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APPROACH REGIONS FOR Lp POTENTIALS WITH
RESPECT TO THE SQUARE ROOT OF THE

POISSON KERNEL

MARTIN BRUNDIN∗

Abstract

If one replaces the Poisson kernel of the unit disc by its square root, then normalised Poisson
integrals of Lp boundary functions converge along approach regions wider than the ordinary
nontangential cones, as proved by Rönning (1 ≤ p < ∞) and Sjögren (p = 1 and p = ∞). In
this paper we present new and simplified proofs of these results. We also generalise the L∞ result
to higher dimensions.

1. Introduction

The point of this paper is firstly to present a new and simplified proof for two
theorems of almost everywhere convergence type. The advantage of the proof,
without being precise, is that it reflects that the convergence results are natural
consequences of the norm inequalities that characterise the relevant function
spaces (Hölder’s inequality for Lp), and corresponding norm estimates of the
kernel (associated to the normalised square root of the Poisson kernel operator).
In the papers by Rönning, [6], and Sjögren, [9], this correspondence is not
obvious (even though, of course, present).

P(z, β) will denote the Poisson kernel in the unit disc U ,

P(z, β) = 1

2π
· 1 − |z|2
|z − eiβ |2

where z ∈ U and β ∈ ∂U ∼= R/2πZ = T ∼= (−π, π ].
It is well known that P( · , β) is the real part of a holomorphic function, and

thus that it is harmonic.
Let

Pf (z) =
∫

T
P(z, β)f (β) dβ,
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the Poisson integral (or extension) of f ∈ L1(T). Poisson extensions of con-
tinuous boundary functions converge unrestrictedly at the boundary, as the
following classical result shows:

Theorem (Schwarz, [7]). Let f ∈ C(T). Then Pf (z) → f (θ) as z → eiθ ,
z ∈ U .

For less regular boundary functions, unrestricted convergence fails (see the
result by Littlewood below). One way to control the approach to the boundary
is by means of so called (natural) approach regions. For any function h : R+ →
R+ let

Ah(θ) = {z ∈ U : | arg z − θ | ≤ h(1 − |z|)}.
We refer to Ah(θ) as the approach region determined by h at θ ∈ T. If h(t) =
α · t , for some α > 0, one refers to Ah(θ) as a nontangential cone at θ ∈ T. It
is natural, but not necessary, to think of h as an increasing function. It should
be pointed out that our approach regions certainly have a specific shape. For
instance, they are not of Nagel-Stein type.

Theorem (Fatou, [4]). Let f ∈ L1(T). Then, for a.e. θ ∈ T, one has that
Pf (z) → f (θ) as z → eiθ and z ∈ Ah(θ), if h(t) = O(t) as t → 0.

The theorem of Fatou was proved to be best possible, in the following sense:

Theorem (Littlewood, [5]). Let γ0 ⊂ U ∪ {1} be a simple closed curve,
having a common tangent with the circle at the point 1. Let γθ be the rotation
of γ0 by the angle θ . Then there exists a bounded harmonic function f in U

with the property that, for a.e. θ ∈ T, the limit of f along γθ does not exist.

Littlewood’s result has been generalised in several directions. For instance,
with the same assumptions as in Littlewood’s theorem, Aikawa [1], proves that
convergence can be made to fail at any point θ ∈ T.

For z = x + iy define the hyperbolic Laplacian by

Lz = 1

4
(1 − |z|2)2(∂2

x + ∂2
y ).

Then the λ-Poisson integral

u(z) = Pλf (z) =
∫

T
P(z, β)λ+1/2f (β) dβ, for λ ∈ C,

defines a solution of the equation

Lzu = (λ2 − 1/4)u.
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The case λ = 0, u is then an eigenfunction at the bottom of the positive
spectrum, is particularly interesting. The square root of the Poisson kernel
(i.e., λ = 0) possesses unique properties relative to other powers. In this paper
we shall treat convergence questions for normalised Poisson integrals with
respect to the square root of the Poisson kernel.

