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TOTAL CURVATURE AND AREA OF CURVES
WITH CUSPS AND OF SURFACE MAPS

TOBIAS EKHOLM and FRANK KUTZSCHEBAUCH∗

Abstract

A curvature-area inequality for planar curves with cusps is derived. Using this inequality, the total
(Lipschitz-Killing) curvature of a map with stable singularities of a closed surface into the plane
is shown to be bounded below by the area of the map divided by the square of the radius of the
smallest ball containing the image of the map. This latter result fills the gap in Santaló’s [7] proof
of a similar estimate for surface maps into Rn, n > 2.

1. Introduction

Let f : S → R2 be a smooth generic map of a closed surface to the plane. The
total curvature K(f ) of f equals π times the average over all unit vectors
v ∈ R2 of the number of critical points of the function x �→ 〈f (x), v〉, x ∈ S,
where 〈 , 〉 is the standard inner product on R2. The area of f , Area(f ) is its
mapping area. We show that if the image of f is contained in a disk of radius
ε > 0 then

(1) K(f ) ≥ Area(f )

ε2
,

see Theorem 4.2. In order to prove (1), we establish a curvature-area estimate
for plane curves with cusps in Section 3 (which we believe is of independent
interest).

Combining (1) with integral geometric methods we derive similar inequal-
ities for surface maps into Rn for arbitrary n > 1. This method was originally
used by Santaló [7] in order to establish these in the case when f : S → Rn,
n > 2, is an immersion. However, as pointed out by Chakerian [8], [9], San-
taló’s proof is incomplete. The point overlooked is the fact that the critical
values of a plane-projection of an immersion does not generally form an im-
mersed curve but rather a curve with cusps. (The same mistake appears in an
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earlier paper of Fáry [6].) The present paper thus completes Santaló-Fáry’s
integral geometric proof, taking also cusps into consideration.

During the preparation of this manuscript, we were informed that the coun-
terpart of (1) for surface immersions into R3 had been proved with a different
method by Aminov [2] (see also [3], Corollary 6.22, p. 50.). This method
is specific for immersions into R3. Since projections into 3-dimensional sub-
spaces of surface immersions into Rn, n > 3, generically are not immersions
(they have certain singularities, so called Whitney umbrellas), this result is not
immediately applicable in the integral geometric arguments used in the proof
of Theorem 4.4.

We thank Alexandru Oancea for informing us about the proof of the coun-
terpart of (1) for surface immersions into 3-space in [3].

We also thank the referee for useful suggestions and in particular, for point-
ing out mistakes in an earlier version of the proof of Lemma 3.5.

2. Total curvature and generic singularities of surface maps

In this section we first introduce the notion of total curvature of a map and then
discuss generic singularities of maps between surfaces. The material presented
here is well-known and we refer the reader to [4] for more information on the
first subject and to [1] for the second.

2.1. Classical total curvature and Lipschitz-Killing curvature

Let f : S → R3 be an immersion of a surface S. As mentioned in the introduc-
tion, the total curvature of f is the integral of the absolute value of the Gauss
curvature over the surface. It is well known that the total curvature is equal to
the area of the image of the Gauss map G: S → S2 corresponding to f (here
S2 is the unit sphere in R3 with its standard area form),

(2) K(f ) = Area(G)

This last quantity can also be computed by integrating the multiplicity of
the map G over the unit sphere. Translating back to the original immersion
we find that the total curvature of f equals the average, over all directions
in R3, of the number of critical points of the corresponding height functions.
More precisely, if v ∈ S2 then the height function in direction v is hv: S → R,
s �→ 〈f (s), v〉, where 〈 , 〉 denotes the standard inner product on R3. If c(v)
denotes the number of critical points of hv then

(3) K(f ) = 1

2

∫
v∈S2

c(v) dv,
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where dv is the area element induced on the unit sphere S2 from the Euclidean
metric in R3. (Note that the area of S2 is 4π .)

The expression (3) for the total curvature applies not only to immersions
but to more general maps. Therefore we take this as our definition. Moreover,
(3) generalizes immediately to maps f : S → Rn for n 	= 3. In this case the
total curvature (or Lipschitz-Killing curvature) of a map f : S → Rn is

(4) K(f ) = 1

2

∫
v∈Sn−1

c(v) dv,

where dv is the standard volume form on the unit sphere Sn−1 ⊂ Rn. If n > 3
and if f : S → Rn is an immersion then also (2) has a counterpart. In this
case the Gauss-map is naturally defined on the geometric unit normal bundle
of f (i.e., the bundle with fiber over s ∈ S consisting of unit vectors in Rn

orthogonal to the tangent plane df (TsS)) and again K(f ) equals the volume
of the Gauss map.

