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SPACES OF FRACTIONS AND POSITIVE
FUNCTIONALS

F.-H. VASILESCU

Abstract

We discuss integral representations and extensions of positive functionals in some spaces of
fractions of continuous functions. As a consequence, numerical caracterizations for the solvability
of power moment problems and the uniqueness of the solutions in unbounded sets are obtained.

1. Introduction

Let K be the real field R or the complex one C. We consider vector spaces
over the field K, and K-linear maps defined between such spaces. When no
confusion is possible, the expression “K-linear” will be replaced by “linear”.

Let � be a compact Hausdorff space and let CK(�) be the algebra of all
K-valued continuous functions on �, endowed with the natural norm ‖f ‖∞ =
supω∈� |f (ω)|, f ∈ CK(�). It is well known that every positive linear func-
tional on CK(�) has an integral representation. Specifically, if ψ : CK(�) → K
is linear and positive, then there exists a uniquely determined positive meas-
ure µ on � such that ψ(f ) = ∫

�
f dµ, f ∈ CK(�). As a matter of fact, if

ψ : CK(�) → K is linear, then ψ is positive if and only if ψ is continuous
and ‖ψ‖ = ψ(1).

These features of positive linear functionals can be partially or totally re-
captured in more general spaces, derived from the basic model CK(�).

Let Q be a family of nonnull positive elements of CK(�). We say that Q is
a multiplicative family if (i) 1 ∈ Q, (ii) q ′, q ′′ ∈ Q implies q ′q ′′ ∈ Q, and (iii)
if qh = 0 for some q ∈ Q and h ∈ CK(�), then h = 0.

Let CK(�)/Q denote the algebra of fractions with numerators in CK(�),
and with denominators in the multiplicative family Q, which is a unital K-
algebra (see, for instance, [16] for details). This algebra has a natural involution
f → f̄ , induced by the natural involution of CK(�) (which is the identity for
K = R).
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To define a natural topological structure on CK(�)/Q, we note that for every
f ∈ CK(�)/Q we can find a q ∈ Q such that qf ∈ CK(�). If

CK(�)/q = {f ∈ CK(�)/Q; qf ∈ CK(�)},
then we have CK(�)/Q = ∪q∈QCK(�)/q. Setting ‖f ‖∞,q = ‖qf ‖∞ for each
f ∈ CK(�)/q, the pair (CK(�)/q, ‖∗‖∞,q) becomes a Banach space. For this
reason, CK(�)/Q can be naturally regarded as an inductive limit of Banach
spaces (see [11], Section V.2).

Elementary facts related to the theory of inductive limits of normed spaces,
necessary for further development, are presented in the next section.

In each space CK(�)/q we have a positive cone (CK(�)/q)+ consisting of
those elements f ∈ CK(�)/q such that qf ≥ 0 as a continuous function. We
say that f is positive if f ∈ (CK(�)/q)+.

The positive elements of the algebra CK(�)/Q are, by definition, the mem-
bers of the cone (CK(�)/Q)+, consisting of all finite sums of positive ele-
ments from the cones (CK(�)/q)+, with q ∈ Q arbitrary. The positivity of
a linear map on CK(�)/Q will be defined with respect to the positive cone
(CK(�)/Q)+.

The aim of this work is describe the positive functionals in the algebra
of fractions CK(�)/Q, and to characterize those linear functionals on some
subspaces of CK(�)/Q which extend to positive ones. The main result (The-
orem 3.7), whose proof uses a weak∗-compactness argument inspired from
[14], will be applied to characterize the solvability of the multidimensional
power moment problem (in particular, the several variable Hamburger mo-
ment problem), in numerical terms (Theorems 4.1, 4.2, and 4.8). The unique-
ness of the solution of the moment problem in unbounded closed sets is also
characterized in numerical terms (see Theorem 4.5).

Let us briefly present our characterisation of the existence of a solution for
the Hamburger moment problem in one variable. Let µ be a positive measure
on the real line R such that the monomial tk ∈ L1(µ) for all integers k ≥ 0 (i.e.,
the measure µ has moments of all orders). If p is any polynomial of degree
d ≥ 0 then we clearly have

∣∣∣∣
∫

R
p(t) dµ(t)

∣∣∣∣ ≤ sup
t∈R

|p(t)|
(1 + t2)m

∫
R
(1 + t2)m dµ(t),

where the integer m satisfies d ≤ 2m. These necessary conditions, which
can be expressed only in terms of moments of µ, are also sufficient, even for
several variables. Moreover, the quantities supt∈R |p(t)|/(1+t2)m are universal
and calculable, at least in principle. In Remark 4.11, we present a method of
computation of such sup-norms.
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The classical result of Haviland concerning the solvability of the moment
problem (see [7]) can be obtained as a consequence of Theorem 4.2 (see Corol-
lary 4.4). The characterization in terms of semi-norms stated in Proposition 4.6
gives a different insight to the moment problem in unbounded sets, with ref-
erences to the determinacy in terms of density (see Proposition 4.7). All these
results are in concordance with the corresponding assertions from [9] and [15].
Moment problems in one or several variables are extensively studied [1], [2],
[6], [13] etc. Other descriptions of positive functionals on various spaces, using
different methods, can be found in [12].

The author is indebted to E.Albrecht (Saarbrücken) and O. Demanze (Lille)
for useful discussions on early versions of this work.

2. Linear functionals on inductive limits

In this section we present some auxiliary results, concerning the linear func-
tionals defined on inductive limits of vector spaces (see, for instance, [11],
Section V.2). We restrict ourselves to inductive limits of normed spaces.

Let X be a vector space over the field K. Following [11], the space X is
said to be an inductive limit (of normed spaces) if X is spanned by a family of
vector subspaces (Xα)α∈A, such that each Xα is a normed space.

Unlike in [11], we use the notation X = ∑
α∈A Xα to indicate that X is the

inductive limit of the family of normed subspaces (Xα)α∈A.
Suppose that X = ∑

α∈A Xα . In this case, a neighborhood base of X is
given by the family of sets of the form

Vρ = co

(⋃
α∈A

{
x ∈ Xα; ‖x‖α ≤ ρα

})
,

where ‖∗‖α is the norm on Xα , ρ = (ρα)α∈A is a family of positive numbers
and “co” stands for the “convex hull”. In fact, it is easily seen that each convex
set Vρ is also balanced and absorbent.

For each set Vρ ⊂ X as above, we denote by σVρ
its gauge function (see

[11]), which is a seminorm on X. Specifically,

σVρ
(x)= inf

F

{∑
α∈F

λα; x =
∑
α∈F

λαxα, λα ≥ 0, xα ∈ Xα, ‖xα‖α ≤ ρα, α ∈ F

}
,

x ∈ X,

where F runs the finite subsets of A. It is easily seen that

σVρ
(x) = inf

F

{∑
α∈F

ρ−1
α ‖xα‖α; x =

∑
α∈F

xα, xα ∈ Xα, α ∈ F

}
, x ∈ X,
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where F runs the finite subsets of A.
In particular, σVρ

(x) ≤ ρ−1
α ‖x‖α for all x ∈ Xα and α ∈ A.

A linear functional ψ : X → K is said to be continuous if ψα = ψ |Xα is
continuous for all α ∈ A.

We want to describe the continuity of a linear functional in terms of gauge
functions. Some of these (elementary) results are possibly known. We preserve
the notation from above.

Lemma 2.1. Let ψ : X → K be linear.
(a) If ψ is continuous, then |ψ(x)| ≤ σVρ

(x), x ∈ X, where ρα = ‖ψα‖−1

if ψα �= 0 and ρα > 0 is arbitrary if ψα = 0.
(b) Conversely, if |ψ(x)| ≤ σVρ

(x), x ∈ X, for a certain Vρ , then ‖ψα‖ ≤
ρ−1

α for all α ∈ A.