If f and g are positive functions we say that f <∼ g provided that there
exists some positive constant C such that f (x) ≤ Cg(x). We write f ∼ g if
f <∼ g and g <∼ f .

Let
P0f (z) =

∫
T

√
P(z, β)f (β) dβ.

To get boundary convergence, it is necessary to normaliseP0, since it is readily
checked that, for |z| > 1/2,

P01(z) ∼ √
1 − |z| log

1

1 − |z| ,

which does not tend to 1, anywhere, as |z| → 1. As mentioned above, Poisson
integrals with respect to powers greater than or equal to 1/2 of the Poisson
kernel arise naturally as eigenfunctions to the hyperbolic Laplace operator.
When one considers boundary convergence properties of the corresponding
normalisations, it is only the square root integral extension that exhibits special
properties. Normalisation of higher power integrals behave just like the Poisson
integral itself, in the context of boundary convergence.

Denote the normalised operator by P0, i.e.

P0f (z) = P0f (z)

P01(z)
.

Definition 1. If 1 ≤ p < ∞ let

Sp = {h : R+ → R+ : h(t) = O(t(log 1/t)p) as t → 0},
and let

S∞ = {h : R+ → R+ : h(t) = O(t1−ε) for all ε > 0 as t → 0}.

Note that Sp ⊂ S∞.
Several convergence results for P0 are known, in different settings. We state

a few below:

Theorem. Let f ∈ C(T). Then, for any θ ∈ T, one has that P0f (z) →
f (θ) as z → eiθ .
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This result follows if one just notes that P0 is a convolution operator with
a kernel which behaves like an approximate identity in T. In the next section
we give explicit expressions for the kernel.

Theorem (Sjögren, [8]). Let f ∈ L1(T). Then, for a.e. θ ∈ T, one has that
P0f (z) → f (θ) as z → eiθ and z ∈ Ah(θ), if h ∈ S1.

Theorem (Rönning, [6]). Let 1 ≤ p < ∞ be given and let f ∈ Lp(T).
Then, for a.e. θ ∈ T, one has that P0f (z) → f (θ) as z → eiθ and z ∈ Ah(θ),
if h ∈ Sp (and only if if h is assumed to be monotone).

The results by Sjögren and Rönning were proved via weak type estimates
for the corresponding maximal operators, and approximation with continuous
functions.

Theorem (Sjögren, [9]). The following conditions are equivalent for any
increasing function h : R+ → R+:

(i) For any f ∈ L∞(T) one has for almost all θ ∈ T that

P0f (z) → f (θ) as z → eiθ and z ∈ Ah(θ).

(ii) h ∈ S∞.

In his proof, Sjögren never uses the assumption that h should be increasing.
Thus, it remains valid for an even larger class of functions h. The proof of this
result differs much from the Lp case, since one has to take into account that
the continuous functions are not dense in L∞. Sjögren instead used a result
by Bellow and Jones, [2], “A Banach principle for L∞”. Following the same
lines, the author proved the following (Lp,∞ denotes weak Lp):

Theorem (Brundin, [3]). Let 1 < p < ∞ be given. Then the following
conditions are equivalent for any function h : R+ → R+:

(i) For any f ∈ Lp,∞(T) one has for almost all θ ∈ T that

P0f (z) → f (θ) as z → eiθ and z ∈ Ah(θ).

(ii)
∑∞

k=0 σk < ∞, where σk = sup2−2k≤s≤2−2k−1
h(s)

s(log 1/s)p .

In this paper we prove the following theorem, with simpler and different
methods than those of Rönning and Sjögren.

Theorem 1.1. Let 1 ≤ p ≤ ∞ be given and let h : R+ → R+ be any
function. Then the following conditions are equivalent:

(i) For any f ∈ Lp(T) one has, for almost all θ ∈ T, that P0f (z) → f (θ)

as z → eiθ and z ∈ Ah(θ).