It will also be convenient to normalize K(f ) differently. We write K̂(f )

for K(f ) divided by the volume of the (n − 1)-sphere. (That is, in (4), the
rotational invariant measure with total mass 1 is used instead of dv.)

2.2. Stable singularities of maps f : S → R2

Let U ⊂ Rm be open and let g:U → Rn be a Ck-map, k > 1. We say that
g is stable if there exists an ε > 0 such that any Ck-map h:U → Rn of
Ck-distance less than ε from g is conjugate to g via left-right action of Ck-
diffeomorphisms. That is, h = φ ◦ g ◦ψ for diffeomorphisms φ:U → U and
ψ : Rn → Rn. We say that a Ck-map f :M → Rn of a smooth manifold M has
stable singularities if f is locally stable.

Any C3-map S → R2 of a surface S can be perturbed with an arbitrarily
small perturbation to a map with stable singularities. Let f : S → R2 be a C3-
map with stable singularities. Then there exists local (C3-)coordinates (u, v)
around any point s ∈ S and (x, y) around f (s) ∈ R2 so that the map has one
of the following local forms.

(a) A regular point, f (u, v) = (u, v).

(b) A fold point, f (u, v) = (u2, v).

(c) A cusp point, f (u, v) = (u3 + uv, v).

In particular, the preimage of the singular values of f is a (C2-smooth)
1-dimensional submanifold �̃ of S. Along �̃ the line field Ker(df ) is defined
and it is tangent to �̃ exactly at the cusp points. The curve � = f (�̃) is
immersed away from the cusps. We refer to it as the fold curve of f .
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If f : S → R2 is a map with stable singularities then all critical points of
any height function hv , v ∈ S1 lies in �̃. It follows that the total curvature of f
equals the total curvature of its fold curve �. More precisely, if �1 ∪ . . .∪�m

is a subdivision of � into immersed segments then

(5) K(f ) =
m∑

j=1

∫
�j

|κ| ds,

where κ is the curvature function along �j and ds is the arc length element.

3. Curvature and area of curves with cusps

In this section we derive the basic area-curvature estimate for a curve with
cusps and with image in a disk. We first define basic concepts and the class
of curves in which the curvature-area estimate will be proved. (Note that the
fold curve of a map of a surface to a plane with stable singularities can be
approximated arbitrarily well by curves in this class.) Then, in a sequence of
lemmas, we show how to simplify the curves without decreasing the relevant
curvature-area difference. In the final subsection we prove the estimate for
these simple curves.

3.1. Basic definitions

Let ! be a piecewise regular closed curve in the plane. That is, ! = ∪m
j=1!m is

a cyclically ordered union of finitely many immersed curves !j with arc length
parameterizations cj : [0, Lj ] → R2, cj (Lj ) = cj+1(0), and cm(Lm) = c1(0).

Recall that the tangent cone of a subset E ⊂ Rn at p ∈ E is defined as

{r ∈ R: r ≥ 0} ·
{⋂
ε>0

Closure

{
x − p

|x − p| : x ∈ E, 0 < |x − p| < ε

}}

If t ∈ (0, Lj ) is an interior point of one of the parameterizing intervals of !
then we define the tangent cone Tcj (t)! of ! at cj (t) as the tangent cone of
cj (U) at cj (t), where U ⊂ (0, Lj ) is any open interval around t on which cj
is an embedding. If t = Lj is an end point of [0, Lj ] we define Tcj (Lj )! as the
tangent cone of cj (U)∪ cj+1(V ) where U = (Lj − δ, Lj ] and V = [0, δ) and
δ > 0 is small enough for both cj |U and cj+1|V to be embeddings.

A point p = cj (Lj ) = cj+1(0) on ! is a vertex of ! if the tangent cone of
! at p is not a straight line.