Proof. (a) If x ∈ X and ε > 0 are given, then there exists a representation
x = ∑

k∈K λkxk , where λk ≥ 0, xk ∈ Xαk
, ‖xk‖αk

≤ ραk
, k ∈ K , K ⊂ Z+ is

finite and
∑

k∈K λk ≤ σVρ
(x) + ε. Assuming, with no loss of generality, that

ψαk
�= 0 for k ∈ K , we have:

|ψ(x)| ≤
∑
k∈K

λk|ψαk
(xk)| ≤

∑
k∈K

λk‖ψαk
‖ ‖xk‖αk

≤ σVρ
(x) + ε.

As ε > 0 is arbitrary, we obtain the estimate |ψ(x)| ≤ σVρ
(x), x ∈ X.

(b) Conversely, fix an α ∈ A such that ψα �= 0, and let x ∈ Xα , x �= 0. If
y = ‖x‖−1

α ραx, then y ∈ Vρ , and so |ψ(y)| ≤ 1, whence |ψ(x)| ≤ ‖x‖αρ−1
α ,

implying ‖ψα‖ ≤ ρ−1
α .

Lemma 2.2. Let Y ⊂ X be a vector subspace and let φ : Y → K be linear.
Let also Yα = Y ∩ Xα and φα = φ |Yα , α ∈ A. Suppose that φα is continuous
and �= 0 for all α ∈ A.

The functional φ has a continuous linear extension ψ : X → K such
that ‖ψα‖ = ‖φα‖, α ∈ A, if and only if |φ(y)| ≤ σVρ

(y), y ∈ Y , where
ρα = ‖φα‖−1, α ∈ A.

Proof. If ψ : X → K is a continuous extension of φ : Y → K such that
‖ψα‖ = ‖φα‖, α ∈ A, then |ψ(x)| ≤ σVρ

(x), x ∈ X, where ρα = ‖ψα‖−1 =
‖φα‖−1, by Lemma 2.1(a). In particular, |φ(y)| ≤ σVρ

(y), y ∈ Y .
Conversely, if |φ(y)| ≤ σVρ

(y), y ∈ Y , the Hahn-Banach theorem implies
the existence of an extension φ : Y → K such that |ψ(x)| ≤ σVρ

(x), x ∈ X. It
follows from Lemma 2.1(b) that ‖ψα‖ ≤ ‖φα‖, α ∈ A. But ψα is an extension
of φα , and so ‖ψα‖ = ‖φα‖ for all α ∈ A.

Remark 2.3. We keep the notation from Lemma 2.2. Let Z = {x ∈
X; σVρ

(x) = 0}, which is a vector subspace of X. Then the quotient X/Z is a
normed space, whose norm is given by ‖x + Z‖ = σVρ

(x), x ∈ X.
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Suppose the functional φ : Y → K continuous. Then φ induces a functional
% : (Y +Z)/Z → K by the formula %(y +Z) = ψ(y), y ∈ Y . This definition
is correct, because the trivial extension φ̃(y + z) = φ(y), y ∈ Y , z ∈ Z, is
well defined and continuous on Y + Z, via the equality σVρ

(y + z) = σVρ
(y).

The functional φ : Y → K extends uniquely to a continuous linear func-
tional ψ : X → K if and only if the subspace (Y + Z)/Z is dense in X/Z.
Indeed, if (Y + Z)/Z is dense in X/Z, then % has a unique continuous exten-
sion ' : X/Z → K. The functional ψ : X → K, given by ψ(x) = '(x + Z),
x ∈ X, is unique because any other continuous extension ψ ′ : X → K of φ

gives rise to an extension ' ′ : X/Z → K of %, which must be equal to '.
This implies the equality ψ ′ = ψ .

Conversely, if (Y + Z)/Z is not dense in X/Z, we can find a nonnull
continuous linear functional ( : X/Z → K which is null on (Y + Z)/Z. If
γ : Y → K is the functional induced by (, then for any extension ψ of φ, the
functional ψ + γ is another extension, different from ψ .

Remark 2.4. We recall some well known facts, directly derived from
the classical proof of the Hahn-Banach theorem (see, for instance, [5], The-
orem II.3.10).

Let X be a real vector space and let σ be a seminorm on X. Let also Y ⊂ X

be a vector subspace and let φ : Y → R be a linear functional such that
φ(y) ≤ σ(y), y ∈ Y . For each x ∈ X we set

a(x) = sup
y∈Y

[−φ(y) − σ(y + x)],

b(x) = inf
y∈Y

[σ(y + x) − φ(y)].

As in the proof of Theorem II.3.10 from [5], we have a(x) ≤ b(x) for all
x ∈ X, and a(y) = b(y) = φ(y) if y ∈ Y . Moreover, if ψ : X → R is any
Hahn-Banach extension of φ (i.e., ψ is linear and extends φ, and ψ(x) ≤ σ(x),
x ∈ X), we have ψ(x) ∈ L(x), where L(x) = [a(x), b(x)], for all x ∈ X.

3. Positive functionals on subspaces of fractions

Let � be a compact Hausdorff space, let Q ⊂ CK(�) be a multiplicative family,
and let CK(�)/Q be the algebra of fractions with numerators in CK(�), and
with denominators in Q.

Remark. We do not intend to define formally the concept of space of
fractions. We shall work with various subspaces of the algebra of fractions
CK(�)/Q, having suitable properties. For instance, if Q0 ⊂ Q is nonempty, and
if S ⊂ CK(�) is a vector subspace, we may consider the subspace

∑
q∈Q0

S /q

of CK(�)/Q, where S /q = {f ∈ CK(�)/q; qf ∈ S }. As S /q ⊂ CK(�)/q,
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q ∈ Q0, is a normed subspace, the space
∑

q∈Q0
S /q is an inductive limit of

normed spaces.

We use throughout the text the notation q−1 to designate the element 1/q

for any q ∈ Q.

Definition 3.1. Let Q0 ⊂ Q be nonempty. Let F = ∑
q∈Q0

CK(�)/q,
and let ψ : F → K be linear. The functional ψ is said to be positive if
ψ |(CK(�)/q)+ ≥ 0 for all q ∈ Q0.

Theorem 3.2. Let Q0 ⊂ Q be nonempty, let F = ∑
q∈Q0

CK(�)/q, and
let ψ : F → K be linear. The functional ψ is positive if and only if

sup{|ψ(hq−1)|; h ∈ CK(�), ‖h‖∞ ≤ 1} = ψ(q−1), q ∈ Q0.

If ψ : F → C is positive, there exists a unique positive Borel measure µ

on � such that
ψ(f ) =

∫
�

f dµ, f ∈ F .

In particular, the function q−1 is µ-integrable for all q ∈ Q0.

Proof. We use the (already mentioned) fact that a linear functional θ :
CK(�) → C is positive if and only if it is continuous and ‖θ‖ = θ(1)

Set ψ̃q(h) = ψ(hq−1), h ∈ CK(�), q ∈ Q0.
Suppose ψ positive. As CK(�) ⊂ F and each positive function h ∈ CK(�)

is also positive in CK(�)/q, the functional ψ̃q is positive on CK(�). Hence

‖ψ̃q‖ = sup{|ψ(hq−1)|; h ∈ CK(�), ‖h‖∞ ≤ 1}
= ψ̃q(1) = ψ(q−1), q ∈ Q0,

which is the stated condition.
Conversely, the equality ‖ψ̃q‖ = ψ(q−1) = ψ̃q(1) shows that ψ̃q is positive

on CK(�). Then there exists a positive (Borel) measure µq on � such that
ψ̃q(h) = ∫

�
h dµq , h ∈ CK(�), for all q ∈ Q0.

The relation ψ̃q1 (hq1) = ψ(h) = ψ̃q2 (hq2) for all q1, q2 ∈ Q0 and h ∈
CK(�) implies the equality q1µq1 = q2µq2 . Therefore, there exists a positive
measure µ such that µ = qµq for all q ∈ Q0.

The equality µ = qµq shows the set {ω; q(ω) = 0} must be µ-null. Con-
sequently, µq = q−1µ, and the function q−1 is µ-integrable for all q ∈ Q0.

