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SURFACES IN G(1, 5) WITH ONE APPARENT
DOUBLE POINT

JOSÉ CARLOS SIERRA∗

Abstract

In this work we characterize the smooth surfaces that can be embedded in the Grassmannian of
lines G(1, 5) with one apparent double point, i.e., such that the general linear projection to G(1, 3)

produces just one double point. The result is that such a surface must be either a rational scroll of
degree 4 or 5 or a Del Pezzo surface of degree 6 or 7.

Introduction

It is a well known result that every r-dimensional smooth subvariety X ⊂ PN

can be isomorphically projected to P2r+1 from a general (N − 2r − 2)-linear
subspace. The further projection to P2r from a general point produces a finite
number δ(X) of double points.

In the case of smooth surfaces in P5, Severi’s theorem states that the only
one that can be isomorphically projected to P4 (i.e., with δ(X) = 0) is the
Veronese surface (see [9]). In the same paper, Severi claims that the smooth
surfaces with one apparent double point (i.e., with δ(X) = 1) are the rational
normal scrolls of degree 4 and the Del Pezzo surface of degree 5. In the proof
he assumes that surfaces with one apparent double point cannot have a large
family of trisecant lines. This fact was first remarked by Ciliberto and Sernesi,
and the proof was recently obtained by F. Russo in [8], completing the theorem.
A related problem, studied also by Severi in [9], is to find the smooth surfaces
in P4 without apparent triple points, i.e., the union of its trisecant lines does
not fill P4. The result was stated by A. Aure in [4], showing that the quintic
elliptic scroll is the only smooth surface in P4 without apparent triple points
that do not lie on a quadric hypersurface.

The aim of this work is to prove a similar result for smooth surfaces in
Grassmannians of lines, in the spirit of [3], [1], [10] or [2]. To be precise, we
study the restriction to a surface of the linear projection G(1, 5) ��� G(1, 3)
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induced, in the obvious way, by a linear projection P5 ��� P3. It is known that
the only one that can be isomorphically projected is the Veronese surface, i.e.,
P2 embedded by the rank two bundle OP2(1) ⊕ OP2(1) (see [3], Corollary 5.2).
Now we study the case when the projected surface has just one double point.

The paper is structured as follows. In the Preliminaries we fix the notation
and state the double point formula for surfaces in G(1, 3). In Section 2 we
give the proper definitions of secant varieties in the Grassmannian context and
prove Corollary 2.7, which is the starting point of the theory. In Section 3
we present some examples of surfaces in G(1, 5) with one apparent double
point. In Section 4 we analyse the fundamental locus of a birational morphism
in order to prove the rationality (Proposition 4.5) and the normal linearity
(Corollary 4.7) of surfaces in G(1, 5) with one apparent double point. Finally,
Section 5 is devoted to state and prove the classification theorem, which is the
main result of the paper.

Acknowledgements. I would like to thank my advisor Professor Enrique
Arrondo for suggesting this research, following its development and for many
fruitful discussions. I would also like to thank Professor Kristian Ranestad for
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1. Preliminaries

Throughout this work X will be a smooth irreducible surface over C embedded
in G(1, 5), the Grassmann variety of lines in P5. According to this notation,
G(k, n) will be the Grassmann variety of k-planes in Pn.

For Y ⊂ G(k, n), we will denote by Y ⊂ Pn the union of its k-planes inside
Pn. Y is said to be nondegenerate if Y is not contained in any hyperplane of
Pn. In particular, X ⊂ G(1, 5) is always supposed nondegenerate.

A different problem would be to study surfaces in G(1, 4) with one apparent
double point (cf. [3], Theorem 5.1 and Corollary 5.2).

We will denote the elements of G(1, n) by small letters, say l, and use the
corresponding capital letter, say L, for the line in Pn that they define. We usually
call a line of X ⊂ G(1, n) to refer to a line in Pn given by the corresponding
point of X.

