assumption that e ↪→ l∞ yields infn ‖en‖e > 0, we get ϕ(an) → 0
as n → ∞. Consequently, infn ϕ(an) = 0. By the assumption that ϕ vanishes
only at zero, we get infn an = 0. We can prove (although we need not to do this
to have ϕ ∈ .2(0)) that supn bn < ∞. The assumption that e ↪→ l∞ yields
infn ‖en‖e > 0. Therefore, by ϕ(bn)‖en‖e = a > 0, we have supn ϕ(bn) < ∞
and so supn bn < ∞. Consequently, ϕ(2u) � Kϕ(u) for all u ∈ [0, supn bn]
and so ϕ ∈ .2(0).

.2(0) ⇒ δe2. There are, by assumption, positive constants K and b such
that ϕ(2u) � Kϕ(u) whenever ϕ(u) � b. By e ↪→ l∞ there is L > 0 such
that ‖en‖e � 1/L for any n ∈ N. Therefore, assuming that ϕ(u)‖en‖e � b/L,
we get ϕ(u) � b/(L‖en‖e) � b. This yields the desired implication.

Remark 3. There is a real Köthe sequence space e such that e /∈ (OC) and
e ↪→ c0{‖en‖e}.



relationships between monotonicity and complex . . . 301

Really, take an Orlicz function ϕ such that ϕ(1) = 1, ϕ > 0 and ϕ does
not satisfy condition .2(0). Then ‖en‖e = 1 for any n ∈ N, Lϕ ↪→ c0 and
lϕ /∈ (OC).

As an immediate consequence of Theorem 4 and Lemma 4, we get the
following

Corollary 4. Let a real Köthe sequence space e ∈ (FP) and e be con-
tinuously embedded into both spaces l∞ and c0{‖en‖e}. Then the Calderón-
Lozanovskiı̆ sequence space eC

ϕ is C-rotund if and only if ϕ ∈ .2(0), there is
u > 0 such that ϕ(u) infn ‖en‖e = 1 and e is strictly monotone.

Theorem 5. Let E be a real Köthe function space with the Fatou prop-
erty and ϕ be a Musielak-Orlicz function. The generalized complex Calderón-
Lozanovskiı̆ space EC

ϕ is uniformly C-rotund if and only if ϕ > 0, ϕ ∈ .E
2 and

E is uniformly monotone.

Proof. Every Köthe space E which is uniformly monotone is order con-
tinuous (see [8], Proposition 2.1). The necessity of ϕ ∈ .E

2 follows from the
fact that if E ∈ (OC) and ϕ /∈ .E

2 , then l∞ embeds order isometrically into
Eϕ (see [11]), and thus, Eϕ is not strictly monotone.

The necessity of ϕ > 0 can be proved in the same way as in the case of an
Orlicz function ϕ in Theorem 2 of [4].

Now we can prove the necessity of the uniform monotonicity of E for
the uniform monotonicity of Eϕ (that is, for the uniform C-rotundity of EC

ϕ ).
Assume that E is not uniformly monotone. Then there are two sequences (xn)
and (yn) in E+ and ε ∈ (0, 1) such that 1 � ‖yn‖E � ε, ‖xn‖E = 1, xn ⊥ yn
(i.e. µ(supp xn ∩supp yn) = 0) for any n ∈ N, and ‖xn +yn‖E → 1 (see [16]).
The condition ϕ ∈ .E

2 implies that ϕ < ∞, therefore we can find nonnegative
functions vn,wn ∈ L0 such that xn = ϕ ◦ vn and yn = ϕ ◦ wn for all n ∈ N.
Consequently, ,E

ϕ (vn) = ‖ϕ ◦ vn‖E = ‖xn‖E = 1, ,E
ϕ (wn) = ‖ϕ ◦ wn‖E =

‖yn‖E � ε for all n ∈ N and,

1 � ,E
ϕ (vn+wn) = ‖ϕ◦(vn+wn)‖E = ‖ϕ◦vn+ϕ◦wn‖E = ‖xn+yn‖E → 1

(the equality ϕ ◦ (vn −wn) = ϕ ◦ vn −ϕ ◦wn follows by the fact that vn ⊥ wn

for all n ∈ N, which is a consequence of the assumption that xn ⊥ yn for
any n ∈ N). By the fact that if ,E

ϕ (z) � 1, then ,E
ϕ (z) � ‖z‖E

ϕ � 1 and if
,E
ϕ (z) > 1, then ,E

ϕ (z) � ‖z‖E
ϕ � 1 for any z ∈ Eϕ , we get ‖wn‖E

ϕ � ε for all
n ∈ N and ‖vn + wn‖E

ϕ → 1.
To finish the proof it is enough to apply Theorem 4.3 in [9] and Theorem 2.

Corollary 5. Let E be a real Köthe function space with the Fatou property
and let ϕ be an Orlicz function. The complex Calderón-Lozanovskiı̆ space EC

ϕ
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is uniformly C-rotund if and only if ϕ > 0, ϕ ∈ .E
2 and E is uniformly

monotone.

