STRONG PERFORATION IN INFINITELY GENERATED K_{0}-GROUPS OF SIMPLE C^{*}-ALGEBRAS

ANDREW S. TOMS

Abstract

Let $\left(G, G^{+}\right)$be an ordered abelian group. We say that G has strong perforation if there exists $x \in G, x \notin G^{+}$, such that $n x \in G^{+}, n x \neq 0$ for some natural number n. Otherwise, the group is said to be weakly unperforated. Examples of simple C^{*}-algebras whose ordered K_{0}-groups have this property and for which the entire order structure on K_{0} is known have, until now, been restricted to the case where K_{0} is group isomorphic to the integers. We construct simple, separable, unital C^{*}-algebras with strongly perforated K_{0}-groups group isomorphic to an arbitrary infinitely generated subgroup of the rationals, and determine the order structure on K_{0} in each case.

1. Introduction

Elliott's classification of AF C^{*}-algebras via the K_{0}-group ([2]) began a widespread effort to classify nuclear C^{*}-algebras. The K_{0}-group, which is an ordered group for stably finite C^{*}-algebras ([1]), has figured prominently in almost all work on this problem. (For an overview of the classification problem for nuclear C^{*}-algebras, see [3].) So far, every result on the classification of C^{*}-algebras has required the assumption that the ordered K_{0}-group be weakly unperforated whenever it is not zero. This assumption was shown to be nontrivial by Villadsen ([8]); the ordered abelian group $Z_{n}:=(Z,\{0, n, n+1, \ldots\})$ may arise as a saturated sub-ordered group of the K_{0}-group of a simple nuclear C^{*}-algebra. In [4], Elliott and Villadsen refined the results of [8] to obtain, for each natural number n, a simple nuclear C^{*}-algebra A_{n} whose ordered K_{0}-group is order isomorphic to Z_{n}. This result was further generalised by the author in [7], where it was shown that a certain class of order structures on the integers (which might possibly comprise all such order structures giving a simple ordered group) could arise as the ordered K_{0}-group of a simple nuclear C^{*}-algebra.

The classification of a category by an invariant is not complete until one knows the range of the invariant, and any classification of simple nuclear stably finite C^{*}-algebras will necessarily capture the ordered K_{0}-group. Thus, the range of the K_{0} functor bears investigation. This range is known when K_{0}
is a weakly unperforated ordered group, whence our interest in instances of the ordered K_{0}-group which exhibit strong perforation.

2. Essential Results

In this section we review results from [4] that will be used in the sequel.
Let C, D be C^{*}-algebras, and let ϕ_{0}, ϕ_{1} be $*$-homomorphisms from C to D. The generalised mapping torus of C and D with respect to ϕ_{0} and ϕ_{1} is

$$
A:=\left\{(c, d) \mid d \in C([0,1] ; D), c \in C, d(0)=\phi_{0}(c), d(1)=\phi_{1}(c)\right\}
$$

We will write $A\left(C, D, \phi_{0}, \phi_{1}\right)$ for A when clarity demands it. We now list without proof some theorems, specialised to our needs, which will be used in the sequel.

Theorem 2.1 (Elliott and Villadsen ([4]), Sec. 2, Thm. 2). The index map $b_{*}: \mathrm{K}_{*} C \rightarrow \mathrm{~K}_{1-*} \mathrm{~S} D=\mathrm{K}_{*} D$ in the six term periodic sequence for the extension

$$
0 \rightarrow \mathrm{~S} D \rightarrow A \rightarrow C \rightarrow 0
$$

is the difference

$$
\mathrm{K}_{*} \phi_{1}-\mathrm{K}_{*} \phi_{0}: \mathrm{K}_{*} C \rightarrow \mathrm{~K}_{*} D .
$$

Thus, the six-term exact sequence may be written as the short exact sequence

$$
0 \rightarrow \text { Coker } b_{1-*} \rightarrow \mathrm{~K}_{*} A \rightarrow \operatorname{Ker} b_{*} \rightarrow 0
$$

In particular, if b_{1-*} is surjective, then $\mathrm{K}_{*} A$ is isomorphic to its image, Ker b_{*}, in $\mathrm{K}_{*} C$.

Suppose that cancellation holds for each pair of projections in $D \otimes \mathscr{K}$ obtained as the images under the maps ϕ_{0} and ϕ_{1} of a single projection in $C \otimes \mathscr{K}$. Then, if b_{1} is surjective,

$$
\left(\mathrm{K}_{0} A\right)^{+} \cong\left(\mathrm{K}_{0} C\right)^{+} \cap \mathrm{K}_{0}\left(e_{\infty}\right)\left(\mathrm{K}_{0} A\right)
$$

where e_{∞} denotes the evaluation of A at the fibre at infinity.
Theorem 2.2 (Elliott and Villadsen ([4]), Sec. 3, Thm. 3). Let A_{1} and A_{2} be building block algebras as described above,

$$
A_{i}=A\left(C, D, \phi_{0}^{i}, \phi_{1}^{i}\right), \quad i=1,2 .
$$

Let there be given three maps between the fibres,

$$
\begin{aligned}
\gamma: C_{1} & \rightarrow C_{2}, \\
\delta, \delta^{\prime}: D_{1} & \rightarrow D_{2}
\end{aligned}
$$

such that δ and δ^{\prime} have mutually orthogonal images, and

$$
\begin{aligned}
& \delta \phi_{0}^{1}+\delta^{\prime} \phi_{1}^{1}=\phi_{0}^{2} \gamma \\
& \delta \phi_{1}^{1}+\delta^{\prime} \phi_{0}^{1}=\phi_{1}^{2} \gamma
\end{aligned}
$$

Then there exists a unique map

$$
\theta: A_{1} \rightarrow A_{2}
$$

respecting the canonical ideals, giving rise to the map $\gamma: C_{1} \rightarrow C_{2}$ between the quotients (or fibres at infinity), and such that for any $0<s<1$, if e_{s} denotes evaluation at s,

$$
e_{s} \theta=\delta e_{s}+\delta^{\prime} e_{1-s}
$$

Let A_{1} and A_{2} be building block algebras as in Theorem 2.1 with $\theta: A_{1} \rightarrow$ A_{2} as in Theorem 2.2. Let there be given a map $\beta: D_{1} \rightarrow C_{2}$ such that the composed map $\beta \phi_{1}^{1}$ is a direct summand of the map γ, and such that the composed maps $\phi_{0}^{2} \beta$ and $\phi_{1}^{2} \beta$ are direct summands of the maps δ^{\prime} and δ, respectively. Suppose that the decomposition of γ as the orthogonal sum of $\beta \phi_{1}^{1}$ and another map is such that the image of the second map is orthogonal to the image of β. (Note that this requirement is automatically satisfied if C_{1}, D_{1}, and the map $\beta \phi_{1}^{1}$ are unital.)

