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HIGHER ORDER HILBERT-SCHMIDT HANKEL FORMS
AND TENSORS OF ANALYTIC KERNELS

SARAH H. FERGUSON and RICHARD ROCHBERG∗

Abstract

The symbols ofnth-order Hankel forms defined on the product of certain reproducing kernel Hilbert
spaces H(ki), i = 1, 2, in the Hilbert-Schmidt class are shown to coincide with the orthogonal
complement in H(k1) ⊗ H(k2) of the ideal of polynomials which vanish up to order n along
the diagonal. For tensor products of weighted Bergman and Dirichlet type spaces (including the
Hardy space) we introduce a higher order restriction map which allows us to identify the relative
quotient of the nth-order ideal modulo the (n + 1)st-order one as a direct sum of single variable
Bergman and Dirichlet-type spaces. This generalizes the well understood 0th-order case.

0. Overview

0.1. Contents

Let H 2(D2) be the Hardy space of the bidisk, the Hilbert space of functions
f (z,w) = ∑

n,m≥0 anmz
nwm with

∑ |anm|2 < ∞. Sitting inside H 2(D2) is
VD , the subspace of functions which vanish on the diagonal D = {(z, w) :
z = w} ∩ D2. When studying the function theory of VD and its orthogonal
complement V ⊥

D one finds that the restriction map, r , defined by (rf )(ζ ) =
f (ζ, ζ ) is a partial isometry of H 2(D2) to a Hilbert space of functions on D,
that the reproducing kernel of that function space can be described explicitly,
and that P = r∗r is the orthogonal projection H 2(D2) onto V ⊥

D . Furthermore
there is an explicit formula for this projection

Pf (z,w) = 1

z− w

∫ z

w

f (ζ, ζ ) dζ.

These facts, which are quite classical, can easily be verified using reproducing
kernels.

In this paper we extend this analysis further in several ways. We obtain
analogous results for the relative quotients V n

D
V n+1
D , here V n

D is the subspace
of H 2(D2) of functions vanishing on D to order n; the results just described
are the case n = 0. We will identify this relative quotient isometrically with
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Qn, a Hilbert space of functions onD, we will identify the reproducing kernel
of Qn, and we will give a partial isometry of H 2(D2) to Qn having initial
space V n

D 
V n+1
D . This partial isometry is a “higher order” restriction operator

obtained by composing r with a certain differential operator. This will allow us
to give an explicit form for the orthogonal projection ofH 2(D2) to V n

D
V n+1
D .

We will also see that we have an intertwining of the compression of the operator
of multiplication by (either) coordinate function toV n

D
V n+1
D and the operator

of multiplication by the coordinate functions on Qn. All this is in Section 3.
Our interest in H 2(D2) arose because it is a natural realization of the Hil-

bert space of Hilbert-Schmidt bilinear forms on the one variable Hardy space
H 2(D). In our analysis we make systematic use of the facts that H 2(D) is a
Hilbert space with reproducing kernel, that the kernel functions have a simple
and explicit form, and that the monomials are orthogonal. Hence it is not sur-
prising that the analysis can be extended beyond the Hardy space to various
Bergman and Dirichlet spaces of holomorphic functions on the disk and on the
polydisk which share certain basic properties. We will present the analysis at
that level of generality; however we emphasize that the core ideas are already
present in the case of H 2(D).

We then investigate what happens when the Hardy space of the disk is
replaced with the Hardy space of the ball. Our approach in that context is quite
computational and hence we only consider the ball in C2. New difficulties
arise in that context and although we make some progress our results are not
as complete.

In the final section we mention some questions.

0.2. Hankel Forms

Our interest in these questions arose when studying higher order Hankel forms.
We now take a quick look at that topic to see how it is related to the work here.
However the work here is independent of considerations of Hankel forms.

Higher order Hankel forms were introduced by Janson and Peetre in [9] and
[10] as classes of bilinear forms acting on Möbius invariant function spaces
on the disk. They were described in a natural way, namely as the irreducible
components of the induced action of the Möbius group on the space bilinear
forms. Briefly speaking, Janson and Peetre showed that to each irreducible
component of a fixed weight corresponds a class of forms, the so-called special
Hankel forms of corresponding weight. The Hankel forms of weight 0 are the
usual Hankel forms. By exploiting the action of the infinitesimal operators
on kernel functions, the authors found an explicit integral representation of
the symbol functions of the special Hankel forms of higher weight and using
this realization established conditions on the symbols for boundedness and
Schatten-von Neumann properties of the forms.
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In the space of Hilbert-Schmidt bilinear forms the special Hankel forms
of different weights are orthogonal. Thus the orthogonal decomposition of
Hilbert-Schmidt forms as sums of special Hankel forms of various weights
induces, via the identification of the form with its symbol, an orthogonal direct
sum decomposition of a space of functions on the bidisk. This connection
between the analytic function theory on the bidisk and the symbols of special
Hankel forms of higher weight was not made explicit in [9] nor, in [23], but
rather in [14].

Motivated by the observation that the symbols of the usual Hankel forms
only depend on the restriction of the function to the diagonal D, Peetre and
Rochberg in [14] defined Hankel forms of higher order by considering the
higher order Taylor behavior of the symbols along the diagonal. For the case
of weighted Bergman spaces on the disk, they showed that the two notions
of generalized Hankel forms yield the same class of forms of order 1 (or,
weight 2). The definition of higher order Hankel forms given in [14] has a nat-
ural generalization to the multi-variable setting and we follow that approach
here and define higher order forms by their commutation properties with mul-
tiplication by the coordinate function. In Section 2 this is seen to be equivalent
to the definition in terms of Taylor data on the diagonal. Although we do not
use the group action in our definition we will see in Section 3 that, for all
orders, our approach yields the same class of forms as those obtained using
group actions in [9] and [23]. That is, for the case of weighted Bergman spaces
on the polydisk, the special higher order Hankel forms we obtain, i.e., forms
which are orthogonal to forms of lower order, do coincide with the irredu-
cible components of the action of the automorphism group of the polydisk on
bounded bilinear forms. This is Corollary 3.4. It is not clear if this holds for
the spaces of functions on the ball.

We would like to mention an alternative generalization to higher dimensions.
Rosengren, in [18], extended the results in [9], [10] and [24] by identifying
the irreducible components of the d-fold tensor of the action of the Möbius
group acting on the d-fold Hilbert space tensor product of weighted Bergman
spaces. The corresponding forms are the so-called multi-linear Hankel forms
of higher order. The higher order Hankel forms that are studied in this paper
are bilinear forms.

1. Preliminaries

For i = 1, 2 let ki be an analytic reproducing kernel on a domain G ⊆ Cd and
let H(ki) denote the Hilbert space of holomorphic functions on G generated
by ki . We assume throughout that the operator Mzj , multiplication by the j th

coordinate function zj , is bounded on H(ki), i = 1, 2, j = 1, . . . , d, and
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that the polynomials, C[z1, . . . , zd ], are dense in H(ki), i = 1, 2. There is
a canonical identification (cf. [21]) between the Hilbert space tensor product
H(k1) ⊗2 H(k2) and the Hilbert space of holomorphic functions on G × G

with reproducing kernel

(k1 ⊗ k2) (z1, w1, z2, w2) = k1(z1, z2)k2(w1, w2).