Proof. Sufficiency. From our assumptions and Theorem 2 in [4] it follows
that Eϕ is uniformly monotone and therefore EC

ϕ is uniformly C-rotund.
Necessity. Any uniformly monotone Köthe space is order continuous, so

we get the necessity of ϕ ∈ .E
2 from Corollary 3. Consequently, we have also

ϕ < ∞. If EC
ϕ is uniformly C-rotund, then Eϕ ∈ (UM). This implies, since

ϕ < ∞, that E ∈ (UM) and ϕ > 0 (Theorem 7 in [16] and Theorem 1 in [4]).

We say a Musielak-Orlicz function ϕ satisfies condition (∗)e if for each
ε ∈ (0, 1) there exists η ∈ (0, 1) such that for all n ∈ N and u ∈ R+, satisfying
‖ϕn(u)en‖e � 1 − ε, we have ‖ϕn((1 + η)u)en‖e � 1 (see [12]).

Theorem 6. Let e be a real Köthe sequence space with the Fatou property.
Then the generalized Calderón-Lozanovskiı̆ sequence space eC

ϕ is uniformly
C-rotund if and only if e ∈ (UM), ϕ ∈ δe2, ϕ > 0 and ϕ satisfies condition (∗)e.

Proof. It is enough to apply Theorem 5.3 from [12] and our Theorem 2.

Although the class of Orlicz-Lorentz spaces is a subclass of Calderón-
Lozanovskiı̆ spaces (we get it taking for E (resp. e) the Lorentz space 8ω

(resp. λω)) in this special interesting case, criteria for the monotonicity and C-
rotundity properties are clearer and more specified. Therefore, it is of interest
to present them, especially for the reason that we need to complete some results
from [14] on the monotonicity properties for Lorentz spaces 8ω and λω. For
the definition of these spaces see [18], [15], [3] and [14].

Theorem 7. Let (T ,	,µ) be a non-atomic, σ -finite and complete measure
space. The Orlicz-Lorentz function space 8C

ϕ,ω is C-rotund if and only if the
weight function ω is strictly positive,

∫ γ

0 ω(t) dt = ∞ if γ = ∞, ϕ > 0, and
ϕ ∈ .2(R+) if µ(T ) = ∞ (resp. ϕ ∈ .2(∞) if µ(T ) < ∞).

Proof. We need only prove that our assumptions are necessary and suffi-
cient for strict monotonicity of the real space 8ϕ,ω. This was partially proved
in [14].

Necessity. If ϕ /∈ .2(R+) when µ(T ) = ∞ (or ϕ /∈ .2(∞) if µ(T ) < ∞),
then 8ϕ,ω contains an order isometric copy of l∞ (see [15]), so 8ϕ,ω is not
strictly monotone. If γ = ∞ and

∫ γ

0 ω(t) dt < ∞, then 8ϕ,ω also contains an
order isometric copy of l∞ (see [15]), whence 8ϕ,ω is not strictly monotone.
Assume that the condition that ϕ > 0 is not satisfied, that is, aϕ := sup{u �
0 : ϕ(u) = 0} > 0. Look at the function x = aχA with a > aϕ , A ∈ 	,
0 < µ(A) < ∞, µ(T \ A) > 0 and ‖x‖ϕ,ω = 1. Define y = x + aϕχT \A.
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Then x∗ = aχ[0,µ(A)] and y∗ = aχ[0,µ(A)] + aϕχ(µ(A),∞). Since

,ϕ,ω(y) =
∫ ∞

0
ϕ(y∗(t))ω(t) dµ =

∫ µ(A)

0
ϕ(a)ω(t) dµ

=
∫ ∞

0
ϕ(x∗(t))ω(t) dµ = ,ϕ,ω(x) � 1,

we get ‖y‖ϕ,ω � 1. Now, the inequality 0 � x � y and the equality ‖x‖ϕ,ω =
1, yields ‖y‖ϕ,ω � 1. Consequently ‖y‖ϕ,ω = 1, which means that 8ϕ,ω is not
strictly monotone.

Assume now that ω is not strictly positive. Then b(ω) := sup{t > 0 :
ω(t) > 0} < γ , where γ = µ(T ). Let A ∈ 	 and a > 0 be such that b(ω) <
µ(A) < γ and such that the function x = aχA satisfies ‖x‖ϕ,ω = 1. Choose
0 < c < a and define y = x + cχT \A. Then y∗ = aχ[0,µ(A)] + cχ(µ(A),γ ).
Consequently, since ω(t) = 0 for t ∈ (µ(A), γ ), we get ,ϕ,ω(y) = ,ϕ,ω(x),
whence we easily deduce that ‖x‖ϕ,ω = ‖y‖ϕ,ω = 1, which means that 8ϕ,ω

is not strictly monotone.
Sufficiency. Assume that the assumptions on ϕ and ω are satisfied, 0 � y �

x, x 	= y, and ‖x‖ϕ,ω = 1. Then ,ϕ,ω(x) = 1. Moreover, y∗ � x∗ and the
condition y∗ 	= x∗ follows by the assumption that

∫ γ

0 ω(t) dt = ∞ (if γ = ∞)
because the last condition yields that dx(λ) = µ({t : x(t) > λ}) < ∞ for any
λ > 0 (see [18]). Consequently, by the fact that ϕ > 0 and by strict positivity
of ω, we get ,ϕ,ω(y) < ,ϕ,ω(x) = 1. Since ϕ ∈ .2(R+) if µ(T ) = ∞ (or
ϕ ∈ .2(∞) if µ(T ) < ∞), we get ‖y‖ϕ,ω < 1, which means that 8ϕ,ω is
strictly monotone.