(ii) h ∈ Sp.
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Obtaining (easily) the result for L∞ first, we shall use this to treat the Lp

case. As in the proofs of Sjögren and Rönning, we decompose the kernel into
two parts, one “local” and one “global”. The global part is easy. As it turns out
here, the local part is also easy. In previous proofs, rather complicated calcula-
tions were used to prove that the associated maximal operator is “sufficiently
continuous” at 0 (e.g. weak type (p, p) estimates). As it turns out, however,
the local part simply does not contribute to convergence and can be treated
directly (without estimates of any maximal operator).

One of the advantages of the proof is that the case p = ∞ can be easily
generalised to higher dimensions, which is done in the section “Higher di-
mensional results for L∞”. In the paper by Rönning, [6], a certain maximal
operator is proved to be of weak type (p, p) (in the Lp case, finite p). If one
could prove that it is actually of strong type (p, p) (which is not unreasonable
to believe), convergence results for polydiscs would follow easily. The proof
in this paper does not rely on hard estimates of maximal operators, but rather
on more direct methods. This may suggest that a polydisc result for Lp could
be obtained, avoiding maximal operators.

2. The proof of Theorem 1.1

Before turning to the proof we introduce the notation that we shall use.
Let t = 1 − |z| and z = (1 − t)eiθ . Then

P0f (z) = Rt ∗ f (θ),
where the convolution is taken in T and

Rt(θ) = 1√
2π

√
t (2 − t)

|(1 − t)eiθ − 1|
1

P01(1 − t)
.

Since we are interested only in small values of t , we might as well from
now on assume that t < 1/2. Then P01(1 − t) ∼ √

t log 1/t , and thus the
order of magnitude of Rt is given by

Rt(θ) ∼ Qt(θ) = 1

log 1/t
· 1

t + |θ | .

Now, let τη denote the translation τηf (θ) = f (θ−η). Then the convergence
condition (i) in Theorem 1.1 above means

lim
t→0|η|<h(t)

τηRt ∗ f (θ) = f (θ).

Let
Rt(θ) = R1

t (θ) + R2
t (θ)
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where
R1
t (θ) = Rt(θ)χ{|θ |<2h(t)},

and let Q1
t and Q2

t be the corresponding cutoffs of the kernel Qt .
Define

(1) Mf (θ) = sup
|η|<h(t)
t<1/2

τηQ
2
t ∗ |f |(θ).

Proposition 1. Assume that 1 ≤ p ≤ ∞ is given and assume that condition
(ii) in Theorem 1.1 holds.

(a) For a given f ∈ Lp it holds for a.e. θ ∈ T that

lim
t→0|η|<h(t)

τηQ
1
t ∗ f (θ) = 0.

(b) Mf <∼ MHLf , whereMHL denotes the ordinary Hardy-Littlewood max-
imal operator.

Let us for the moment postpone the proof and instead see how Proposition 1
is used to prove the implication (ii) ⇒ (i) in Theorem 1.1.

Proof of Theorem 1.1, (ii) ⇒ (i). By Proposition 1, part (a), it suffices
to prove that, for almost all θ ∈ T, one has

(2) lim
t→0|η|<h(t)

τηR
2
t ∗ f (θ) = f (θ).

Note that, if f ∈ C(T), then

lim
t→0

|η|<h(t)

τηRt ∗ f (θ) = f (θ).

This fact, together with Proposition 1, part (a), and C(T) ⊂ Lp(T) gives
that (2) must hold for f ∈ C(T). Hence, to establish (2) for any f ∈ Lp,
it suffices to prove that the corresponding maximal operator is of weak type
(1, 1). But since it is dominated by M , which in turn is dominated by MHL by
Proposition 1, part (b), we are done.

We now proceed with the proof of Proposition 1. The proof of implication
(i) ⇒ (ii) in Theorem 1.1 can be found in the end of this section.