Let

$$
A_{1} \xrightarrow{\theta_{1}} A_{2} \xrightarrow{\theta_{2}} \cdots
$$

be a sequence of separable building block C^{*}-algebras,

$$
A_{i}=A\left(C_{i}, D_{i}, \phi_{0}^{i}, \phi_{1}^{i}\right), \quad i=1,2, \ldots
$$

with each map $\theta_{i}: A_{i} \rightarrow A_{i+1}$ obtained by the construction of Theorem 2.2. For each $i=1,2, \ldots$ let $\beta_{i}: D_{i} \rightarrow C_{i+1}$ be a map verifying the hypotheses of the preceding paragraph.

Suppose that for every $i=1,2, \ldots$, the intersection of the kernels of the boundary maps ϕ_{0}^{i} and ϕ_{1}^{i} from C_{i} to D_{i} is zero.

Suppose that, for each i, the image of each of ϕ_{0}^{i+1} and ϕ_{1}^{i+1} generates D_{i+1} as a closed two-sided ideal, and that this is in fact true for the restriction of ϕ_{0}^{i+1} and ϕ_{1}^{i+1} to the smallest direct summand of C_{i+1} containing the image of β_{i}. Suppose that the closed two-sided ideal of C_{i+1} generated by the image of β_{i} is a direct summand.

Suppose that, for each i, the maps $\delta_{i}^{\prime}-\phi_{0}^{i} \beta_{i}$ and $\delta_{i}-\phi_{1}^{i} \beta_{i}$ from D_{i} to D_{i+1} are injective.

Suppose that, for each i, the map $\gamma_{i}-\beta_{i} \phi_{1}^{i}$ takes each non-zero direct summand of C_{i} into a subalgebra of C_{i+1} not contained in any proper closed two-sided ideal.

Suppose that, for each i, the map $\beta_{i}: D_{i} \rightarrow C_{i+1}$ can be deformed - inside the hereditary sub- C^{*}-algebra generated by its image - to a map $\alpha_{i}: D_{i} \rightarrow$ C_{i+1} with the following property: There is a direct summand of α_{i}, say $\bar{\alpha}_{i}$, such that $\bar{\alpha}_{i}$ is non-zero on an arbitrary given element x_{i} of D_{i}, and has image a simple sub- C^{*}-algebra of C_{i+1}, the closed two-sided ideal generated by which contains the image of β_{i}.

Theorem 2.3 (Elliott and Villadsen ([4]), Sec. 5, Thm. 5). If the hypotheses above are satisfied, there is a map θ_{i}^{\prime} homotopic inside A_{i} to θ_{i} for each i such that the inductive limit of the sequence

$$
A_{1} \xrightarrow{\theta_{1}^{\prime}} A_{2} \xrightarrow{\theta_{2}^{\prime}} \cdots
$$

is simple.

3. Infinitely Generated Subgroups of the Rational Numbers

A generalised integer is a symbol $\mathbf{n}=a_{1}^{n_{1}} a_{2}^{n_{2}} a_{3}^{n_{3}} \ldots$, where the a_{i} 's are pairwise distinct prime numbers and each n_{i} is either a non-negative integer or ∞. The subgroup $G_{\mathbf{n}}$ of the rational numbers associated to the generalised integer \mathbf{n} is the group of all rationals whose denominators (when in lowest terms) are products of powers of the a_{i} 's not exceeding $a^{n_{i}}$. If $n_{i}=\infty$, then an arbitrarily large power of a_{i} may appear in the denominator.

Theorem 3.1. For each pair (\mathbf{n}, k) consisting of a generalised integer \mathbf{n} and a positive rational $k<1$, there exists a simple, separable, unital, nuclear C^{*}-algebra $A_{(\mathbf{n}, k)}$ such that

$$
\left(\mathrm{K}_{0}\left(A_{(\mathbf{n}, k)}\right), \mathrm{K}_{0}\left(A_{(\mathbf{n}, k)}\right)^{+},\left[1_{A_{(\mathbf{n}, k)}}\right]\right)=\left(G_{\mathbf{n}}, G_{\mathbf{n}} \cap(k, \infty), 1\right) .
$$

Proof. Given a 2-tuple (n, k) we will construct a sequence

$$
A_{1} \xrightarrow{\theta_{1}} A_{2} \xrightarrow{\theta_{2}} \cdots
$$

where $A_{j}=A\left(C_{j}, D_{j}, \phi_{0}^{j}, \phi_{1}^{j}\right)$, and the θ_{j} constructed as in Theorem 2.2 from maps

$$
\gamma_{j}: C_{j} \rightarrow C_{j+1}, \quad \delta_{j}, \delta_{j}^{\prime}: D_{j} \rightarrow D_{j+1}
$$

In order to obtain a simple inductive limit, we will require a map

$$
\beta_{j}: D_{j} \rightarrow C_{j+1}
$$

having the properties listed in Section 2.
For each j let

$$
C_{j}=p_{j}\left(\mathrm{C}\left(X_{j}\right) \otimes \mathscr{K}\right) p_{j}
$$

where p_{j} is a projection in $\mathrm{C}\left(X_{j}\right) \otimes \mathscr{K}$ and \mathscr{K} denotes the compact operators. Express k in lowest terms, say $\frac{a}{b}$, and set $X_{1}=\mathrm{S}^{2 \times(a+1)}$. Let $X_{j+1}=X_{j}^{\times n_{j}}$, where n_{j} is a natural number to be specified.

Let $D_{j}=C_{j} \otimes \mathrm{M}_{\mathrm{dim}\left(p_{j}\right) k_{j}}$, where k_{j} is a natural number to be specified. Let μ_{j} and v_{j} be maps from C_{j} to $C_{j} \otimes \mathrm{M}_{\mathrm{dim}\left(p_{j}\right)}$ given by

$$
\mu_{j}(a)=p_{j} \otimes a\left(x_{j}\right) \cdot 1_{\operatorname{dim}\left(p_{j}\right)}
$$

(where x_{j} is a point to be specified in X_{j} and $1_{\operatorname{dim}\left(p_{j}\right)}$ is the unit of $\mathrm{M}_{\operatorname{dim}\left(p_{j}\right)}$) and

$$
\nu_{j}(a)=a \otimes 1_{\operatorname{dim}\left(p_{j}\right)}
$$

For $t \in\{0,1\}$, let $\phi_{j}^{t}: C_{j} \rightarrow D_{j}$ be the direct sum of l_{j}^{t} and $k_{j}-l_{j}^{t}$ copies of μ_{j} and v_{j}, respectively, where the l_{j}^{t} are non-negative integers such that $l_{j}^{0} \neq l_{j}^{1}$ for all $j \geq 1$.

