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UNCONDITIONAL BASES IN TENSOR PRODUCTS
OF HILBERT SPACES

DAVID PÉREZ-GARCÍA and IGNACIO VILLANUEVA∗

Abstract

We prove that a tensor norm α (defined on tensor products of Hilbert spaces) is the Hilbert-Schmidt
norm if and only if �2 ⊗ · · · ⊗ �2, endowed with the norm α, has an unconditional basis. This
extends a classical result of Kwapień and Pełczyński. The symmetric version of that statement
follows, and this extends a recent result of Defant, Díaz, García and Maestre.

1. Introduction

In [16], Kwapień and Pełczyński proved that if we have a tensor normα defined
on tensor products of Hilbert spaces such that �2⊗̂α�2 has an unconditional
basis, then α has to be (equivalent to) the Hilbert-Schmidt norm. Their tech-
nique involves the Schmidt decomposition of a compact bilinear form from
Hilbert spaces. The problem is that, up to now, there is no reasonable analogue
of this decomposition for trilinear forms (the only version is the normal form
given in [2], which is too complicated to be useful here). This is the reason we
need new techniques to extend this result to more than two spaces. Our main
result is the following (Theorem 2.5)

Theorem. If α is a tensor norm (defined on tensor products of Hilbert
spaces) such that ⊗̂n

α,j=1�2 has an unconditional basis, then α is equivalent to
the Hilbert-Schmidt norm σ2.

The study of Hilbert-Schmidt operators (or bilinear forms) goes back to the
work of Hilbert and Schmidt about integral equations at the beginning of the
twentieth century. Since then, they have been constantly applied both in pure
and applied mathematics. The generalization of this class to the multilinear
setting goes back to Dwyer III [12] and was recovered independently by Pietsch
[23] and Janson, Peetre and Rochberg [15], where it is shown how this class
can be applied to the study of Hankel forms. Motivated by this application
Cobos, Kühn and Peetre continued the study in a series of papers [2], [3], [4],
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[5], where they give a first solution to the study of the Schmidt decomposition
of a multilinear form (the normal form). Very recently, Matos [17] gave a new
step, relating the Hilbert-Schmidt multilinear operators to the class of multiple
summing operators. This work was finished in [19] where it is proved that
these two classes are exactly the same, giving a multilinear extension of the
main theorem of [18].

In the context of the theory of polynomials in Banach spaces, the problem of
finding unconditional bases in symmetric tensor products has attracted recently
a lot of attention (see for instance [7] or [10] and the references therein). The
symmetric case of Kwapień and Pełczyński’s result appeared in [6], only for
the case of two spaces. In Theorem 2.6 we extend it to the general case.

Here we will take advantage of the results in [19]. Particularly, the key tool
in our proof of the above Theorem will be the following result, proved in [19]
(see below for the definitions):

Theorem 1.1. Let T : �2 × · · · × �2 −→ K be a multilinear form. If T is
multiple 1-summing, then T is Hilbert-Schmidt and

‖T ‖S2 ≤ 2
n
2 π1(T ).

The theory of multiple summing multilinear operators has been recently de-
veloped by Bombal and both authors in [1], [19], [20], [21], [22], and by Matos
in [17], where it is shown how this class properly generalizes the linear beha-
vior of p-summing operators. This paper represents then another application
of this theory to the study of the structure of tensor products (other applications
can be found in the above references).

We remind the reader that, for a finite sequence (xi)mi=1 ⊂ X and 1 ≤ p <
∞, we will write ‖(xi)mi=1‖ωp to denote

sup

{( m∑
i=1

|x∗(xi)|p
) 1

p

: x∗ ∈ BX∗

}
.

Definition 1.2. Let 1 ≤ p < +∞. A multilinear operator T : X1 × · · ·×
Xn −→ Y is multiple p-summing if there exists a constant K > 0 such that,
for every choice of sequences (xjij )

mj
ij=1 ⊂ Xj , the following relation holds

(1)

(m1,...,mn∑
i1,...,in=1

‖T (x1
i1
, . . . , xnin )‖p

) 1
p

≤ K
n∏
j=1

‖(xjij )
mj
ij=1‖ωp .