Proof of Proposition 1. We start by proving part (b). Since |η| < h(t),
we have that

τηQ
2
t (θ) = 1

log 1/t
· 1

t + |θ − η|χ{|θ−η|>2h(t)} <∼
1

log 1/t
· 1

t + |θ | ,
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which is a decreasing function of θ , whose integral in T is uniformly bounded
in t . It is well known that convolution with such a function is controlled by the
Hardy-Littlewood maximal operator. Part (b) is thus established.

We proceed now with the proof of part (a), in the case p = ∞.
Let ε > 0 be given. We have

τηQ
1
t ∗ |f |(θ) = 1

log 1/t

∫
|ϕ|<2h(t)

|f (θ − η − ϕ)|
t + |ϕ| dϕ

≤ ‖f ‖∞
log 1/t

∫
|ϕ|<2h(t)

dϕ

t + |ϕ| <∼
‖f ‖∞
log 1/t

log (h(t)/t).

By condition (ii) in Theorem 1.1, we have that h(t) ≤ Ct1−ε, and we get

lim sup
t→0|η|<h(t)

τηQ
1
t ∗ |f |(θ) <∼ ε‖f ‖∞,

as desired.
Now, assume that 1 ≤ p < ∞ and that q = p/(p − 1) (where q = ∞ if

p = 1). Assume also that f ≥ 0, without loss of generality.
Note, first of all, that

(3) ‖Qt‖q ≤ Cq

1

t1/p log 1/t

Write f = f− + fR , where f− = f χ{f≤R} ∈ L∞, and where R > 0 is
arbitrary. By (3) and by assumption we have, for t ∈ (0, 1/2) and θ ∈ T, that

τηQ
1
t ∗ fR(θ) =

∫
|ϕ|<2h(t)

Qt (ϕ)fR(θ − ϕ − η)

<∼
1

t1/p log 1/t
·
(∫

|ϕ+η−θ |≤2h(t)
fR(ϕ)

p dϕ

)1/p

<∼
1

t1/p log 1/t
·
(∫

|ϕ−θ |≤3h(t)
fR(ϕ)

p dϕ

)1/p

<∼
(

h(t)

t (log 1/t)p
· 1

6h(t)

∫
|ϕ−θ |≤3h(t)

fR(ϕ)
p dϕ

)1/p

<∼
(

1

6h(t)

∫
|ϕ−θ |≤3h(t)

fR(ϕ)
p dϕ

)1/p

.
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For a.e. θ ∈ T (Lebesgue points off p

R ) we have (using Proposition 1, part (a)
for L∞) that

lim sup
t→0

|η|<h(t)

τηQ
1
t ∗ f (θ) ≤ lim sup

t→0|η|<h(t)
τηQ

1
t ∗ f−(θ) + lim sup

t→0|η|<h(t)
τηQ

1
t ∗ fR(θ)

≤ 0 + C · fR(θ).
By choosingR sufficiently large, we can makefR(θ) = 0 on a set with measure
arbitrarily close to 2π , so part (a) of Proposition 1 is now established also for
1 ≤ p < ∞.

Proof of the implication (i) ⇒ (ii). We assume here that 1 < p < ∞,
since the results for p = 1 and p = ∞ are already established by Sjögren1.
Assume that condition (ii) in Theorem 1.1 is false. We show that this implies
that (i) is false also.

Assume that

(4) lim sup
t→0

h(t)

t (log 1/t)p
= ∞,

Pick any decreasing sequence {ti}∞1 , converging to 0, such that

(5) 1 ≤ h(ti)

ti(log 1/ti)p
↑ ∞,

as i → ∞. Let

fi(ϕ) = t
1/(p−1)
i log 1/ti ·

(
1

ti + |ϕ|
)1/(p−1)

· χ{|ϕ|<h(ti )},

Now,

‖fi‖pp <∼ t
p/(p−1)
i (log 1/ti)

p

∫ h(ti )

0

(
1

ti + ϕ

)p/(p−1)

dϕ

<∼ t
p/(p−1)
i (log 1/ti)

pt
1−p/(p−1)
i = ti(log 1/ti)

p,

where the constant depends only on p. It follows that

h(ti)

‖fi‖pp ≥ C(p) · h(ti)

ti(log 1/ti)p
.

