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STRONG PERFORATION IN INFINITELY GENERATED
K0-GROUPS OF SIMPLE C∗-ALGEBRAS

ANDREW S. TOMS

Abstract

Let (G, G+) be an ordered abelian group. We say that G has strong perforation if there exists
x ∈ G, x /∈ G+, such that nx ∈ G+, nx �= 0 for some natural number n. Otherwise, the group
is said to be weakly unperforated. Examples of simple C∗-algebras whose ordered K0-groups
have this property and for which the entire order structure on K0 is known have, until now, been
restricted to the case where K0 is group isomorphic to the integers. We construct simple, separable,
unital C∗-algebras with strongly perforated K0-groups group isomorphic to an arbitrary infinitely
generated subgroup of the rationals, and determine the order structure on K0 in each case.

1. Introduction

Elliott’s classification of AF C∗-algebras via the K0-group ([2]) began a wide-
spread effort to classify nuclear C∗-algebras. The K0-group, which is an
ordered group for stably finite C∗-algebras ([1]), has figured prominently in
almost all work on this problem. (For an overview of the classification problem
for nuclear C∗-algebras, see [3].) So far, every result on the classification of
C∗-algebras has required the assumption that the ordered K0-group be weakly
unperforated whenever it is not zero. This assumption was shown to be non-
trivial byVilladsen ([8]); the ordered abelian group Zn := (Z, {0, n, n+1, . . .})
may arise as a saturated sub-ordered group of the K0-group of a simple nuc-
lear C∗-algebra. In [4], Elliott and Villadsen refined the results of [8] to obtain,
for each natural number n, a simple nuclear C∗-algebra An whose ordered
K0-group is order isomorphic to Zn. This result was further generalised by the
author in [7], where it was shown that a certain class of order structures on
the integers (which might possibly comprise all such order structures giving a
simple ordered group) could arise as the ordered K0-group of a simple nuclear
C∗-algebra.

The classification of a category by an invariant is not complete until one
knows the range of the invariant, and any classification of simple nuclear
stably finite C∗-algebras will necessarily capture the ordered K0-group. Thus,
the range of the K0 functor bears investigation. This range is known when K0
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is a weakly unperforated ordered group, whence our interest in instances of
the ordered K0-group which exhibit strong perforation.

2. Essential Results

In this section we review results from [4] that will be used in the sequel.
Let C, D be C∗-algebras, and let φ0, φ1 be ∗-homomorphisms from C to

D. The generalised mapping torus of C and D with respect to φ0 and φ1 is

A := { (c, d)|d ∈ C([0, 1]; D), c ∈ C, d(0) = φ0(c), d(1) = φ1(c) }
We will write A(C, D, φ0, φ1) for A when clarity demands it. We now list
without proof some theorems, specialised to our needs, which will be used in
the sequel.

Theorem 2.1 (Elliott and Villadsen ([4]), Sec. 2, Thm. 2). The index map
b∗ : K∗C → K1−∗SD = K∗D in the six term periodic sequence for the
extension

0 → SD → A → C → 0

is the difference
K∗φ1 − K∗φ0 : K∗C → K∗D.

Thus, the six-term exact sequence may be written as the short exact sequence

0 → Coker b1−∗ → K∗A → Ker b∗ → 0.

In particular, if b1−∗ is surjective, then K∗A is isomorphic to its image, Ker b∗,
in K∗C.

Suppose that cancellation holds for each pair of projections in D ⊗ K

obtained as the images under the maps φ0 and φ1 of a single projection in
C ⊗ K . Then, if b1 is surjective,

(K0A)+ ∼= (K0C)+ ∩ K0(e∞)(K0A),

where e∞ denotes the evaluation of A at the fibre at infinity.

Theorem 2.2 (Elliott and Villadsen ([4]), Sec. 3, Thm. 3). Let A1 and A2

be building block algebras as described above,

Ai = A(C, D, φi
0, φi

1), i = 1, 2.