We will denote this latter space by H(k1 ⊗ k2).
The 2d-tuple of multiplication operators onH(k1 ⊗ k2) will be denoted by

(Mz,Mw)where Mz = (Mz1 ⊗ IH(k2), . . . ,Mzd ⊗ IH(k2)) and Mw = (IH(k1)⊗
Mw1 , . . . , IH(k1) ⊗Mwd ). For a multi-index I = (i1, . . . , id) ∈ Zd+ we define

(Mz − Mw)
I = (Mz1 −Mw1)

i1 . . . (Mzd −Mwd )
id .

and similarly,
(z− w)I = (z1 − w1)

i1 . . . (zd − wd)
id .

In particular, note that with this notational convention we have, for z,w ∈ Cd

and a positive integer k

(1.1) 〈z,w〉k =
∑
|I |=k

k!

I !
zIwI .

1.1. Hilbert-Schmidt forms and the symbol map

Let Bilin(k1, k2)denote the space of bounded bilinear forms defined onH(k1)×
H(k2). By the symbol of a formB ∈ Bilin(k1, k2)we mean the function π(B),
holomorphic on G × G , defined by

(1.2) π(B)(z,w) := B(k1(·, z), k2(·, w)).
A form B ∈ Bilin(k1, k2) is in the Hilbert-Schmidt class if and only if its
symbol, π(B), is inH(k1 ⊗k2). We will let BilinHS(k1, k2) denote the Hilbert-
Schmidt forms on H(k1) × H(k2). The symbol map π : BilinHS(k1, k2) →
H(k1 ⊗k2), is an isometric isomorphism. Indeed, for any function h ∈ H(k1 ⊗
k2)we have, by the reproducing property of the kernel, h(z,w) = 〈h, k1(·, z)⊗
k2(·, w)〉, z,w ∈ �. Thus, by (1.2),

π(B)(z,w) = 〈π(B), k1(·, z)⊗ k2(·, w)〉.
Since the kernel functions k1(·, z)⊗ k2(·, w) span H(k1)⊗H(k2), it follows
that

B(f1, f2) = 〈f1 ⊗ f2, π(B)〉 ∀ fi ∈ H(ki), i = 1, 2.
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1.2. Higher order Hankel forms

For a polynomial p ∈ C[z1, . . . , zd ] we define the maps Lp and Rp on
Bilin(k1, k2) by

LpB(f1, f2) = B(pf1, f2) and RpB(f1, f2) = B(f1, pf2).

For j = 1, . . . , d, define �j = Lzj − Rzj (zj denotes the j th coordinate
function). Note that �i�j = �j�i for all 1 ≤ i, j ≤ d. For a multi-index of
non-negative integers I = (i1, . . . , id) ∈ Zd+, we define

(1.3) �I = �i1
1 . . .�id

d .

A formB ∈ Bilin(k1, k2) is called annth order Hankel form, n ≥ 0, if �I (B) =
0 for every multi-index I = (i1, . . . , id) ∈ Zd+ with |I | := i1+· · ·+id = n+1.

Note that a form B is a 0th order Hankel form if �j (B) = 0, j =
1, . . . , d. This condition is equivalent to B(pf1, f2) = B(f1, pf2) for all
p ∈ C[z1, . . . , zd ] and fi ∈ H(ki), i = 1, 2. Thus, the 0th order Hankel
forms coincide with the usual Hankel forms. It also follows from the defini-
tion that a form B is an nth order Hankel form, n > 0, if for each 1 ≤ j ≤ d,
�j (B) is a Hankel form of order n− 1.

BilinHS(k1,k2) is invariant under the operatorsRp andLp,p ∈ C[z1, . . . ,zd ],
and so the definition above yields subclasses of the Hilbert-Schmidt forms on
H(k1) × H(k2). We will denote the nth order Hilbert-Schmidt Hankel forms
H n
HS(k1, k2), n ≥ 0. Note that H n

HS(k1, k2) ⊆ H n+1
HS (k1, k2), n ≥ 0. Following

the terminology in [9] we will call the forms in H n
HS(k1, k2)
 H n−1

HS (k1, k2),
n > 0, the special nth order Hilbert-Schmidt Hankel forms.

2. The symbols of the higher order Hilbert-Schmidt Hankel forms

Define V n
D , n ≥ 0, to be the closure in H(k1 ⊗ k2) of the space spanned by

the range of the operator (Mz − Mw)
I as I ranges over all multi-indices in Zd+

with |I | = n. That is,

V n
D :=

∨
|I |=n

Ran(Mz − Mw)
I(2.1)

=
{∑

|I |=n
(z− w)IfI (z, w) : fI ∈ H(k1 ⊗ k2)

}H(k1⊗k2)

.(2.2)

We will use the notation 〈∗〉 to denote the ideal generated algebraically by
the set of functions {∗}. The spaces V n

D , n ≥ 0, form a decreasing chain of
subspaces of H(k1 ⊗ k2) and can be realized as the closure in H(k1 ⊗ k2) of
the ideal of polynomials generated by (z− w)I , I ∈ Zd+ and |I | = n.
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Proposition 2.1. Fix n ≥ 1. Then

V n
D = 〈

(z− w)I : I ∈ Zd+, |I | = n
〉H(k1⊗k2)

.

Consequently, if f ∈ V n
D then

(
∂
∂z

)I ( ∂
∂w

)J
f |z=w = 0 for all multi-indices

I, J ∈ Zd+ with |I | + |J | < n.

Proof. A function f ∈ H(k1 ⊗ k2) is orthogonal to 〈(z − w)I : I ∈
Zd+, |I | = n〉 if and only if 〈(M∗

z − M∗
w)
If, p〉 = 0 for all polynomials p and

multi-indices |I | = n. By assumption, the polynomials are dense inH(k1⊗k2)

and thus, f is orthogonal to this ideal if and only if f ∈ Ker(Mz − Mw)
I ∗

for
all multi-indices |I | = n. Therefore V n

D
⊥ = 〈(z − w)I | I ∈ Zd+, |I | = n〉⊥

and so the first statement now follows.
We note that a polynomial p is in the ideal 〈(z − w)I : I ∈ Zd+, |I | = n〉

if and only if
(
∂
∂z

)I ( ∂
∂w

)J
p|z=w = 0 for all multi-indices |I | + |J | < n.

This is easily verified by looking at the Taylor series. Now if f ∈ V n
D then,

by definition, f is the limit in H(k1 ⊗ k2) of a sequence of polynomials pm
satisfying

(
∂
∂z

)I ( ∂
∂w

)J
pm|z=w = 0 for all multi-indices |I |+|J | < n. Using the

fact that evaluation at z ∈ D2d is a bounded linear functional onH(k1⊗k2), one
can show that the sequence pm converges uniformly to f on compact subsets
of D2d and thus,

(
∂
∂z

)I ( ∂
∂w

)J
f |z=w = 0 for all multi-indices |I | + |J | < n.

It follows from this proposition that ∩n≥0V
n
D = (0) and so we can decom-

pose H(k1 ⊗ k2) into the orthogonal sum

(2.3) H(k1 ⊗ k2) = V ⊥
D ⊕ (VD 
 V 2

D)⊕ (V 2
D 
 V 3

D)⊕ · · · .
Now we will identify the functions in V n

D 
 V n+1
D , n ≥ 0, with the symbols of

the special nth order Hilbert-Schmidt Hankel forms. The following observation
is simple but fundamental.