By (linear) projection G(1, n) ��� G(1, n′) we mean the rational map
induced by a linear projection Pn ��� Pn′

. Its indeterminacy locus consists of
the set of lines meeting the center of projection from Pn to Pn′

.
For G = G(1, n), we denote by A(G) the Chow ring of G. For 0 ≤ α1 < α2,

�(α1, α2) represents the class of the Schubert variety of lines contained in
Pα2 ⊂ Pn and meeting Pα1 ⊂ Pα2 .
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The rational equivalence class of X ⊂ G in A(G) is [X] = a�(0, 3) +
b�(1, 2), where a is the number of lines of X meeting a general (n − 3)-
linear space of Pn and b is the number of lines of X contained in a general
hyperplane of Pn. The degree of X, considered as a projective surface via the
Plücker embedding, is a + b.

For short, we will say that X has bidegree (a, b), where a and b are called
respectively order and class of X. If X has bidegree (a, b), then its general
projection to G(1, 3) has also bidegree (a, b).

Let X ⊂ G(1, n) be a surface of order a > 0. If X ⊂ Pn has degree d, then
a = d · µ, where µ is the number of lines of X passing through the general
point of X. In particular, d ≤ a.

By gX we denote the sectional genus of a surface X ⊂ G(1, n), considered
as a projective variety via the Plücker embedding. If µ = 1, then gX coincides
with the arithmetic genus of the curve obtained by intersecting X ⊂ Pn with a
general Pn−2.

Following the notation of [7], for any e ≥ 0, let Xe be the rational ruled
surface of invariant e.

For a2 ≥ a1 ≥ 0, we denote by S(a1, a2) ⊂ Pa1+a2+1 the rational normal
scroll of lines. This is the surface obtained by joining corresponding points of
two rational normal curves Ca1 and Ca2 . It is well known that S(a1, a2) is an
embedding of Xa2−a1 if a1 > 0.

1.1. Embeddings in G(1, n)

Let X be a smooth variety. Giving a nondegenerate morphism f : X →
G(1, n) is equivalent to giving a rank two bundle F on X and an epimorphism
φ : V ⊗ OX → F , where V ⊂ H 0(X, F ) is a vector subspace of dimension
n + 1 (see [3]). The second condition is simply saying that F is generated
by global sections. In this situation F ∼= Q|X, where Q denotes the universal
quotient bundle of G(1, n).

Moreover, f is an embedding if any subscheme of length two of X imposes
at least three conditions to V . That is, different points of X (maybe infinitely
close) are mapped by f to different lines, since their span in Pn is at least a
plane.

When f is an embedding, its composition with the Plücker embedding turns
out to be a projective embedding of X that can be very degenerate. In fact, all
the examples X ⊂ G(1, 5) of Section 3 are contained in a proper subspace of
P14.

Definition 1.1. A subvariety X ⊂ G(1, n) is said to be linearly normal
if it is not isomorphically projected from any nondegenerate subvariety of
G(1, n + 1). Since a linear projection is given by taking a linear subspace of
H 0(X, F ), this condition is equivalent to consider V ∼= H 0(X, F ).
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Remark 1.2. If F splits as a direct sum of line bundles, say F = L1 ⊕L2,
and V = H 0(X, F ), then X has a nice geometric description. Since Li are
also generated by global sections, we have morphisms fi : X → Pli . Moreover
Pl1 and Pl2 span Pn. Thus f (x) ∈ G(1, n) is the line generated by f1(x) and
f2(x).

1.2. The double point formula

A birational morphism onto its image, X → G(1, 3), is expected to produce
a finite number δ(X) of double points. Properly counted, it is given by the
identity

(1) δ(X) = 1

2
([X]2 − c2(N )),

where [X] denotes the class of X in A(G) and c2(N ) denotes the second Chern
class of the normal bundle of X in G(1, 3) (see [6], Proposition 9.3). From
(1), it follows (see [3], Proposition 2.1) the double point formula for surfaces
in G(1, 3)

(2) a2 + b2 = 3(a + b) + 4(2gX − 2) + 2K2
X − 12χ(OX) + 2δ(X),

where gX is the sectional genus of X, K2
X is the self-intersection number of the

canonical divisor and χ(OX) is the Euler characteristic of the structure sheaf
of X.

The task consists of finding embedded surfaces in G(1, 5) such that linear
projection from G(1, 5) to G(1, 3) defines, by restriction, a morphism X →
G(1, 3) whose image has exactly one doble point. In particular, the invariants
of X satisfy the double point formula (2) with δ(X) = 1.