Let there be given three maps between the fibres,

γ : C1 → C2,

δ, δ′ : D1 → D2,
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such that δ and δ′ have mutually orthogonal images, and

δφ1
0 + δ′φ1

1 = φ2
0γ,

δφ1
1 + δ′φ1

0 = φ2
1γ.

Then there exists a unique map

θ : A1 → A2,

respecting the canonical ideals, giving rise to the map γ : C1 → C2 between
the quotients (or fibres at infinity), and such that for any 0 < s < 1, if es

denotes evaluation at s,
esθ = δes + δ′e1−s .

Let A1 and A2 be building block algebras as in Theorem 2.1 with θ : A1 →
A2 as in Theorem 2.2. Let there be given a map β : D1 → C2 such that
the composed map βφ1

1 is a direct summand of the map γ , and such that
the composed maps φ2

0β and φ2
1β are direct summands of the maps δ′ and δ,

respectively. Suppose that the decomposition of γ as the orthogonal sum of
βφ1

1 and another map is such that the image of the second map is orthogonal
to the image of β. (Note that this requirement is automatically satisfied if C1,
D1, and the map βφ1

1 are unital.)
Let

A1
θ1−→ A2

θ2−→ · · ·
be a sequence of separable building block C∗-algebras,

Ai = A(Ci, Di, φi
0, φi

1), i = 1, 2, . . .

with each map θi : Ai → Ai+1 obtained by the construction of Theorem 2.2.
For each i = 1, 2, . . . let βi : Di → Ci+1 be a map verifying the hypotheses
of the preceding paragraph.

Suppose that for every i = 1, 2, . . ., the intersection of the kernels of the
boundary maps φi

0 and φi
1 from Ci to Di is zero.

Suppose that, for each i, the image of each of φi+1
0 and φi+1

1 generates Di+1

as a closed two-sided ideal, and that this is in fact true for the restriction of
φi+1

0 and φi+1
1 to the smallest direct summand of Ci+1 containing the image of

βi . Suppose that the closed two-sided ideal of Ci+1 generated by the image of
βi is a direct summand.

Suppose that, for each i, the maps δ′
i − φi

0βi and δi − φi
1βi from Di to Di+1

are injective.
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Suppose that, for each i, the map γi − βiφ
i
1 takes each non-zero direct

summand of Ci into a subalgebra of Ci+1 not contained in any proper closed
two-sided ideal.

Suppose that, for each i, the map βi : Di → Ci+1 can be deformed – inside
the hereditary sub-C∗-algebra generated by its image – to a map αi : Di →
Ci+1 with the following property: There is a direct summand of αi , say ᾱi , such
that ᾱi is non-zero on an arbitrary given element xi of Di , and has image a
simple sub-C∗-algebra of Ci+1, the closed two-sided ideal generated by which
contains the image of βi .

Theorem 2.3 (Elliott and Villadsen ([4]), Sec. 5, Thm. 5). If the hypotheses
above are satisfied, there is a map θ ′

i homotopic inside Ai to θi for each i such
that the inductive limit of the sequence

A1
θ ′

1−→ A2
θ ′

2−→ · · ·
is simple.

3. Infinitely Generated Subgroups of the Rational Numbers

A generalised integer is a symbol n = a
n1
1 a

n2
2 a

n3
3 . . ., where the ai’s are pairwise

distinct prime numbers and each ni is either a non-negative integer or ∞. The
subgroup Gn of the rational numbers associated to the generalised integer n
is the group of all rationals whose denominators (when in lowest terms) are
products of powers of the ai’s not exceeding ani . If ni = ∞, then an arbitrarily
large power of ai may appear in the denominator.

Theorem 3.1. For each pair (n, k) consisting of a generalised integer n
and a positive rational k < 1, there exists a simple, separable, unital, nuclear
C∗-algebra A(n,k) such that

(K0(A(n,k)), K0(A(n,k))
+, [1A(n,k)

]) = (Gn, Gn ∩ (k, ∞), 1).