Note that both C_{j} and D_{j} are unital, as are the maps ϕ_{j}^{t}. The ϕ_{j}^{t} are also injective and as such satisfy the hypotheses of Section 2 concerning them alone.

By Theorem 2.1, for each $e \in \mathrm{~K}_{0}\left(C_{j}\right)$,

$$
\begin{aligned}
b_{0}(e) & =\left(l_{j}^{1}-l_{j}^{0}\right)\left(\mathrm{K}_{0}\left(\mu_{j}\right)-\mathrm{K}_{0}\left(v_{j}\right)\right)(e) \\
& =\left(l_{j}^{1}-l_{j}^{0}\right)\left(\operatorname{dim}\left(p_{j}\right) \cdot \mathrm{K}_{0}\left(p_{j}\right)-\operatorname{dim}\left(p_{j}\right) \cdot e\right)
\end{aligned}
$$

Since $l_{j}^{1}-l_{j}^{0}$ is non-zero for every j and $\mathrm{K}_{0}\left(X_{j}\right)$ is torsion free, $b_{0}(e)=0$ implies that e belongs to the maximal free cyclic subgroup of $\mathrm{K}_{0}\left(C_{j}\right)$ containing $\mathrm{K}_{0}\left(p_{j}\right)$. As $\mathrm{K}_{1}\left(C_{j}\right)=0, b_{1}$ is surjective. $\mathrm{K}_{0}\left(A_{j}\right)$ is thus group isomorphic (by Theorem 2.1) to its image, in $\mathrm{K}_{0}\left(C_{j}\right)$ - which is isomorphic as a group to Z .

In order for $\mathrm{K}_{0}\left(A_{j}\right)$ to be isomorphic as an ordered group to its image in $\mathrm{K}_{0}\left(C_{j}\right)$, with the relative order, it is sufficient (by Theorem 2.1) that for any projection q in $C_{j} \otimes \mathscr{K}$ such that the images of q under $\phi_{j}^{0} \otimes \mathrm{id}$ and $\phi_{j}^{1} \otimes \mathrm{id}$ have the same K_{0} class, these images be in fact equivalent. For any such q, the image of $\mathrm{K}_{0}(q)$ under $b_{0}=\mathrm{K}_{0}\left(\phi_{j}^{1}\right)-\mathrm{K}_{0}\left(\phi_{j}^{0}\right)$ is zero, so that $\mathrm{K}_{0}(q)$ belongs to Ker b_{0}. It will be clear from the construction below that the dimension of both $\phi_{j}^{1}(q)$ and $\phi_{j}^{0}(q)$ is at least half the dimension of X_{j}. Thus, by Theorem 8.1.5 of [5], $\phi_{j}^{1}(q)$ and $\phi_{j}^{0}(q)$ are equivalent, as they have the same K_{0} class.

Let us now specify the projection p_{1}. Let ξ be the Hopf line bundle over S^{2}. Set $g_{1}=\left[\xi^{\times a+1}\right]-\left[\theta_{a}\right] \in \mathrm{K}^{0}\left(X_{1}\right)$, where $[\cdot]$ denotes the stable isomorphism class of a vector bundle and θ_{l} denotes the trivial vector bundle of fiber dimension l. By Theorem 8.1.5 of [5], we have that $(a+1) \cdot g_{1}$ and hence $b \cdot g_{1}$
are positive. Let p_{1} be a projection in $\mathrm{C}\left(X_{1}\right) \otimes \mathscr{K}$ corresponding to the K^{0} class $b \cdot g_{1}$. By [8] we know that the ordered, saturated, free cyclic subgroup of $\mathrm{K}_{0}\left(C_{1}\right)$ generated by g_{1} is equal to

$$
(\mathrm{Z},\{0, a+1, a+2, \ldots\})
$$

where the class of the unit is the integer $b \geq a+1$.
Decompose b into powers of primes, $b=a_{i_{1}}^{m_{1}} a_{i_{2}}^{m_{2}} \ldots a_{i_{n}}^{m_{n}}$. Set $\mathbf{n}^{\prime}=\frac{\mathbf{n}}{b}$, with the convention that $\infty-l=\infty$ for all natural numbers l. Let L_{j} be an enumeration of the primes appearing in \mathbf{n}^{\prime} for $j \geq 2, j \in \mathbf{N}$, and set $L_{1}=b$.

We now define a family of continuous maps from S^{2} to S^{2}, indexed by the integers, to be used in the construction of the maps γ_{j} from C_{j} to C_{j+1}. Consider S^{2} as being embedded in $\mathrm{R}^{3}=\mathrm{C} \times \mathrm{R}$ as the unit sphere with center the origin, with the identification $(x, y, z)=(x+y i, z)$. For each $\eta \in \mathbf{N}$, let $\omega_{\eta}^{\prime}: \mathrm{C} \times \mathrm{R} \longrightarrow \mathrm{C} \times \mathrm{R}$ be defined by $\omega_{\eta}^{\prime}(w, z)=\left(w^{\eta} /\left|w^{\eta-1}\right|, z\right)$ when $w \neq 0$ and otherwise by $\omega_{\eta}^{\prime}(0, z)=(0, z)$. This defines a map from S^{2} to itself by restriction. Let ω_{η} be the composition of ω_{η}^{\prime} with the antipodal map. Note that ω_{η}^{\prime} is the suspension of the $\eta^{\text {th }}$ power map on S^{1}, and thus has the same degree, namely $-\eta$, as this map ([6]). As the antipodal map has degree -1 , the composed map ω_{η} has degree η. In the language of vector bundles, $\mathrm{K}^{0}\left(\omega_{\eta}\right)([\xi])=\left[\xi^{\otimes \eta}\right]$.