In that case, we define the multiple p-summing norm of T by πp(T ) =
min{K : K verifies (1)}
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We will use the following straightforward characterization of multiple 1-
summing operators

Lemma 1.3. A multilinear operator T : X1 ×· · ·×Xn −→ Y is multiple 1-
summing if and only if there exists a constantK such that for every 1 ≤ j ≤ n,
for every mj ∈ N and for every uj : �

mj∞ −→ Xj with ‖uj‖ ≤ 1, we have that

m1,...,mn∑
i1,...,im=1

∣∣T (u1(ei1), . . . , un(ein))
∣∣ ≤ K

where (eij )
mj
ij=1 is the canonical basis in �

mj∞ . In that case we have that π1(T )

is just the infimum of such constants K .

The notation will be the standard in the context and [9], [11] will be our
basic references for unexplained notation.

All along this paper all the operators are supposed to be continuous. Given
X, Y Banach spaces, L (X, Y ) will denote the Banach space of linear (and
continuous) operators. BX will be the closed unit ball of the Banach space
X and K will denote the scalar field, either R or C. If λ ∈ Kk , we write
dλ : Kk −→ Kk for the diagonal operator dλ(x) = (λixi)

k
i=1.

Let X be a Banach space and let I be either N or {1, . . . , m}. A sequence
(xi)i∈I of non-zero vectors is an unconditional basic sequence in X if there is
a constant K such that ∥∥∥∥

∑
i∈I
εiµixi

∥∥∥∥ ≤ K
∥∥∥∥
∑
i∈I
µixi

∥∥∥∥
for every εi, µi ∈ K with |εi | ≤ 1. The best of such constants K is called the
unconditional constant of (xi)i∈I . If a Banach space X has an unconditional
basis, we define ub(X) as the infimum of the unconditional constants of all the
unconditional basis of X.

In this paper, we will deal with tensor norms of order n defined on tensor
products of Hilbert spaces. We will call them simply tensor norms; that is, for
us, a tensor normαwill be a method of ascribing to each choiceH1, H2, . . . , Hn
of n Hilbert spaces, a norm (that we will also call α) in the tensor product
H1 ⊗ · · · ⊗Hn such that

i) ε ≤ α ≤ π , where ε and π are, respectively, the injective and projective
norms.

ii) For every uj ∈ L (Hj ,Kj ) (1 ≤ j ≤ n), where Hj,Kj are Hilbert
spaces for 1 ≤ j ≤ n, we have that u1 ⊗ · · · ⊗ un is α − α continuous
with norm less or equal than

∏n
j=1 ‖uj‖.
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We will write ⊗n
α,j=1Hj for the tensor product endowed with the norm α,

and ⊗̂n

α,j=1Hj for its completion.
We do not know of any general reference for tensor norms of order n, though

one can find the definition and some properties in [14]. However, everything
we are going to use is a straightforward generalization of the case n = 2, for
which we refer to [9] (specially to [9, Chapter 26], where the case of tensor
norms defined on Hilbert spaces is treated). If α is a tensor norm, α′ will be
its dual tensor norm.

We will need the following result that appeared in [7, Remark 1] (see [24]
and [25] for the case of two spaces). We write it in the case we are going to
use.

Theorem 1.4. If α is a tensor norm, we have that ⊗̂n

α,j=1�2 has an uncon-

ditional basis if and only if f 1
i1

⊗· · ·⊗f nin is an unconditional basis in ⊗̂n

α,j=1�2

for any choice of orthonormal basis (f jij )
∞
ij=1 ⊂ �2. In fact, in that case, the

unconditional constant of f 1
i1

⊗ · · · ⊗ f nin is bounded by

2n+1 ub(⊗̂n

α,j=1�2).

Finally, we recall the definition of the Hilbert-Schmidt norm σ2.

Definition 1.5. A multilinear form T : H1 × · · · ×Hn −→ K defined on
Hilbert spaces is Hilbert-Schmidt if

(2)

( ∑
i1∈I1,...,in∈In

∣∣T (e1
i1
, . . . , enin )

∣∣2
) 1

2

< ∞,

where (ejij )ij∈Ij ⊂ Hj is an orthonormal basis (1 ≤ j ≤ n). It is easy to see
that the expression (2) does not depend on the choice of the orthonormal bases
[17, Proposición 5.1]. In that case, (2) is the Hilbert-Schmidt norm of T and
we will denote it by ‖T ‖S2 . The class of Hilbert-Schmidt forms is denoted by
S2(H1, . . . , Hn).