Proof. Given a 2-tuple (n, k) we will construct a sequence

A1
θ1−→ A2

θ2−→ · · ·
where Aj = A(Cj , Dj , φ

j

0 , φ
j

1 ), and the θj constructed as in Theorem 2.2 from
maps

γj : Cj → Cj+1, δj , δ′
j : Dj → Dj+1.

In order to obtain a simple inductive limit, we will require a map

βj : Dj → Cj+1
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having the properties listed in Section 2.
For each j let

Cj = pj (C(Xj ) ⊗ K )pj

where pj is a projection in C(Xj ) ⊗ K and K denotes the compact operators.

Express k in lowest terms, say a
b
, and set X1 = S2×(a+1). Let Xj+1 = Xj

×nj ,
where nj is a natural number to be specified.

Let Dj = Cj ⊗ Mdim(pj )kj
, where kj is a natural number to be specified. Let

µj and νj be maps from Cj to Cj ⊗ Mdim(pj ) given by

µj (a) = pj ⊗ a(xj ) · 1dim(pj )

(where xj is a point to be specified in Xj and 1dim(pj ) is the unit of Mdim(pj ))
and

νj (a) = a ⊗ 1dim(pj ).

For t ∈ {0, 1}, let φt
j : Cj → Dj be the direct sum of lt

j and kj − lt
j copies of µj

and νj , respectively, where the lt
j are non-negative integers such that l0

j �= l1
j

for all j ≥ 1.
Note that both Cj and Dj are unital, as are the maps φt

j . The φt
j are also

injective and as such satisfy the hypotheses of Section 2 concerning them alone.
By Theorem 2.1, for each e ∈ K0(Cj ),

b0(e) = (l1
j − l0

j )(K0(µj ) − K0(νj ))(e)

= (l1
j − l0

j )(dim(pj ) · K0(pj ) − dim(pj ) · e).

Since l1
j − l0

j is non-zero for every j and K0(Xj ) is torsion free, b0(e) = 0
implies that e belongs to the maximal free cyclic subgroup of K0(Cj ) containing
K0(pj ). As K1(Cj ) = 0, b1 is surjective. K0(Aj ) is thus group isomorphic (by
Theorem 2.1) to its image, in K0(Cj ) – which is isomorphic as a group to Z.

In order for K0(Aj ) to be isomorphic as an ordered group to its image in
K0(Cj ), with the relative order, it is sufficient (by Theorem 2.1) that for any
projection q in Cj ⊗ K such that the images of q under φ0

j ⊗ id and φ1
j ⊗ id

have the same K0 class, these images be in fact equivalent. For any such q, the
image of K0(q) under b0 = K0(φ1

j )− K0(φ0
j ) is zero, so that K0(q) belongs to

Ker b0. It will be clear from the construction below that the dimension of both
φ1

j (q) and φ0
j (q) is at least half the dimension of Xj . Thus, by Theorem 8.1.5

of [5], φ1
j (q) and φ0

j (q) are equivalent, as they have the same K0 class.
Let us now specify the projection p1. Let ξ be the Hopf line bundle over S2.

Set g1 = [ξ×a+1] − [θa] ∈ K0(X1), where [ · ] denotes the stable isomorphism
class of a vector bundle and θl denotes the trivial vector bundle of fiber dimen-
sion l. By Theorem 8.1.5 of [5], we have that (a + 1) · g1 and hence b · g1
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are positive. Let p1 be a projection in C(X1) ⊗ K corresponding to the K0

class b · g1. By [8] we know that the ordered, saturated, free cyclic subgroup
of K0(C1) generated by g1 is equal to

(Z, {0, a + 1, a + 2, . . .}),
where the class of the unit is the integer b ≥ a + 1.

Decompose b into powers of primes, b = a
m1
i1

a
m2
i2

. . . a
mn

in
. Set n′ = n

b
,

with the convention that ∞ − l = ∞ for all natural numbers l. Let Lj be an
enumeration of the primes appearing in n′ for j ≥ 2, j ∈ N, and set L1 = b.