Proposition 2.2. If B ∈ BilinHS(k1, k2) and I ∈ Zd+ is a multi-index then
π(�I (B)) = (Mz − Mw)

I ∗
π(B). Consequently for n ≥ 0, B ∈ H n

HS(k1, k2)

if and only if π(B) ∈ V n+1
D

⊥
.
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Proof. We observe that

(Mzj −Mwj )
∗π(B)(z,w)

= 〈π(B), (Mzj −Mwj )(k1(·, z)⊗ k2(·, w))〉
= 〈π(B),Mzj k1(·, z)⊗ k2(·, w)〉 − 〈π(B), k1(·, z)⊗Mwj k2(·, w)〉
= LzjB(k1(·, z), k2(·, w))− RzjB(k1(·, z), k2(·, w))
= �j (B)(k1(·, z), k2(·, w))
= π(�j (B))(z, w).

Since this holds for all 1 ≤ j ≤ d the first assertion follows.
By definition, a form B ∈ H n

HS(k1, k2) if and only if �I (B) = 0 for all
I ∈ Zd+ with |I | = n+ 1. The symbol map π : Bilin(k1, k2) → H(k1 ⊗ k2) is
1-1 and soB ∈ H n

HS(k1, k2) if and only ifπ(�I (B)) = (Mz−Mw)
I ∗
π(B) = 0

for all |I | = n+ 1. Since V n+1
D

⊥ = ⋂
|I |=n+1 Ker(Mz − Mw)

I ∗
for all n ≥ 0,

the proof is complete.

It follows by Proposition 2.2 together with the fact that the symbol map
π : Bilin(k1, k2) → H(k1 ⊗k2) is an isometry, that the functions inV n

D
V n+1
D

are precisely the symbols of the forms in H n
HS(k1, k2)
 H n−1

HS (k1, k2), n ≥ 0,

where for n = 0 we define H −1
HS (k1, k2) = (0). Since V n+1

D

⊥ = (V 1
D)

⊥ ⊕
(V 1

D 
 V 2
D)⊕ · · · ⊕ (V n

D 
 V n+1
D ), the corollary below is immediate.

Corollary 2.3. Let B ∈ BilinHS(k1, k2) and n ≥ 0.

(i) B ∈ H n
HS(k1, k2)
 H n−1

HS (k1, k2) if and only if π(B) ∈ V n
D 
 V n+1

D .

(ii) B ∈ H n
HS(k1, k2) if and only if π(B) ∈ (V 1

D)
⊥ ⊕ (V 1

D 
 V 2
D) ⊕ · · · ⊕

(V n
D 
 V n+1

D ).

3. An nth order restriction result for the polydisk

For α = (α1, . . . , αd), with αj > 0, j = 1, . . . , d, we define the kernel kα on
Dd × Dd by

(3.1) kα(z, λ) = 1

(1 − zλ)α
:= 1

(1 − z1λ1)α1
. . .

1

(1 − zdλd)αd
.

If α = I0 := (1, . . . , 1) then H(kα) is isometrically equal to H 2(Dd), the
Hardy space of the polydisk. If αj > 1, j = 1, . . . , d, then H(kα) is isomet-
rically equal to the d-fold Hilbert space tensor product of the standard weighted
Bergman spaces A2,αj , j = 1, . . . , d. Hence, H(kα) can be realized as holo-
morphic functions on the polydisk which are square integrable with respect to
the d-fold tensor of weighted area measures.
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To be specific and fix notation, for γ = (γ1, . . . , γd) with γj > −1, j =
1, . . . , d, we define the measure µγ by

dµγ (z)

= π−d(γ1 + 1) . . . (γd + 1)(1 − |z1|2)γ1 . . . (1 − |zd |2)γd dA(z1) . . . dA(zd).

Here dA denotes the element of area measure on the plane. The space A2,γ

is defined to be L2(Dd , µγ ) ∩ Hol(Dd). The reproducing kernel for A2,γ is
kγ+2I0 . Thus, if αj > 1, j = 1, . . . , d, then H(kα) = A2,α−2I0 and the norms
are the same.

If 0 < αj < 1 for some 1 ≤ j ≤ d, then the space H(kα) is called a
Dirichlet-type space and coincides with the space of functions f , holomorphic
on Dd , such that DI0f ∈ A2,α . Dirichlet spaces in one variable and Hankel
operators defined on them have been studied extensively by Wu and the second
author; more references can be found in [17], [22].

Now let kβ be another kernel of the form in (3.1) with β = (β1, . . . , βd),
βj > 0. We will describe the functions in V n

D 
 V n+1
D ⊆ H(kα ⊗ kβ) by

finding an explicit formula for the orthogonal projection Pn := PV nD
V n+1
D

.
As mentioned in the introduction, P0 = r∗r where rf (z) = f (z, z) maps
H(kα⊗kβ)ontoH(kα+β), [20], [2], [6], [8], [21]. In the case whereαj+βj > 1,
j = 1, . . . , d, this yields

(P0f )(z,w) =
∫

Dd

f (λ, λ)

(1 − zλ̄)α(1 − wλ̄)β
dµα+β−2I0(λ).

In one variable, P1 was determined in [14] for the kernels kα and kβ with
α, β ≥ 1. The formula is

(P1f )(z,w) = ν2
1 (z− w)

∫
D

(∂1f − ∂2f )(λ, λ)

(1 − zλ̄)α+1(1 − wλ̄)β+1
dµα+β(λ)

where ν1 = ‖(z − w)‖H(kα⊗kβ ). We now extend this result to the higher order
case and to the polydisk.

We now introduce the appropriate generalization of the transvectants intro-
duced by Janson and Peetre in [9]. For a multi-index I ∈ Zd+ define the partial
differential operators JI by

(3.2) JI =
∑

K+J=I

(−1)|J |I !

K!J !(α)K(β)J

(
∂

∂z

)K (
∂

∂w

)J

where for γ = (γ1, . . . , γd) and J = (j1, . . . , jd) ∈ Zd+,

(γ )J := (γ1)j1 . . . (γ1)jd
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and

(γi)ji := ,(γi + ji)

,(γi)
= γi(γi + 1) . . . (γi + ji − 1), i = 1, . . . , d.

Define the restriction operator

(3.3) rI = rJI : H(kα ⊗ kβ) → Hol(Dd).

We record the following observation about the map rI for future use.

Proposition 3.1. If g(z,w) = (z − w)If (z,w) where f ∈ H(kα ⊗ kβ),
then rI (g) = ‖(z − w)I‖2

H(kα⊗kβ )r(f ). Also, rJ (g) = 0 for all multi-indices
|J | = |I | with J �= I .

Proof. Let K,L ∈ Zd+ with |K| + |L| = |I |. If f ∈ Hol(D2d) then we
have that

r

((
∂

∂z

)K(
∂

∂w

)L
(z− w)If (z,w)

)
=
{
(−1)|L|I !r(f ) K + L = I

0 K + L �= I

Thus,

rI (g) =
∑

K+L=I

(−1)LI !

K!L!(α)K(β)L
r

(
∂

∂z

)K (
∂

∂w

)J
(g)

=
∑

K+L=I

(I !)2

K!L!(α)K(β)L
r(f )

=
∑

K+L=I

(I !)2

(K!)2(L!)2
K!