2. Secant variety and bad planes

Let X ⊂ G(1, 5) be a smooth surface with one apparent double point (from
now on OADP). Then, for a general l ∈ G(1, 5), only one of the following
conditions is satisfied:

(*) There are exactly two skew lines of X (maybe infinitely close) spanning
a P3 in which L is contained.

(**) There is exactly one plane intersecting X in a subscheme of length two
and meeting L.

This fact motivates the definition of secant varieties in the Grassmannian
context (as it is done in [1]). First, let us show the following lemma.

Lemma 2.1. Two general lines of X are skew.
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Proof. Otherwise every pair of lines of X intersect. Then, all the lines
of X either pass through a point or are contained in a plane. In the second
case X would be degenerate and in the first case the projection to G(1, 3) is
nonreduced unless X is the set of lines through a point and contained in a P3,
which is also degenerate.

Definition 2.2. Consider the rational map ϕ : X × X ��� G(3, 5) which
associates to each pair of skew lines (l, l′) its linear span & = 〈L, L′〉. We
define S(X) ⊂ G(3, 5), the secant variety of X, to be the closure of the reduced
image of this map.

Remark 2.3. Let us see that S(X) is an irreducible variety of dimension 2
or 4. For & ⊂ S(X), let Y& ⊂ X be X ∩ G(1, &). Suppose dim Y& = 1 for
& general. Then the general fiber of ϕ has dimension 2 and dim S(X) = 2.
Otherwise dim S(X) = 4.

Definition 2.4. We define the variety of bad planes of X as B(X) = {π ∈
G(2, 5) | length(G(1, ))∩X) ≥ 2}. In other words, B(X) is the set of planes
in P5 containing at least two lines of X. Note that this variety can be reducible.

Remark 2.5. Bad planes correspond to secant lines to X ⊂ P14 contained
in G(1, 5). In what follows, we will say that two infinitely close lines intersect
if there is a bad plane π ∈ B(X) meeting X in two infinitely close lines, that
is, if there is a tangent line to X ⊂ P14 contained in G(1, 5).

Let I be the incidence variety

I = {(l, &) | l ∈ G(1, &)} ⊂ G(1, 5) × S(X)

with corresponding projection maps β1 : I → G(1, 5) and β2 : I → S(X). In
the following proposition we prove that the double point actually comes from
condition (*).

Proposition 2.6. Let X ⊂ G(1, 5) be an OADP surface. Then β1 : I →
G(1, 5) is dominant.

Proof. Recall that the dimension of S(X) ⊂ G(3, 5) must be 2 or 4. If
β1 : I → G(1, 5) is not dominant, then it follows that dim S(X) = 2 and
every & ∈ S(X) contains a curve Y& ⊂ X (see [1], Theorem 3.1). Let us say
a few words about this claim. The hypothesis of Theorem 3.1, for n = 2, is
that X can be isomorphically projected to G(1, 3). That is, β1 is not dominant
and dim B(X) ≤ 3. But, in the proof, the only condition used is that β1 is not
dominant, i.e., no assumptions about bad planes are needed.

If we project X from a general l ∈ G(1, 5), L meets an infinite family of
secant P3’s. Hence, for a general &, Y& must be a (maybe reducible) curve
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that can be isomorphically projected to G(1, 2). Since a nondegenerate curve
cannot be isomorphically projected to P2, the linear span of Y& under the
Plücker embedding is P2. Since the Grassmannian is cut out by quadrics, Y&

is either a smooth conic (corresponding to the lines of one ruling of a smooth
quadric surface) or a singular conic (corresponding to two pencils of lines with
centers in a common line).

In the first case X contains a two dimensional family of smooth conics.
Therefore X is either a Veronese surface, a rational normal scroll of degree 3
or a quadric. But these surfaces cannot be embedded as OADP surfaces. To
check this claim, note that gX = 0, χ(OX) = 1 and K2

X = 9 or 8, contradicting
the double point formula.

In the second case X contains, by the Plücker embedding, a family of lines,
and two of these lines always intersect. Therefore it is a cone, contradicting
the smoothness of X.

Corollary 2.7. Let X ⊂ G(1, 5) be an OADP surface. Then the first
projection β1 : I → G(1, 5) is birational, length Y& = 2 for a general
& ∈ S(X) and dim B(X) ≤ 3.