If f ∈ F is arbitrary, then f = ∑
j∈J hj q−1

j , with hj ∈ CK(�), qj ∈ Q0

for all j ∈ J , J finite. We can write

ψ(f ) =
∑
j∈J

ψ̃qj
(hj ) =

∑
j∈J

∫
�

hj dµqj
=

∫
�

f dµ.
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The measure µ being positive, the functional ψ must be also positive.
The asserted integral representation for ψ via the measure µ is now clear.

Moreover, the measure µ is uniquely determined because of the equality
ψ(h) = ∫

�
h dµ, h ∈ CK(�).

The measure µ on � with the property ψ(f ) = ∫
�

f dµ, f ∈ F , given by
Theorem 3.2, is said to be a representing measure for the positive functional
ψ : F → C.

Remark 3.3. Let F = ∑
q∈Q0

CK(�)/q for a nonempty Q0 ⊂ Q, and let

ψ : F → C be a positive functional on F , with ψ(1) > 0. If ψ̃q is defined
as in the proof of Theorem 3.2, because ψ̃q(q) = ψ(1) > 0, and so ψ̃q �= 0,
setting ψq = ψ |CK(�)/q, it follows from the previous proof that

‖ψq‖ = sup
‖f ‖∞,q≤1

|ψ(f )| = sup
‖h‖∞≤1

|ψ̃q(h)| = ‖ψ̃q‖ = ψ(q−1) > 0

for all q ∈ Q0.

Theorem 3.4. Let Q0 ⊂ Q be nonempty and let F = ∑
q∈Q0

CK(�)/q.
Let also S be a vector subspace of F such that 1 ∈ S and q−1 ∈ S for all
q ∈ Q0.

A linear functional φ : S → K with φ(1) > 0 extends to a positive
linear functional ψ : F → K if and only if φ(q−1) > 0, q ∈ Q0, and
|φ(g)| ≤ σV (g), g ∈ S , where

V = co

( ⋃
q∈Q0

{
f ∈ CK(�)/q; ‖qf ‖∞ ≤ φ(q−1)−1

})
.

Proof. Assume first that φ has a positive extension ψ . Then ψ(q−1) =
φ(q−1) > 0 for all q ∈ Q0, via Remark 3.3.

To prove the remaining condition, we note that we actually have |ψ(f )| ≤
σV (f ), f ∈ F . Indeed, ψ being positive with ψ(1) > 0, if ψq is as in
Remark 3.3, we have that ‖ψq‖ = ψ(q−1) > 0, and the assertion follows
from Lemma 2.1(a). In particular, |φ(g)| ≤ σV (g), g ∈ S , because ψ is an
extension of φ.

Conversely, let φ : S → K be a linear functional having the properties from
the statement. The Hahn-Banach theorem implies the existence of an extension
ψ : F → K with the property |ψ(f )| ≤ σV (f ), f ∈ F . Then we have the
estimate ‖ψq‖ ≤ φ(q−1), where ψq = ψ |CK(�)/q, via Lemma 2.1(b). The
equality φ(q−1) = ψ(q−1) proves that ‖ψq‖ = ψ(q−1). An application of
Theorem 3.2, via Remark 3.3, shows that ψ must be positive.
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Remarks 3.5. (1) Let q ∈ Q be fixed and let S ⊂ CK(�)/q be such that
q−1 ∈ S . Let φ : S → K be linear. If ‖φ‖ = φ(q−1), then φ has a positive
extension ψ : CK(�)/q → K, where ‖φ‖ is computed with respect to the
norm of CK(�)/q restricted to S . Indeed, if ψ is a norm preserving extension
of φ to CK(�)/q, then ‖ψ‖ = ψ(q−1) and the assertion follows directly from
Theorem 3.2 (also showing that the condition ‖φ‖ = φ(q−1) is necessary and
that it insures the existence of a representing measure for φ).

(2) As we have already noticed at the beginning of the second section, the
gauge function of type σV can be expressed in a slightly different manner.
Let Q0 ⊂ Q be nonempty, let Sq be a vector subspace of CK(�)/q, thus
qSq ⊂ CK(�), and let F = ∑

q∈Q0
Sq . Let also δ = (δq)q∈Q0 be a family of

positive numbers. Set

σδ(f ) = inf

{∑
k∈K

δqk
‖hk‖∞; f =

∑
k∈K

q−1
k hk, hk ∈ qkSqk

, k ∈ K, K finite

}
.

We have the equality σδ(f ) = σV (f ), f ∈ F , where σV is the gauge
function of the set

V = co

( ⋃
q∈Q0

{
f ∈ Sq; ‖qf ‖∞ ≤ δ−1

q

})
.

With some supplementary conditions, one can obtain a version of The-
orem 3.4 depending on simplified estimates (involving no gauge function).
For this reason, the next theorem is more convenient for certain applications
(see the next section).

Remark 3.6. In the family Q there is a natural partial ordering (reflexive
and transitive but, in general, not antisymmetric), written as q ′ |q ′′ for q ′, q ′′ ∈
Q, meaning q ′ divides q ′′, that is, there exists a q ∈ Q such that q ′′ = q ′q.
In particular, a subset Q0 ⊂ Q is directed (resp. cofinal in Q) if for each pair
q ′, q ′′ ∈ Q0 there exists a q ∈ Q0 such that q ′ |q and q ′′ |q in Q (resp. for every
q ∈ Q we can find a q0 ∈ Q0 such that q |q0). Because Q is multiplicative,
every cofinal subset of Q is directed.

Note also that if q ′, q ′′ ∈ Q and q ′ |q ′′, then CK(�)/q ′ ⊂ CK(�)/q ′′, as
one can easily see.

For every q ∈ Q we denote by Z(q) the set {ω ∈ �; q(ω) = 0}, that is, the
zeros of q in �.

Theorem 3.7. Let Q0 be a cofinal subset of Q. Suppose CK(�) separable
and that there exists a function q0 ∈ Q0 with the property Z(q0) = ∪q∈Q0 Z(q).
Let F = ∑

q∈Q0
Fq , where Fq is a vector subspace of CK(�)/q such that
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1 ∈ Fq , q−1 ∈ Fq , and Fq ⊂ Fq ′ for all q, q ′ ∈ Q0, with q |q ′. Let also
φ : F → K be linear with φ(1) > 0, and set φq = φ|Fq for all q ∈ Q0.

The linear functional φ extends to a positive linear functional ψ on
CK(�)/Q such that ‖ψq‖ = ‖φq‖, where ψq = ψ |CK(�)/q, if and only
if ‖φq‖ = φ(q−1) > 0 for all q ∈ Q0.

Proof. If φ : F → K extends to a positive ψ : CK(�)/Q → K such that
‖ψq‖ = ‖φq‖ for all q ∈ Q0, then ‖ψq‖ = ‖φq‖ = φ(q−1) = ψ(q−1) >

0, by Theorem 3.2 and Remark 3.3. (Moreover, this is true with no special
assumptions on the space CK(�), on (Fq)q∈Q0 or on Q0.)

Conversely, extend φq to a linear functional ξq : CK(�)/q → K such that
‖ξq‖ = ‖φq‖ = φ(q−1) for all q ∈ Q0. Set ξ̃q (h) = ξq(hq−1), h ∈ CK(�),
q ∈ Q0. We have ‖ξ̃q‖ = ‖ξq‖ = φ(q−1) = ξ̃q (1) for all q ∈ Q0, as in
Remark 3.3. Therefore, ξ̃q is positive on CK(�), and we can find a positive
measure νq on � such that ξ̃q (h) = ∫

h dνq for all h ∈ CK(�), q ∈ Q0. This
implies that the functional θq(h) = ξ̃q (qh) is also positive on CK(�). Thus,
we can find a measure µq on � such that θq(h) = ∫

h dµq for all h ∈ CK(�),
q ∈ Q0. As in the proof of Theorem 3.2, the equality µq = qνq shows that the
set {ω ∈ �; q(ω) = 0} is µq-null, and the function q−1 is µq-integrable for
all q ∈ Q0. Moreover,

φ(f ) = ξq(f ) = ξ̃q (qf ) =
∫

qf dνq =
∫

f dµq

for all f ∈ Fq and q ∈ Q0. As a matter of fact, as we have φq = φq ′ |Fq ,
we infer that

∫
f dµq = ∫

f dµq ′ for all f ∈ Fq ⊂ Fq ′ , when q |q ′, via
the hypothesis. Note also that ‖µq‖ = ∫

dµq = φ(1) for all q ∈ Q0, by
the positivity of µq . Therefore, the family (µq)q∈Q0 is bounded in the dual
MK(�) of CK(�), which is constantly identified with the space of finite Borel
measures on �.