(α)K

L!

(β)L
r(f )

=
∑

K+L=I

(I !)2

(K!)2(L!)2
∥∥zK∥∥2

H(kα)

∥∥wL∥∥2

H(kβ)
r(f )

=
∑

K+L=I

(I !)2

(K!)2(L!)2
∥∥zKwL∥∥2

H(kα⊗kβ ) r(f )

= ∥∥(z− w)I
∥∥2

H(kα⊗kβ ) r(f )

Similarly, if |J | = |I | but J �= I then every term of the form r
((

∂
∂z

)K( ∂
∂w

)L
g
)

with K + L = J is zero and thus, rJ (g) = 0.

To find the null space and range of the map rI we first need to determine
the action of rI on kernel functions. A direct computation shows that for all
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z,w, λ ∈ Dd

rI (kα(·, z)⊗ kβ(·, w))(λ) = (z− w)I

(1 − zλ)α+I (1 − wλ)β+I .

Consequently, if J ∗
I denotes the formal (Hilbert space) adjoint of JI , i.e., for

f ∈ H(kα ⊗ kβ),

(J ∗
I f )(z, w) = 〈f,JI (kα(·, z)⊗ kβ(·, w))〉

then for λ ∈ Dd ,

J ∗
I (kα(·, λ)⊗ kβ(·, λ))(z, w)= 〈kα(·, λ)⊗ kβ(·, λ),JI (kα(·, z)⊗ kβ(·, w))〉

= rI (kα(·, z)⊗ kβ(·, w))(λ)
= (z− w)I kα+I (z, λ)kβ+I (w, λ).

Now let f ∈ H(kα ⊗ kβ) and λ ∈ Dd . Then

(rI f )(λ) = (JI f )(λ, λ) = 〈JI f, kα(·, λ)⊗ kβ(·, λ)〉
= 〈f, (z− w)I kα+I (·, λ)⊗ kβ+I (·, λ)〉.

It follows that

(3.4) (Ker rI )
⊥ =

∨{
(z− w)I

(1 − zλ)α+I (1 − wλ)β+I : λ ∈ Dd

}
.

We now show that for all |I | ≥ 0 the range of the map rI is H(kα+β+2I ). By
Proposition 3.1,

rIJ
∗
I (kα(·, λ)⊗ kβ(·, λ)) = rI

(
(z− w)I kα+I (·, λ)⊗ kβ+I (·, λ)

)
= ∥∥(z− w)I

∥∥2
H(kα⊗kβ )kα+β+2I (·, λ).

It follows that rI maps a dense subset of ⊕|I |=n (Ker rI )
⊥ onto a dense subset

of H(kα+β+2I ). We now make a straightforward calculation to show that after
normalizing, rI becomes a partial isometry ofH(kα ⊗ kβ)mapping (necessar-
ily) onto H(kα+β+2I ).

Theorem 3.2. Let I ∈ Zd+. The map rI mapsH(kα ⊗ kβ) ontoH(kα+β+2I )

and satisfies rI r∗
I = ν2

I 1 where νI = ‖(z−w)I‖H(kα⊗kβ ). Consequently, PI =
ν−2
I r∗

I rI is the orthogonal projection of H(kα ⊗ kβ) onto (Ker rI )
⊥.



higher-order hilbert-schmidt hankel forms . . . 127

Proof. Fix a finite subset {λ1, . . . , λm} ⊆ Dd and scalars c1, . . . , cm. Then

∥∥∥∥rI
( m∑

j

cjJ
∗
I

(
kα(·, λj )⊗ kβ(·, λj )

))∥∥∥∥
2

H(kα+β+2I )

= ν4
I

∥∥∥∥
m∑
j

cj kα+β+2I (·, λj )
∥∥∥∥

2

H(kα+β+2I )

= ν4
I

∑
i,j

cicj kα+β+2I (λi, λj ).

On the other hand,

∥∥∥∥
m∑
j

cjJ
∗
I (kα(·, λj )⊗ kβ(·, λj ))

∥∥∥∥
2

H(kα⊗kβ )

=
∑
i,j

cj cj
〈
JI J ∗

I (kα(·, λj )⊗ kβ(·, λj )), kα(·, λi)⊗ kβ(·, λi)
〉

= ν4
I

∑
i,j

cicj kα+β+2I (λi, λj ).

Thus, ∥∥∥∥rI
( m∑

j

cjJ
∗
I (kα(·, λj )⊗ kβ(·, λj ))

)∥∥∥∥
H(kα+β+2I )

= νI

∥∥∥∥
m∑
j

cjJ
∗
I

(
kα(·, λj )⊗ kβ(·, λj )

)∥∥∥∥
H(kα⊗kβ )

.

This holds for all finite subsets (λi) ⊆ Dd and scalars ci ∈ C. Since finite linear
combinations of the functions J ∗

I (kα(·, λ) ⊗ kβ(·, λ)) are dense in (Ker rI )⊥
it follows that for all f ∈ (Ker rI )⊥,

‖rI f ‖H(kα+β+2I ) = νI‖f ‖H(kα⊗kβ )
Thus ν−1

I rI is a partially isometric mapping of H(kα ⊗ kβ) onto H(kα+β+2I ).
Therefore, PI = ν−2

I r∗
I rI is the orthogonal projection of H(kα ⊗ kβ) onto

(Ker rI )⊥.

We now use the maps rI , |I | = n, to give a formula for the orthogonal
projection onto V n

D 
 V n+1
D . First observe that if |I | = |J | with I �= J

then (Ker rI )⊥ ⊥ (Ker rJ )⊥. To see this we note, by Proposition 3.1, that
rJ (z− w)If = 0 for every f ∈ H(kα ⊗ kβ). Thus for all λ ∈ Dd .

rJ ((z− w)I kα+I (·, λ)⊗ kβ+I (·, λ)) = 0.
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By (3.4), (Ker rI )⊥ is spanned by the functions (z−w)I kα+I (·, λ)⊗kβ+I (·, λ),
λ ∈ Dd . Thus, for all I, J , |I | = |J |, I �= J we have rJ (Ker rI )⊥ = (0).

Theorem 3.3. For n ≥ 0, V n
D 
 V n+1

D = ⊕
|I |=n(Ker rI )⊥.

Proof. Fix n ≥ 0 and set

Ln =
⊕
|I |=n

(Ker rI )
⊥.

Then by (3.4),

Ln =
∨

|I |=n

{
(z− w)I

(1 − zλ)α+I (1 − wλ)β+I : λ ∈ Dd

}
.

It is clear that Ln ⊆ V n
D . If f ∈ V n+1

D then by Proposition 2.1, rI (f ) = 0 for
every multi-index I with |I | = n. Thus V n+1

D ⊆ Ker rI for all |I | = n. Hence

Ln ⊆ V n+1
D

⊥
and so Ln ⊆ V n

D 
 V n+1
D .