Proof. Obvious from X being an OADP surface and Proposition 2.6.

3. Examples of OADP surfaces

Example 3.1. Consider X0 = P1 × P1 embedded in G(1, 5) with bide-
gree (3, 1) by the rank two bundle F = OP1×P1(1, 0) ⊕ OP1×P1(1, 1). Since∧2

F = OP1×P1(2, 1), we get the rational normal scroll S(2, 2) by the Plücker
embedding.

In coordinates, the lines of the surface are given by the rows of the matrix
(

x0 x1 0 0 0 0
0 0 x0y0 x0y1 x1y0 x1y1

)
.

Geometrically, we are taking a line L, a smooth quadric Q in the comple-
mentary linear space of P5 and we fix an isomorphism between L and the lines
of one ruling of Q. Then the surface is obtained by joining each point of L

with points of the corresponding line of Q.

Example 3.2. Consider the rational ruled surface X2 embedded in G(1, 5)

with bidegree (3, 1) by the rank two bundle F = OX2(f ) ⊕ OX2(C0 + 2f ).
Since

∧2
F = OX2(C0 +3f ), we get the rational normal scroll S(1, 3) by the

Plücker embedding.
Geometrically, we take a line L (image of X2 by OX2(f )) and a quadric

cone C (image of X2 by OX2(C0 + 2f )) in the complementary linear space
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of P5. We fix an isomorphism between L and the lines of the ruling of C.
Then the surface is obtained by joining each point of L with the points of the
corresponding line of the ruling of C.

Example 3.3. Consider the rational ruled surface X1 embedded in G(1, 5)

with bidegree (3, 2) by the rank two bundle F = OX1(2f ) ⊕ OX1(C0 + f ).
Since

∧2
F = OX1(C0 + 3f ), we obtain the rational normal scroll S(2, 3) by

the Plücker embedding.
Geometrically, we take two skew planes )1, )2 in P5 and fix an isomorph-

ism between a conic C ⊂ )1 (image of X1 by OX1(2f )) and the pencil of lines
through a point P ∈ )2. Note that )2 is the image of X1 by OX1(C0 + f ) and
this map sends C0 to P . We get the surface by joining each point of C with
points of the corresponding line of the pencil.

Example 3.4. Consider now the rational ruled surface X3. In this case the
rank two bundle giving the embedding is not decomposable. We first present
a geometric construction.

Take two conics C1 ⊂ )1, C2 ⊂ )2 contained in two skew planes of P5. Fix
an isomorphism between C1 and C2. Consider a point P1 ∈ C1 and the quadric
cone QP1 with base C2 and vertex P1. By joining points of C1 and points of the
corresponding line of the ruling of the cone QP1 , we obtain the rational normal
scroll S(1, 4). Note that the pencil of lines through P1 is a line via the Plücker
embedding and, similarly, the set of lines joining corresponding points of C1

and C2 turns out to be a rational normal cuartic. Since a general hyperplane
H ⊂ P5 cuts C1 in two points, and just one line of the pencil through these
points is contained in H , we have b = 2. Therefore X is embedded with
bidegree (3, 2).

The rank two bundle F giving the embedding of X3 in G(1, 5) is a nontrivial
extension of line bundles

0 → OX3(C0 + 2f ) → F → OX3(2f ) → 0.

In fact, the fundamental conic C1 produces a quotient F → OX3(2f ) → 0
whose kernel is precisely OX3(C0 + 2f ).

Example 3.5. Let X be the blow up of P2 in three points and the embedding
in G(1, 5) with bidegree (4, 2) given by the rank two bundle F = OX(2L −
E1 − E2 − E3) ⊕ OX(L). Since

∧2
F = OX(3L − E1 − E2 − E3), X is a

Del Pezzo surface of degree 6 by the Plücker embedding.
Geometrically, we fix a Cremona transformation of P2. The lines of X are

given by joining corresponding points of two skew P2’s.
In coordinates, consider the Cremona transformation ϕ : P2 ��� P2 defined

by ϕ(x0 : x1 : x2) = (x1x2 : x0x2 : x0x1). Then, the lines of the surface are
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given by the rows of the matrix
(

x0 x1 x2 0 0 0
0 0 0 x1x2 x0x2 x0x1

)
.