Theorem 8. The Orlicz-Lorentz sequence space λC
ϕ,ω is C-rotund if and only

if ϕ satisfies the .2(0)-condition, there is u0 > 0 such that ϕ(u0)ω1 = 1 and∑∞
n=1 ωn = ∞.

Proof. Necessity. Assume that
∑∞

n=1 ωn < ∞. We will show that λϕ,ω

contains then an order isometric copy of l∞. Divide N into a sequence (Nk)

of infinite and pairwise disjoint sets and define x = aχN, xk = aχNk
(k ∈ N),

where a > 0 is chosen in such a way that
∑∞

n=1 ϕ(a)ωn = 1. It is obvious that
x∗ = x∗

k = aχN for all k ∈ N. Therefore, ,ϕ,ω(x) = ,ϕ,ω(xk) = 1, whence
‖x‖ϕ,ω = ‖xk‖ϕ,ω = 1 for all k ∈ N. Since x = ∑∞

k=1 xk pointwise, the
operator P : l∞ → λϕ,ω defined by c = (ck) �−→ Pc = ∑∞

k=1 ckxk defines a
linear order isometry, which follows from the fact that

,ϕ,ω(P c/‖c‖∞) � 1 and ,ϕ,ω(P c/(λ‖c‖∞)) > 1

for any λ ∈ (0, 1). Thus λϕ,ω is not strictly monotone, whence λC
ϕ,ω is not

C-rotund.
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If we prove the necessity of the fact that ϕ(u0)ω1 = 1 for some u0 > 0,
the remaining part of the proof of the necessity can be done as in the proof of
Theorem 7, because for every x ∈ B(λϕ,ω), we have |x(i)| ∈ [0, u0] for any
i ∈ N and the behavior of ϕ outside of the interval [0, u0] has no influence
on strict monotonicity of λϕ,ω. In the proof of Theorem 7, we referred to [15]
in order to prove the necessity of ϕ ∈ .2(R+) (or ϕ ∈ .2(∞)) for strict
monotonicity of 8ϕ,ω. In the sequence case we should refer to [3], where it
has been proved that λϕ,ω contains an order isometric copy of l∞ whenever
ϕ /∈ .2(0).

Assume that there is no u0 > 0 such that ϕ(u0)ω1 = 1. Consequently, for
α := sup{u > 0 : ϕ(u) < ∞}, we have ϕ(α)ω1 < 1. Defining x = αe1 and
y = αe1+ce2, where 0 < c < α satisfies the inequality ϕ(α)ω1+ϕ(c)ω2 � 1,
we have x∗ = x, y∗ = y and max(,ϕ,ω(x), ,ϕ,ω(y)) � 1. Moreover, we have
,ϕ,ω(βx) = ,ϕ,ω(βy) = ∞ for any β > 1. Consequently, ‖x‖ϕ,ω = ‖y‖ϕ,ω =
1. Since 0 � x � y and x 	= y, this means that λϕ,ω is not strictly monotone.

Sufficiency. Assuming that 0 � y � x, x ∈ S(λϕ,ω) and y 	= x, the
assumptions yield that 0 � y∗ � x∗ and y∗ 	= x∗. Since the weighted l1-space
l1({ωn}) is strictly monotone, we get ,ϕ,ω(y) < ,ϕ,ω(x) = 1. The assumption
that ϕ ∈ .2(0) yields ‖y‖ϕ,ω < 1, that is, λϕ,ω is strictly monotone.

We say that the weight function ω is regular if there exist K > 1 such that
S(2t) � KS(t) for all t ∈ (0, γ /2), where S(t) = ∫ t

0 ω(s)ds.

Theorem 9. The Orlicz-Lorentz function space 8C
ϕ,ω is uniformly C-rotund

if and only if ϕ > 0, ϕ satisfies the .2(R+)-condition if µ(T ) = ∞ (resp. the
.2(∞)-condition if µ(T ) < ∞) and ω is regular.

Proof. This is a consequence of Theorem 2 and the results from [14], which
establish that 8ϕ,ω is uniformly monotone if and only if our assumptions are
satisfied (see [14]).

Theorem 10. Let ϕ be an Orlicz function. The Orlicz-Lorentz sequence
space λC

ϕ,ω is uniformly C-rotund if and only if there is u0 > 0 such that
ϕ(u0)ω1 = 1, ϕ satisfies the .2(0)-condition and the weight sequence ω is
regular.

Proof. On the basis of the results from [12] and Theorem 2, the argument-
ation from the previous proof can be repeated here.
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