Let Mq be the weak∗-closure of the set {µq ′ ; q ′ ∈ Q0, q |q ′} in MK(�),
for all q ∈ Q0, q0 |q, with q0 as in the statement. Note also that, for all
finite families {q1, . . . , qm} of elements of Q0 divided by q0, we can find a
q ∈ Q0 divided by q1, . . . , qm, because the set Q0 is directed, and so Mq ⊂
Mq1 ∩ · · ·∩Mqm

. This shows that ∩q∈Q0,q0|qMq is nonempty in MK(�), via the
weak∗-compactness of its bounded sets.

Fix an element µ ∈ ∩q∈Q0,q0 |qMq , regarded as a measure on �. Because the
space CK(�) is separable, the weak∗-topology of the bounded sets in MK(�)

is metrizable (see [8], Theorem 2.6.23). Therefore, there exists a sequence
(µqk

)k≥1 in Mq0 which is weakly∗-convergent to µ ∈ Mq0 . As
∫

h dµ =
limk→∞

∫
h dµqk

, h ∈ CK(�), we clearly have µ positive and
∫

dµ = φ(1).
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Put N = Z(q0). Note that the set N is µq-null for each q ∈ Q0 with
q0 |q, as a consequence of a previous remark and the hypothesis on q0. We
want to show that the functions from

∑
q∈Q0

CK(�)/q, restricted to � \ N ,
are all µ-integrable. It suffices to show that each function q−1, restricted to
�\N , with q ∈ Q0, is µ-integrable. We refine some ideas from [14] (see [14],
Proposition 1).

Fix a function q ∈ Q0. Note that if q ′ ∈ Q0 is divided by q and q ′−1 is µ-
integrable, then q−1 is µ-integrable. Therefore, since Q0 is directed, we may
assume, with no loss of generality, that q0 |q.

Let (µqk
)k≥1 be a sequence in Mq which is weakly∗-convergent to µ. As the

set � is compact and metrizable (see [8], Ex. 2.50), we can find a sequence
of compact subsets (�m)m≥1 such that �m is a subset of the interior of �m+1

for all m ≥ 1, and ∪m≥1�m = � \ N . We also choose a sequence of functions
(gm)m≥1 in CK(�), having values in the interval [0, 1], with gm |�m = 1 and
the support of gm included in the interior of �m+1 for all m ≥ 1. By Fatou’s
lemma, we have:∫

�\N

q−1 dµ =
∫

lim
m→∞ gmq−1 dµ ≤ lim inf

m→∞

∫
gmq−1 dµ

= lim inf
m→∞ lim

k→∞

∫
gmq−1 dµqk

≤ lim
k→∞

∫
q−1 dµqk

= φ(q−1),

because q−1 ∈ Fqk
for all k ≥ 1, in virtue of the hypothesis on the family

(Fq)q∈Q0 .
Consequently, all functions in

∑
q∈Q0

CK(�)/q, restricted to � \ N , are
µ-integrable. As a matter of fact, we have the equality

∑
q∈Q0

CK(�)/q =
CK(�)/Q because the family Q0 is cofinal in Q (see Remark 3.6).

We now prove the equality φ(f ) = ∫
�\N

f dµ, f ∈ F . It suffices to take

an f = hq−1 ∈ Fq with q ∈ Q0, and so h ∈ CK(�). We can find a function
q ′ ∈ Q0 such that qq0 |q ′, because Q0 is cofinal in Q. Then, with a sequence
(µqk

)k≥1 weakly∗-convergent to µ in Mq ′ and (gm)m≥0 as above,
∫

�\N

f dµ = lim
m→∞

∫
gmhq0(qq0)−1 dµ = lim

m→∞ lim
k→∞

∫
gmhq0(qq0)−1 dµqk

= lim
k→∞ lim

m→∞

∫
gmhq0(qq0)−1 dµqk

= lim
k→∞

∫
hq0(qq0)−1 dµqk

=
∫

f dµq = φq(f ) = φ(f ),

as noticed before, since q |qk for all k. The two previous limits are interchange-
able because the function hq0 is null on N , and so the sequence (gmhq0)m≥1
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is uniformly convergent to hq0. In addition, the inclusion (qq0)−1 ∈ Fqk
im-

plies
∫

(qq0)−1 dµqk
= φ((qq0)−1), k ≥ 1, and thus the sequence of measures

((qq0)−1µqk
)k≥1 is norm bounded.

Similarly, we have:∫
N

dµ = lim
m→∞

∫
(1 − gm)q0q−1

0 dµ = lim
m→∞ lim

k→∞

∫
(1 − gm)q0q−1

0 dµqk

= lim
k→∞ lim

m→∞

∫
(1 − gm)q0q−1

0 dµqk
= 0,

for a sequence (µqk
)k≥1 in Mq0 which is weakly∗-convergent to µ, because

of the uniform convergence of the sequence ((1 − gm)q0)m≥1 to 0 and the
boundedness of the sequence of measures (q−1

0 µqk
)k≥1, showing that the set

N is µ-null.
If we denote by ψ the linear functional f → ∫

�
f dµ, f ∈ CK(�)/Q, then

ψ is a positive extension of φ. The equalities ‖ψq‖ = ψ(q−1) = φ(q−1) =
‖φq‖, q ∈ Q0, follow from Theorem 3.2.

Remarks 3.8. (1) The previous theorem gives an extension ψ of φ whose
representing measure µ has the property µ(N) = 0, where N = ∪q∈QZ(q) =
Z(q0).

(2) To avoid some technical complications, it is sometimes useful to replace
the partial ordering “|” in the family Q (see Remark 3.6) by a stronger one “↑” in
the sense that q ′ ↑ q ′′ implies q ′ |q ′′. The proof of Theorem 3.7 still holds, with
minor modifications, by assuming the set Q endowed with a partial ordering
“↑” stronger that “|”, and the set Q0 cofinal in Q with respect to this stronger
partial ordering.

4. Application to moment problems

In this section, we apply some of the preceding results to get information
related to power moment problems in unbounded sets. We restrict ourselves
to real moment problems, the complex case versions being similar.

Let us denote by Zn+ the set of all multi-indices α = (α1, . . . , αn), i.e.,
αj ∈ Z+ for all j = 1, . . . , n, with Z+ the nonnegative part of the ring of
integers Z.

Let (R∞)n = (R ∪ {∞})n, i.e., the Cartesian product of n copies of the
one point compactification R∞ = R ∪ {∞} of the real line R. We consider
the family Qn consisting of all rational functions of the form qα(t) = (1 +
t2
1 )−α1 , . . . , (1 + t2

n)−αn , t = (t1, . . . , tn) ∈ Rn, where α = (α1, . . . , αn) ∈ Zn+
is arbitrary. The function qα can be continuously extended to (R∞)n \Rn for all
α ∈ Zn+. Moreover, the set Qn becomes a multiplicative family in CR((R∞)n).
Set also pα(t) = qα(t)−1, t ∈ Rn, α ∈ Zn+.
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Let Pn be the algebra of all polynomial functions on Rn, with real coef-
ficients. Let Pn,α be the vector space generated by the monomials tβ =
t
β1
1 · · · t

βn
n , with βj ≤ 2αj , j = 1, . . . , n, α ∈ Zn+. It is clear that p/pα can

be continuously extended to (R∞)n \ Rn for every p ∈ Pn,α , and so it can
be regarded as an element of CR((R∞)n). Therefore, Pn,α is a subspace of
CR((R∞)n)/qα = pαCR((R∞)n) for all α ∈ Zn+.