By the Plücker embedding we get a set of generators of the complete linear
system of plane cubics passing through the points {(1 : 0 : 0), (0 : 1 : 0), (0 :
0 : 1)}, giving the embedding of the Del Pezzo surface of degree 6 in P6.

Example 3.6. We want to embed the blow up of P2 in two points in G(1, 5)

as a Del Pezzo surface of degree 7 and bidegree (4, 3). First of all, consider
the embedding of Y = P2 in G(1, 7) with bidegree (6, 3) given by the tangent
bundle TP2 . Geometrically, this P2 is one of the two families of lines of the
threefold Y = P(TP2) embedded in P7 by its tautological line bundle.

We obtain X, the Del Pezzo surface of degree 7 and bidegree (4, 3), by
projecting Y from a general secant line r to Y . The induced projection πr :
Y ��� X is not defined in the two lines of Y passing through the corresponding
points of Y .

To prove that X is smooth, it is enough to check that r is contained in just
one P3 spanned by two lines of Y . Since TP2 is a uniform rank two bundle
of splitting type (2, 1), TP2 restricted to any line L ⊂ P2 embedds L as the
lines of the ruling of a rational normal scroll SL(1, 2) ⊂ P4

L. Consider another
line L′ ⊂ P2 and the corresponding scroll SL′(1, 2) ⊂ P4

L′ . Since P4
L ∩ P4

L′ is
exactly the fiber of the scrolls corresponding to the point P = L ∩ L′, we can
suppose r just contained in P4

L. Therefore the only secant P3 to Y containing r

is spanned by r and the exceptional line of the scroll SL(1, 2) ⊂ P4
L.

Remark 3.7. A straightforward computation in (2) shows that these ex-
amples actually give OADP surfaces. Moreover it is not hard to find geomet-
rically the secant P3 containing a general l ∈ G(1, 5).

4. Some properties of OADP surfaces in G(1, 5)

In this section we state some properties of OADP surfaces in G(1, 5) analogous
to those of OADP surfaces in P5 (cf. [8] or [5]). Let us recall the following
result (see, for instance, [7]).

Theorem 4.1 (Zariski’s Main Theorem). Let f : X → Y be a birational
projective morphism of noetherian integral schemes, and assume that Y is
normal. Then for every y ∈ Y , f −1(y) is connected.

Definition 4.2. Let f : X → Y be a generically finite morphism of
noetherian integral schemes. We define the branch locus of f , denoted by
B ⊂ Y , to be the image by f of the ramification divisor R on X and the
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fundamental locus of f , denoted by F ⊂ Y , to be the variety of points with
fibre of positive dimension.

Lemma 4.3. Let f : X → Y be a generically finite morphism of noetherian
integral schemes. Then F ⊂ B and codimY F > 1. Moreover if f is birational
and Y normal, then F = B.

Proof. For any y ∈ F there exists at least a curve C ⊂ f −1(y). Take
a point c ∈ C. Since dcf (v) = 0 for any v ∈ TcC, the differential map
dcf : TcX → TyY is not injective and, therefore, f (c) = y ∈ B. Obviously
codimY F > 1 since, otherwise, f −1(F ) = X.

Let us now suppose f : X → Y to be birational and Y normal. For
any y ∈ B the morphism f is not an isomorphism in f −1(y) and hence
length(f −1(y)) ≥ 2. By Zariski’s Main Theorem 4.1 y is a fundamental point,
i.e., y ∈ F .

Consider again the incidence variety

I = {(l, &) | l ∈ G(1, &)} ⊂ G(1, 5) × S(X)

with corresponding projection maps β1 : I → G(1, 5) and β2 : I → S(X).
Let R& = {(r, &) | (r, &) ∈ R} be the restriction to G(1, &) × & of the
ramification divisor R. Then R& is a divisor on G(1, &) × & for a general
& ∈ S(X). By Corollary 2.7 we know that β1 is birational and, by Lemma 4.3,
β1(R) = F .

Denote by 4X ⊂ G(1, 5) the variety of lines meeting X and 5X ⊂ 4X the
(usual) secant variety of X ⊂ P5. Both are, respectively, irreducible varieties
of dimension 7 and 6.