A choice of orientation on one of the !j induces an orientation on ! and
hence distinguishes positive unit tangent vector fields Tj along !j . Instead of
working with orientations we will often use coorientations: a coorientation
of ! is a collection of normal vector fields Nj defined along each !j which
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are orthogonal to the corresponding unit tangent vector fields Tj coming form
some orientation of !, and such that the orientations on R2 induced by (Nj , Tj )

agrees for all j . Thus a coorientation induces an orientation of !.
Let (x, y) be orthogonal coordinates on R2 and let α be the 1-form α =

1
2 (x dy − y dx). Then dα = dx ∧ dy is the area from on R2.

Definition 3.1. The area-content A(!) of a cooriented piecewise regular
curve ! is

A(!) = 1

2

∫
!

(x dy − y dx),

where ! is endowed with the orientation induced by the coorientation.

Let ! be a piecewise regular curve and let p be a vertex of !. The vertex p

will be called non-degenerate if the tangent cone Tp! of ! at p consists of two
distinct half-lines atp. Note that a piecewise regular curve with non-degenerate
vertices is a local (continuous) embedding.

Let p = cj (Lj ) = cj+1(0) be a non-degenerate vertex of ! and let v1 and
v2 be unit vectors at p in the directions of the half-lines in Tp!. We say that a
coorientation of ! is convex (concave) at p if 〈Nj(Lj )+Nj+1(0), v1 +v2〉 < 0
(〈Nj(Lj ) + Nj+1(0), v1 + v2〉 > 0), where 〈 , 〉 is the standard inner product
on R2.

Let ! be a closed piecewise regular curve with non-degenerate vertices and
let p = cj (t) ∈ !. We say that ! is locally convex (locally concave) if all its
corners are convex (concave) and the curvature function of each regular point
of ! is non-negative (non-positive).

A fold-approximation is a cooriented piecewise regular curve ! with non-
degenerate vertices, with each vertex labeled as either a wedge or a corner,
and such that the coorientation of ! is convex at each wedge.

If ! is a fold-approximation we write Wdg(!) and Crn(!) for its sets of
wedges and of corners, respectively. Ifp is a vertex of! then let i(p) denote the
angle between the half-lines in the tangent cone Tp! and let e(p) = π − i(p).
(So that, i(p) and e(p) are the interior- respectively exterior angles at p.)

Definition 3.2. The total curvature K(!) of a fold-approximation ! =
∪j!j is

K(!) =
∑
j

∫
!j

|κ| ds +
∑

p∈Crn(!)

e(p) +
∑

p∈Wdg(!)

i(p),

where κ denotes the curvature function of !j .
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3.2. The estimate

In this section we present a sequence of lemmas which taken together prove
the following result.

Theorem 3.3. If ! is a fold-approximation lying inside a disk of radius
ε > 0 then

(6) K(!) − 2A(!)

ε2
≥ 0.

To prove theorem 3.3 we make two observations. First, a piecewise reg-
ular curve ! = ∪j!j will be called piecewise linear or simply PL if each
!j is a line segment. The well-known approximation result relating the total
curvature of a curve to the total curvature of polygons inscribed in it, see [5],
shows that it is enough to prove (6) for PL fold-approximations. Second, note
that scaling by ε does not change the total curvature of a fold-approximation,
whereas it multiplies the area-content by ε2. Therefore, it is sufficient to prove
Theorem 3.3 for ε = 1.

Thus, we will assume that ! is a PL fold-approximation contained in the
unit disk D and we prove the estimate K(!) − 2A(!) ≥ 0.

In order to prove this estimate we will use several lemmas presented below.
The purpose of these lemmas are to deform a given PL fold-approximation
into a fold-approximation with certain special properties without increasing
K − 2A. The proof of Theorem 3.3 will then be completed by proving it for
fold-approximations which have these special properties.

Lemma 3.4. Let ! be a PL fold-approximation in D. Then there exists a
PL fold-approximation !0 in D with all its wedges on the boundary ∂D and
such that

K(!0) − 2A(!0) ≤ K(!) − 2A(!).

Proof. Let p be a wedge on ! which does not lie on ∂D. Let L be the half-
line at p generated by the unit vector v which forms the same angle with the
two half-lines in the tangent cone Tp! and such that for any vector w ∈ Tp!,
〈v,w〉 ≤ 0. Then L meets ∂D in some point q. Let L1 and L2 be half-lines
at q pointing inside D which form angles α

2 and − α
2 with L. Then for α > 0

small enough L1 and L2 meet ! at two points p1 and p2 which are close to
p. Construct the curve !′ by replacing the polygonal arc p1pp2 in ! by the
polygonal arc p1qp2, let q be a wedge and p1, p2 be corners.