Now (see [17]) one can see the Hilbert-Schmidt norm σ2 as the tensor norm
that satisfies (⊗̂n

σ2,j=1Hj
)∗ = S2(H1, . . . , Hn).

2. The Result

We need first some lemmas.

Lemma 2.1. If k ≤ m, each u in the unit ball of L (�k2, �
m
2 ) can be written

as a convex combination of isometries. As a consequence, if k ∈ N, each u
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in the unit ball of L (�k2, �2) can also be written as a convex combination of
isometries.

Proof. By Krein-Milman’s Theorem, it is enough to show that every ex-
treme point of the unit ball of L (�k2, �

m
2 ) is an isometry.

Letu : �k2 −→ �m2 be with ‖u‖ = 1. We consider its Schmidt decomposition
[11, Theorem 4.1]

u(·) =
k∑
i=1

λi(·|ei)fi,

where (ei)ki=1 ⊂ �k2, (fi)
k
i=1 ⊂ �m2 are orthonormal sequences and

‖u‖ = λ1 ≥ · · · ≥ λk.
If u is not an isometry we have that λk < 1 and then u can be written as a

convex combination of

k−1∑
i=1

λi(·|ei)fi + (·|ek)fk and
k−1∑
i=1

λi(·|ei)fi − (·|ek)fk,

which are also in the unit ball of L (�k2, �
m
2 ).

Lemma 2.2. If u : �k∞ −→ �2 satisfies ‖u‖ ≤ 1, then we can find an
element λ ∈ B�k2 , and a convex combination of isometries vr : �k2 −→ �2, say∑R
r=1 µrvr , such that

u = π2(u)

R∑
r=1

µr(vr ◦ dλ),

where π2(u) is the 2-summing norm of u.

Proof. By Pietsch’ Factorization Theorem, there exists a regular prob-
ability measure ν on {1, . . . , k} and an operator v : L2(ν) −→ �2, with
‖v‖ = π2(u), such that the following diagram commutes

�k∞
u−−−→ �2

↓id
↗

�v

L2(ν)

Now, the operator w : L2(ν) −→ �k2 given by w(x) = (
xi

√
ν(i)

)k
i=1 is an

isometry and so we can extend v to �k2 with the same norm (we still denote
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the extension by v). Then, if we call λ = (√
ν(i)

)k
i=1 ∈ B�k2 , we obtain the

following diagram
�k∞

u−−−→ �2

↓dλ
↗

�v

�k2

Finally, if we apply Lemma 2.1, we obtain that v
π2(u)

can be written as a

convex combination of isometries v
π2(u)

= ∑R
r=1 µrvr and we are done.

Lemma 2.3. If T : �2× n· · · ×�2 −→ K is a multilinear form, we have that

(3) π1(T ) ≤ KnG sup

{m1,...,mn∑
i1,...,in=1

∣∣λ1
i1

· · · λninT
(
f 1
i1
, . . . , f nin

)∣∣}

where KG is Grothendieck’s constant and the supremum is taken among all
the orthonormal sequences (f jij )

mj
ij=1 of �2 and all the elements λj ∈ B

�
mj

2
.

Proof. Following Lemma 1.3 we consider an arbitrary ε > 0 and operators
uj : �

mj∞ −→ �2 with ‖u‖ ≤ 1 such that

π1(T )− ε ≤
m1,...,mn∑
i1,...,in=1

∣∣T (
u1(ei1), . . . , un(ein)

)∣∣

where
(
eij

)
denotes the canonical basis of �

mj∞ . Now we use Lemma 2.2 to
obtain, for each 1 ≤ j ≤ n, an element λj ∈ B

�
mj

2
and a convex combination

of isometries
∑Rj
rj=1 µ

j
rj v

j
rj such that

uj = π2(uj )

Rj∑
rj=1

µjrj (v
j
rj

◦ dλj ).

By Grothendieck’s Theorem, π2(uj ) ≤ KG for every j and therefore,

π1(T )−ε ≤
R1,...,Rn∑
r1,...,rn=1

µ1
r1

· · ·µnrnKnG
m1,...,mn∑
i1,...,in=1

∣∣λ1
i1

· · · λninT
(
v1
r1
(ei1), . . . , v

n
rn
(ein )

)∣∣ .