Lemma 4.4. Neither 4X nor 5X are contained in the fundamental (or
branch) locus F of β1 : I → G(1, 5).

Proof. By counting dimensions, 4X is not contained in F . On the other
hand, if 5X ⊂ F , then 5X is a component of maximal dimension of F . Thus,
for a general & ∈ S(X), R& contains a 3-dimensional subscheme 5X,& ⊂ 5X.
Since 5X,& is precisely the (usual projective) secant variety of X ∩ &, it has
even dimension. Therefore 5X cannot be contained in F .

We can now prove the first interesting property of OADP surfaces in G(1, 5).

Proposition 4.5. OADP surfaces in G(1, 5) are rational.

Proof. Let l ∈ X be a general line. Consider the inner projection πl :
X ��� G(1, 3) and denote by X′ the image of X under this projection. We
claim that X′ is a congruence of lines of order one. If through the general
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P ∈ P3 there pass more than one line of X′, the plane 〈P, L〉 ⊂ P5 is cut by
at least two lines of X outside L. Hence, a line r ∈ G(1, 〈P, L〉) is contained
in a subscheme of S(X) of length at least two. By Theorem 4.1, r is contained
in the fundamental locus F of β1 : I → G(1, 5). But lines r ∈ G(1, 〈p, L〉)
sweep out 4X when we move l and P , contradicting Lemma 4.4.

A congruence of order one X′ ⊂ G(1, 3) is necessarily rational. The bira-
tional morphism to P2 is given by intersecting the lines of X′ with a fixed plane
of P3. Since length Y& = 2 by Corollary 2.7, πl : X ��� X′ is a birational map
and X is also a rational surface.

Remark 4.6. The proof of Proposition 4.5 resembles the proof in the pro-
jective case. A surface X ⊂ P5 can be projected to P2 from a general tangent
plane to X and this projection turns out to be birational (see [5], Corollary
4.2). On the other hand we are projecting X, via the Plücker embedding, from
〈�(L, P5)〉 ∼= P8. But 〈�(L, P5)〉 is precisely the tangent space to G(1, 5) at
the point l ∈ X.

Corollary 4.7. OADP surfaces in G(1, 5) are linearly normal.

Proof. Let X ⊂ G(1, 6) be a nondegenerate OADP surface that can be
isomorphically projected to G(1, 5) from a general point P ∈ P6. From the
proof of Proposition 4.5, it follows that the further inner projection πl : X ���
G(1, 3) from a general line l ∈ X gives rise to a congruence of order one in
G(1, 3). But projecting from P and then projecting from L is equivalent to
projecting from L and then projecting from P . Therefore the inner projection
πl(X) ⊂ G(1, 4) is a surface of order one. Since a = 1, then d = 1 and
the threefold covered by the lines of πl(X) is a hyperplane in P4. Hence X ⊂
G(1, 6) is degenerate, which is a contradiction.

5. The classification theorem

In this section we state and prove the main result on OADP surfaces in G(1, 5),
namely the classification theorem.

Theorem 5.1. Let X ⊂ G(1, 5) be a smooth OADP surface. Then X is
either a rational scroll embedded with bidegree (3, 1) or (3, 2) or a Del Pezzo
surface embedded with bidegree (4, 2) or (4, 3).

We divide the proof of the theorem in two different cases, according to the
fact that the general line of X can be intersected by another line of X or not.
Hence the proof of the theorem will be a consequence of the following two
propositions.

Proposition 5.2. Let X ⊂ G(1, 5) be an OADP surface. Suppose that the
general line of X intersects another line of X (maybe infinitely close). Then X

is a rational scroll embedded with bidegree (3, 1) or (3, 2).
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Proof. If a general line of X intersects another line of X, then X ⊂ B(X).
Let B be an irreducible component of B(X). If dim B ≥ 2, since dim B ≤ 3
by Lemma 2.7, it follows that B = P3 and then X �⊂ B. So a general l ∈ X

is not contained in a plane of B. Since X ⊂ B(X), there exists a component
B ′ ⊂ B(X) of dimension one such that X = B

′
. Hence, X is a scroll of planes

over a rational curve (by Proposition 4.5) and every plane ) of the family
contains infinitely many lines of X.