Let g ∈ V n
D 
 V n+1

D and suppose that g ⊥ Ln. We can write g(z,w) =∑
|J |=n(z − w)JfJ (z,w) where for each multi-index |J | = n, fJ is holo-

morphic on D2d . Since g ⊥ Ln, rI (g) = 0 for all |I | = n. Now fix a multi-
index I with |I | = n. By Proposition 3.1, 0 = rI (g) = rI ((z−w)IfI (z, w)) =
‖(z−w)I‖H(kα⊗kβ )r(fI ) and so we may write fI = ∑d

j=1(zj −wj)fI,j where
fI,j ∈ Hol(D2d). It follows that g(z,w) = ∑

|J |=n+1(z−w)J gJ (z,w) where

gJ ∈ Hol(D2d) and a standard limiting argument shows that g ∈ V n+1
D . But

since g ∈ (V n+1
D )⊥, g = 0. Therefore, Ln = V n

D 
 V n+1
D .

We now see that we have isolated the same subspaces as those which can
be identified by analyzing the group action.

Corollary 3.4. The irreducible components of the natural action of the
Möbius group onH(kα ⊗ kβ) = H(kα)⊗H(kβ) are the spaces of symbols of
special Hankel forms of order n.

Proof. First suppose d = 1. In the proof of the theorem we identified the
space of such symbols with the closed span of Ln. Now note that if, instead of
using Ln, in which the parameter λ varies over D (we are in the case d = 1),
we work with Mn which we define by now allowing λ to only vary over ∂D, we
obtain the same closed span. This holds because taking weighted averages (i.e.
Poisson integrals) of elements of Mn generates Ln. In Section 1 [24] Zhang
shows that the irreducible components are the spans of sets Mn.

For general d, recall that every biholomorphic automorphism of Dd =
D × · · · × D is induced by Möbius maps of the individual D’s [20]. Hence
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the d dimensional version of the Corollary follows from the 1 dimensional
version.

It follows immediately from Theorems 3.2 and 3.3 that, denoting the ortho-
gonal projection of H(kα ⊗ kβ) onto V n

D 
 V n+1
D by Pn, we have, for n ≥ 0,

(3.5) Pn =
∑
|I |=n

ν−2
I r∗

I rI

where νI = ‖(z− w)I‖H(kα⊗kβ ), I ∈ Zd+.
We can now build the map which intertwines the compression of multiplica-

tion operators to V n
D
V n+1

D with a direct sum of single variable multiplication
operators

Corollary 3.5. Fix n ≥ 0. The map Rnf := ⊕∑
|I |=n ν

−1
I rI (f ) estab-

lishes an isometric isomorphism between the spaces V n
D
V n+1

D ⊆ H(kα⊗kβ)
and ⊕|I |=nH(kα+β+2I ). Furthermore, for all p ∈ C[z1, . . . , zd, w1, . . . , wd ]

Rn(PnMp | V n
D 
 V n+1

D ) =
(⊕

|I |=n
Mr(p)

)
Rn

Proof. Fix I ∈ Zd+. By Theorem 3.2, the map ν−1
I r∗

I : H(kα+β+2I ) →
H(kα ⊗ kβ) is an isometry with range equal to (Ker rI )⊥. By Theorem 3.3,
V n
D 
 V n+1

D = ⊕
|I |=n(Ker rI )⊥ and thus, the map Rn : H(kα ⊗ kβ) →⊕

|I |=n H(kα+β+2I ) defined above satisfies R∗
nRn = Pn. It follows that Rn

is co-isometric with kernel (V n
D 
 V n+1

D )⊥. The first statement now follows.
To see the intertwining property of Rn we use Proposition 3.1. If f (z,w) =∑

|I |=n(z− w)IfI (z, w) ∈ V n
D then

RnMzif =
(

⊕
∑
|I |=n

ν−1
I rI

)
(Mzi f ) = ⊕

∑
|I |=n

ν−1
I rI (z− w)I zifI

= ⊕
∑
|I |=n

νI zirfI = ⊕
∑
|I |=n

ziν
−1
I rI (z− w)IfI

=
(

⊕
∑
|I |=n

ziν
−1
I rI

)
f =

(⊕
|I |=n

zi ⊗ I

)
Rnf.

Since PnMziPn = PnMwiPn, i = 1, . . . , d, the intertwining property of the
map Rn is now established.

BothV n
D
V n+1

D and
⊕

|I |=n H(kα+β+2I ) are Hilbert modules over the poly-
disk algebra A(D2d). In the first case the module action is (a, v) → Pn(av),
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in the second case the action is

(a, (h1, . . . , hm(I))) → (r(a)h1, . . . , r(a)hm(I)).

The corollary establishes that we have two equivalent Hilbert modules:

V n
D 
 V n+1

D
∼=
⊕
|I |=n

H(kα+β+2I ).

We should also note, however, something we have not established. Fix n ≥ 1
and set

(3.6) Wn = V ⊥
D ⊕ (VD 
 V 2

D)⊕ (V 2
D 
 V 3

D)⊕ · · · ⊕ (V n
D 
 V n+1

D ).

ThusQn := P0+· · ·+Pn is the orthogonal projection ontoWn.Wn is a Hilbert
module over A(D2d) with the action (a, v) → Qn(av). However, although
(3.6) gives a realization ofWn as an orthogonal direct sum of spaces and each
of these spaces carries a Hilbert module structure, (3.6) is not a module direct
sum. That is, the module action on Wn is not the direct sum of the module
actions on the V j

D 
 V
j+1
D . In formulas, if v ∈ Wn splits as v = v0 + · · · + vn

and a ∈ A(D2d) then Qn(av) = ∑
j Pj

(
a
∑

k vk
) = ∑

j,k Pj (avk), however
the off diagonal terms need not vanish and the previous sum need not equal∑

r Pr(avr). In particular, the structure we have developed here does not let us
fully describe the module structure ofWn. Modules such asWn are considered
systematically in [5].

We now turn our attention to higher order Hilbert-Schmidt Hankel forms
on H(kα) × H(kβ) and deduce the representation given in [9] for d = 1. If
b ∈ H(kα+β+2I ) then,

(r∗
I b)(z, w) = 〈b, rI (kα(·, z)⊗ kβ(·, w)〉H(kα+β+2I )

= (z− w)I 〈b, kα+I (·, z)kβ+I (·, w)〉H(kα+β+2I ).

Therefore, every function a ∈ V n
D 
 V n+1

D is completely determined by a
vector-valued function b = (bI )|I |=n ∈ ⊕|I |=n H(kα+β+2I ) via the formula

a(z,w) = (R∗
nb)(z, w) =

(∑
|I |=n

ν−1
I r∗

I bI

)
(z, w)

=
∑
|I |=n

ν−1
I (z− w)I 〈bI , kα+I (·, z)kβ+I (·, w)〉H(kα+β+2I )

and we have ‖a‖2 = ∑
|I |=n ‖bI‖2

H(kα+β+2I )
. Let a ∈ V n

D 
 V n+1
D be given by

the formula above and let B be the Hilbert-Schmidt form on H(kα)×H(kβ)
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with symbol a. Then,

B(f, g) = 〈f ⊗ g, a〉 =
∑
|I |=n

ν−1
I 〈rI (f ⊗ g), bI 〉H(kα+β+I ).

By Corollary 2.3, B is a special Hilbert-Schmidt Hankel form of order n, i.e.,
B ∈ H n

HS
H n−1
HS , and furthermore, every form in H n

HS
H n−1
HS has this form.

We record this below.

