STRONG PERFORATION IN INFINITELY GENERATED
K_0-GROUPS OF SIMPLE C^*-ALGEBRAS

ANDREW S. TOMS

Abstract

Let (G, G^+) be an ordered abelian group. We say that G has strong perforation if there exists $x \in G, x \notin G^+$, such that $nx \in G^+, nx \neq 0$ for some natural number n. Otherwise, the group is said to be weakly unperforated. Examples of simple C^*-algebras whose ordered K_0-groups have this property and for which the entire order structure on K_0 is known, until now, been restricted to the case where K_0 is group isomorphic to the integers. We construct simple, separable, unital C^*-algebras with strongly perforated K_0-groups group isomorphic to an arbitrary infinitely generated subgroup of the rationals, and determine the order structure on K_0 in each case.

1. Introduction

Elliott’s classification of AF C^*-algebras via the K_0-group ([2]) began a widespread effort to classify nuclear C^*-algebras. The K_0-group, which is an ordered group for stably finite C^*-algebras ([1]), has figured prominently in almost all work on this problem. (For an overview of the classification problem for nuclear C^*-algebras, see [3].) So far, every result on the classification of C^*-algebras has required the assumption that the ordered K_0-group be weakly unperforated whenever it is not zero. This assumption was shown to be non-trivial by Villadsen ([8]); the ordered abelian group $\mathbb{Z}_n := (\mathbb{Z}, \{0, n, n+1, \ldots\})$ may arise as a saturated sub-ordered group of the K_0-group of a simple nuclear C^*-algebra. In [4], Elliott and Villadsen refined the results of [8] to obtain, for each natural number n, a simple nuclear C^*-algebra A_n whose ordered K_0-group is order isomorphic to \mathbb{Z}_n. This result was further generalised by the author in [7], where it was shown that a certain class of order structures on the integers (which might possibly comprise all such order structures giving a simple ordered group) could arise as the ordered K_0-group of a simple nuclear C^*-algebra.

The classification of a category by an invariant is not complete until one knows the range of the invariant, and any classification of simple nuclear stably finite C^*-algebras will necessarily capture the ordered K_0-group. Thus, the range of the K_0 functor bears investigation. This range is known when K_0

Received August 8, 2003.
is a weakly unperforated ordered group, whence our interest in instances of the ordered K_0-group which exhibit strong perforation.

2. Essential Results

In this section we review results from [4] that will be used in the sequel.

Let C, D be C^*-algebras, and let ϕ_0, ϕ_1 be $*$-homomorphisms from C to D. The generalised mapping torus of C and D with respect to ϕ_0 and ϕ_1 is

$$A := \{(c, d) \mid d \in C([0, 1]; D), \ c \in C, \ d(0) = \phi_0(c), \ d(1) = \phi_1(c)\}$$

We will write $A(C, D, \phi_0, \phi_1)$ for A when clarity demands it. We now list without proof some theorems, specialised to our needs, which will be used in the sequel.

Theorem 2.1 (Elliott and Villadsen ([4]), Sec. 2, Thm. 2). The index map $b_* : K_* C \rightarrow K_1 D$ in the six term periodic sequence for the extension

$$0 \rightarrow SD \rightarrow A \rightarrow C \rightarrow 0$$

is the difference $K_* \phi_1 - K_* \phi_0 : K_* C \rightarrow K_* D$.

Thus, the six-term exact sequence may be written as the short exact sequence

$$0 \rightarrow \text{Coker } b_{1-*} \rightarrow K_* A \rightarrow \text{Ker } b_* \rightarrow 0.$$

In particular, if b_{1-*} is surjective, then $K_* A$ is isomorphic to its image, $\text{Ker } b_*$, in $K_* C$.

Suppose that cancellation holds for each pair of projections in $D \otimes \mathcal{H}$ obtained as the images under the maps ϕ_0 and ϕ_1 of a single projection in $C \otimes \mathcal{H}$. Then, if b_1 is surjective,

$$(K_0 A)^+ \cong (K_0 C)^+ \cap K_0(e_{\infty})(K_0 A),$$

where e_{∞} denotes the evaluation of A at the fibre at infinity.

Theorem 2.2 (Elliott and Villadsen ([4]), Sec. 3, Thm. 3). Let A_1 and A_2 be building block algebras as described above,

$$A_i = A(C, D, \phi_i^0, \phi_i^1), \ i = 1, 2.$$

Let there be given three maps between the fibres,

$$\gamma : C_1 \rightarrow C_2,$$
$$\delta, \delta' : D_1 \rightarrow D_2,$$
such that \(\delta \) and \(\delta' \) have mutually orthogonal images, and

\[
\delta \phi_0^1 + \delta' \phi_1^1 = \phi_0^2 \gamma, \\
\delta \phi_1^1 + \delta' \phi_0^1 = \phi_1^2 \gamma.
\]