It is then easy to check that K(!′) = K(!), see Figure 1. Since the coori-
entation of ! at p is convex there is a unique coorientation !′ in which q is
convex and A(!′) ≥ A(!).
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Figure 1. 3K = −β + α + 2γ = 0, 3A > 0.

Let !0 be the PL fold-approximation which is obtained by applying the above
process at each wedge not on ∂D.

Lemma 3.5. Let !0 be as in Lemma 3.4. Then there exists a locally convex
PL fold-approximation !1 with each wedge on the boundary, such that the
coorientation is convex at each vertex of !1, and such that

K(!1) − 2A(!1) ≤ K(!0) − 2A(!0).

Proof. We make !0 locally convex using an inductive procedure. Assume
first that there exists three consecutive vertices p, q, and r on !0 such that p
is a convex wedge or corner and q is a concave corner. Let !′ be the PL curve
obtained from !0 by replacing the segments pq and qr by the segment pr .
Then 3K = K(!′)−K(!0) ≤ 0 and 3A = A(!′)−A(!0) > 0. To see this
confer Figure 2.

Let s be the vertex immediately after r on !0. Since !0 is convex at p, s
and p are distinct vertices of !0. The curve !′ is a fold approximation except
when the vertex s lies on the half-line l starting at r and passing through p. If
s /∈ l then take !̂ = !′. If s ∈ l then let !̂ be the curve obtained from !′ by
moving s slightly off l in such a way that its corner at r is convex and so that
K(!̂) − 2A(!̂) < K(!0) − 2A(!0). (Even though moving s might increase
K − 2A, the latter condition is met provided the deformation is sufficiently
small since K(!′) − 2A(!′) < K(!0) − 2A(!0).) Note that the number of
vertices of !̂ is strictly smaller than the number of vertices of !0.
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Figure 2. 3K ≤ α + γ − β = 0, 3A > 0.

Assume secondly that !0 has only concave vertices. (In particular, all of its
vertices must be corners since, by definition, the wedges of a fold approxima-
tion are convex.) If !0 is an embedded curve then its local concavity implies
it is negatively oriented and hence A(!0) < 0. In this case we may take !̂ as
the empty curve and K(!̂) − 2A(!̂) = 0 < K(!0) − 2A(!0).

In order to deal with the case when !0 is not an embedding we introduce the
following notation. A PL curve f : S1 → R2 is generic if all its vertices are non-
degenerate and all its multiple points are transverse intersections between two
edges. An arbitrary PL curve with non-degenerate vertices can be deformed
into a generic PL curve by an arbitrary small deformation which does not
increase the number of vertices. A double point s of a generic PL curvef : S1 →
R2 is innermost if f −1(s) bounds an arc A ⊂ S1 such that the restriction of f
to the interior of A is injective. Clearly, any generic PL curve has an innermost
double point.

With this notation introduced, consider the case when!0 is a locally concave
non-injective curve. Let p, q, r be consecutive vertices of !0. Let !′ be the
curve obtained from !0 by moving q a small distance along the segment qp,
starting at q ending at p, to a new position q ′, see Figure 3.

Then !′ is still locally concave so K(!) = K(!′) and A(!′) = A(!) +
Area(T (rqq ′)) > A(!), where T (rqq ′) is the triangle with corners r , q, and
q ′. Let !′′ be a small perturbation of !′ such that !′′ is generic and locally
concave, so that !′′ has the same number of vertices as !′, and so that K(!′′)−
2A(!′′) < K(!0) − 2A(!0). (Such a curve exists since locally concavity is
an open condition.) Let s be an innermost self intersection point of !′′. Then
!′′ can be written as a union !′′ = !̂1 ∪ !̂2, where !̂j , j = 1, 2, is a closed
curve with a vertex at s. Since s was an innermost double point of !′′ at least
one of the curves !̂j , j = 1, 2 is embedded. Choose notation so that !̂2 is
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Figure 3. Deforming !0 to !′.

an embedding. Since !̂2 is a closed curve, K(!̂2) ≥ 2π , and since !̂2 is a
negatively oriented embedded curve, A(!̂2) < 0. Let δ, 0 < δ < π be the
exterior angle of !̂2 at s. Then the exterior angle of !̂1 at s equals δ as well.
We have

K(!̂1) = K(!′′) − (K(!̂2) − δ) + δ ≤ K(!′′) − 2(π − δ) < K(!′′),

A(!̂1) = A(!′′) − A(!̂2) > A(!′′).