We now define a family of continuous maps from S2 to S2, indexed by
the integers, to be used in the construction of the maps γj from Cj to Cj+1.
Consider S2 as being embedded in R3 = C × R as the unit sphere with center
the origin, with the identification (x, y, z) = (x + yi, z). For each η ∈ N,
let ω′

η : C × R −→ C × R be defined by ω′
η(w, z) = (wη/|wη−1|, z) when

w �= 0 and otherwise by ω′
η(0, z) = (0, z). This defines a map from S2 to

itself by restriction. Let ωη be the composition of ω′
η with the antipodal map.

Note that ω′
η is the suspension of the ηth power map on S1, and thus has the

same degree, namely −η, as this map ([6]). As the antipodal map has degree
−1, the composed map ωη has degree η. In the language of vector bundles,
K0(ωη)([ξ ]) = [ξ⊗η].

Define a map γ ′
j from C(Xj ) to Mnj

⊗C(Xj+1) = Mnj
(C(Xj

⊗nj ) as follows:

γ ′
j (f (x)) = (f (ωLj+1(x)) ⊗ 1 ⊗ · · · ⊗ 1) ⊕ (1 ⊗ f (ωLj+1(x)) ⊗ · · · ⊗ 1) ⊕

· · · ⊕ (1 ⊗ 1 ⊗ · · · ⊗ f (ωLj+1(x))).

Let
β ′

j = 1 · exj

be a map from C(Xj ) to C(Xj+1), where exj
denotes the evaluation of an

element of C(Xj ) at a point xj ∈ Xj and 1 is the unit of C(Xj+1). Fix x1 ∈ S2

and define xj+1 := (ωLj+1(xj ), . . . , ωLj+1(xj )) ∈ Xj
×nj = Xj+1.

Let us define γj : C(Xj ) → Mnj
(C(Xj+1)) ⊗ M2(K ) inductively as the

direct sum of two maps. For the first map, take the restriction to Cj ⊆ C(Xj )⊗
K of the tensor product of γ ′

j with the identity map from K to K . The second
map is obtained as follows: compose the map φ1

j with the direct sum of qj copies
of the tensor product of β ′

j with the identity map from K to K (restricted to
Dj ⊆ C(Xj ) ⊗ K ), where qj is to be specified. The induction consists of first
considering the case j = 1 (since p1 has already been chosen), then setting
p2 = γj (p1), so that C2 is specified as the cut-down of C(Xj ) ⊗ M2(K ), and
continuing in this way.
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With βj taken to be the restriction to Dj ⊆ C(Xj ) ⊗ K of β ′
j ⊗ id we

have, by construction, that βj φ1
j is a direct summand of γj and, furthermore,

the second direct summand and βj map into orthogonal blocks (and hence
orthogonal subalgebras) as desired.

We will now need to verify that pj has the following property: the set of
all rational multiples of K0(pj ) in the ordered group K0(Cj ) = K0(Xj ) is
isomorphic (as a sub ordered group) to

(Z, {0, lj + 1, lj + 2, . . .}),
where

lj := Lj lj−1, l1 := a

and the class of the unit (i.e., of pj ) is
∏j

k=1 Lk .
Our verification will proceed by induction. The case j = 1 has been estab-

lished by construction. Suppose that the assertion of the preceding paragraph
holds for all pk , k ≤ j . Suppose further that the group of rational multiples
of K0(pk) (being isomorphic as a group to Z) is generated by a K0 class of
the form [ξ×n] − [θm], where m < n and (this is again true by construction
for k = 1). We will show that K0(pj ) has both the property of the preceding
paragraph and the property just mentioned.