Then there exists a unique map

\[
\theta : A_1 \to A_2,
\]

respecting the canonical ideals, giving rise to the map \(\gamma : C_1 \to C_2 \) between the quotients (or fibres at infinity), and such that for any \(0 < s < 1 \), if \(e_s \) denotes evaluation at \(s \),

\[
e_s \theta = \delta e_s + \delta' e_{1-s}.
\]

Let \(A_1 \) and \(A_2 \) be building block algebras as in Theorem 2.1 with \(\theta : A_1 \to A_2 \) as in Theorem 2.2. Let there be given a map \(\beta : D_1 \to C_2 \) such that the composed map \(\beta \phi_1^1 \) is a direct summand of the map \(\gamma \), and such that the composed maps \(\phi_0^1 \beta \) and \(\phi_1^1 \beta \) are direct summands of the maps \(\delta' \) and \(\delta \), respectively. Suppose that the decomposition of \(\gamma \) as the orthogonal sum of \(\beta \phi_1^1 \) and another map is such that the image of the second map is orthogonal to the image of \(\beta \). (Note that this requirement is automatically satisfied if \(C_1 \), \(D_1 \), and the map \(\beta \phi_1^1 \) are unital.)

Let

\[
A_1 \xrightarrow{\theta_1} A_2 \xrightarrow{\theta_2} \cdots
\]

be a sequence of separable building block \(C^* \)-algebras,

\[
A_i = A(C_i, D_i, \phi_0^i, \phi_1^i), \quad i = 1, 2, \ldots
\]

with each map \(\theta_i : A_i \to A_{i+1} \) obtained by the construction of Theorem 2.2. For each \(i = 1, 2, \ldots \), let \(\beta_i : D_i \to C_{i+1} \) be a map verifying the hypotheses of the preceding paragraph.

Suppose that for every \(i = 1, 2, \ldots \), the intersection of the kernels of the boundary maps \(\phi_0^i \) and \(\phi_1^i \) from \(C_i \) to \(D_i \) is zero.

Suppose that, for each \(i \), the image of each of \(\phi_0^{i+1} \) and \(\phi_1^{i+1} \) generates \(D_{i+1} \) as a closed two-sided ideal, and that this is in fact true for the restriction of \(\phi_0^{i+1} \) and \(\phi_1^{i+1} \) to the smallest direct summand of \(C_{i+1} \) containing the image of \(\beta_i \). Suppose that the closed two-sided ideal of \(C_{i+1} \) generated by the image of \(\beta_i \) is a direct summand.

Suppose that, for each \(i \), the maps \(\delta_i' - \phi_0^i \beta_i \) and \(\delta_i - \phi_1^i \beta_i \) from \(D_i \) to \(D_{i+1} \) are injective.
Suppose that, for each i, the map $\gamma_i - \beta_i \phi_i^1$ takes each non-zero direct summand of C_i into a subalgebra of C_{i+1} not contained in any proper closed two-sided ideal.

Suppose that, for each i, the map $\beta_i : D_i \to C_{i+1}$ can be deformed – inside the hereditary sub-C^*-algebra generated by its image – to a map $\alpha_i : D_i \to C_{i+1}$ with the following property: There is a direct summand of α_i, say $\bar{\alpha}_i$, such that $\bar{\alpha}_i$ is non-zero on an arbitrary given element x_i of D_i, and has image a simple sub-C^*-algebra of C_{i+1}, the closed two-sided ideal generated by which contains the image of β_i.

Theorem 2.3 (Elliott and Villadsen ([4]), Sec. 5, Thm. 5). If the hypotheses above are satisfied, there is a map θ_i' homotopic inside A_i to θ_i for each i such that the inductive limit of the sequence

$$A_1 \xrightarrow{\theta_1'} A_2 \xrightarrow{\theta_2'} \cdots$$

is simple.

3. Infinitely Generated Subgroups of the Rational Numbers

A generalised integer is a symbol $n = a_1^{n_1}a_2^{n_2}a_3^{n_3}\ldots$, where the a_i's are pairwise distinct prime numbers and each n_i is either a non-negative integer or ∞. The subgroup G_n of the rational numbers associated to the generalised integer n is the group of all rationals whose denominators (when in lowest terms) are products of powers of the a_i's not exceeding $a_i^{n_i}$. If $n_i = \infty$, then an arbitrarily large power of a_i may appear in the denominator.

Theorem 3.1. For each pair (n, k) consisting of a generalised integer n and a positive rational $k < 1$, there exists a simple, separable, unital, nuclear C^*-algebra $A(n, k)$ such that

$$(K_0(A(n, k)), K_0(A(n, k))^+, [1_{A(n, k)}]) = (G_n, G_n \cap (k, \infty), 1).$$

Proof. Given a 2-tuple (n, k) we will construct a sequence

$$A_1 \xrightarrow{\theta_1} A_2 \xrightarrow{\theta_2} \cdots$$

where $A_j = A(C_j, D_j, \phi_j^0, \phi_j^1)$, and the θ_j constructed as in Theorem 2.2 from maps

$$\gamma_j : C_j \to C_{j+1}, \quad \delta_j, \delta_j' : D_j \to D_{j+1}.$$

In order to obtain a simple inductive limit, we will require a map

$$\beta_j : D_j \to C_{j+1}$$
having the properties listed in Section 2.