Thus, taking !̂ = !̂1 we find K(!̂) − 2A(!̂) < K(!0) − 2A(!0). Moreover,
since !̂2 has at least three vertices we find that the number of vertices of !̂ is
smaller than the number of vertices of !0.

In conclusion: the above argument constructs, from any PL fold approx-
imation !0 as in the statement of the lemma with at least one concave corner,
another PL fold approximation !̂ which has the properties of !0 in the state-
ment of the lemma, which satisfies K(!̂) − 2A(!̂) < K(!0) − 2A(!0), and
which has at least one vertex less than !0. Applying this procedure inductively
until there are no concave corners, we arrive at a locally convex curve !1 with
properties as desired.

Lemma 3.6. Let !1 be as in Lemma 3.5. Then there exists a locally convex
fold-approximation with the following properties. If !1 has wedges then the
wedges of !2 are at the same points and have the same angles as those of !1,
and if C is a part of !2 connecting two wedges p1 and p2 then C has one of
the following forms

(a) C is a line segment.
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(b) C consists of two line segments and has one corner where the coorient-
ation is convex.

(c) C = L1 ∪S∪L2 where L1 is a line segment from p1 to a point q1 ∈ ∂D,
S is a positively oriented curve in the boundary ∂D connecting q1 to a
point q2 in the boundary, and L2 is a line segment connecting q2 to p2.
The coorientations at the corners q1 and q2 are convex.

If !1 has no wedges then then !2 is a curve in the boundary ∂D. Moreover,

K(!2) − 2A(!2) ≤ K(!1) − 2A(!1).

Proof. We will use the following notation in the proof below: if γ is a
piecewise regular curve then γ = ∪j γj where γj are regular curves connecting
the vertices of γ . We call γj the regular segments of γ .

Consider first the case when !1 has wedges. We deform !1 to a curve of the
desired form using an inductive procedure. In order to do so, let ! be a locally
convex fold approximation in D with all its wedges on the boundary and such
that each regular segment of! is either a curve in ∂D or a straight line segment.
(Note that !1 in the formulation of the lemma fulfills these conditions. Note
also that if ! fulfills these condition and no regular segment between two
corners of ! is a straight line segment then ! has the properties of !2 in the
statement of the lemma.)

Assume that ! has a regular segment connecting two of its corners q1 and
q2 which is a straight line segment. Let l1 be the oriented tangent line to the
regular segment of ! ending at q1 and let l2 be the oriented tangent line of
the regular segment beginning at q2. Let L1 ⊂ l1 be the half-line starting at
q1 and let L2 ⊂ l2 be the half-line ending at q2. If L1 and L2 intersect at a
point q inside the disk then let !̂ be the curve obtained from ! by replacing
the line segment q1q2 by the line segments q1q and qq2, see Figure 4. If the
two half-lines L1 and L2 do not intersect in D then let !̂ be the curve obtained
from !1 by replacing the line segment q1q2 by the curve C defined as follows.

• If q1 /∈ ∂D and q2 /∈ ∂D then C consists of L1 ∩ D, the positively
oriented arc in ∂D connecting L1 ∩ ∂D to L2 ∩ ∂D, and L2 ∩ D, see
Figure 4.

• If q1 ∈ ∂D and q2 /∈ ∂D then C consists of the positively oriented arc
in ∂D connecting L1 ∩ ∂D to L2 ∩ ∂D and L2 ∩ D.

• If q1 /∈ ∂D and q2 ∈ ∂D then C consists of the L1 ∩D and the positively
oriented arc in ∂D connecting L1 ∩ ∂D to L2 ∩ ∂D.

• If q1 ∈ ∂D and q2 ∈ ∂D then C the positively oriented arc in ∂D

connecting L1 ∩ ∂D to L2 ∩ ∂D.
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Figure 4. 3K = 0, 3A ≥ 0.

Then !̂ is locally convex, K(!̂) = K(!), A(!̂) > A(!), and the number of
regular segments of !̂ which connects two of its corners and which are straight
line segments is strictly smaller than the corresponding number for !.