Now, for each 1 ≤ j ≤ n and each rj , we have that
(
v
j
rj (e

j

ij
)
)mj
ij=1 is an

orthonormal sequence in �2. Then

KnG

m1,...,mn∑
i1,...,in=1

∣∣λ1
i1

· · · λninT
(
v1
r1
(ei1), . . . , v

n
rn
(ein )

)∣∣
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is bounded by the right hand side of (3) and we are done.

Lemma 2.4. If α is a tensor norm such that ⊗̂n

α,j=1�2 has an unconditional
basis, then we have that

α ≤ K ub
(⊗̂n

α,j=1�2
)
σ2

in ⊗n
j=1�2, where K = 2

3
2 n+1KnG.

Proof. By Theorem 1.4, for any orthonormal sequence (f jij )
mj
ij=1 in �2 (1 ≤

j ≤ n), the unconditional constant of
(
f 1
i1

⊗ · · · ⊗ f nin
)m1,...,mn

i1,...,in=1 in ⊗̂n

α,j=1�2 is
bounded by

2n+1 ub
(⊗̂n

α,j=1�2
)
.

Therefore, if T : �2×· · ·×�2 −→ K belongs to the unit ball of
(⊗̂n

α,j=1�2
)∗

,
we have that

m1,...,mn∑
i1,...,in=1

∣∣λ1
i1

· · · λninT
(
f 1
i1
, . . . , f nin

)∣∣ ≤ 2n+1 ub
(⊗̂n

α,j=1�2
) n∏
j=1

∥∥∥∥
mj∑
ij=1

λ
j

ij
f
j

ij

∥∥∥∥

for every choice of scalars λjij . Therefore, Lemma 2.3 tells us that T is multiple
1-summing with

π1(T ) ≤ 2n+1KnG ub
(⊗̂n

α,j=1�2
)
.

Theorem 1.1 gives us then that T is Hilbert-Schmidt with

‖T ‖S2 ≤ 2
n
2 2n+1KnG ub

(⊗̂n

α,j=1�2
)

and we are done.

We can prove now our main result. We restate it as follows

Theorem 2.5. There exists positive constantsK,K ′ > 0 that depends only
on n such that, if α is a tensor norm such that ⊗̂n

α,j=1�2 has an unconditional
basis, then

(4)
1

K ub
(⊗̂n

α,j=1�2
)σ2 ≤ α ≤ K ′ ub

(⊗̂n

α,j=1�2
)
σ2.

Proof. The existence ofK ′ is given by Lemma 2.4. To obtain the other in-
equality, we consider the dual tensor normα′. By Theorem 1.4, we have that the
canonical tensor basis (ei1 ⊗ · · · ⊗ ein)∞i1,...,in=1 is unconditional in ⊗̂n

α,j=1�2,
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with unconditional constant bounded by 2n+1 ub
(⊗̂n

α,j=1�2
)
. Therefore, for

each N ∈ N, as (⊗n
α′,j=1�

N
2

) = (⊗n
α,j=1�

N
2

)∗
,

the unconditional constant of (ei1 ⊗ · · · ⊗ ein)Ni1,...,in=1 in ⊗n
α′,j=1�

N
2 is uni-

formly bounded by
2n+1 ub

(⊗̂n

α,j=1�2
)

and, therefore, (ei1 ⊗ · · · ⊗ ein)∞i1,...,in=1 is an unconditional basis also in

⊗n
α′,j=1�2, with constant bounded by 2n+1 ub

(⊗̂n

α,j=1�2
)
.

We can use now Lemma 2.4 to obtain that

α′ ≤ K ′ ub
(⊗̂n

α′,j=1�2
)
σ2 ≤ K ′2n+1 ub

(⊗̂n

α,j=1�2
)
σ2.

As σ ′
2 = σ2, we obtain the left inequality of (4) with K = K ′2n+1.

We can also give a symmetric version of Theorem 2.5. We just have to
reproduce the proof given in [6, Corollary 4] for the case of two spaces. For
definitions and notation on symmetric tensor products see [13].

Theorem 2.6. If α is a symmetric tensor norm such that ⊗n,s
α �2 has an

unconditional basis, then α is equivalent to the Hilbert-Schmidt symmetric
tensor norm.
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