For each \(j \) let

\[C_j = p_j(C(X_j) \otimes \mathcal{H})p_j \]

where \(p_j \) is a projection in \(C(X_j) \otimes \mathcal{H} \) and \(\mathcal{H} \) denotes the compact operators.

Express \(k \) in lowest terms, say \(\frac{a}{b} \), and set \(X_1 = S^{2 \times (a+1)} \). Let \(X_{j+1} = X_j \times n_j \), where \(n_j \) is a natural number to be specified.

Let \(D_j = C_j \otimes M_{\dim(p_j)k_j} \), where \(k_j \) is a natural number to be specified. Let \(\mu_j \) and \(\nu_j \) be maps from \(C_j \) to \(C_j \otimes M_{\dim(p_j)} \) given by

\[\mu_j(a) = p_j \otimes a(x_j) \cdot 1_{\dim(p_j)} \]

(where \(x_j \) is a point to be specified in \(X_j \) and \(1_{\dim(p_j)} \) is the unit of \(M_{\dim(p_j)} \)) and

\[\nu_j(a) = a \otimes 1_{\dim(p_j)}. \]

For \(t \in \{0, 1\} \), let \(\phi^t_j : C_j \to D_j \) be the direct sum of \(l^j_1 \) and \(l^j_0 - l^j_1 \) copies of \(\mu_j \) and \(\nu_j \), respectively, where the \(l^j_t \) are non-negative integers such that \(l^j_0 \neq l^j_1 \) for all \(j \geq 1 \).

Note that both \(C_j \) and \(D_j \) are unital, as are the maps \(\phi^t_j \). The \(\phi^t_j \) are also injective and as such satisfy the hypotheses of Section 2 concerning them alone.

By Theorem 2.1, for each \(e \in K_0(C_j) \),

\[b_0(e) = (l^j_1 - l^j_0)(K_0(\mu_j) - K_0(\nu_j))(e) \]

\[= (l^j_1 - l^j_0)(\dim(p_j) \cdot K_0(p_j) - \dim(p_j) \cdot e). \]

Since \(l^j_1 - l^j_0 \) is non-zero for every \(j \) and \(K_0(X_j) \) is torsion free, \(b_0(e) = 0 \) implies that \(e \) belongs to the maximal free cyclic subgroup of \(K_0(C_j) \) containing \(K_0(p_j) \). As \(K_1(C_j) = 0, b_1 \) is surjective. \(K_0(A_j) \) is thus group isomorphic (by Theorem 2.1) to its image, in \(K_0(C_j) \) – which is isomorphic as a group to \(\mathbb{Z} \).

In order for \(K_0(A_j) \) to be isomorphic as an ordered group to its image in \(K_0(C_j) \), with the relative order, it is sufficient (by Theorem 2.1) that for any projection \(q \) in \(C_j \otimes \mathcal{H} \) such that the images of \(q \) under \(\phi^0_j \otimes \text{id} \) and \(\phi^1_j \otimes \text{id} \) have the same \(K_0 \) class, these images be in fact equivalent. For any such \(q \), the image of \(K_0(q) \) under \(b_0 = K_0(\phi^1_j) - K_0(\phi^0_j) \) is zero, so that \(K_0(q) \) belongs to \(\text{Ker} b_0 \). It will be clear from the construction below that the dimension of both \(\phi^1_j(q) \) and \(\phi^0_j(q) \) is at least half the dimension of \(X_j \). Thus, by Theorem 8.1.5 of [5], \(\phi^1_j(q) \) and \(\phi^0_j(q) \) are equivalent, as they have the same \(K_0 \) class.

Let us now specify the projection \(p_1 \). Let \(\xi \) be the Hopf line bundle over \(S^2 \).

Set \(g_1 = [\xi \times (a+1)] - [\theta_a] \in K^0(X_1) \), where \([\cdot]\) denotes the stable isomorphism class of a vector bundle and \(\theta_l \) denotes the trivial vector bundle of fiber dimension \(l \). By Theorem 8.1.5 of [5], we have that \((a + 1) \cdot g_1 \) and hence \(b \cdot g_1 \).
are positive. Let \(p_1 \) be a projection in \(C(X_1) \otimes \mathcal{K} \) corresponding to the \(K^0 \) class \(b \cdot g_1 \). By \([8]\) we know that the ordered, saturated, free cyclic subgroup of \(K_0(C_1) \) generated by \(g_1 \) is equal to
\[
(\mathbb{Z}, \{0, a + 1, a + 2, \ldots\}),
\]
where the class of the unit is the integer \(b \geq a + 1 \).

Decompose \(b \) into powers of primes, \(b = a^1\eta_1 a^2\eta_2 \cdots a^n\eta_n \). Set \(\mathbf{n}' = \frac{n}{\eta} \), with the convention that \(\infty - l = \infty \) for all natural numbers \(l \). Let \(L_j \) be an enumeration of the primes appearing in \(\mathbf{n}' \) for \(j \geq 2, j \in \mathbb{N} \), and set \(L_1 = b \).