Thus, by repeating this construction we eventually (after a finite number
of iterations) find a locally convex curve !′ with the same wedges as !, with
each regular segment connecting two corners being a curve in ∂D, and such
that K(!′) = K(!) and A(!′) ≥ A(!). Taking !1 = ! and !2 = !′ finishes
the proof.

3.3. Proof of Theorem 3.3

After the lemmas above we may assume that the fold-approximation ! has the
form of !2 in Lemma 3.6. From ! we first construct a collection of non-closed
fold-approximations by removing pieces of all segments of ! which are of
type (b) in Lemma 3.6 as follows.

Consider a segment of! which has type (b) and which connects two wedges
p1 and p2 and has a convex corner c in between them. Denote the intersection
of the half-line from p1 through c with the circle ∂D by q1 and the intersection
of the half-line from p2 through c with the circle ∂D by q2. (If c lies on the
boundary then c = q1 = q2.) Let a1 denote the mid-point of the line segment
p1q1 and a2 denote the mid-point of the line segment p2q2. We replace the
segment of ! of type (b) by the union of the line segments p1a1 and a2p2,
see Figure 5 and obtain in this way a collection of non-closed curves. (For
the remainder of this proof, we denote oriented line segments so that they are
oriented from start-point to end-point.)

Note that even in the case a1 = a2 = c this point will not be considered as a
vertex (i.e., there is no curvature concentrated at that point). We just consider
the non-closed curves as ending and starting at this point. Let !′ denote the
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Figure 5

union of the non-closed fold-approximations obtained from ! by altering all
segments of type (b) as described above.

We claim that

K(!′) − 2A(!′) ≤ K(!) − 2A(!).

(Note that the area content A(γ ) of a non-closed curve γ , see Definition 3.1,
depends on the origin of the coordinate system. In this proof we take the origin
at the center of the disk D.) To see this, we let α denote the angle from the
point p1 on the circle ∂D to the point q2 on the circle ∂D, and we let β denote
the angle from q1 to p2. Then the change of total curvature is 3K = − α+β

2 ,
see Figure 5.

On the other hand, with T (abc) denoting the triangle with corners a, b and
c, the change of area is

3A = 1

2
A(p1q1) + 1

2
A(q2p2) − A(p1c) − A(cp2)

= 1

2

(−A(p1c) + A(cq1) − A(cp2) + A(q2c)
)

= 1

2

(
Area (T (p1q2c)) − A(p1q2) + Area (T (q1p2c)) − A(q1p2)

)

= 1

2

(
Area (T (p1q2c)) − sin α

2
+ Area (T (q1p2c)) − sin β

2

)
.
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We obtain

3K − 23A = 1

2
(sin(α) − α) + 1

2
(sin β − β)

− Area (T (p1q2c)) − Area (T (q1p2c)) ≤ 0,

and the claim follows.
To finish the proof we show K(!′) − 2A(!′) ≥ 0. To this end subdivide

each component of !′ into pieces as follows. For each straight line segment
L of !′ between points on ∂D which occurs in a segment of either type (a) or
(c) in Lemma 3.6, mark its mid-point. For each curve C in ∂D which occurs
in a segment of type (c) in Lemma 3.6, mark its mid-point. These mid-points
subdivide !′ into two types of curves.

(A) The curve starts at a mid-point of a straight line segment between two
points on ∂D, follows it to a wedge on ∂D, leaves that wedge along a
straight line segment between two points on ∂D, and ends at the mid-
point of that segment, see Figure 6.

a

a

Figure 6

(B) The curve starts at the mid-point of a straight line segment between two
points on ∂D, follows it to a corner on ∂D, leaves that corner along a
positively oriented curve in the boundary ∂D, and ends at its mid-point.
Or the other way around, i.e., starts at the mid-point of a positively
oriented curve in ∂D, follows it to a corner on ∂D, leaves that corner
along a straight line segment between two points on ∂D, and ends at its
mid-point, see Figure 7.
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a
b

Figure 7

We next show that if C is a curve of type (A) or (B) then K(C)− 2A(C) ≥ 0.
First, assume C is of type (A) and note that the area content of half a line
segment is half the area content of the whole line segment. Let C ′ be the
curve which consists of the complete line segments (with both end points
on ∂D) corresponding to the half line segments of C. Then K(C ′) − A(C ′)
does not increase as the wedge of C ′ is moved along ∂D to the mid-point
of the arc between the free end points of the line segments of C ′. Noting
that the angle at the wedge remains constant under such a motion and that
the area content is maximal in the final position, we conclude (see Figure 6)
K(C ′) − A(C ′) ≥ α − sin α ≥ 0 and therefore K(C) − 2A(C) ≥ 0.