Theorem 3.6. Fix n ≥ 0 and let b = (bI )|I |=n ∈ ⊕|I |=n H(kα+β+2I ). Let
Hn

b be the form on H(kα)×H(kβ) defined by

Hn
b (f, g) =

∑
|I |=n

〈rI (f ⊗ g), bI 〉H(kα+β+2I ).

Then Hn
b is in H n

HS(kα, kβ)
 H n−1
HS (kα, kβ) and

‖Hn
b ‖2

HS =
∑
|I |=n

ν2
I ‖bI‖2

H(kα+β+2I )
.

Furthermore,

H n
HS(kα, kβ)
 H n−1

HS (kα, kβ) =
{
Hn

b | b ∈
⊕
|I |=n

H(kα+β+2I )

}
.

4. An nth order restriction result for the ball

Let Bd denote the unit ball in Cd . The kernels we will be working with are
defined on Bd × Bd , for α > 0, by

kα(z, λ) =
(

1

1 − 〈z, λ〉d
)α

where 〈·, ·〉d denotes the inner product in Cd . Given two parameters, α, β > 0,
the spaceH(kα⊗kβ) is defined to be the Hilbert space of holomorphic functions
on Bd × Bd with orthonormal basis{√

I !J !

(α)|I |(β)|J |
zIwJ : I, J ∈ Zd+

}
.

Alternatively, H(kα ⊗ kβ) is the Hilbert space tensor product of the spaces
H(kα) and H(kβ) identified concretely as a space of holomorphic functions
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on Bd ×Bd . As shown in [21]H(kα⊗kβ) is a reproducing kernel Hilbert space
with reproducing kernel

(
kα ⊗ kβ

)
(z, w, λ, ζ ) =

(
1

1 − 〈z, λ〉d
)α ( 1

1 − 〈w, ζ 〉d
)β

for z,w, λ, ζ ∈ Bd .
The subspace V n

D , n ≥ 0, is defined to be the closure in H(kα ⊗ kβ) of the
ideal of polynomials generated by {(z−w)N : |N | = n}. The family {V n

D}n≥0

forms a decreasing chain of subspaces with ∩n≥0V
n
D = (0) and thus,

(4.1) H(kα ⊗ kβ) =
⊕
n≥0

V n
D 
 V n+1

D .

Our aim is to decompose the space V n
D 
 V n+1

D as a direct sum of smaller
subspaces and then identify each of these smaller spaces with a space of holo-
morphic functions on Bd . We will work out the details for the case d = 2.

If we were to follow the analysis used in Section 3 to obtain an orthogonal
direct sum decomposition of V n

D 
 V n+1
D we would, for each bi-index N =

(n1, n2) with ni ≥ 0, n1 + n2 = n, introduce a differential operator of the sort
given in (3.2). However we would find that, unlike the case for the polydisk,
here the various spaces (Ker r(0)N |H(kα⊗kβ ))⊥ with |N | = n are not mutually
orthogonal. Hence we must follow a slightly more intricate path.

Let r : Hol(B2 × B2) → Hol(B2) be the restriction operator

rf (λ) = f (λ, λ).

Again we introduce an appropriate generalization of the transvectants of
[9]. For s > 0, N = (n1, n2) with ni ≥ 0, n1 + n2 = n we define the partial
differential operator J

(s)
N on Hol(B2 × B2) by

(4.2) J
(s)
N =

∑
I+J=N

(−1)|J |N !

I !J !(α + s)|I |(β + s)|J |

(
∂

∂z

)I (
∂

∂w

)J
.

Set

(4.3) r
(s)
N = rJ

(s)
N .

We also need the differential operator � defined on Hol(B2 × B2) by

(4.4) � = ∂

∂z1

∂

∂w2
− ∂

∂z2

∂

∂w1
.
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We now come to the definition of the nth order restriction operators, R(n)j ,

j = 0, . . . , n. First, for j = 0, . . . , n we define L(n)j by, for λ in B2,

(4.5) (L
(n)
j f )(λ) =

∑
|N |=n−j

(n− j)!

N !
λN(r

(j)

N f )(λ)

and then define R(n)j : Hol(B2 × B2) → Hol(B2) by

(4.6) R
(n)
j = 1

(α)j (β)j
L
(n)
j �j .

We will use the same notation,R(n)j , to denote the restriction of this operator
to the space H(kα ⊗ kβ). We will show that for each n ≥ 0 the spaces

(KerR(n)j )⊥, j = 0, . . . , n

are mutually orthogonal and together span V n
D 
 V n+1

D . We will then identify
each of these spaces with a weighted Bergman space on B2.

At this point, for typographic convenience, we introduce the abbreviation
412 := z1w2 − z2w1.

To determine the null space of R(n)j we first compute the action of R(n)j on
the kernel functions kα(·, ζ ) ⊗ kβ(·, η), ζ, η ∈ B2. Fix 0 ≤ j ≤ n. We have,
for ζ, η ∈ B2,

�jkα(·, ζ )⊗ kβ(·, η) = (α)j (β)j (ζ1η2 − ζ2η1)
j
kα+j (·, ζ )⊗ kβ+j (·, η)

and for N ∈ Z2+ with |N | = n− j ,(
r
(j)

N kα+j (·, ζ )⊗ kβ+j (·, η)
)
(λ)

=
(

ζ

1 − 〈λ, ζ 〉2
− η

1 − 〈λ, η〉2

)N
kα+j (λ, ζ )kβ+j (λ, η)

= (
ζ − η − (ζ1η2 − ζ2η1)λ

)N
kα+n(λ, ζ )kβ+n(λ, η)

where for λ ∈ Hol(B2), λ = (λ2,−λ1). Since 〈λ, λ〉2 = 0 for all λ ∈ B2,(
L
(n)
j kα+j (·, ζ )kβ+j (·, η)

)
(λ) = 〈λ, ζ − η〉n−j2 kα+n(λ, ζ )kβ+n(λ, η).

Thus for all ζ, η, λ ∈ B2,(
R
(n)
j kα(·, ζ )⊗ kβ(·, η)

)
(λ)

= (ζ1η2 − ζ2η1)
j 〈λ, ζ − η〉n−j2 kα+n(λ, ζ )kβ+n(λ, η).
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On the other hand, the reproducing property yields(
R
(n)
j kα(·, ζ )⊗ kβ(·, η)

)
(λ)

=
∑

|N |=n−j

(n− j)!

N !
λN
〈
J
(j)

N �jkα(·, ζ )⊗ kβ(·, η), kα(·, λ)⊗ kβ(·, λ)
〉

=
〈
kα(·, ζ )⊗ kβ(·, η),

∑
|N |=n−j

(n− j)!

N !
λ
N

J
(j)∗
N �j

∗
kα(·, λ)⊗ kβ(·, λ)

〉
.

It follows that for each λ ∈ B2,
(4.7)∑
|N |=n−j

(n− j)!

N !
λ
N

J
(j)∗
N �j

∗
(kα(·, λ)⊗ kβ(·, λ)) = (412)

j 〈z− w, λ〉n−j2 η
(n)
λ

where
η
(n)
λ (z, w) = kα+n(z, λ)kβ+n(w, λ).

Now let f ∈ H(kα ⊗ kβ) be in the domain of R(n)j with R(n)j f = 0. Then for
all λ ∈ B2,

0 = (R
(n)
j f )(λ) =

∑
|N |=n−j

(n− j)!