1 In section “Higher dimensional results for L∞”, we give a proof of the case p = ∞ in two
dimensions, which is actually just a trivial extension of Sjögrens proof.
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By (5) the right hand side tends to ∞ as i → ∞. Thus, by standard techniques,
we can pick a subsequence of {ti}, with possible repetitions, for simplicity
denoted {ti} also, such that

∞∑
1

h(ti) = ∞, and(6)

∞∑
1

‖fi‖pp < ∞.(7)

Let A1 = h(t1), and for n ≥ 2 let An = h(tn) + ∑n−1
j=1 2h(tj ). By (6) one

has that limn→∞ An = ∞.
Define (on T) Fj (ϕ) = τAj

fj (ϕ), and let

F (N)(ϕ) = sup
j≥N

Fj (ϕ).

It is clear by construction that any given ϕ ∈ T lies in the support of infinitely
many Fj :s.

Since [F (N)(ϕ)]p = supj≥N [Fj (ϕ)]p ≤ ∑
j≥N [Fj (ϕ)]p, it follows that

‖F (N)‖pp ≤
∞∑

j=N

‖Fi‖pp =
∞∑

j=N

‖fi‖pp → 0

as N → ∞, by (7). Thus, in particular, F (N) ∈ Lp for any N ≥ 1.
For θ ∈ T and a given ξ0 > 0 we can, by construction, find j ∈ N so that

θ ∈ supp(Fj ) and so that tj ∈ (0, ξ0). We can then choose η, with |η| < h(tj ),
so that θ − η ≡ Aj mod 2π . It follows that

lim sup
t→0, |η|<h(t)

P0F
(N)((1 − t)ei(θ−η)) ≥ lim sup

j→∞
P0Fj ((1 − tj )e

iAj ).

We have

P0Fj ((1 − tj )e
iAj )

≥ C

log 1/tj

∫
|ϕ|<h(tj )

Fj (Aj − ϕ)

tj + |ϕ| dϕ = C

log 1/tj

∫
|ϕ|<h(tj )

fj (ϕ)

tj + |ϕ| dϕ

= 2Ct1/(p−1)
j

∫ h(tj )

0

(
1

tj + ϕ

)1+1/(p−1)

dϕ ≥ C ′′
p > 0.

To sum up, we have shown that for any θ ∈ T one has

lim sup
t→0, |η|<h(t)

P0F
(N)((1 − t)ei(θ−η)) ≥ C ′′

p > 0.
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Take N so large so that the measure of {F (N) > C ′′
p/2} is small, and a.e.

convergence to F (N) is disproved.

3. Higher dimensional results for L∞

In this section we prove results for the polydisc Un, with bounded bound-
ary functions. To simplify, we give the notation and proof for n = 2. The
generalisation to arbitrary n is clear.

We define the Poisson integral of f ∈ L1(T2) to be

Pf (z1, z2) =
∫

T2
P(z1, z2, β1, β2)f (β1, β2) dβ1 dβ2,

where
P(z1, z2, β1, β2) = P(z1, β1)P (z2, β2).

For any functions hi : R+ → R+, i = 1, 2, let

(8) Ah1,h2(θ1, θ2) = {(z1, z2) ∈ U 2 : | arg zi − θi | ≤ hi(1 − |zi |), i = 1, 2}.
We refer to Ah1,h2(θ1, θ2) as the approach region determined by h1, h2 at
(θ1, θ2) ∈ T2.

Let

P0f (z1, z2) =
∫

T2

√
P(z1, z2, β1, β2)f (β1, β2) dβ1 dβ2,

and denote the normalised operator by P0, i.e.

P0f (z1, z2) = P0f (z1, z2)

P01(z1, z2)
.