Second, assume C is of type (B). If α denotes the length of the positively
oriented arc in ∂D connecting the endpoints of the straight line segment of
C and if β denotes the length of the positively oriented segment of C in ∂D,
then A(C) = 1

4 sin α+ 1
2β and K(C) = 1

2α+β. Therefore K(C)− 2A(C) =
1
2α − 1

2 sin α ≥ 0.
Summing over all pieces we find that K(!′) − 2A(!′) ≥ 0. This finishes

the proof.

4. Estimates for surface maps

In this section we use Theorem 3.3 to prove estimates relating total curvature
and area of surface maps. We first prove a result for surface maps with stable
singularities into R2 and then use this result in combination with standard
techniques of integral geometry to obtain similar estimates for maps into Rn,
n ≥ 2.



238 tobias ekholm and frank kutzschebauch

4.1. The estimate for maps f : S → R2

We first express the area of a generic smooth map of a surface to a plane through
the area content of its fold curve. We say that a map f : S → R2 with stable
singularities is generic if all multiple points of its fold curve ! are transverse
double points (in particular no cusp of ! is a multiple point). It is easy to see
that any map with stable singularities may be arbitrarily well approximated by
a generic map.

Lemma 4.1. Let S be a closed surface, let f : S → R2 be a map with stable
singularities, and let (x, y) be orthonormal coordinates on R2. Let � be the
fold curve of f cooriented by the normal field which points towards lower
multiplicity, see Figure 8. Then

Area(f ) =
∫
�

(x dy − y dx).

Proof. An approximation argument shows that it is enough to show the
lemma for generic maps. Thus assume f is generic and let 2m be the highest
multiplicity of the map f . When a point in R2 crosses �, the multiplicity of
f changes by 2. We split the fold curve � at its double points as indicated in
Figure 8. The result is finitely many pairwise not intersecting closed curves Ci

(without self intersections but possibly with cusps-singularities) cooriented so
that the coorienting normal points towards regions of lower multiplicity of f .

2m � 2

2m � 2

2m � 22m 2m

2m 2m

Figure 8

Let C(2k, 2k − 2) denote the union of those Ci which have a neighborhood
U ⊂ R2 such that for any p ∈ U −Ci the multiplicity of f at p equals 2k − 2
or 2k. Let A(2k, 2k − 2) denote the area of the subset W ⊂ R2 which has
C(2k, 2k − 2) as its cooriented boundary. (Note that the multiplicity of f at
each point p ∈ W is ≥ 2k.) Then

Area(f ) =
m∑

k=1

2k
(
A(2k, 2k − 2) − A(2k + 2, 2k)

) = 2
m∑

k=1

A(2k, 2k − 2).
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By Stokes theorem,

A(2k, 2k − 2) = 1

2

∫
C(2k,2k−2)

(x dy − y dx).

Since � is the disjoint union of C(2k, 2k − 2), k = 1, 2, . . . , m the lemma
follows.

We are now ready to state and prove the main theorem of the paper.

Theorem 4.2. For any C3 map with stable singularities f : S → R2 of a
closed surface S with image contained in the disk of radius ε

(7) K(f ) ≥ Area(f )

ε2
.

Proof. By Lemma 4.1 and the argument in Section 2.2 we must show that

K(�) ≥ 1

ε2

∫
�

(x dy − y dx),

where � is the fold curve of f . To this end, note that � can be approximated
by a fold-approximation ! (for the definition, see Section 3) in such a way that
A(!) approximates A(�) arbitrarily well, and so that K(!) is arbitrarily close
to K(�). (For example, we can use a PL fold-approximation ! with a wedge
in each of the cusps of the fold curve !. Note that the curvature of some piece
of � near the cusp is exactly the inner angle at the wedge, see Figure 8.) The
theorem then follows from Theorem 3.3.

4.2. The estimate for f : S → Rn, n > 2

We prove the counterpart of Theorem 4.2 for C2-surface maps into Rn, n ≥ 3.
In order to weaken the differentiability assumption (the maps are assumed C3

in Theorem 4.2) we start out with an approximation lemma.
If f : S → Rn is a C2-map of a surface S with stable singularities then

for each point p ∈ S there exist local coordinates (u, v) around p ∈ S and
(x, y, z) around f (p) in R3 such that f has one of the following local forms.