Define a map γ_{j}^{\prime} from $\mathrm{C}\left(X_{j}\right)$ to $\mathrm{M}_{n_{j}} \otimes \mathrm{C}\left(X_{j+1}\right)=\mathrm{M}_{n_{j}}\left(\mathrm{C}\left(X_{j}{ }^{\otimes n_{j}}\right)\right.$ as follows:

$$
\begin{aligned}
\gamma_{j}^{\prime}(f(x))=\left(f\left(\omega_{L_{j+1}}(x)\right) \otimes 1 \otimes \cdots \otimes 1\right) & \oplus\left(1 \otimes f\left(\omega_{L_{j+1}}(x)\right) \otimes \cdots \otimes 1\right) \oplus \\
& \cdots \oplus\left(1 \otimes 1 \otimes \cdots \otimes f\left(\omega_{L_{j+1}}(x)\right)\right)
\end{aligned}
$$

Let

$$
\beta_{j}^{\prime}=1 \cdot e_{x_{j}}
$$

be a map from $\mathrm{C}\left(X_{j}\right)$ to $\mathrm{C}\left(X_{j+1}\right)$, where $e_{x_{j}}$ denotes the evaluation of an element of $\mathrm{C}\left(X_{j}\right)$ at a point $x_{j} \in X_{j}$ and 1 is the unit of $\mathrm{C}\left(X_{j+1}\right)$. Fix $x_{1} \in \mathrm{~S}^{2}$ and define $x_{j+1}:=\left(\omega_{L_{j+1}}\left(x_{j}\right), \ldots, \omega_{L_{j+1}}\left(x_{j}\right)\right) \in X_{j}{ }^{\times n_{j}}=X_{j+1}$.

Let us define $\gamma_{j}: \mathrm{C}\left(X_{j}\right) \rightarrow \mathrm{M}_{n_{j}}\left(\mathrm{C}\left(X_{j+1}\right)\right) \otimes \mathrm{M}_{2}(\mathscr{K})$ inductively as the direct sum of two maps. For the first map, take the restriction to $C_{j} \subseteq \mathrm{C}\left(X_{j}\right) \otimes$ \mathscr{K} of the tensor product of γ_{j}^{\prime} with the identity map from \mathscr{K} to \mathscr{K}. The second map is obtained as follows: compose the map ϕ_{j}^{1} with the direct sum of q_{j} copies of the tensor product of β_{j}^{\prime} with the identity map from \mathscr{K} to \mathscr{K} (restricted to $\left.D_{j} \subseteq \mathrm{C}\left(X_{j}\right) \otimes \mathscr{K}\right)$, where q_{j} is to be specified. The induction consists of first considering the case $j=1$ (since p_{1} has already been chosen), then setting $p_{2}=\gamma_{j}\left(p_{1}\right)$, so that C_{2} is specified as the cut-down of $\mathrm{C}\left(X_{j}\right) \otimes \mathrm{M}_{2}(\mathscr{K})$, and continuing in this way.

With β_{j} taken to be the restriction to $D_{j} \subseteq \mathrm{C}\left(X_{j}\right) \otimes \mathscr{K}$ of $\beta_{j}^{\prime} \otimes$ id we have, by construction, that $\beta_{j} \phi_{j}^{1}$ is a direct summand of γ_{j} and, furthermore, the second direct summand and β_{j} map into orthogonal blocks (and hence orthogonal subalgebras) as desired.

We will now need to verify that p_{j} has the following property: the set of all rational multiples of $\mathrm{K}_{0}\left(p_{j}\right)$ in the ordered group $\mathrm{K}_{0}\left(C_{j}\right)=\mathrm{K}^{0}\left(X_{j}\right)$ is isomorphic (as a sub ordered group) to

$$
\left(\mathrm{Z},\left\{0, l_{j}+1, l_{j}+2, \ldots\right\}\right)
$$

where

$$
l_{j}:=L_{j} l_{j-1}, \quad l_{1}:=a
$$

and the class of the unit (i.e., of p_{j}) is $\prod_{k=1}^{j} L_{k}$.
Our verification will proceed by induction. The case $j=1$ has been established by construction. Suppose that the assertion of the preceding paragraph holds for all $p_{k}, k \leq j$. Suppose further that the group of rational multiples of $\mathrm{K}_{0}\left(p_{k}\right)$ (being isomorphic as a group to Z) is generated by a K_{0} class of the form $\left[\xi^{\times n}\right]-\left[\theta_{m}\right]$, where $m<n$ and (this is again true by construction for $k=1$). We will show that $\mathrm{K}_{0}\left(p_{j}\right)$ has both the property of the preceding paragraph and the property just mentioned.

Let $g_{k} \in \mathrm{~K}^{0}\left(X_{k}\right)$ be the generator of the group of rational multiples of p_{k}. Note that, as is the case for all maps on $\mathrm{K}^{0}\left(\mathrm{~S}^{2}\right)$ induced by a continuous map from S^{2} to itself, $\mathrm{K}_{0}\left(\omega_{\eta}\right)\left(\left[\theta_{1}\right]\right)=\left[\theta_{1}\right]$. Write $g_{k}=\left[\xi^{\times d_{k}}\right]-\left[\theta_{m_{k}}\right]$. Then

$$
\mathbf{K}_{0}\left(\gamma_{j}\right)\left(g_{j}\right)=\left[\left(\xi^{\otimes L_{j+1}}\right)^{\times d_{j} n_{j}}\right]-\left[\theta_{m_{j+1}^{\prime}}\right]
$$

for some integers $d_{j}>0$ and m_{j+1}^{\prime}. We may assume that the multiplicity of the map $\mathrm{K}_{0}\left(\gamma_{j}\right)$ is divisible by L_{j+1}, as we have yet to specify n_{j}. We recall that for any integer l, the K_{0} class $\left[\xi^{\otimes l}\right]$ corresponds to the element $(1, l)$ in $\mathrm{K}^{0}\left(\mathrm{~S}^{2}\right)=\left\langle\left[\theta_{1}\right]\right\rangle \oplus\langle e(\xi)\rangle$, which is also the difference of K_{0} classes $l[\xi]-\left[\theta_{l-1}\right]$. Thus we have

$$
\mathrm{K}_{0}\left(\gamma_{j}\right)\left(g_{j}\right)=L_{j+1}\left(\left[\xi^{\times(a+1) n_{1} n_{2} \ldots n_{j}}\right]-\left[\theta_{m_{j+1}}\right]\right)
$$

for some integer m_{j+1}. Setting $g_{j}:=\left[\xi^{\times(a+1) n_{1} n_{2} \ldots n_{j}}\right]-\left[\theta_{m_{j+1}}\right]$, we have established that $\mathrm{K}_{0}\left(\gamma_{j}\right)\left(g_{j}\right)=L_{j+1} g_{j+1}$ for all natural numbers j.