Let γ = (γα)α∈Zn+ be an n-sequence of real numbers and let Lγ : Pn → C
be the associated linear functional given by Lγ (tα) = γα , α ∈ Zn+, extended
by linearity. Let also K ⊂ Rn be a closed subset. Recall that the n-sequence
γ = (γα)α∈Zn+ of real numbers is said to be a K-moment sequence if there
exists a positive measure µ on K such that tα ∈ L1(µ) and γα = ∫

K
tα dµ(t),

α ∈ Zn+. The measure µ is said to be a representing measure for γ (see, for
instance, [2]). To avoid the trivial solution, one usually requires that γ0 > 0.

First of all, let us state a characterization of the moment sequences on Rn,
i.e., the Rn-moment sequences.

Theorem 4.1. An n-sequence γ = (γα)α∈Zn+ (γ0 > 0) of real numbers
is a moment sequence on Rn if and only if the associated linear functional
Lγ : Pn → R has the properties Lγ (pα) > 0 and

|Lγ (p)| ≤ Lγ (pα) sup
t∈Rn

|qα(t)p(t)|, p ∈ Pn,α, α ∈ Zn
+.

Theorem 4.1 follows directly from Theorem 4.2, which characterizes the
K-moment sequences, in general.

Remarks. (1) Defining the partial ordering ξ ≺ η for two multi-indices
ξ = (ξ1, . . . , ξn), η = (η1, . . . , ηn), meaning that ξj ≤ ηj , j = 1, . . . , n, we
can rephrase the conditions from Theorem 4.1 as follows: γ = (γα)α∈Zn+ is a
moment sequence on Rn if and only if Lγ (pα) > 0 and∣∣∣∣

∑
β≺2α

aβγβ

∣∣∣∣ ≤ Lγ (pα) sup
t

∣∣∣∣
∑
β≺2α

aβtβqα(t)

∣∣∣∣
for all finite sequences of real numbers (aβ)β≺2α and all α ∈ Zn+, via the explicit
structure of the space Pn,α .

(2) For a fixed α ∈ Zn+, we may consider a finite sequence γ = (γβ)β≺2α

(γ0 > 0). Remark 3.5(1) leads directly to a characterization of all such se-
quences γ having a representing measure, i.e., a positive measure on Rn (or on
a closed subset of it) such that γβ = ∫

tβ dµ(t) for all β ≺ 2α. A necessary
and sufficient condition is that

sup
{|Lγ (p)|; sup

t∈Rn

|qα(t)p(t)| ≤ 1
} = Lγ (pα) > 0,
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which is equivalent to the condition in (1), for a fixed α.
The moment problem for finite sequences, i.e., the truncated moment prob-

lem, is extensively developed in [3] and [4].

Fix a set closed K ⊂ Rn. If K is bounded, an n-sequence γ = (γα)α∈Zn+
is a K-moment sequence if and only if |Lγ (p)| ≤ γ0 supt∈K |p(t)|, p ∈ Pn,
which is equivalent to the existence of a positive extension of Lγ to CR(K).
As we are primarily interested to apply this point of view to the unbounded
case, we will assume, in general, that K is unbounded.

Remark. Let K ⊂ Rn be closed and unbounded, and let � be the closure
of K in the compact space (R∞)n. Let also Qn(�) be the set of functions from
Qn, (extended to (R∞)n and) restricted to �. Note that the map Qn � q →
q |� ∈ Qn(�) is not necessarily injective.

If q ′, q ′′ ∈ Qn(�), we write q ′ ↑ q ′′ if for any α ∈ Zn+ with the property
q ′ = qα |�, we can find a β ∈ Zn+ such that q ′′ = qβ |� and β − α ∈ Zn+.
This can be easily seen to be a partial ordering stronger than the division (see
Remark 3.6 and Remark 3.8(2)).

For every q ∈ Qn(�), let Pn,q be the space of polynomial functions p |K ,
p ∈ Pn, such that the function (pq) |K has a continuous extension to �.

Let Pn,K be the space {p |K; p ∈ Pn}. Then we have Pn,K= ∑
q∈Qn(�)Pn,q ,

and Pn,K can be regarded as a subspace of the algebra of fractions
CR(�)/Qn(�), where each space Pn,q is a subspace of CR(�)/q, q ∈ Qn(�).

When the map Lγ has the property Lγ (p) = 0 for every p ∈ Pn with
p |K = 0, then Lγ induces a linear map on Pn,K , which will be also denoted
by Lγ .

With these remarks and notation, we have the following.

Theorem 4.2. An n-sequence γ = (γα)α∈Zn+ (γ0 > 0) of real numbers
is a K-moment sequence if and only if the associated linear functional Lγ :
Pn → R has the properties Lγ (p) = 0 for every p ∈ Pn with p |K = 0,
Lγ (q−1) > 0 and

|Lγ (p)| ≤ Lγ (q−1) sup
t∈K

|q(t)p(t)|, p ∈ Pn,q , q ∈ Qn(�).

Proof. If γ is a K-moment sequence, and so Lγ (p) = ∫
K

d dµ, p ∈ Pn,
for a certain positive measure µ on K , as q−1 ≥ 1 on K , it follows Lγ (q−1) ≥∫

K
dµ = γ0 > 0 for all q ∈ Qn(�). In addition,

|Lγ (p)| ≤
∫

K

|p| dµ ≤ Lγ (q−1) sup
t∈K

|q(t)p(t)|,
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for all p ∈ Pn,q and q ∈ Qn(�), which is the desired estimate.
To prove that the stated conditions imply the existence of a representing

measure for the sequence γ , we shall apply Theorem 3.7 to the space Pn,K ⊂
CR(�)/Qn(�) and the map Lγ : Pn,K → R. Note first that the space CR(�)

is separable. Indeed, the family of functions (1+ t2
1 )−1, t1(1+ t2

1 )−1, . . . , (1+
t2
n)−1, tn(1 + t2

n)−1, extended to (R∞)n, separates the points of (R∞)n, and
therefore it separates the points of �. Then the Weierstrass-Stone theorem
implies the density of the unital algebra generated by this family in CR(�). Note
also that the function q(1,...,1) |� is null on the set �\K , and this set contains the
zeros of any function from Qn(�). Notice also that 1, q−1 ∈ Pn,q ⊂ CR(�)/q

for all q ∈ Qn(�). Moreover, we have Pn,q ′ ⊂ Pn,q ′′ , whenever q ′ ↑ q ′′, as
one can easily see.

If φq = Lγ |Pn,q , considering ‖f ‖∞,q= supt∈K |q(t)f (t)|, f ∈ CR(�)/q,
which is precisely the norm on CR(�)/q, the conditions from the statement
imply the estimates ‖φq‖ ≤ Lγ (q−1). As q−1 ∈ Pn,q is a norm one element,
the conditions from the statement imply the conditions ‖φq‖ = Lγ (q−1) > 0,
q ∈ Qn(�), which, in turn, imply the existence of a positive extension ' of
Lγ to CR(�)/Qn(�), by Theorem 3.7. The proof of Theorem 3.7 shows, in
fact, the existence of a representing measure of ', and therefore of Lγ , whose
support can be chosen to lie K , by Remark 3.8(1).

Remarks 4.3. (1) If the set K in Theorem 4.2 has a nonempty interior,
and so the map Qn � q → q |� ∈ Qn(�) is bijective, the existence of a
representing measure for γ can be characterized by the conditions Lγ (pα) > 0
and |Lγ (p)| ≤ Lγ (pα) supt∈K |qα(t)p(t)|, p ∈ Pn,α , α ∈ Zn+. The proof is
similar to that of Theorem 4.2. One uses the spaces Pn,α(K) = {p |K; p ∈
Pn,α}, noticing that Pn,K = ∑

α∈Zn+ Pn,α(K). The partial ordering of Qn(�)

is induced by the partial ordering of Qn (which, in turn, is induced by that
of Zn+, introduced after Theorem 4.1). We also note that the conditions above
imply the property Lγ (p) = 0 if p |K = 0. Other details are left to the reader.
Theorem 4.1 is a consequence of this form of Theorem 4.2.