Let gk ∈ K0(Xk) be the generator of the group of rational multiples of pk .
Note that, as is the case for all maps on K0(S2) induced by a continuous map
from S2 to itself, K0(ωη)([θ1]) = [θ1]. Write gk = [ξ×dk ] − [θmk

]. Then

K0(γj )(gj ) = [(ξ⊗Lj+1)
×dj nj ] − [θm′

j+1
]

for some integers dj > 0 and m′
j+1. We may assume that the multiplicity of

the map K0(γj ) is divisible by Lj+1, as we have yet to specify nj . We recall
that for any integer l, the K0 class [ξ⊗l] corresponds to the element (1, l) in
K0(S2) = 〈[θ1]〉⊕〈e(ξ)〉, which is also the difference of K0 classes l[ξ ]−[θl−1].
Thus we have

K0(γj )(gj ) = Lj+1([ξ×(a+1)n1n2...nj ] − [θmj+1 ]).

for some integer mj+1. Setting gj := [ξ×(a+1)n1n2...nj ]− [θmj+1 ], we have estab-
lished that K0(γj )(gj ) = Lj+1gj+1 for all natural numbers j .

We now show that nj may be chosen so as to ensure that the maximal,
free, cyclic subgroup of K0Cj+1 generated by gj+1 is indeed isomorphic as an
ordered group to the integers with positive cone {0, lj+1 + 1, lj+1 + 2, . . .}.
That

∏j

k=1 Lk is the class of the unit follows directly from the fact that L1 = b

(the class of the unit in K0C1) and that K0(γj )(gj ) = Lj+1gj+1.
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As the Euler class of the Hopf line bundle on S2 is non-zero we have, by
[8], that for q, m, h ∈ N such that 0 < h(q − m) < q,

h([ξ×q] − [θm]) /∈ (K0S2×q
)
+

.

To apply this we note that

gj+1 = [ξ×(a+1)n1n2...nj ] − [θmj
].

With q = (a + 1)n1n2 . . . nj and m = mj we wish to have

0 < lj (q − m) < q

as then 0 < h(q − m) < q for all 0 < h < lj + 1.
Since

q − m = dim gj+1 = nj + kj qj dim pj

Lj+1
dim gj

we want
dim gj+1 <

(a + 1)n1n2 . . . nj

lj+1
.

Assume inductively that n1, n2, . . . , nj−1 have been chosen so that

dim gj <
(a + 1)n1n2 . . . nj−1

lj
.

Choose nj large enough so that

nj + kj qj dim pj

nj

dim gj <
(a + 1)n1n2 . . . nj−1

lj
.

Then we have that

nj + kj qj dim pj

Lj+1
dim gj <

(a + 1)n1n2 . . . nj

Lj+1lj
.

Recalling that lj+1 = Lj+1lj we conclude that

dim gj+1 = nj + kj qj dim pj

Lj+1
dim gj <

(a + 1)n1n2 . . . nj

lj+1
,

as desired.
Note that γj − βj φ1

j is non-zero and so, as required in the hypotheses of
Theorem 2.4, takes Cj into a subalgebra of Cj+1 not contained in any proper
closed two-sided ideal.
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It remains to construct maps δj and δ′
j from Dj to Dj+1 with orthogonal

images such that
δj φ0

j + δ′
j φ1

j = φ0
j+1γj ,

δj φ1
j + δ′

j φ0
j = φ1

j+1γj ,

and φ0
j+1βj and φ1

j+1βj are direct summands of δ′
j and δj respectively. To do

this we shall have to modify φ0
j+1 and φ1

j+1 by inner automorphisms; this is
permissible since it has no effect on K-groups. The definition of δj and δ′

j

along with the proof that they satisfy the hypotheses of section 2 is taken from
[4].

In order to carry out this step we define xj+1 := ωLj+1(xj ), so that

exj+1γj = mult(γj )exj
,

where mult(γj ) denotes the factor by which γj multiplies dimension. It follows
that

µj+1γj = pj+1 ⊗ exj+1γj

= γj (pj ) ⊗ mult(γj )exj

= mult(γj )γj (pj ⊗ exj
)

= mult(γj )γj µj ,

and
νj+1γj = γj ⊗ 1dim(pj+1)

= mult(γj )γj ⊗ 1dim(pj )

= mult(γj )γj νj .