We now show that n_{j} may be chosen so as to ensure that the maximal, free, cyclic subgroup of $\mathrm{K}_{0} C_{j+1}$ generated by g_{j+1} is indeed isomorphic as an ordered group to the integers with positive cone $\left\{0, l_{j+1}+1, l_{j+1}+2, \ldots\right\}$. That $\prod_{k=1}^{j} L_{k}$ is the class of the unit follows directly from the fact that $L_{1}=b$ (the class of the unit in $\left.\mathrm{K}_{0} C_{1}\right)$ and that $\mathrm{K}_{0}\left(\gamma_{j}\right)\left(g_{j}\right)=L_{j+1} g_{j+1}$.

As the Euler class of the Hopf line bundle on S^{2} is non-zero we have, by [8], that for $q, m, h \in \mathrm{~N}$ such that $0<h(q-m)<q$,

$$
h\left(\left[\xi^{\times q}\right]-\left[\theta_{m}\right]\right) \notin\left(\mathrm{K}^{0} \mathrm{~S}^{2 \times q}\right)^{+}
$$

To apply this we note that

$$
g_{j+1}=\left[\xi^{\times(a+1) n_{1} n_{2} \ldots n_{j}}\right]-\left[\theta_{m_{j}}\right]
$$

With $q=(a+1) n_{1} n_{2} \ldots n_{j}$ and $m=m_{j}$ we wish to have

$$
0<l_{j}(q-m)<q
$$

as then $0<h(q-m)<q$ for all $0<h<l_{j}+1$.
Since

$$
q-m=\operatorname{dim} g_{j+1}=\frac{n_{j}+k_{j} q_{j} \operatorname{dim} p_{j}}{L_{j+1}} \operatorname{dim} g_{j}
$$

we want

$$
\operatorname{dim} g_{j+1}<\frac{(a+1) n_{1} n_{2} \ldots n_{j}}{l_{j+1}}
$$

Assume inductively that $n_{1}, n_{2}, \ldots, n_{j-1}$ have been chosen so that

$$
\operatorname{dim} g_{j}<\frac{(a+1) n_{1} n_{2} \ldots n_{j-1}}{l_{j}}
$$

Choose n_{j} large enough so that

$$
\frac{n_{j}+k_{j} q_{j} \operatorname{dim} p_{j}}{n_{j}} \operatorname{dim} g_{j}<\frac{(a+1) n_{1} n_{2} \ldots n_{j-1}}{l_{j}}
$$

Then we have that

$$
\frac{n_{j}+k_{j} q_{j} \operatorname{dim} p_{j}}{L_{j+1}} \operatorname{dim} g_{j}<\frac{(a+1) n_{1} n_{2} \ldots n_{j}}{L_{j+1} l_{j}}
$$

Recalling that $l_{j+1}=L_{j+1} l_{j}$ we conclude that

$$
\operatorname{dim} g_{j+1}=\frac{n_{j}+k_{j} q_{j} \operatorname{dim} p_{j}}{L_{j+1}} \operatorname{dim} g_{j}<\frac{(a+1) n_{1} n_{2} \ldots n_{j}}{l_{j+1}}
$$

as desired.
Note that $\gamma_{j}-\beta_{j} \phi_{j}^{1}$ is non-zero and so, as required in the hypotheses of Theorem 2.4, takes C_{j} into a subalgebra of C_{j+1} not contained in any proper closed two-sided ideal.

It remains to construct maps δ_{j} and δ_{j}^{\prime} from D_{j} to D_{j+1} with orthogonal images such that

$$
\begin{aligned}
\delta_{j} \phi_{j}^{0}+\delta_{j}^{\prime} \phi_{j}^{1} & =\phi_{j+1}^{0} \gamma_{j}, \\
\delta_{j} \phi_{j}^{1}+\delta_{j}^{\prime} \phi_{j}^{0} & =\phi_{j+1}^{1} \gamma_{j},
\end{aligned}
$$

and $\phi_{j+1}^{0} \beta_{j}$ and $\phi_{j+1}^{1} \beta_{j}$ are direct summands of δ_{j}^{\prime} and δ_{j} respectively. To do this we shall have to modify ϕ_{j+1}^{0} and ϕ_{j+1}^{1} by inner automorphisms; this is permissible since it has no effect on K-groups. The definition of δ_{j} and δ_{j}^{\prime} along with the proof that they satisfy the hypotheses of section 2 is taken from [4].

In order to carry out this step we define $x_{j+1}:=\omega_{L_{j+1}}\left(x_{j}\right)$, so that

$$
e_{x_{j+1}} \gamma_{j}=\operatorname{mult}\left(\gamma_{j}\right) e_{x_{j}}
$$

where mult $\left(\gamma_{j}\right)$ denotes the factor by which γ_{j} multiplies dimension. It follows that

$$
\begin{aligned}
\mu_{j+1} \gamma_{j} & =p_{j+1} \otimes e_{x_{j+1}} \gamma_{j} \\
& =\gamma_{j}\left(p_{j}\right) \otimes \operatorname{mult}\left(\gamma_{j}\right) e_{x_{j}} \\
& =\operatorname{mult}\left(\gamma_{j}\right) \gamma_{j}\left(p_{j} \otimes e_{x_{j}}\right) \\
& =\operatorname{mult}\left(\gamma_{j}\right) \gamma_{j} \mu_{j},
\end{aligned}
$$

and

$$
\begin{aligned}
v_{j+1} \gamma_{j} & =\gamma_{j} \otimes 1_{\operatorname{dim}\left(p_{j+1}\right)} \\
& =\operatorname{mult}\left(\gamma_{j}\right) \gamma_{j} \otimes 1_{\operatorname{dim}\left(p_{j}\right)} \\
& =\operatorname{mult}\left(\gamma_{j}\right) \gamma_{j} v_{j} .
\end{aligned}
$$