We shall prove the following theorem:

Theorem 3.1. The following conditions are equivalent for any functions
hi : R+ → R+, i = 1, . . . , n:

(i) For any f ∈ L∞(Tn) one has for almost all (θ1, . . . , θn) ∈ Tn that

P0f (z1, . . . , zn) → f (θ1, . . . , θn)

as (z1, . . . , zn) → (θ1, . . . , θn) and (z1, . . . , zn) ∈ Ah1,...,hn (θ1, . . . , θn).

(ii) hi ∈ S∞, i = 1, . . . , n. (For S∞, see Definition 1.)
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4. The proof of Theorem 3.1

We may assume, without loss of generality, that limt→0 hj (t)/t = ∞, j = 1, 2.
We shall begin by proving the implication (ii) ⇒ (i) in Theorem 3.1.
Let tj = 1 − |zj | and zj = (1 − tj )e

iθj , j = 1, 2. Then

P0f (z1, z2) = Rt1,t2 ∗ f (θ1, θ2),

where the convolution is taken in T2 and

Rt1,t2(θ1, θ2) =
2∏

j=1

1√
2π

√
tj (2 − tj )

|(1 − tj )e
iθj − 1|

1

P
(1)
0 1(1 − tj )

,

P
(1)
0 denoting the square root operator in one variable.

As before, we are interested only in small values of tj , so we assume from
now on that tj < 1/2, j = 1, 2. Then P

(1)
0 1(1 − t) ∼ √

t log 1/t , and thus the
order of magnitude of Rt1,t2 is given by

Rt1,t2(θ1, θ2) ∼ Qt1,t2(θ1, θ2) =
2∏

j=1

1

log 1/tj
· 1

tj + |θj | .

Now, let τη1,η2 denote the translation τη1,η2f (θ1, θ2) = f (θ1 − η1, θ2 − η2).
Then the convergence condition (i) in Theorem 3.1 above means

lim
t1,t2→0

|ηj |<hj (tj ), j=1,2

τη1,η2Rt1,t2 ∗ f (θ1, θ2) = f (θ1, θ2).

We are now ready to prove Theorem 3.1.

Proof. Assume that condition (ii) holds. We prove that it implies (i).
If we let

Rt1,t2(θ1, θ2) = R1
t1,t2

(θ1, θ2) + R2
t1,t2

(θ1, θ2)

where
R2
t (θ1, θ2) = Rt1,t2(θ1, θ2)χ{|θj |≥2hj (tj ), j=1,2}(θ1, θ2),

we claim that

(9) lim
t1,t2→0

|ηj |<hj (tj ), j=1,2

τη1,η2R
1
t1,t2

∗ f (θ1, θ2) = 0

and, for almost all (θ1, θ2) ∈ T2,

(10) lim
t1,t2→0

|ηj |<hj (tj ), j=1,2

τη1,η2R
2
t1,t2

∗ f (θ1, θ2) = f (θ1, θ2).
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To prove (9), it suffices to prove that

lim sup
t1,t2→0

|ηj |<hj (tj ), j=1,2

τη1,η2Q
1
t1,t2

∗ f (θ1, θ2) = 0,

whereQ1
t1,t2

corresponds toQt1,t2 asR1
t1,t2

corresponds toRt1,t2 . Note thatQ1
t1,t2

is supported in a set where |ϕj | < 2hj (tj ) for j = 1 or j = 2. Assume, without
loss of generality, that |ϕ1| < 2h1(t1) and observe that we then have

Q1
t1,t2

(ϕ1, ϕ2) ≤ χ{|ϕ1|<2h1(t1)}(ϕ1, ϕ2)

2∏
j=1

1

log 1/t1
· 1

tj + |ϕj | .

It follows that

τη1,η2Q
1
t1,t2

∗ |f |(θ1, θ2)

≤ ‖f ‖∞
∫

T2
Q1

t1,t2
(ϕ1, ϕ2) dϕ1 dϕ2

= ‖f ‖∞
(log 1/t1)(log 1/t2)

·
∫

|ϕ1|<2h1(t1)

dϕ1

t1 + |ϕ1| ·
∫

T

dϕ2

t2 + |ϕ2|

<∼
‖f ‖∞

log 1/t1
log (h1(t1)/t1).