We now define a family of continuous maps from \(S^2 \) to \(S^2 \), indexed by the integers, to be used in the construction of the maps \(\gamma_j \) from \(C_j \) to \(C_{j+1} \).

Consider \(S^2 \) as being embedded in \(\mathbb{R}^3 = \mathbb{C} \times \mathbb{R} \) as the unit sphere with center the origin, with the identification \((x, y, z) = (x + yi, z)\). For each \(\eta \in \mathbb{N} \), let \(\omega'_{\eta} : \mathbb{C} \times \mathbb{R} \rightarrow \mathbb{C} \times \mathbb{R} \) be defined by \(\omega'_{\eta}(w, z) = (\frac{w^\eta}{|w^\eta - 1|}, z) \) when \(w \neq 0 \) and otherwise by \(\omega'_{\eta}(0, z) = (0, z) \). This defines a map from \(S^2 \) to itself by restriction. Let \(\omega_{\eta} \) be the composition of \(\omega'_{\eta} \) with the antipodal map. Note that \(\omega'_{\eta} \) is the suspension of the \(\eta \)-th power map on \(S^1 \), and thus has the same degree, namely \(-\eta \), as this map \([6]\). As the antipodal map has degree \(-1 \), the composed map \(\omega_{\eta} \) has degree \(\eta \). In the language of vector bundles, \(K^0(\omega_{\eta})([\xi]) = [\xi^{\otimes \eta}] \).

Define a map \(\gamma'_{\eta} \) from \(C(X_j) \) to \(M_{\eta_j} \otimes C(X_{j+1}) = M_{\eta_j}(C(X_j^{\otimes \eta})) \) as follows:
\[
\gamma'_{\eta}(f(x)) = (f(\omega_{L_{j+1}}(x))\otimes 1 \otimes \cdots \otimes 1) \oplus (1 \otimes f(\omega_{L_{j+1}}(x))\otimes \cdots \otimes 1) \oplus \cdots \oplus (1 \otimes 1 \otimes \cdots \otimes f(\omega_{L_{j+1}}(x))).
\]

Let
\[
\beta'_{\eta} = 1 \cdot e_{x_j}
\]
be a map from \(C(X_j) \) to \(C(X_{j+1}) \), where \(e_{x_j} \) denotes the evaluation of an element of \(C(X_j) \) at a point \(x_j \in X_j \) and \(1 \) is the unit of \(C(X_{j+1}) \). Fix \(x_1 \in S^2 \) and define \(x_{j+1} := (\omega_{L_{j+1}}(x_1), \ldots, \omega_{L_{j+1}}(x_j)) \in X_j^{\otimes \eta_j} = X_{j+1} \).

Let us define \(\gamma_{\eta} : C(X_j) \rightarrow M_{\eta_j}(C(X_{j+1})) \otimes M_2(\mathcal{K}) \) inductively as the direct sum of two maps. For the first map, take the restriction to \(C_j \subseteq C(X_j) \otimes \mathcal{K} \) of the tensor product of \(\gamma'_{\eta} \) with the identity map from \(\mathcal{K} \) to \(\mathcal{K} \). The second map is obtained as follows: compose the map \(\phi'_{\eta} \) with the direct sum of \(q_j \) copies of the tensor product of \(\beta'_{\eta} \) with the identity map from \(\mathcal{K} \) to \(\mathcal{K} \) (restricted to \(D_j \subseteq C(X_j) \otimes \mathcal{K} \)), where \(q_j \) is to be specified. The induction consists of first considering the case \(j = 1 \) (since \(p_1 \) has already been chosen), then setting \(p_2 = \gamma_{\eta}(p_1) \), so that \(C_2 \) is specified as the cut-down of \(C(X_j) \otimes M_2(\mathcal{K}) \), and continuing in this way.
With β_j taken to be the restriction to $D_j \subseteq C(X_j) \otimes \mathcal{K}$ of $\beta'_j \otimes \text{id}$ we have, by construction, that $\beta_j \phi_j^1$ is a direct summand of γ_j and, furthermore, the second direct summand and β_j map into orthogonal blocks (and hence orthogonal subalgebras) as desired.

We will now need to verify that p_j has the following property: the set of all rational multiples of $K_0(p_j)$ in the ordered group $K_0(C_j) = K^0(X_j)$ is isomorphic (as a sub ordered group) to

$$(\mathbb{Z}, \{0, l_j + 1, l_j + 2, \ldots\}),$$

where

$$l_j := L_j l_{j-1}, \quad l_1 := a$$

and the class of the unit (i.e., of p_j) is $\prod_{k=1}^{j} L_k$.

Our verification will proceed by induction. The case $j = 1$ has been established by construction. Suppose that the assertion of the preceding paragraph holds for all p_k, $k \leq j$. Suppose further that the group of rational multiples of $K_0(p_k)$ (being isomorphic as a group to \mathbb{Z}) is generated by a K_0 class of the form $[\xi^{\times n}] - [\theta_m]$, where $m < n$ and (this is again true by construction for $k = 1$). We will show that $K_0(p_j)$ has both the property of the preceding paragraph and the property just mentioned.