(2) The conditions above, as well as those in Theorem 4.1, may be replaced
by similar conditions, in which the multi-index α runs only an a cofinal family
in Zn+, which suffices to apply Theorem 3.7.

We can obtain the classical result of Haviland [7] as a consequence of
Theorem 4.2.

Corollary 4.4. An n-sequence γ = (γα)α∈Zn+ (γ0 > 0) of real numbers
is a K-moment sequence if and only if the linear functional Lγ : Pn → R has
the property p |K ≥ 0 implies Lγ (p) ≥ 0 for all p ∈ Pn.
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Proof. The case K compact being well known, we may assume K un-
bounded. We use the notation related to Theorem 4.2.

Assume first that for all p ∈ Pn, with p |K ≥ 0, we have Lγ (p) ≥ 0. This
clearly implies Lγ (p) = 0 for all p ∈ Pn with p |K = 0, and shows that the
map Lγ : Pn,K → R is well defined.

Now, let q ∈ Qn(�), let α ∈ Zn+ be such that q = qα |K , and let p ∈ Pn,q .
We have the estimate

±p(t) ≤ pα(t) sup
s∈K

|q(s)p(s)|, t ∈ K.

This leads to the relation |Lγ (p)| ≤ Lγ (pα) sups∈K |q(s)p(s)|. Since pα ≥ 1,
and so Lγ (q−1) = Lγ (pα) ≥ Lγ (1) = γ0 > 0 for all α ∈ Zn+, we may apply
Theorem 4.2, showing that γ is a K-moment sequence.

Conversely, if γ is a K-moment sequence, it is clear that p |K ≥ 0 implies
Lγ (p) ≥ 0 for all p ∈ Pn, via the existence of a representing measure for γ

on K .

Remark. Let K ⊂ Rn be closed and unbounded, let � be the closure of K

in the space (R∞)n, and let γ = (γα)α∈Zn+ be an n-sequence of real numbers
such that Lγ (p) = 0 whenever p |K = 0. Then, as we have already seen,
the map Lγ induces a linear map, also denoted by Lγ , on the space Pn,K . In
particular, for each q ∈ Qn(�), the symbol Lγ (q−1) is well defined.

For every pair ξ, η ∈ Zn+, we set rξ,η(t) = t ξ qη(t), t ∈ Rn. Let also
G0 = {rξ,η; ξ, η ∈ Zn+, ξ ≺ 2η}. We clearly have G0 ⊂ CR((R∞)n).

As in Remark 2.4, for every r ∈ G0 we set

a(r, q) = sup
p∈Pn,q

[−Lγ (p) − Lγ (q−1) sup
t∈K

|q(t)(p(t) + r(t))|],
b(r, q) = inf

p∈Pn,q

[
Lγ (q−1) sup

t∈K

|q(t)(p(t) + r(t))| − Lγ (p)
]
,

and we have a(r, q) ≤ b(r, q) for all q ∈ Qn(�). Thus, we can construct the
interval Jq(r) = [a(r, q), b(r, q)]. Set J (r) = ∩q∈Qn(�)Jq(r).

With the notation above, we have the following.

Theorem 4.5. Let γ = (γα)α∈Zn+ (γ0 > 0) be a K-moment sequence.
The representing measure of γ is uniquely determined if and only if J (r) is
singleton for all r ∈ G0, that is, if and only if

sup
q∈Qn(�)

a(r, q) = inf
q∈Qn(�)

b(r, q),

for all r ∈ G0.
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Proof. We remark that any representing measure µ of the sequence γ ,
whose support lies in K , gives rise to an extension ψ of Lγ to CR(�)/Qn(�), in
the following way. If f ∈ CR(�)/q, then f is µ-integrable since

∫
K

|f | dµ ≤
Lγ (q−1) supt∈K |q(t)f (t)|. We set ψ(f ) = ∫

K
f dµ for all f ∈ CR(�)/Qn(�).

In fact, the map ψ |CR(�)/q is a Hahn-Banach extension of the map Lγ |Pn,q

for all q ∈ Qn(�) (see Remark 2.4). In particular, ψ(r) ∈ J (r) = ∩q∈Qn(�)Jq(r)

for all r ∈ G0.
Let J (r) be singleton for all r ∈ G0, and let µ1, µ2 be two represent-

ing measures for the sequence γ . Then for all r ∈ G0 we have the equality∫
K

r dµ1 = ∫
K

r dµ2, because
∫

K
r dµ1,

∫
K

r dµ2 ∈ J (r). As the set G0 gen-
erates a dense subspace of CR(�), we must have µ1 = µ2.

Conversely, suppose that γ has a uniquely determined representing measure
whose support lies in K . In particular, the map Lγ satisfies the conditions in
Theorem 4.2. In particular, there is a map, say φ, induced by Lγ in Pn,K .
Note also that ‖φq‖ = φ(q−1) > 0 for all q ∈ Qn(�), as in the proof of
Theorem 4.2, where φq = φ |Pn,q .

Assume the existence of an r0 ∈ G0 such that J (r0) contains at least two
distinct points, say a′, a′′. Note that r0 |K /∈ Pn,K . Indeed, assuming r0 |K ∈
Pn,K , we would find a polynomial s0 ∈ Pn such that r0 |K = s0 |K . Then we
would have a(r0, q) = a(s0, q) and b(r0, q) = b(s0, q) for all q ∈ Qn(�) with
s0 ∈ Pn,q . But a(s0, q) = b(s0, q) = Lγ (s0) whenever s0 ∈ Pn,q . This would
imply J (r0) singleton or empty, which contradictis our hypothesis. Therefore,
Pn,K + Rr0 �= Pn,K , where we write r0 for r0 |K .

We may define on Pn,K +Rr0 two linear functionals φ′(p +λr0) = φ(p)+
λa′ and φ′′(p + λr0) = φ(p) + λa′′, for all p ∈ Pn,K and λ ∈ R. Clearly,
φ′, φ′′ are two distinct extensions or φ.

If φ′
q = φ′ |Pn,q + Rr0, φ′′

q = φ′′ |Pn,q + Rr0, we have ‖φ′
q‖ = ‖φ′′

q‖ =
‖φq‖ = φ(q−1) > 0, since a′, a′′ ∈ Jq(r0), and so φ′

q, φ′′
q are Hahn-Banach

extensions of φq , for every q ∈ Qn(�).
We will apply Theorem 3.7 to both φ′, φ′′. The set Qn(�) has a partial

ordering defined in the proof of Theorem 4.2. The set of the zeros in � of q(1,...,1)

contains the set of zeros in � of every function q ∈ Qn(�). Putting Fq =
Pn,q + Rr0 ⊂ CR(�)/q (because r0 ∈ CR(�)), we obviously have 1, q−1 ∈
Fq , and Fq ′ ⊂ Fq ′′ , whenever q ′ ↑ q ′′. Therefore, we may apply Theorem 3.7
to the subspace F = ∑

q∈Qn(�) Fq = Pn,K + Rr0 of
∑

q∈Qn(�) CR(�)/q =
CR(�)/Qn(�), and to the functionals φ′, φ′′, which extend to two positive
functionals ψ ′, ψ ′′ on CR(�)/Qn(�). Clearly, ψ ′, ψ ′′ are distinct, since φ′, φ′′
are so. But the functionals ψ ′, ψ ′′ have the same representing measure, because
the representing measure of γ is supposed to be unique. This is a contradiction,
showing that J (r) must be singleton for all r ∈ G0.
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As for the last assertion, setting a(r) = supq∈Qn(�) a(r, q), b(r) = infq∈Qn(�)

b(r, q), it is easily seen that J (r) = [a(r), b(r)] for an r ∈ G0 whenever J (r)

is nonempty, which clearly implies our claim.