N !
λN
〈
J
(j)

N �jf, kα(·, λ)⊗ kβ(·, λ)
〉

= 〈
f, (412)

j 〈z− w, λ〉n−j2 kα+n(z, λ)kβ+n(w, λ)
〉
.

Thus,

(4.8) (KerR(n)j )⊥ =
∨
λ∈B2

{
(412)

j 〈z− w, λ〉n−j2 kα+n(z, λ)kβ+n(w, λ)
}
.

Clearly (KerR(n)j )⊥ ⊆ V n
D for all n ≥ 0 and j = 0, . . . , n. BecauseR(n)j f = 0

for all f ∈ V n+1
D , (KerR(n)j )⊥ ⊆ V n+1

D

⊥
. Hence, for n ≥ 0

(4.9)
∨

j=0,...,n

(KerR(n)j )⊥ ⊆ V n
D 
 V n

D
⊥
.

We now establish that for 0 ≤ i, j ≤ n, i �= j

R
(n)
j (KerR(n)i )

⊥ = (0)

and determine a formula for

R
(n)
j

(
(412)

j 〈z− w, λ〉n−j2 kα+n(z, λ)kβ+n(w, λ)
)
.
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Define

R := z1
∂

∂z1
+ z2

∂

∂z2
+ w1

∂

∂w1
+ w2

∂

∂w2

(R +m)l := (R +m)(R +m+ 1) · · · (R +m+ l − 1), m, l ∈ Z+

Di := ∂

∂zi
+ ∂

∂wi
, i = 1, 2

N(λ) := λ1D1 + λ2D2, λ ∈ B2

λ̂ := (λ2,−λ1), λ ∈ B2.

It is easy to check that �R = (R + 2)� and N(λ)R = (R + 1)N(λ) for
all λ ∈ B2. We will use the following identities each of which can be easily
verified by direct computation. For all integers i ≥ 0 and for all λ ∈ B2,

�(412)
i = (412)

i�+ i(412)
i−1(R + i + 1)(4.10)

�〈z− w, λ〉i2 = 〈z− w, λ〉i2�− i〈z− w, λ〉i−1
2 N(λ̂).(4.11)

We note in passing that the first of these identities, when applied to the constant
function, yields the n = 2 case of the classical Cayley identity which states
that for an n× n matrix (zij ) one has

det(∂ij ) det(zij )
m = (m)n det(zij )

m−1.

Proposition 4.1. Let λ ∈ B2. For 0 ≤ j ≤ i ≤ n

�j(412)
i〈z− w, λ〉n−i2 kα+n(·, λ)⊗ kβ+n(·, λ)

= j !

(
i

j

)
(412)

i−j 〈z− w, λ〉n−i2 (R + 2 + n− j)j kα+n(·, λ)⊗ kβ+n(·, λ)

If 0 ≤ i < j ≤ n then

�j(412)
i〈z− w, λ〉n−i2 kα+n(·, λ)⊗ kβ+n(·, λ) = 0.

Proof. Set η(n)λ = kα+n(·, λ)⊗ kβ+n(·, λ). Note that �η(n)λ = N(λ̂)η
(n)
λ =

0. By the identity (4.11)

�〈z− w, λ〉l2η(n)λ = 〈z− w, λ〉l2�η(n)λ − l〈z− w, λ〉l−1
2 N(λ̂)η

(n)
λ = 0
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for all l ≥ 0. If i ≥ 1 then by (4.11),

�(412)
i〈z− w, λ〉n−i2 η

(n)
λ

= (412)
i�〈z− w, λ〉n−i2 η

(n)
λ + i(412)

i−1(R + i + 1)〈z− w, λ〉n−i2 η
(n)
λ

= i(412)
i−1(R + i + 1)〈z− w, λ〉n−i2 η

(n)
λ .

Because�R = (R+2)�, we have for any polynomialp(x) that�p(R)η(n)λ =
p(R + 2)�η(n)λ = 0. Similarly for all polynomials p(x), N(λ̂)p(R)η(n)λ =
p(R + 1)N(λ̂)η(n)λ = 0. Thus for all l ≥ 0 and for all polynomials p(x),

�p(R)〈z− w, λ〉l2η(n)λ
= p(R + 2)�〈z− w, λ〉l2η(n)λ
= p(R + 2)

(〈z− w, λ〉l2�η(n)λ − l〈z− w, λ〉l−1
2 N(λ̂)η

(n)
λ

)
= 0.

This observation together with a repetition of the argument above shows that
for 0 ≤ j ≤ i ≤ n

�j(412)
i〈z− w, λ〉n−i2 η

(n)
λ

= i(i − 1) . . . (i − j + 1)(412)
i−jpi,j (R)〈z− w, λ〉n−i2 η

(n)
λ

wherepi,j (x) = (x+i+1)(x+i) . . . (x+i−j+2). Since R〈z−w, λ〉n−i2 η
(n)
λ =

〈z− w, λ〉n−i2 (R + n− i)η
(n)
λ it follows that

pi,j (R)〈z− w, λ〉n−i2 η
(n)
λ = 〈z− w, λ〉n−i2 (R + 2 + n− j)jη

(n)
λ .

Thus, for 0 ≤ j ≤ i ≤ n,

�j(412)
i〈z− w, λ〉n−i2 η

(n)
λ

= i(i − 1) . . . (i − j + 1)(412)
i−j 〈z− w, λ〉n−i2 (R + 2 + n− j)jη

(n)
λ .

In particular,

�i(412)
i〈z− w, λ〉n−i2 η

(n)
λ = i!〈z− w, λ〉n−i2 (R + 2 + n− i)iη

(n)
λ .

If 0 ≤ i < j ≤ n then

�j(412)
i〈z− w, λ〉n−i2 η

(n)
λ = �j−i

(
i!〈z− w, λ〉n−i2 (R + 2 + n− i)iη

(n)
λ

)
= 0



higher-order hilbert-schmidt hankel forms . . . 137

Suppose now that l +m = n− j and that f ∈ Hol(B2 × B2). We will de-
termine a form forL(n)j (412)

l〈z−w, λ〉m2 f . The proof used for Proposition 3.1
can also be used to show that for multi-indices M,N ∈ Z2+ with |M| = |N |

(4.12) r
(s)
N (z− w)M =

{ ‖(z− w)N‖2
(α+s)⊗(β+s)r M = N

0 M �= N .

Furthermore, a quick computation reveals that the norm of 1
N! (z−w)N in the

space H(kα+s ⊗ kβ+s) depends only on the length of N and the parameters α,
β and s. In particular, if |N | = n then, for s > 0

∥∥(z− w)N
∥∥2
(α+s)⊗(β+s) = N !

n∑
i=0

(
n

i

)
1

(α + s)i(β + s)n−i
.

Consequently, if f (z,w) = ∑
|N |=n−j (z−w)NfN(z,w) ∈ Hol(B2 ×B2) then,

for λ ∈ B2

(4.13)
(
L
(n)
j f

)
(λ) = C

(n)
j

∑
|N |=n−j

λNfN(λ, λ)

where

C
(n)
j = (n− j)!

n−j∑
i=0

(
n− j

i

)
1

(α + j)i(β + j)n−j−i
.