The set of lines of X in ) is a pencil, i.e., µ = 1. Otherwise a general
r ∈ 5X is contained in more than one secant P3 and 5X should be contained
in the fundamental locus of β1 : I → G(1, 5), contradicting Lemma 4.4.
Therefore X is a rational scroll, so gX = 0, K2

X = 8 and χ(X) = 1. The
double point formula (2) becomes (2a−3)2 +(2b−3)2 = 10, whose solutions
are {(0, 1), (1, 0), (0, 2), (2, 0), (1, 3), (3, 1), (2, 3), (3, 2)}. But X ⊂ P5 is a
nondegenerate 3-fold, so d = deg X ≥ 3 and then a = 3.

Proposition 5.3. Let X ⊂ G(1, 5) be an OADP surface. Suppose that the
general line of X does not intersect another line of X (neither infinitely close).
Then X is a Del Pezzo surface embedded with bidegree (4, 2) or (4, 3).

Proof. In order to prove this proposition we will need the following two
lemmas.

Lemma 5.4. The singular points of the Schubert variety �(P2, P5), corres-
ponding to the lines inside the plane, have multiplicity 3.

Proof. The open affine subset U0,1 ⊂ G(1, 5) is given by the lines gener-
ated by the rows of the matrix

(
1 0 a2 a3 a4 a5

0 1 b2 b3 b4 b5

)
.

A line meeting the plane ) of equations {x3 = x4 = x5 = 0} is characterized
by the condition

rank

(
a3 a4 a5

b3 b4 b5

)
≤ 1,

and we get a line of the plane ) when the rank of the above matrix is zero. Then,
we have to compute the multiplicity of the zero matrix in the determinantal
variety of matrices 2 × 3 of rank less than or equal to one. This multiplicity is
the degree of the tangent cone, i.e., the degree of the variety defined by the ideal
generated by {a3b4−a4b3, a3b5−a5b3, a4b5−a5b4} in k[a3, a4, a5, b3, b4, b5].
This is precisely the ideal of the Segre embedding of P1 × P2 in P5, and its
degree is 3.
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Lemma 5.5. Let X ⊂ G(1, 5) be a surface of bidegree (a, b) such that the
general l ∈ X does not intersect any other line of X (neither infinitely close).
Then the inner projection X′ = πl(X) has bidegree (a′, b′) = (a − 3, b − 1)

in G(1, 3).

Proof. Let us see that b′ = b−1, where b′ is the set of lines of X′ ⊂ G(1, 3)

contained in a general plane. Note that we can choose a plane ) ⊂ P3 such
that K = 〈L, )〉 is a P4 which does not contain any infinitely close secant
P3 spanned by l. Then G(1, K) and X meet transversally at l, so l should be
counted with multiplicity one.

Now take P ∈ P3. In this case, a′ is the number of lines of X′ through
P , which corresponds to lines of X meeting ) = 〈P, L〉. By Lemma 5.4,
�(), P5) is singular along G(1, )) with multiplicity 3. To prove that the
intersection multiplicity of X and �(), P5) along l is exactly 3 is equivalent
to check that no line of the tangent cone to �(), P5) at l is also tangent to
X (see [6], Corollary 12.4). But lines of the tangent cone to �(), P5) at l

correspond to pencils of lines through a point of L in a plane containing L. By
hypothesis, no such pencil can meet X at two lines, so l must be counted with
multiplicity 3.

Let us now prove Proposition 5.3. From Lemma 5.5 and the claim of Pro-
position 4.5, it follows that, under this hypothesis, the order of X is 4. Let us
see that gX = 1. Since a general line of X does not intersect any other line,
X ⊂ P5 cannot be a cone. By the same reason, µ = 1. Hence X has degree 4
and it must be the complete intersection of two quadrics in P5. Recall that gX is
the arithmetic genus of the curve obtained by intersecting X with a general P3,
so gX = 1 and X is necessarily a Del Pezzo surface. Therefore K2

X = a+b and
χ(X) = 1, so the double point formula (2) becomes (2a−5)2+(2b−5)2 = 10.
Since a = 4, its solutions are (4, 2) or (4, 3).
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