Remark. Let γ = (γα)α∈Zn+ be a moment sequence on Rn. As before, for
all r ∈ G0 and α ∈ Zn+, we define the quantities

a(r, α) = sup
p∈Pn,α

[−Lγ (p) − Lγ (pα) ‖qα(p + r)‖∞
]
,

b(r, α) = inf
p∈Pn,α

[
Lγ (pα) ‖qα(p + r)‖∞ − Lγ (p)

]
.

We have a(r, α) ≤ b(r, α) for all α ∈ Zn+, and we can construct the interval
Jα(r) = [a(r, α), b(r, α)], as well as the set J (r) = ∩α∈Zn+Jα(r). Theorem 4.5
asserts, for this special case, that the representing measure of γ is uniquely
determined if and only if

sup
α∈Zn+

a(r, α) = inf
α∈Zn+

b(r, α),

for all r ∈ G0.
In other words, if µ is a positive measure on Rn having moments of all

orders, this measure is uniquely determined by its moments if and only if

sup
α∈Zn+

sup
p∈Pn,α

[
−

∫
(p + ‖qα(p + r)‖∞ pα) dµ

]

= inf
α∈Zn+

inf
p∈Pn,α

[∫
(‖qα(p + r)‖∞ pα − p) dµ

]
,

for all r ∈ G0

Theorem 4.5 characterizes the uniqueness of the representing measure of a
moment sequence in numerical terms. For other uniqueness results in a similar
spirit, see also [10] and [15]. The next results deal with the uniqueness in terms
of density (see Proposition 4.7). For the sake of simplicity, we restrict ourselves
to the case K = Rn, although this hypothesis in not essential.

Let Rn be the algebra of all rational functions on Rn, with denominators in
the set {q−1 ∈ Pn; q ∈ Qn}. Obviously, Rn ⊂ CR((R∞)n)/Qn. Let also

Rn,α = {r ∈ Rn; rqα ∈ CR((R∞)n)} = Rn ∩ CR((R∞)n)/qα.

We clearly have Pn,α ⊂ Rn,α and Rn,α ⊂ Rn,β for all α, β ∈ Zn+ with α ≺ β.
Set R0 = Rn ∩ CR((R∞)n), which is an algebra of rational continuous

functions, dense in CR((R∞)n) (see the proof of Theorem 4.2).
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Proposition 4.6. An n-sequence γ = (γα)α∈Zn+ (γ0 > 0) of real numbers
is a moment sequence on Rn if and only if the linear functional Lγ : Pn → R
has the properties Lγ (pα) > 0, α ∈ Zn+, and for every p ∈ Pn written as
p = ∑

k∈K pαk
rk , where rk ∈ R0 for all k ∈ K , K ⊂ Z+ finite, we have

|Lγ (p)| ≤ ∑
k∈K Lγ (pαk

)‖rk‖∞.

Proof. Note that Rn = ∑
α∈Zn+ pαR0. Set

W = co

( ⋃
α∈Zn+

{
r ∈ pαR0; ‖qαr‖∞ ≤ Lγ (pα)−1

})
.

If we put

σγ (f )

= inf

{∑
α∈K

Lγ (pα)‖rα‖∞; f =
∑
α∈K

q−1
α rα, rα ∈ R0, K ⊂ Zn

+, K finite

}
.

for all f ∈ Rn, we have σγ = σW , via Remark 3.5(2). Therefore, the condition
from the statement is equivalent to the estimate |Lγ (p)| ≤ σW (p), p ∈ Pn.
This implies that ‖Lγ |Pn,α‖ = Lγ (pα), α ∈ Zn+, via Lemma 2.2. Therefore, if
Lγ : Pn → R satisfies the conditions from the statement, then γ is a moment
sequence, by Theorem 4.1.

Conversely, if γ is a moment sequence and µ is a representing measure of
γ , choosing a p ∈ Pn such that p = ∑

k∈K pαk
rk , with rk ∈ R0, k ∈ K ⊂ Z+

finite, we have

|Lγ (p)| ≤
∫

|p(t)| dµ(t) ≤
∑
k∈K

Lγ (pαk
)‖rk‖∞.

In the next statement we keep the notation from Proposition 4.6 and its
proof. We show that the representing measure for the sequence γ is uniquely
determined if and only if Pn is “dense” in Rn with respect to the seminorm
σW (r), r ∈ Rn. More precisely, we have the following.

Proposition 4.7. Suppose that the functional Lγ has the properties
Lγ (pα) > 0, α ∈ Zn+, and |Lγ (p)| ≤ σγ (p), p ∈ Pn. A representing measure
for the sequence γ is uniquely determined if and only if the normed space
(Pn + Z )/Z is dense in the normed space Rn/Z , where Z = ker(σγ ).

Proof. The existence of a representing measure for γ follows from the
previous result. According to Remark 2.3, the uniqueness of the extension of
the functional Lγ to Rn is characterized by the condition in the statement.
Note that R0 ⊂ Rn,α for all α ∈ Zn+. Moreover, as noticed before, R0 is dense
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in CR((R∞)n). Assuming the density from the statement, let φ be the unique
extension of Lγ to Rn. Let φα = φ |Rn,α for all α ∈ Zn+. The density of R0

in CR((R∞)n) implies the density of Rn,α in the normed space CR((R∞)n)/qα

for all α ∈ Zn+. Therefore, every functional φα extends uniquely to a functional
ψα on CR((R∞)n)/qα , having the same norm. Moreover, if α ≺ β, we have
ψα = ψβ |CR((R∞)n)/qα , because of the estimate ‖f ‖∞,β ≤ ‖f ‖∞,α , for all
f ∈ CR((R∞)n)/qα and α, β ∈ Zn+. Consequently, we have a well-defined
linear functional φ : CR((R∞)n)/Qn → R, which is continuous, since ψα =
ψ |CR((R∞)n)/qα is continuous for all α ∈ Zn+. The form ψ is positive, by
Theorem 3.2. The uniqueness of ψ is equivalent to the uniqueness of the
representing measure for the sequence γ , again by Theorem 3.2.

Remark. The density in the previous statement means that for every r ∈ R0

we can find a sequence (pk)k in Pn such that limk→∞ σγ (r − pk) = 0.

An alternate discussion, in the spirit of [9], leads to assertions parallel to
Theorems 4.2 and 4.5.

Let Rn∞ = Rn ∪ {∞} be the one point compactification of the Euclidean
space Rn, for a fixed integer n ≥ 1. We consider the family Q consisting of
all rational functions of the form qk(t) = (1 + ‖t‖2)−k , t = (t1, . . . , tn) ∈ Rn,
with ‖t‖2 = t2

1 + · · · + t2
n , and k ∈ Z+ arbitrary. The functions qk may be

extended with zero at the point ∞. In this way, Q becomes a multiplicative
family in CR(Rn∞).

As before, Pn is the algebra of all polynomial functions on Rn, with real
coefficients. Let also Pn,k = {p ∈ Pn, limt→∞ qk(t)p(t) exists}, k ∈ Z+.

We restrict our discussion to the case of moment problems on Rn, although
we can state and prove the next theorem, with minor changes, on an arbitrary
(unbounded) closed set in Rn.

Theorem 4.8. An n-sequence γ = (γα)α∈Zn+ (γ0 > 0) of real numbers is a
moment sequence on Rn if and only if the linear functional Lγ : Pn → R has
the properties Lγ (pk) > 0 and

|Lγ (p)| ≤ Lγ (pk) sup
t∈Rn

|qk(t)p(t)|, p ∈ Pn,k, k ≥ 0.

Proof. As for the proof of Theorem 4.2, the stated conditions are necessary,
as one can easily see.