Let $g_k \in K^0(X_k)$ be the generator of the group of rational multiples of p_k. Note that, as is the case for all maps on $K^0(S^2)$ induced by a continuous map from S^2 to itself, $K_0(\omega)([\theta_1]) = [\theta_1]$. Write $g_k = [\xi^{\times d_k}] - [\theta_{m_k}]$. Then

$$K_0(\gamma_j)(g_j) = ([\xi^{\times L_{j+1}}]^{\times d_j n_j} - [\theta_{m_{j+1}}])$$

for some integers $d_j > 0$ and m_{j+1}. We may assume that the multiplicity of the map $K_0(\gamma_j)$ is divisible by L_{j+1}, as we have yet to specify n_j. We recall that for any integer l, the K_0 class $[\xi^{\times l}]$ corresponds to the element $(1, l)$ in $K^0(S^2) = ([\theta_1]) \oplus \langle e(\xi) \rangle$, which is also the difference of K_0 classes $l[\xi] - [\theta_{l-1}]$. Thus we have

$$K_0(\gamma_j)(g_j) = L_{j+1}([\xi^{\times (a+1)n_{j+2} \cdots n_j}] - [\theta_{m_{j+1}}]).$$

for some integer m_{j+1}. Setting $g_j := [\xi^{\times (a+1)n_{j+2} \cdots n_j}] - [\theta_{m_{j+1}}]$, we have established that $K_0(\gamma_j)(g_j) = L_{j+1}g_{j+1}$ for all natural numbers j.

We now show that n_j may be chosen so as to ensure that the maximal, free, cyclic subgroup of K_0C_{j+1} generated by g_{j+1} is indeed isomorphic as an ordered group to the integers with positive cone $\{0, l_{j+1} + 1, l_{j+1} + 2, \ldots\}$. That $\prod_{k=1}^{j} L_k$ is the class of the unit follows directly from the fact that $L_1 = b$ (the class of the unit in K_0C_1) and that $K_0(\gamma_j)(g_j) = L_{j+1}g_{j+1}$.

As the Euler class of the Hopf line bundle on S^2 is non-zero we have, by [8], that for $q, m, h \in \mathbb{N}$ such that $0 < h(q - m) < q$,

$$h((\xi^q) - [\theta_m]) \notin (K^0S^2)^+.$$

To apply this we note that

$$g_{j+1} = [\xi^{(a+1)n_1n_2...n_j}] - [\theta_{n_j}].$$

With $q = (a + 1)n_1n_2...n_j$ and $m = m_j$ we wish to have

$$0 < l_j(q - m) < q$$

as then $0 < h(q - m) < q$ for all $0 < h < l_j + 1$.

Since

$$q - m = \dim g_{j+1} = \frac{n_j + k_jq_j \dim p_j}{L_j+1} \dim g_j$$

we want

$$\dim g_{j+1} < \frac{(a + 1)n_1n_2...n_j}{l_j+1}.$$

Assume inductively that $n_1, n_2, ..., n_{j-1}$ have been chosen so that

$$\dim g_j < \frac{(a + 1)n_1n_2...n_{j-1}}{l_j}.$$

Choose n_j large enough so that

$$\frac{n_j + k_jq_j \dim p_j}{n_j} \dim g_j < \frac{(a + 1)n_1n_2...n_{j-1}}{l_j}.$$

Then we have that

$$\frac{n_j + k_jq_j \dim p_j}{L_j+1} \dim g_j < \frac{(a + 1)n_1n_2...n_j}{L_j+1l_j}.$$

Recalling that $l_{j+1} = L_j+1l_j$ we conclude that

$$\dim g_{j+1} = \frac{n_j + k_jq_j \dim p_j}{L_j+1} \dim g_j < \frac{(a + 1)n_1n_2...n_j}{l_{j+1}}.$$

as desired.

Note that $\gamma_j - \beta_j\phi_j^j$ is non-zero and so, as required in the hypotheses of Theorem 2.4, takes C_j into a subalgebra of C_{j+1} not contained in any proper closed two-sided ideal.
It remains to construct maps δ_j and δ'_j from D_j to D_{j+1} with orthogonal images such that

$$\delta_j \phi_j^0 + \delta'_j \phi_j^1 = \phi_{j+1} Y_j,$$

$$\delta_j \phi_j^1 + \delta'_j \phi_j^0 = \phi_{j+1}^1 Y_j,$$

and $\phi_{j+1}^0 \beta_j$ and $\phi_{j+1}^1 \beta_j$ are direct summands of δ'_j and δ_j respectively. To do this we shall have to modify ϕ_{j+1}^0 and ϕ_{j+1}^1 by inner automorphisms; this is permissible since it has no effect on K_0-groups. The definition of δ_j and δ'_j along with the proof that they satisfy the hypotheses of section 2 is taken from [4].