(a) A regular point (u, v) �→ (u, v, 0).

(b) A Whitney umbrella point (u, v) �→ (u, uv, v2).

If f : S → Rn, n ≥ 4, is a C2-map of a surface S a with stable singularities
then f is an immersion.

Lemma 4.3. Let S be a closed surface and let f : S → Rn, n ≥ 3, be a C2-
map with stable singularities. Then f can be arbitrarily well approximated in
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the C2-topology by a C∞-map with stable singularities. Moreover, if fk: S →
Rn, k = 1, 2, . . . is any sequence of smooth maps which converges to f in the
C2-norm then

Area(fk) → Area(f ) and(8)

K̂(fk) → K̂(f ) as j → ∞.(9)

Proof. The approximation statement is well-known. The convergence in
(8) is immediate (in fact C1-convergence of the maps is sufficient). The same
argument, but considering instead of the map f itself its Gauss-map, see Sec-
tion 2.1, gives the convergence in (9) in case f is an immersion.

The only remaining case is thus when f : S → R3 is a map with a finite
number of Whitney umbrella points {s1, s2, . . . , sm}, say. Fix a Riemannian

metric on S. For ε > 0, let Sε denote the open surface S −
(
∪m
j=1B(sj , ε)

)
where B(sj , ε) is the closed ball of radius ε around sj .

For v ∈ S2, let cε(v) be the number of critical points of the height func-
tion hv: Sε → R, hv(s) = 〈f (s), v〉, see Section 2.1. Clearly, cε(v) is non-
decreasing in ε for any v. Moreover, limε→0 cε(v) = c(v) for almost every v,
since the point sj is a critical point of hv only for v in the great circle G ⊂ S2

of vectors orthogonal to the line Im(df (sj )), which is a set of measure 0. We
conclude

(10) lim
ε→0

∫
v∈S2

cε(v) dv =
∫
v∈S2

c(v) dv = K(f ).

For k sufficiently large the number of Whitney umbrella points of fk equals
m. Also, the Whitney umbrella points of fk converges to those of f . Note that
both area and total curvature are unaffected by right composition with diffeo-
morphisms. Thus, after composing fk on the right with C∞-diffeomorphisms
φk: S → S (φk → id as k → ∞) we may assume that the Whitney umbrella
points of all the fk are exactly {s1, . . . , sm}. Letting ckε be defined as cε with
fk replacing f we conclude from the above results for immersions that

(11) lim
k→∞

∫
v∈S2

ckε (v) dv =
∫
v∈S2

cε(v) dv.

Equations (10) and (11) together imply (9).

Theorem 4.4. Let S be a closed surface and let f : S → Rn, n ≥ 3, be
a C2-map with stable singularities and with image contained in the ball of
radius ε. Then

(12) 2πK̂(f ) ≥ Area(f )

(n − 1)ε2
.
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Proof. Lemma 4.3 shows that it is sufficient to prove the theorem for
smooth maps f with stable singularities. We proceed by induction on the
dimension n. For smooth f the theorem holds for n = 2 by Theorem 3.3.
Assume that the theorem holds for all maps g: S → Rn−1 with stable singu-
larities. Let v ∈ Sn−1 ⊂ Rn, let πv: Rn → Rn−1 denote orthogonal projection
to the hyperplane orthogonal to v, and let dσ denote the rotationally invariant
measure on Sn−1 of total mass 1. A standard transversality argument shows
that πv ◦ f : S → Rn−1 has stable singularities for almost every v ∈ Sn−1.
Moreover, (as is easily verified)

∫
v∈Sn−1

Area(πv ◦ f ) dσ = n − 1

n − 2
Area(f )

and
K̂(f ) =

∫
v∈Sn−1

K̂(πv ◦ f ) dσ.

The theorem follows.

4.3. Best constants

Let us conclude with remarking that for n = 3, equality in (12) holds for the
standard 2-sphere of radius ε. Orthogonal projection of this sphere to a plane
gives equality in (7). Hence, in the first two dimensions the estimate is sharp.
For n > 3, we do not know of any example which gives equality in (12). We
therefore ask: what is the best constant in the estimate of Theorem 4.4 for
n ≥ 4?
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