Take δ_{j} and δ_{j}^{\prime} to be the direct sum of r_{j} and s_{j} copies of γ_{j}, where r_{j} and s_{j} are to be specified. The condition, for $t=0,1$, that

$$
\delta_{j} \phi_{j}^{t}+\delta_{j}^{\prime} \phi_{j}^{1-t}=\phi_{j+1}^{t} \gamma_{j}
$$

understood up to unitary equivalence, then becomes the condition

$$
\begin{aligned}
r_{j} \gamma_{j}\left(l_{j}^{t} \mu_{j}+\left(k_{j}-l_{j}^{t}\right) v_{j}\right)+s_{j} \gamma_{j}\left(l_{j}^{1-t} \mu_{j}+\right. & \left.\left(k_{j}-l_{j}^{1-t}\right) v_{j}\right) \\
& =\left(l_{j+1}^{t} \mu_{j+1}+\left(k_{j+1}-l_{j+1}^{t}\right) v_{j+1}\right) \gamma_{j}
\end{aligned}
$$

also up to unitary equivalence. As $\mathrm{K}_{0}\left(\mu_{j}\right)$ and $\mathrm{K}_{0}\left(\nu_{j}\right)$ are independent this is equivalent to the two equations

$$
\begin{aligned}
r_{j} l_{j}^{t}+s_{j} l_{j}^{1-t} & =\operatorname{mult}\left(\gamma_{j}\right) l_{j+1}^{t} \\
\left(r_{j}+s_{j}\right) k_{j} & =\operatorname{mult}\left(\gamma_{j}\right) k_{j+1}
\end{aligned}
$$

Choose $r_{j}=2 \operatorname{mult}\left(\gamma_{j}\right)$ and $s_{j}=\operatorname{mult}\left(\gamma_{j}\right)$, so that

$$
k_{j+1}=3 k_{j}
$$

and

$$
l_{j+1}^{t}=2 l_{j}^{t}+l_{j}^{1-t}
$$

Taking $k_{1}=1, l_{1}^{0}=0$, and $l_{1}^{1}=1$ we have $k_{j}=3^{j-1}$ and $l_{j}^{1}-l_{j}^{0}=1$ for all j and, in particular, these quantities are non-zero, as required above.

Next let us show that, up to unitary equivalence preserving the equations

$$
\delta_{j} \phi_{j}^{t}+\delta_{j}^{\prime} \phi_{j}^{1-t}=\phi_{j+1}^{t} \gamma_{j}
$$

$\phi_{j+1}^{0} \beta_{j}$ is a direct summand of $\delta_{j}^{\prime}=\operatorname{mult}\left(\gamma_{j}\right) \gamma_{j}$, and $\phi_{j+1}^{1} \beta_{j}$ is a direct summand of $\delta_{j}=2 \operatorname{mult}\left(\gamma_{j}\right) \gamma_{j}$.

Note that $\phi_{j+1}^{t} \beta_{j}$ is the direct sum of l_{j+1}^{t} copies of $p_{j+1} \otimes \beta_{j}$ and $\left(k_{j+1}-\right.$ $\left.l_{j+1}^{t}\right) \operatorname{dim}\left(p_{j+1}\right)$ copies of β_{j}, whereas δ_{j}^{\prime} and δ_{j} contain, respectively, $q_{j} \operatorname{mult}\left(\gamma_{j}\right)$ and $2 q_{j} \operatorname{mult}\left(\gamma_{j}\right)$ copies of β_{j}. Note also that by Theorem 8.1.5 of [Hu] that a trivial projection of dimension at least $\operatorname{dim}\left(p_{j+1}\right)+\operatorname{dim} X_{j+1}$ in $\mathrm{C}\left(X_{j+1}\right) \otimes K$ contains a copy of p_{j+1}. Therefore, $\operatorname{dim}\left(p_{j+1}\right)+\operatorname{dim} X_{j+1}$ copies of β_{j} contain a copy of $p_{j+1} \otimes \beta_{j}$. It follows that $k_{j+1}\left(2 \operatorname{dim}\left(p_{j+1}\right)+\operatorname{dim} X_{j+1}\right)$ copies of β_{j} contain a copy of ϕ_{j+1}^{t} when t is either 1 or 0 . Here, by a copy of a given map from D_{j} to D_{j+1} we mean another map obtained from it by conjugating by a partial isometry in D_{j+1} with initial projection the image of the unit.

Note that

$$
\begin{aligned}
k_{j+1}\left(2 \operatorname{dim}\left(p_{j+1}\right)+\operatorname{dim} X_{j+1}\right) & =3 k_{j}\left(2 \operatorname{mult}\left(\gamma_{j}\right) \operatorname{dim}\left(p_{j}\right)+n_{j} \operatorname{dim} X_{j}\right) \\
& \leq 3 k_{j}\left(2 \operatorname{dim}\left(p_{j}\right)+\operatorname{dim} X_{j}\right) \operatorname{mult}\left(\gamma_{j}\right)
\end{aligned}
$$

and that $k_{j}, \operatorname{dim}\left(p_{j}\right)$ and $\operatorname{dim} X_{j}$ have already been specified and do not depend on n_{j}. It follows that, with

$$
q_{j}=3 k_{j}\left(2 \operatorname{dim}\left(p_{j}\right)+\operatorname{dim} X_{j}\right)
$$

$q_{j} \operatorname{mult}\left(\gamma_{j}\right)$ copies of β_{j} contain a copy of $\phi_{j+1}^{t} \beta_{j}$ for $t=0,1$. In particular δ_{j}^{\prime} and δ_{j} contain copies, respectively, of $\phi_{j+1}^{0} \beta_{j}$ and $\phi_{j+1}^{1} \beta_{j}$.

With this choice of q_{j}, let us show that for each $t=0,1$ there exists a unitary $u_{t} \in D_{j+1}$ commuting with the image of $\phi_{j+1}^{t} \gamma_{j}$, such that $\left(\operatorname{Ad} u_{0}\right) \phi_{j+1}^{0} \beta_{j}$ is a direct summand of δ_{j}^{\prime} and $\left(\operatorname{Ad} u_{1}\right) \phi_{j+1}^{1} \beta_{j}$ is a direct summand of δ_{j}. In other words, for each $t=0$, 1 we must show that the partial isometry constructed in the preceding paragraph, producing a copy of $\phi_{j+1}^{t} \beta_{j}$ inside either δ_{j}^{\prime} or δ_{j}, may be chosen in such a way that it extends to a unitary element of $D_{j+1}-$ which in addition commutes with the image of $\phi_{j+1}^{t} \gamma_{j}$.

We will consider the case $t=0$. The case $t=1$ is similar. Let us first show that the partial isometry in D_{j+1}, transforming $\phi_{j+1}^{0} \beta_{j}$ into a direct summand of δ_{j}^{\prime}, may be chosen to lie in the commutant of the image of $\phi_{j+1}^{0} \gamma_{j}$. Note first that the unit of the image of $\phi_{j+1}^{0} \beta_{j}$ - the initial projection of the partial isometry - lies in the commutant of the image of $\phi_{j+1}^{0} \gamma_{j}$. Indeed, this projection is the image by ϕ_{j}^{1} of the unit of C_{j}. The property that $\beta_{j} \phi_{j}^{1}$ is a direct summand of γ_{j} implies in particular that the image by $\beta_{j} \phi_{j}^{1}$ of the unit of C_{j} commutes with the image of γ_{j}. The image by $\phi_{j+1}^{0} \beta_{j} \phi_{j}^{1}$ of the unit of C_{j} (i.e. the unit of the image of $\phi_{j+1}^{0} \beta_{j}$) therefore commutes with the image of $\phi_{j+1}^{0} \gamma_{j}$, as asserted.