In order to carry out this step we define $x_{j+1} := \omega_{L_j+1}(x_j)$, so that

$$e_{x_{j+1}} Y_j = \text{mult}(\gamma_j) e_{x_j},$$

where $\text{mult}(\gamma_j)$ denotes the factor by which γ_j multiplies dimension. It follows that

$$\mu_{j+1} Y_j = p_{j+1} \otimes e_{x_{j+1}} Y_j$$

$$= \gamma_j(p_j) \otimes \text{mult}(\gamma_j) e_{x_j}$$

$$= \text{mult}(\gamma_j) \gamma_j(p_j \otimes e_{x_j})$$

$$= \text{mult}(\gamma_j) \gamma_j \mu_j,$$

and

$$\nu_{j+1} Y_j = \gamma_j \otimes 1_{\dim(p_{j+1})}$$

$$= \text{mult}(\gamma_j) \gamma_j \otimes 1_{\dim(p_j)}$$

$$= \text{mult}(\gamma_j) \gamma_j \nu_j.$$

Take δ_j and δ'_j to be the direct sum of r_j and s_j copies of γ_j, where r_j and s_j are to be specified. The condition, for $t = 0, 1$, that

$$\delta_j \phi_j^t + \delta'_j \phi_j^{1-t} = \phi_{j+1}^t Y_j,$$

understood up to unitary equivalence, then becomes the condition

$$r_j \gamma_j(l_j^t \mu_j + (k_j - l_j^t) \nu_j) + s_j \gamma_j(l_j^{1-t} \mu_j + (k_j - l_j^{1-t}) \nu_j)$$

$$= (l_j^{t+1} \mu_{j+1} + (k_{j+1} - l_j^{t+1}) \nu_{j+1}) \gamma_j,$$

also up to unitary equivalence. As $K_0(\mu_j)$ and $K_0(\nu_j)$ are independent this is equivalent to the two equations

$$r_j l_j^t + s_j l_j^{1-t} = \text{mult}(\gamma_j) l_j^{t+1},$$

$$(r_j + s_j) k_j = \text{mult}(\gamma_j) k_{j+1}.$$
Choose \(r_j = 2 \text{ mult}(\gamma_j) \) and \(s_j = \text{ mult}(\gamma_j) \), so that
\[
k_{j+1} = 3k_j
\]
and
\[
l_{j+1}^t = 2l_j^t + l_j^{1-t}
\]

Taking \(k_1 = 1, l_0^t = 0, \) and \(l_1^t = 1 \) we have \(k_j = 3^{j-1} \) and \(l_j^1 - l_j^0 = 1 \) for all \(j \) and, in particular, these quantities are non-zero, as required above.

Next let us show that, up to unitary equivalence preserving the equations
\[
\delta_j \phi_t^j + \delta_j^t \phi_j^{1-t} = \delta_j^{j+1} \gamma_j,
\]
\(\phi_j^t \beta_j \) is a direct summand of \(\delta_j^t = \text{ mult}(\gamma_j) \gamma_j \), and \(\phi_j^1 \beta_j \) is a direct summand of \(\gamma_j \).

Note that \(\delta_j^t = \text{ mult}(\gamma_j) \gamma_j \) contains a copy of \(\phi_j^t \beta_j \) for \(t = 0, 1 \). In particular \(\delta_j^t \) contains a copy of \(\phi_j^t \beta_j \) for \(t = 0, 1 \). In particular \(\delta_j^t \) contains a copy of \(\phi_j^t \beta_j \) for \(t = 0, 1 \). In particular \(\delta_j^t \) contains a copy of \(\phi_j^t \beta_j \) for \(t = 0, 1 \).

With this choice of \(q_j \), let us show that for each \(t = 0, 1 \) there exists a unitary \(u_t \in D_{j+1} \) commuting with the image of \(\phi_j^t \gamma_j \), such that \((\text{Ad} u_0) \phi_j^0 \beta_j \) is a direct summand of \(\delta_j^0 \) and \(\text{Ad} u_1 \phi_j^1 \beta_j \) is a direct summand of \(\delta_j^1 \). In other words, for each \(t = 0, 1 \) we must show that the partial isometry constructed in the preceding paragraph, producing a copy of \(\phi_j^t \beta_j \) inside either \(\delta_j^t \) or \(\delta_j^1 \), may be chosen in such a way that it extends to a unitary element of \(D_{j+1} \) — which in addition commutes with the image of \(\phi_j^t \gamma_j \).
We will consider the case \(t = 0 \). The case \(t = 1 \) is similar. Let us first show that the partial isometry in \(D_{j+1} \), transforming \(\phi^0_{j+1} \beta_j \) into a direct summand of \(\delta_j^0 \), may be chosen to lie in the commutant of the image of \(\phi^0_{j+1} \gamma_j \). Note first that the unit of the image of \(\phi^0_{j+1} \beta_j \) – the initial projection of the partial isometry – lies in the commutant of the image of \(\phi^0_{j+1} \gamma_j \). Indeed, this projection is the image by \(\phi^0_{j+1} \beta_j \) of the unit of \(C_j \). The property that \(\beta_j \phi^0_{j+1} \) is a direct summand of \(\gamma_j \) implies in particular that the image by \(\beta_j \phi^0_{j+1} \) of the unit of \(C_j \) commutes with the image of \(\gamma_j \). The image by \(\phi^0_{j+1} \beta_j \phi^0_{j+1} \) of the unit of \(C_j \) (i.e. the unit of the image of \(\phi^0_{j+1} \beta_j \)) therefore commutes with the image of \(\phi^0_{j+1} \gamma_j \), as asserted.