Conversely, we will apply Theorem 3.7 to the functional φ = Lγ .
Note that the space CR(Rn∞) is separable because the algebra CR(Rn∞) is gen-

erated by the family {1, q1(t), t1q1(t), . . . , tnq1(t)}, which separates the points
of Rn∞, via the Weierstrass-Stone density theorem. Note also that q1(ω) = 0 if
and only if ω = ∞ and if and only if qk(ω) = 0, k ≥ 1. Moreover, it is easily
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seen that qk |qm in Q if and only if k ≤ m for all integres k, m ≥ 1, and so we
have a total ordering on the set Q.

We clearly have 1, pk ∈ Pn,k and Pn,k ⊂ Pn,m whenever k ≤ m, for all
k, m ≥ 1. This discussion shows that the conditions to apply Theorem 3.7 are
fulfilled.

If φk = φ |Pn,k , the hypothesis implies the estimates ‖φk‖ ≤ Lγ (pk),
k ≥ 0. As pk is a norm one element, the conditions from the statement imply
the conditions ‖φk‖ = Lγ (pk) > 0, k ≥ 0, which, in turn, imply the existence
of a positive extension ψ of φ to CR(Rn∞)/Q, by Theorem 3.7. This shows
the existence of a positive extension ψ of φ, which is given by a representing
measure whose support can be chosen in Rn, by Remark 3.8(1), and which is,
in particular, a representing measure for γ .

Remarks 4.9. (1) An alternate proof of Theorem 4.8 can be obtained via
Theorem 4 from [14]. On the other hand, the full force of Theorem 3.7 is needed
for the proof of Theorem 4.2 (or Theorem 4.1), because the set (R∞)n \ Rn

contains more than one point. As a matter of fact, we think that the direct
application of Theorem 4 from [14] does not suffice the get Theorem 4.2.

(2) The use of the simpler spaces Pn,α in Theorem 4.1, rather than that of
Pn,k in Theorem 4.8, makes the former more appropriate for the calculations
of the sup-norms in their statement (see Remarks 4.11 and 4.12).

Our approach to the moment problem in unbounded sets shows that it can be
regarded as a “singular moment problems”, because the moments are defined
via singular functions (with respect to the given domain of definition). The
same methods can be applied in other cases, where the singularities appear in
an obvious manner.

Example 4.10. Let Sn be the compact set {t = (t1, . . . , tn) ∈ Rn; t2
1 ≤

1, . . . , t2
n ≤ 1}. In the space CR(Sn), we consider the multiplicative family

Q = {qα; α ∈ Zn+}, where qα(t) = t2α , t ∈ Sn.
Let Sα = {p |Sn; p ∈ Pn,α}, let Fα = Sα/qα , and let F = ∑

α Fα .
Given L : F → R a linear functional with L(1) > 0, we set δα = L(q−1

α ),
α ∈ Zn+. According to Theorem 3.7, the functional L has a positive extension
to CR(Sn)/Q → R if and only if δα > 0 and

|L(f )| ≤ δα‖qαf ‖∞, f ∈ Fα,

for all α ∈ Zn+.
In the affirmative case, we can find a positive measure µ with support in

Sn \ {t; min{t2
1 , . . . , t2

n } = 0}, such that δα = ∫
q−1

α dµ, α ∈ Zn+.
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Remark 4.11. The sup-norms ‖qαp‖∞ = supt∈Rn |qα(t)p(t)|, p ∈ Pn,α ,
α ∈ Zn+, which occur in the statement of Theorem 4.1, can be computed in a
fairly explicit manner. We briefly indicate a method of computation.

First of all, we identify the space (R∞)n with the set Tn ⊂ Cn, where T is
the unit circle in the complex plane, via the map

(R∞)n� t = (t1, . . . , tn) →
(

1 − t2
1

1 + t2
1

+ i
2t1

1 + t2
1

, . . . ,
1 − t2

n

1 + t2
n

+ i
2tn

1 + t2
n

)
∈ Tn,

which is a homeomorphism (the point ∞ ∈ R∞ is mapped into −1 ∈ T). If
% : Tn → (R∞)n is the inverse of this homeomorphism, we set p̂α = (qαp)◦%

for all p ∈ Pn,α , α ∈ Zn+. It is clear that ‖qαp‖∞ = supζ∈Tn |p̂α(ζ )| = ‖p̂α‖∞
for all p ∈ Pn,α , α ∈ Zn+, which reduces our problem to the computation of
some sup-norms on Tn. Setting

z = 1 − u2

1 + u2
+ i

2u

1 + u2
∈ T, u ∈ R,

for all nonnegative integers k, m, we have the identities

u2k

(1 + u2)m
= 1

2m

(
1 + z + z̄

2

)m−k(
1 − z + z̄

2

)k

,

if 2k ≤ 2m, and

u2k+1

(1 + u2)m
= 1

2m

(
z − z̄

2i

)(
1 + z + z̄

2

)m−1−k(
1 − z + z̄

2

)k

,

if 2k + 1 ≤ 2m. These identities show that the function p̂α is a real-valued
trigonometric polynomial, whose coefficients can be obtained from those of
p, for all p ∈ Pn,α , α ∈ Zn+.

Let λn be the normalized Lebesgue measure on Tn, and let L2(Tn) =
L2(Tn, λn) be the Hilbert space of all measurable and square integrable func-
tions on Tn. For all p ∈ Pn,α , α ∈ Zn+, we denote by Tp,α the multiplication
operator Tp,αf (ζ ) = p̂α(ζ )f (ζ ), ζ ∈ Tn, f ∈ L2(Tn), which is self-adjoint,
because p̂α is a real valued function. It is well known, and easily seen, that
‖Tp,α‖ = ‖p̂α‖∞. Moreover, as −‖Tp,α‖ ≤ Tp,α ≤ ‖Tp,α‖, we infer the
formula

‖p̂α‖∞ = inf{M ≥ 0; M ± Tp,α ≥ 0},
for all p ∈ Pn,α , α ∈ Zn+.

We can give the formula above a more classical flavor. If the function p̂α

is written as p̂α(ζ ) = ∑
τ∈Zn aτ ζ τ (where ζ = (ζ1, . . . , ζn) ∈ Tn and ζ τ =
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ζ
τ1
1 · · · ζ τn

n for all τ = (τ1, . . . , τn) ∈ Zn), we have āτ = a−τ and aτ �= 0
only for a finite number of indices. In fact, if p(t) = ∑

ξ≺2α dξ tξ , and thus
qαp = ∑

ξ≺2α dξ rξ,α , with rξ,α as in Theorem 4.5, and using the orthonormality
of the family (ζ κ)κ∈Zn in L2(Tn), we obtain aτ = ∑

ξ≺2α dξ 〈rξ,α ◦%, ζ τ 〉 for all
indices τ . Obviously, the scalar products 〈rξ,α ◦%, ζ τ 〉 are calculable and allow
us to express the coefficients (aτ ) as linear combinations of the coefficients
(dξ ).

Let f (ζ ) = ∑
κ∈Zn cκζ κ be arbitrary in L2(Tn). By reasons of density, we

may also assume that cκ �= 0 only for a finite number of indices. We infer
easily that

〈p̂αf, f 〉 =
∑
κ∈Zn

(∑
τ∈Zn

aτ cκ−τ

)
c̄κ .

Therefore, the formula above expressing the sup-norm of p̂α can be written as

‖p̂α‖∞ = inf

{
M ≥ 0;

∑
κ∈Zn

(
Mcκ ±

∑
τ∈Zn

aτ cκ−τ

)
c̄κ ≥ 0, (cκ)κ ∈ C(∞)

}
,

where C(∞) stands for the set of all sequences of complex numbers (cκ)κ∈Zn ,
having finite support.

Remark 4.12. The use of the space Rn∞ for the calculation of the sup-
norms in Theorem 4.8 seems to be more intricate. For instance, the standard
embedding of Rn into the unit sphere of R(n+1)2

, given by

Rn � t = (t1, . . . , tn) →
(

tj tk

1 + ‖t‖2

)n

j,k=0

∈ R(n+1)2
,

where t0 = 1, cannot be extended continuously at ∞, if n > 1.
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