Take δj and δ′
j to be the direct sum of rj and sj copies of γj , where rj and

sj are to be specified. The condition, for t = 0, 1, that

δj φt
j + δ′

j φ1−t
j = φt

j+1γj ,

understood up to unitary equivalence, then becomes the condition

rj γj (lt
j µj + (kj − lt

j )νj ) + sj γj (l1−t
j µj + (kj − l1−t

j )νj )

= (lt
j+1µj+1 + (kj+1 − lt

j+1)νj+1)γj ,

also up to unitary equivalence. As K0(µj ) and K0(νj ) are independent this is
equivalent to the two equations

rj lt
j + sj l1−t

j = mult(γj )lt
j+1,

(rj + sj )kj = mult(γj )kj+1.
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Choose rj = 2 mult(γj ) and sj = mult(γj ), so that

kj+1 = 3kj

and
lt
j+1 = 2lt

j + l1−t
j

Taking k1 = 1, l0
1 = 0, and l1

1 = 1 we have kj = 3j−1 and l1
j − l0

j = 1 for
all j and, in particular, these quantities are non-zero, as required above.

Next let us show that, up to unitary equivalence preserving the equations

δj φt
j + δ′

j φ1−t
j = φt

j+1γj ,

φ0
j+1βj is a direct summand of δ′

j = mult(γj )γj , and φ1
j+1βj is a direct summand

of δj = 2 mult(γj )γj .
Note that φt

j+1βj is the direct sum of lt
j+1 copies of pj+1 ⊗ βj and (kj+1 −

lt
j+1)dim(pj+1) copies of βj , whereas δ′

j and δj contain, respectively, qj mult(γj )

and 2qj mult(γj ) copies of βj . Note also that by Theorem 8.1.5 of [Hu] that a
trivial projection of dimension at least dim(pj+1)+ dim Xj+1 in C(Xj+1)⊗K

contains a copy of pj+1. Therefore, dim(pj+1)+dim Xj+1 copies of βj contain
a copy of pj+1 ⊗ βj . It follows that kj+1(2 dim(pj+1) + dim Xj+1) copies of
βj contain a copy of φt

j+1 when t is either 1 or 0. Here, by a copy of a given
map from Dj to Dj+1 we mean another map obtained from it by conjugating
by a partial isometry in Dj+1 with initial projection the image of the unit.

Note that

kj+1(2 dim(pj+1) + dim Xj+1) = 3kj (2 mult(γj ) dim(pj ) + nj dim Xj )

≤ 3kj (2 dim(pj ) + dim Xj ) mult(γj ),

and that kj , dim(pj ) and dim Xj have already been specified and do not depend
on nj . It follows that, with

qj = 3kj (2 dim(pj ) + dim Xj ),

qj mult(γj ) copies of βj contain a copy of φt
j+1βj for t = 0, 1. In particular δ′

j

and δj contain copies, respectively, of φ0
j+1βj and φ1

j+1βj .
With this choice of qj , let us show that for each t = 0, 1 there exists a unitary

ut ∈ Dj+1 commuting with the image of φt
j+1γj , such that (Ad u0)φ0

j+1βj is a
direct summand of δ′

j and (Ad u1)φ1
j+1βj is a direct summand of δj . In other

words, for each t = 0, 1 we must show that the partial isometry constructed
in the preceding paragraph, producing a copy of φt

j+1βj inside either δ′
j or δj ,

may be chosen in such a way that it extends to a unitary element of Dj+1 –
which in addition commutes with the image of φt

j+1γj .
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We will consider the case t = 0. The case t = 1 is similar. Let us first show
that the partial isometry in Dj+1, transforming φ0

j+1βj into a direct summand of
δ′
j , may be chosen to lie in the commutant of the image of φ0

j+1γj . Note first that
the unit of the image of φ0

j+1βj – the initial projection of the partial isometry
– lies in the commutant of the image of φ0

j+1γj . Indeed, this projection is the
image by φ1

j of the unit of Cj . The property that βj φ1
j is a direct summand of

γj implies in particular that the image by βj φ1
j of the unit of Cj commutes with

the image of γj . The image by φ0
j+1βj φ1

j of the unit of Cj (i.e. the unit of the
image of φ0

j+1βj ) therefore commutes with the image of φ0
j+1γj , as asserted.