Note also that the final projection of the partial isometry commutes with the image of \(\phi^0_{j+1} \gamma_j \). Indeed, it is the unit of the image of a direct summand of \(\delta_j^0 \), and since \(D_j \) is unital it is the image of the unit of \(D_j \) by this direct summand; since \(C_j \) is unital and \(\phi^0_{j+1} : C_j \rightarrow D_j \) is unital, the projection in question is the image of the unit of \(C_j \) by a direct summand of \(\delta_j^0 \). But \(\delta_j^0 \phi^0_{j+1} \) is itself a direct summand of \(\phi^0_{j+1} \gamma_j \) (as \(\delta_j^0 \phi^0_{j+1} = \delta_j^0 \phi^0_{j+1} = \delta_j^0 \phi^0_{j+1} \)), and so the projection in question is the image of the unit of \(C_j \) by a direct summand of \(\phi^0_{j+1} \gamma_j \), and in particular commutes with the image of \(\phi^0_{j+1} \gamma_j \).

Note that both direct summands of \(\phi^0_{j+1} \gamma_j \) under consideration \((\phi^0_{j+1} \beta_j \phi^0_{j+1} \) and a copy of it) factor through the evaluation of \(C_j \) at the point \(x_j \), and so are contained in the largest such direct summand of \(\phi^0_{j+1} \gamma_j \); this largest direct summand, say \(\pi_j \), is seen to exist by inspection of the construction of \(\phi^0_{j+1} \gamma_j \). Since both projections under consideration (the images of the unit of \(C_j \) by the two copies of \(\phi^0_{j+1} \beta_j \phi^0_{j+1} \)) are less than \(\pi_j \), to show that they are unitarily equivalent in the commutant of the image of \(\phi^0_{j+1} \gamma_j \) (in \(D_{j+1} \)) it is sufficient to show that they are unitarily equivalent in the commutant of the image of \(\pi_j \) in \(\pi_j(1)D_{j+1} \). Note that this image is isomorphic to \(M_{\dim \beta_j} (C_j) \). By construction, the two projections in question are Murray-von Neumann equivalent – in \(D_{j+1} \) and therefore in \(\pi_j(1)D_{j+1} \) – but all we shall use from this is that they have the same class in \(K^0 X_{j+1} \). Note that the dimension of these projections is \((k_{j+1} \dim(p_{j+1}))(k_j \dim(p_j)) \), and that the dimension of \(\pi_j \) is \(k_j \dim(p_{j+1}) + l_{j+1} \dim(p_{j+1}) \). Since the two projections under consideration commute with \(\pi_j(C_j) \), and this is isomorphic to \(M_{\dim(p_j)} (C_j) \), to prove unitary equivalence in the commutant of \(\pi_j(C_j) \) in \(\pi_j(1)D_{j+1} \) it is sufficient to prove unitary equivalence of the product of these projections with a fixed minimal projection of \(\pi_j(C_j) \), say \(e \). Since \(K^0 X_{j+1} \) is torsion free, the products of the two projections under consideration with \(e \) still have the same class in \(K^0 X_{j+1} \). To prove that they are unitarily equivalent in \(e D_{j+1} e \) , it is sufficient (and necessary) to prove that both they and their complements inside \(e \) are Murray von-Neumann equi-
valent. Since both the cut-down projections and their complements inside e have the same class in K^0X_{j+1}, to prove that the two pairs are equivalent it is sufficient, by Theorem 8.1.5 of [Hu], to show that all four projections have dimension at least $\frac{1}{2} \dim X_{j+1}$. Dividing the dimensions above by $\dim(p_j)$ (the order of the matrix algebra), we see that the dimension of the first pair of projections is $k_j+1k_j \dim(p_{j+1}) = k_j+1k_j \mult(\gamma_j) \dim(p_j)$. The dimension of e is $k_j+1 \mult(\gamma_j) + l_j+1 \mult(\gamma_j) \dim(p_{j+1})$, so that the dimension of the second pair of projections is $\mult(\gamma_j)(k_j+1+l_j+1 \dim(p_{j+1}) - k_j+1k_j \dim(p_j))$. Since $\dim(p_j) \geq \frac{1}{2} \dim X_j$, $\dim(p_{j+1}) = \mult(\gamma_j) \dim(p_j)$, $\dim X_{j+1} = n_j \dim X_j$, and $\mult(\gamma_j) \geq n_j$ (for all j), we have $\dim(p_{j+1}) \geq \frac{1}{2} \dim X_{j+1}$ (for all j). Since k_j+1k_j is non-zero for all j, the first inequality holds. Since l_j+1 is non-zero for all j, the second inequality holds if $\mult(\gamma_j)$ is strictly greater than k_j+1k_j. (One then has, using $\dim(p_{j+1}) = \mult(\gamma_j) \dim(p_j)$ twice, that the dimension of the second pair of projections is at least $\dim(p_{j+1})$.) Since $k_j+1k_j = 3k_j^2$, and k_j was specified before n_j, we may modify the choice of n_j so that $\mult(\gamma_j) - \gamma_j$ is greater than $n_j - \gamma_j$ is sufficiently large.