Let ε > 0 be given. By condition (ii) in Theorem 3.1, we have that h1(t1) ≤
Ct1−ε

1 . Thus,

lim sup
t1,t2→0

|ηj |<hj (tj ), j=1,2

τη1,η2Q
1
t1,t2

∗ f (θ1, θ2) <∼ ε‖f ‖∞,

and (9) follows.
To prove (10), it now suffices to prove that the maximal operatorM , defined

by
Mf (θ) = lim sup

t1,t2→0
|ηj |<hj (tj ), j=1,2

τη1,η2Q
2
t1,t2

∗ |f |(θ1, θ2),

is dominated by a strong type (p, p) operator, for some p ≥ 1. Then con-
vergence follows by standard arguments, since the continuous functions, for
which unrestricted convergence holds for R2

t1,t2
, form a dense subset of Lp.
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Since |ηj | < hj(tj ), j = 1, 2, we have that

τη1,η2Q
2
t1,t2

(θ1, θ2) =
2∏

j=1

1

log 1/tj
· 1

tj + |θj − ηj |χ{|θj−ηj |≥2hj (tj )}

<∼
2∏

j=1

1

log 1/tj
· 1

tj + |θj | .

Each factor in the above product is a decreasing function of |θj | whose
integral in T is bounded uniformly in tj . Convolution (in one variable) with
such a function is dominated by the Hardy-Littlewood maximal operator, as
is well known.Since, for example, L∞ ⊂ L2 and since the Hardy-Littlewood
maximal operator is of strong type (2, 2), we have that

τη1,η2Q
2
t1,t2

∗ |f |(θ1, θ2) ≤ 1

log 1/t2
·
∫

T

1

t2 + |ϕ2|M
(1)
HLf (θ1, θ2 − ϕ2) dϕ2,

≤ M
(2)
HLM

(1)
HLf (θ1, θ2)

where M
(j)

HL denotes the ordinary (one-dimensional) Hardy-Littlewood max-
imal operator in variable j . But, since M(2)

HLM
(1)
HL is of strong type (2, 2) (weak

type is sufficient), we are done.
It remains to prove that (i) implies (ii). The method is similar to that of

Sjögren. Assume that (ii) is false. Without loss of generality, we may assume
that there exists ε > 0 and a sequence sk → 0, such that h1(sk)/s

1−ε
k → ∞.

We may also assume that

∞∑
k=1

s1−ε
k

h1(sk)
< ∞.

Let Ek ⊂ T be the union of at most C/h1(sk) intervals of length s1−ε
k , chosen

such that the distance from Ek to any point in T is at most h1(sk). If θ1 ∈ ∂Ek ,
it is clear that

P0χEk×T
(
(1 − sk)e

iθ1 , (1 − t)eiθ2
)

≥ C

(log 1/sk)(log 1/t)
·
∫ s1−ε

k

0

dϕ1

sk + ϕ1
·
∫

T

dϕ2

t + |ϕ2| ≥ Cε.

Thus, for any (θ1, θ2) ∈ T2 we have

sup
|ηj |<hj (tj ), j=1,2

P0χEk×T
(
(1 − sk)e

i(θ1−η1), (1 − t)ei(θ2−η2)
) ≥ Cε.
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Now, since |Ek| <∼ s1−ε
k /h1(sk), we can choose k0 so large that the measure

of E = ∪k≥k0Ek is arbitrarily small. But clearly

lim sup
t1,t2→0

|ηj |<hj (tj ), j=1,2

P0χE×T
(
(1 − t1)e

i(θ1−η1), (1 − t2)e
i(θ2−η2)

) ≥ Cε

for each (θ1, θ2) ∈ T2. We have shown that a.e. convergence to χE×T along the
region defined by h1 and h2 fails. This completes the proof.
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