Note also that the final projection of the partial isometry commutes with the
image of φ0

j+1γj . Indeed, it is the unit of the image of a direct summand of δ′
j ,

and since Dj is unital it is the image of the unit of Dj by this direct summand;
since Cj is unital and φ1

j : Cj −→ Dj is unital, the projection in question is
the image of the unit of Cj by a direct summand of δ′

j φ1
j . But δ′

j φ1
j is itself a

direct summand of φ0
j+1γj (as φ0

j+1γj = δj φ0
j + δ′

j φ1
j ), and so the projection in

question is the image of the unit of Cj by a direct summand of φ0
j+1γj , and in

particular commutes with the image of φ0
j+1γj .

Note that both direct summands of φ0
j+1γj under consideration (φ0

j+1βj φ1
j

and a copy of it) factor through the evaluation of Cj at the point xj , and so
are contained in the largest such direct summand of φ0

j+1γj ; this largest dir-
ect summand, say πj , is seen to exist by inspection of the construction of
φ0

j+1γj . Since both projections under consideration (the images of the unit
of Cj by the two copies of φ0

j+1βj φ1
j ) are less than πj (1), to show that they

are unitarily equivalent in the commutant of the image of φ0
j+1γj (in Dj+1)

it is sufficient to show that they are unitarily equivalent in the commutant
of the image of πj in πj (1)Dj+1πj (1). Note that this image is isomorphic
to Mdim pj

(C). By construction, the two projections in question are Murray-
von Neumann equivalent – in Dj+1 and therefore in πj (1)Dj+1πj (1) – but
all we shall use from this is that they have the same class in K0Xj+1. Note
that the dimension of these projections is (kj+1 dim(pj+1))(kj dim(pj )), and
that the dimension of πj (1) is kj+1 dim(pj+1) + l0

j+1(dim(pj+1))2. Since the
two projections under consideration commute with πj (Cj ), and this is iso-
morphic to Mdim(pj )(C), to prove unitary equivalence in the commutant of
πj (Cj ) in πj (1)Dj+1πj (1) it is sufficient to prove unitary equivalence of the
product of these projections with a fixed minimal projection of πj (Cj ), say
e. Since K0Xj+1 is torsion free, the products of the two projections under
consideration with e still have the same class in K0Xj+1. To prove that they
are unitarily equivalent in eDj+1e , it is sufficient (and necessary) to prove
that both they and their complements inside e are Murray von-Neumann equi-
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valent. Since both the cut-down projections and their complements inside e

have the same class in K0Xj+1, to prove that the two pairs are equivalent it
is sufficient, by Theorem 8.1.5 of [Hu], to show that all four projections have
dimension at least 1

2 dim Xj+1. Dividing the dimensions above by dim(pj )

(the order of the matrix algebra), we see that the dimension of the first pair
of projections is kj+1kj dim(pj+1) = kj+1kj mult(γj ) dim(pj ). The dimension
of e is kj+1 mult(γj ) + l0

j+1 mult(γj ) dim(pj+1), so that the dimension of the
second pair of projections is mult(γj )(kj+1+l0

j+1 dim(pj+1)−kj+1kj dim(pj )).
Since dim(p1) ≥ 1

2 dim X1, dim(pj+1) = mult(γj ) dim(pj ), dim Xj+1 =
nj dim Xj , and mult(γj ) ≥ nj (for all j ), we have dim(pj+1) ≥ 1

2 dim Xj+1

(for all j ). Since kj+1kj is non-zero for all j , the first inequality holds. Since l0
j+1

is non-zero for all j , the second inequality holds if mult(γj ) is strictly greater
than kj+1kj . (One then has, using dim(pj+1) = mult(γj ) dim(pj ) twice, that
the dimension of the second pair of projections is at least dim(pj+1).) Since
kj+1kj = 3kj

2, and kj was specified before nj , we may modify the choice of
nj so that mult(γj ) – which is greater than nj – is sufficiently large.