Note also that the final projection of the partial isometry commutes with the image of $\phi_{j+1}^{0} \gamma_{j}$. Indeed, it is the unit of the image of a direct summand of δ_{j}^{\prime}, and since D_{j} is unital it is the image of the unit of D_{j} by this direct summand; since C_{j} is unital and $\phi_{j}^{1}: C_{j} \longrightarrow D_{j}$ is unital, the projection in question is the image of the unit of C_{j} by a direct summand of $\delta_{j}^{\prime} \phi_{j}^{1}$. But $\delta_{j}^{\prime} \phi_{j}^{1}$ is itself a direct summand of $\phi_{j+1}^{0} \gamma_{j}\left(\right.$ as $\phi_{j+1}^{0} \gamma_{j}=\delta_{j} \phi_{j}^{0}+\delta_{j}^{\prime} \phi_{j}^{1}$), and so the projection in question is the image of the unit of C_{j} by a direct summand of $\phi_{j+1}^{0} \gamma_{j}$, and in particular commutes with the image of $\phi_{j+1}^{0} \gamma_{j}$.

Note that both direct summands of $\phi_{j+1}^{0} \gamma_{j}$ under consideration ($\phi_{j+1}^{0} \beta_{j} \phi_{j}^{1}$ and a copy of it) factor through the evaluation of C_{j} at the point x_{j}, and so are contained in the largest such direct summand of $\phi_{j+1}^{0} \gamma_{j}$; this largest direct summand, say π_{j}, is seen to exist by inspection of the construction of $\phi_{j+1}^{0} \gamma_{j}$. Since both projections under consideration (the images of the unit of C_{j} by the two copies of $\phi_{j+1}^{0} \beta_{j} \phi_{j}^{1}$) are less than $\pi_{j}(1)$, to show that they are unitarily equivalent in the commutant of the image of $\phi_{j+1}^{0} \gamma_{j}$ (in D_{j+1}) it is sufficient to show that they are unitarily equivalent in the commutant of the image of π_{j} in $\pi_{j}(1) D_{j+1} \pi_{j}(1)$. Note that this image is isomorphic to $\mathrm{M}_{\operatorname{dim} p_{j}}(C)$. By construction, the two projections in question are Murrayvon Neumann equivalent - in D_{j+1} and therefore in $\pi_{j}(1) D_{j+1} \pi_{j}(1)$ - but all we shall use from this is that they have the same class in $K^{0} X_{j+1}$. Note that the dimension of these projections is $\left(k_{j+1} \operatorname{dim}\left(p_{j+1}\right)\right)\left(k_{j} \operatorname{dim}\left(p_{j}\right)\right)$, and that the dimension of $\pi_{j}(1)$ is $k_{j+1} \operatorname{dim}\left(p_{j+1}\right)+l_{j+1}^{0}\left(\operatorname{dim}\left(p_{j+1}\right)\right)^{2}$. Since the two projections under consideration commute with $\pi_{j}\left(C_{j}\right)$, and this is isomorphic to $\mathrm{M}_{\operatorname{dim}\left(p_{j}\right)}(C)$, to prove unitary equivalence in the commutant of $\pi_{j}\left(C_{j}\right)$ in $\pi_{j}(1) D_{j+1} \pi_{j}(1)$ it is sufficient to prove unitary equivalence of the product of these projections with a fixed minimal projection of $\pi_{j}\left(C_{j}\right)$, say e. Since $K^{0} X_{j+1}$ is torsion free, the products of the two projections under consideration with e still have the same class in $K^{0} X_{j+1}$. To prove that they are unitarily equivalent in $e D_{j+1} e$, it is sufficient (and necessary) to prove that both they and their complements inside e are Murray von-Neumann equi-
valent. Since both the cut-down projections and their complements inside e have the same class in $K^{0} X_{j+1}$, to prove that the two pairs are equivalent it is sufficient, by Theorem 8.1.5 of [Hu], to show that all four projections have dimension at least $\frac{1}{2} \operatorname{dim} X_{j+1}$. Dividing the dimensions above by $\operatorname{dim}\left(p_{j}\right)$ (the order of the matrix algebra), we see that the dimension of the first pair of projections is $k_{j+1} k_{j} \operatorname{dim}\left(p_{j+1}\right)=k_{j+1} k_{j} \operatorname{mult}\left(\gamma_{j}\right) \operatorname{dim}\left(p_{j}\right)$. The dimension of e is $k_{j+1} \operatorname{mult}\left(\gamma_{j}\right)+l_{j+1}^{0} \operatorname{mult}\left(\gamma_{j}\right) \operatorname{dim}\left(p_{j+1}\right)$, so that the dimension of the second pair of projections is mult $\left(\gamma_{j}\right)\left(k_{j+1}+l_{j+1}^{0} \operatorname{dim}\left(p_{j+1}\right)-k_{j+1} k_{j} \operatorname{dim}\left(p_{j}\right)\right)$. Since $\operatorname{dim}\left(p_{1}\right) \geq \frac{1}{2} \operatorname{dim} X_{1}, \operatorname{dim}\left(p_{j+1}\right)=\operatorname{mult}\left(\gamma_{j}\right) \operatorname{dim}\left(p_{j}\right), \operatorname{dim} X_{j+1}=$ $n_{j} \operatorname{dim} X_{j}$, and mult $\left(\gamma_{j}\right) \geq n_{j}$ (for all j), we have $\operatorname{dim}\left(p_{j+1}\right) \geq \frac{1}{2} \operatorname{dim} X_{j+1}$ (for all j). Since $k_{j+1} k_{j}$ is non-zero for all j, the first inequality holds. Since l_{j+1}^{0} is non-zero for all j, the second inequality holds if $\operatorname{mult}\left(\gamma_{j}\right)$ is strictly greater than $k_{j+1} k_{j}$. (One then has, using $\operatorname{dim}\left(p_{j+1}\right)=\operatorname{mult}\left(\gamma_{j}\right) \operatorname{dim}\left(p_{j}\right)$ twice, that the dimension of the second pair of projections is at least $\operatorname{dim}\left(p_{j+1}\right)$.) Since $k_{j+1} k_{j}=3 k_{j}^{2}$, and k_{j} was specified before n_{j}, we may modify the choice of n_{j} so that $\operatorname{mult}\left(\gamma_{j}\right)$ - which is greater than n_{j} - is sufficiently large.