This shows that the two projections in D_{j+1} under consideration are unitarily equivalent by a unitary in the commutant of the image of $\phi_{j+1}^0 \gamma_j$. Replacing ϕ_{j+1}^0 by its composition with the corresponding inner automorphism, we may suppose that the two projections in question are equal. In other words $\phi_{j+1}^0 \beta_j$ is unitarily equivalent to the cut-down of δ_j' by the projection $\phi_{j+1}^0 \beta_j(1)$.

Now consider the compositions of these two maps with ϕ_j^1, namely $\phi_{j+1}^0 \beta_j \phi_j^1$ and the cut-down of $\delta_j' \phi_j^1$ by the projection $\phi_{j+1}^0 \beta_j(1)$. Since both of these maps can be viewed as the cut-down of $\phi_{j+1} \gamma_j$ by the same projection, they are in fact the same map. Thus any unitary inside the cut-down of D_{j+1} by $\phi_{j+1}^0 \beta_j(1)$ taking $\phi_{j+1}^0 \beta_j$ into the cut-down of δ_j' by this projection (such a unitary is known to exist) must commute with the image of $\phi_{j+1}^0 \beta_j \phi_j^1$ and hence with the image of $\phi_{j+1}^0 \gamma_j$, since this commutes with the projection $\phi_{j+1}^0 \beta_j(1) = \phi_{j+1}^0 (\beta_j \phi_j^1(1))$. The extension of such a partial unitary to a unitary u_0 in D_{j+1} equal to one inside the complement of this projection then belongs to the commutant of the image of $\phi_{j+1}^0 \gamma_j$, and transforms $\phi_{j+1}^0 \beta_j$ into the cut-down of δ_j' by this projection, as desired.

As stated above, the proof for the case $t = 1$ is similar.

Inspection of the construction of the maps $\delta_j' - \phi_j^0 \beta_j$ and $\delta_j - \phi_j^1 \beta_j$ shows that they are injective, as required by the hypotheses of section 2.

Replacing ϕ_{j+1}^0 with $(\Ad u_t) \phi_{j+1}^0$, we have an inductive sequence

$$A_1 \overset{\theta_1}{\rightarrow} A_2 \overset{\theta_2}{\rightarrow} \cdots$$
satisfying the hypotheses of section 2. (The existence of α_j homotopic to β_j and non-zero on a given element of D_j, defined by another point evaluation, is clear.)

By Theorem 2.3 there exists a sequence

$$A_1 \xrightarrow{\theta'_1} A_2 \xrightarrow{\theta'_2} \cdots,$$

with θ'_j homotopic to θ_j (and so agreeing with θ_j on K_0), the inductive limit of which is simple.

Since the map $K_0(\theta'_j)$ (considered as a map between single copies of the integers) takes the canonical generator $1 \in \mathbb{Z}$ to $L_j + 1$, we may conclude that the simple inductive limit in question has the desired K_0-group. That the positive elements are all those greater than k follows from the fact that at each stage, $l_j + 1$ is the smallest positive element in $K_0A_j = \mathbb{Z}$ and

$$\lim \frac{l_j + 1}{\prod_{k=1}^j L_k} = \lim \frac{a \prod_{k=2}^j L_j + 1}{b \prod_{k=2}^j L_j} = k + \lim \frac{1}{\prod_{k=1}^j L_k} = k.$$

Theorem 3.1 follows.

Finally, one might reasonably ask whether $K_0(A_{(n,k)})^+$ can be made to contain k. There is no reason a priori why this should not be possible, but the construction above does not seem amenable to modifications which would achieve this result. Roughly speaking, the K_0-group in Theorem 3.1 can be thought of as an inductive limit of sub-ordered groups of ordered K_0-groups of homogeneous C^*-algebras. In order that the inductive limit of Theorem 3.1 be simple, one must introduce point evaluations via the maps β_j. In the absence of these point evaluations, one could have maps $\Psi : \mathbb{Z}_{mk} \to \mathbb{Z}_{mnk}$ with $\Psi(nk) = m nk$ at the level of K_0 between the building blocks A_i and A_{i+1}. With these point evaluations, however, one is forced into a situation where $\Psi(nk)$ is necessarily strictly less than mnk.

Acknowledgement. This work was supported by an NSERC Postdoctoral Fellowship.

REFERENCES