This shows that the two projections in Dj+1 under consideration are unitarily
equivalent by a unitary in the commutant of the image of φ0

j+1γj . Replacing
φ0

j+1 by its composition with the corresponding inner automorphism, we may
suppose that the two projections in question are equal. In other words φ0

j+1βj

is unitarily equivalent to the cut-down of δ′
j by the projection φ0

j+1βj (1).

Now consider the compositions of these two maps with φ1
j , namely φ0

j+1βj φ1
j

and the cut-down of δ′
j φ1

j by the projection φ0
j+1βj (1). Since both of these maps

can be viewed as the cut-down of φj+1γj by the same projection, they are in fact
the same map. Thus any unitary inside the cut-down of Dj+1 by φ0

j+1βj (1) tak-
ing φ0

j+1βj into the cut-down of δ′
j by this projection (such a unitary is known to

exist) must commute with the image of φ0
j+1βj φ1

j and hence with the image of
φ0

j+1γj , since this commutes with the projection φ0
j+1βj (1) = φ0

j+1(βj φ1
j (1)).

The extension of such a partial unitary to a unitary u0 in Dj+1 equal to one
inside the complement of this projection then belongs to the commutant of
the image of φ0

j+1γj , and transforms φ0
j+1βj into the cut-down of δ′

j by this
projection, as desired.

As stated above, the proof for the case t = 1 is similar.

Inspection of the construction of the maps δ′
j − φ0

j βj and δj − φ1
j βj shows

that they are injective, as required by the hypotheses of section 2.

Replacing φt
j+1 with (Ad ut )φ

t
j+1, we have an inductive sequence

A1
θ1−→ A2

θ2−→ · · ·
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satisfying the hypotheses of section 2. (The existence of αj homotopic to βj

and non-zero on a given element of Dj , defined by another point evaluation,
is clear.)

By Theorem 2.3 there exists a sequence

A1
θ ′

1−→ A2
θ ′

2−→ · · · ,

with θ ′
j homotopic to θj (and so agreeing with θj on K0), the inductive limit of

which is simple.
Since the map K0(θ ′

j ) (considered as a map between single copies of the
integers) takes the canonical generator 1 ∈ Z to Lj+1, we may conclude that the
simple inductive limit in question has the desired K0-group. That the positive
elements are all those greater than k follows from the fact that at each stage,
lj + 1 is the smallest positive element in K0Aj = Z and

lim
lj + 1

∏j

k=1 Lk

= lim
a

∏j

k=2 Lj + 1

b
∏j

k=2 Lj

= k + lim
1

∏j

k=1 Lk

= k.

Theorem 3.1 follows.

Finally, one might reasonably ask whether K0(A(n,k))
+ can be made to

contain k. There is no reason a priori why this should not be possible, but
the construction above does not seem amenable to modifications which would
achieve this result. Roughly speaking, the K0-group in Theorem 3.1 can be
thought of as an inductive limit of sub-ordered groups of ordered K0-groups
of homogeneous C∗-algebras. In order that the inductive limit of Theorem
3.1 be simple, one must introduce point evaluations via the maps βj . In the
absence of these point evaluations, one could have maps 3 : Zmk → Zmnk with
3(nk) = mnk at the level of K0 between the building blocks Ai and Ai+1.
With these point evaluations, however, one is forced into a situation where
3(nk) is necessarily strictly less than mnk.
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