This shows that the two projections in D_{j+1} under consideration are unitarily equivalent by a unitary in the commutant of the image of $\phi_{j+1}^{0} \gamma_{j}$. Replacing ϕ_{j+1}^{0} by its composition with the corresponding inner automorphism, we may suppose that the two projections in question are equal. In other words $\phi_{j+1}^{0} \beta_{j}$ is unitarily equivalent to the cut-down of δ_{j}^{\prime} by the projection $\phi_{j+1}^{0} \beta_{j}(1)$.

Now consider the compositions of these two maps with ϕ_{j}^{1}, namely $\phi_{j+1}^{0} \beta_{j} \phi_{j}^{1}$ and the cut-down of $\delta_{j}^{\prime} \phi_{j}^{1}$ by the projection $\phi_{j+1}^{0} \beta_{j}(1)$. Since both of these maps can be viewed as the cut-down of $\phi_{j+1} \gamma_{j}$ by the same projection, they are in fact the same map. Thus any unitary inside the cut-down of D_{j+1} by $\phi_{j+1}^{0} \beta_{j}(1)$ taking $\phi_{j+1}^{0} \beta_{j}$ into the cut-down of δ_{j}^{\prime} by this projection (such a unitary is known to exist) must commute with the image of $\phi_{j+1}^{0} \beta_{j} \phi_{j}^{1}$ and hence with the image of $\phi_{j+1}^{0} \gamma_{j}$, since this commutes with the projection $\phi_{j+1}^{0} \beta_{j}(1)=\phi_{j+1}^{0}\left(\beta_{j} \phi_{j}^{1}(1)\right)$. The extension of such a partial unitary to a unitary u_{0} in D_{j+1} equal to one inside the complement of this projection then belongs to the commutant of the image of $\phi_{j+1}^{0} \gamma_{j}$, and transforms $\phi_{j+1}^{0} \beta_{j}$ into the cut-down of δ_{j}^{\prime} by this projection, as desired.

As stated above, the proof for the case $t=1$ is similar.
Inspection of the construction of the maps $\delta_{j}^{\prime}-\phi_{j}^{0} \beta_{j}$ and $\delta_{j}-\phi_{j}^{1} \beta_{j}$ shows that they are injective, as required by the hypotheses of section 2.

Replacing ϕ_{j+1}^{t} with $\left(\operatorname{Ad} u_{t}\right) \phi_{j+1}^{t}$, we have an inductive sequence

$$
A_{1} \xrightarrow{\theta_{1}} A_{2} \xrightarrow{\theta_{2}} \cdots
$$

satisfying the hypotheses of section 2. (The existence of α_{j} homotopic to β_{j} and non-zero on a given element of D_{j}, defined by another point evaluation, is clear.)

By Theorem 2.3 there exists a sequence

$$
A_{1} \xrightarrow{\theta_{1}^{\prime}} A_{2} \xrightarrow{\theta_{2}^{\prime}} \cdots,
$$

with θ_{j}^{\prime} homotopic to θ_{j} (and so agreeing with θ_{j} on K_{0}), the inductive limit of which is simple.

Since the map $\mathrm{K}_{0}\left(\theta_{j}^{\prime}\right)$ (considered as a map between single copies of the integers) takes the canonical generator $1 \in Z$ to L_{j+1}, we may conclude that the simple inductive limit in question has the desired K_{0}-group. That the positive elements are all those greater than k follows from the fact that at each stage, $l_{j}+1$ is the smallest positive element in $\mathrm{K}_{0} A_{j}=\mathrm{Z}$ and

$$
\lim \frac{l_{j}+1}{\prod_{k=1}^{j} L_{k}}=\lim \frac{a \prod_{k=2}^{j} L_{j}+1}{b \prod_{k=2}^{j} L_{j}}=k+\lim \frac{1}{\prod_{k=1}^{j} L_{k}}=k .
$$

Theorem 3.1 follows.
Finally, one might reasonably ask whether $\mathrm{K}_{0}\left(A_{(\mathbf{n}, k)}\right)^{+}$can be made to contain k. There is no reason a priori why this should not be possible, but the construction above does not seem amenable to modifications which would achieve this result. Roughly speaking, the K_{0}-group in Theorem 3.1 can be thought of as an inductive limit of sub-ordered groups of ordered K_{0}-groups of homogeneous C^{*}-algebras. In order that the inductive limit of Theorem 3.1 be simple, one must introduce point evaluations via the maps β_{j}. In the absence of these point evaluations, one could have maps $\Psi: \mathbf{Z}_{m k} \rightarrow \mathbf{Z}_{m n k}$ with $\Psi(n k)=m n k$ at the level of K_{0} between the building blocks A_{i} and A_{i+1}. With these point evaluations, however, one is forced into a situation where $\Psi(n k)$ is necessarily strictly less than $m n k$.

Aknowledgement. This work was supported by an NSERC Postdoctoral Fellowship.

REFERENCES

1. Blackadar, B., K-Theory for Operator Algebras, Springer-Verlag, New York, 1986.
2. Elliott, G. A., On the classification of inductive limits of sequences of semisimple finitedimensional algebras, J. Algebra 38 (1976), no. 1, 29-44.
3. Elliott, G. A., The Classification Problem for Amenable C^{*}-algebras, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), pp. 922-932, Birkhaüser, Basel, 1995.
4. Elliott, G. A., Villadsen, J., Perforated ordered K_{0}-groups, Canad. J. Math. 52 (2000), no. 6, 1164-1191.
5. Husemoller, D., Fibre Bundles, McGraw-Hill, New York, 1966.
6. Massey, V., Singular Homology Theory, Springer-Verlag, New York, 1980.
7. Toms, A., Strongly perforated K_{0}-groups of simple C^{*}-algebras, Canad. Math. Bull. 46 (2003), 457-472.
8. Villadsen, J., Simple C^{*}-algebras with perforation, J. Funct. Anal. 154 (1998), 110-116.

DEPARMENT OF MATHEMATICS

COPENHAGEN UNIVERSITY
UNIVERSITETSPARKEN 5
DK-2100 KøBENHAVN \varnothing
DANMARK
E-mail: atoms@math.ku.dk