Proposition 4.2. Let λ ∈ B2 and 0 ≤ j ≤ n. Ifm, l ≥ 0 withm+l = n−j
then for all f ∈ Hol(B2 × B2)

(
L
(n)
j (412)

l〈z− w, λ〉m2 f
)
(ζ ) =

{
0 l �= 0

C
(n)
j 〈ζ, λ〉n−j2 f (ζ, ζ ) l = 0.

Proof. Set z = 1
2 (z2,−z1). Then, recalling (1.1),

(412)
i =

(
(z1 − w1)

(
z2 + w2

2

)
− (z2 − w2)

(
z1 + w1

2

))i

=
∑
|I |=i

i!

I !
(z− w)I (z+ w)I .

Hence,

(412)
l〈z− w, λ〉m2 =

∑
|L|=l

∑
|M|=m

l!m!

L!M!
(z− w)L+M(z+ w)Lλ

M
.
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By (4.13),

(
L
(n)
j (412)

l〈z− w, λ〉m2 f
)
(ζ ) = C

(n)
j

∑
|L|=l

∑
|M|=m

l!m!

L!M!
ζL+M(ζ )LλMf (ζ, ζ )

= C
(n)
j 〈ζ, ζ 〉l2〈ζ, λ〉m2 f (ζ, ζ ).

Because 〈ζ, ζ 〉2 = 0 for all ζ ∈ B2, the result follows.

Note that the restriction map r : Hol(B2 × B2) → Hol(B2) defined by
(rf )(λ) = f (λ, λ) intertwines the radial derivative in four variables and the
radial derivative in two variables. In our notation: rR = R2r where R2 =
λ1

∂
∂λ1

+ λ2
∂
∂λ2

. Hence by Propositions 4.1 and 4.2 we arrive at the following.

Proposition 4.3. Fix 0 ≤ i, j ≤ n. Set η(n)λ (z, w) = kα+n(z, λ)kβ(w, λ),
λ ∈ B2. If i �= j then R(n)j (412)

i〈z − w, λ〉n−i2 η
(n)
λ = 0 for all λ ∈ B2. For

i = j we have the following formula, valid for all λ ∈ B2.

R
(n)
j (412)

j 〈z− w, λ〉n−j2 η
(n)
λ

= j !C(n)j

(α)j (β)j
〈·, λ〉n−j2 (R2 + n+ 2 − j)j kα+β+2n(·, λ).

Thus by the proposition above, R(n)j (KerR(n)i )
⊥ = (0) for all 0 ≤ i, j ≤

n with i �= j . Hence the spaces (KerR(n)j )⊥, j = 0, . . . , n, are mutually
orthogonal. So by (4.9),

n⊕
j=0

(KerR(n)j )⊥ ⊆ V n
D 
 V n+1

D .

To show the reverse inclusion it suffices to show that if f ∈ V n
D andR(n)j f = 0

for all j = 0, . . . , n, then f ∈ V n+1
D . In other words, we need only show that

V n
D ∩ (∩nj=0 KerR(n)j ) = V n+1

D .

We first need a lemma.

Lemma 4.4. Let g0, g1, . . . , gn ∈ Hol(B2) and suppose that

(i)
∑n
j=0 λ

j

1λ
n−j
2 gj (λ) = 0 for all λ ∈ B2 and

(ii) (j + 1) ∂gj+1

∂λ2
= (n− j)

∂gj
∂λ1

for j = 0, . . . , n− 1.

Then gj = 0 for j = 0, . . . , n.
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Proof. The proof will be by induction. For n = 1, if both (i) and (ii) above
hold then differentiating, with respect to λ1, both sides of the equation in (i)
yields R2g1 = −g1. Hence, g1 = 0 and so by (i), g0 = 0. Suppose now that
the result holds for some n ≥ 1. Let g0, g1, . . . , gn+1 ∈ Hol(B2) satisfy

(a)
∑n+1
j=0 λ

j

1λ
n+1−j
2 gj (λ) = 0 for all λ ∈ B2 and

(b) (j + 1) ∂gj+1

∂λ2
= (n+ 1 − j)

∂gj
∂λ1

for j = 0, . . . , n.

Set hj = (
j+1
n+1

)
gj+1, j = 0, . . . , n. We will show that the functions {hj }nj=0

satisfy both (i) and (ii). By condition (a), ∂
∂λ1

(∑n+1
j=0 λ

j

1λ
n+1−j
2 gj (λ)

) = 0 and
from condition (b) it easily follows that

∂

∂λ1

(n+1∑
j=0

λ
j

1λ
n+1−j
2 gj (λ)

)
= (R2 + I )

( n∑
j=0

λ
j

1λ
n−j
2 hj (λ)

)
.

Thus,
∑n
j=0 λ

j

1λ
n−j
2 hj (λ) = 0 for all λ ∈ B2. For j = 0, . . . , n− 1,

(j + 1)
∂hj+1

∂λ2
=
(
j + 1

n+ 1

)
(j + 2)

∂gj+2

∂λ2

=
(
j + 1

n+ 1

)
(n+ 1 − j − 1)

∂gj+1

∂λ1

= (n− j)
∂hj

∂λ1
.

Thus, by assumption, hj = 0, j = 0, . . . , n and so gj = 0, j = 1, . . . , n+ 1.
Condition (a) now implies that g0 = 0.

Proposition 4.5. Let f0, . . . , fn ∈ Hol(B2 × B2). Set

f (z,w) =
n∑
i=0

(z1 − w1)
i(z2 − w2)

n−ifi(z, w).

If R(n)j f = 0, j = 0, . . . , n then rfi = 0, i = 0, . . . , n.

Proof. First note that

(�f )(z,w) =
n∑
i=0

(z1 − w1)
i(z2 − w2)

n−i (�fi)(z, w)

+
n−1∑
i=0

(z1 −w1)
i(z2 −w2)

n−1−i((i+1)(D2fi+1)(z, w)−(n−i)(D1fi)(z, w)
)
.
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For j = 0, . . . , n define the functions {h(j)i }n−ji=0 by h(0)i = fi , i = 0, . . . , n,
and for j ≥ 1, i = 0, . . . , n− j

h
(j)

i = (i + 1)D2h
(j−1)
i+1 − (n− (j − 1)− i)D1h

(j−1)
i .

From the formula for �f we see that the functions {h(j)i }n−ji=0 are defined to
satisfy, for j = 0, . . . , n,

�jf −
n−j∑
i=0

(z1 − w1)
i(z2 − w2)

n−j−ih(j)i ∈ V n−j+1
D .

Since L(n)j V
n−j+1
D = (0) for j = 0, . . . , n we have by (4.13)

(
L
(n)
j �jf

)
(λ) = L

(n)
j

(n−j∑
i=0

(z1 − w1)
i(z2 − w2)

n−j−ih(j)i

)
(λ)

= C
(n)
j

n−j∑
i=0

λi1λ
n−j−i
2 h

(j)

i (λ, λ)

for all λ ∈ B2. By assumption R(n)j f = 0, j = 0, . . . , n, and thus, for all
λ ∈ B2 and for j = 0, . . . , n,

(4.14)
n−j∑
i=0

λi1λ
n−j−i
2 h

(j)

i (λ, λ) = 0.

For j = 0, . . . , n define the functions {g(j)i }n−ji=0 in Hol(B2) by, for λ ∈ B2,
g
(j)

i (λ) = h
(j)

i (λ, λ). In particular, g(0)i = rfi , i = 0, . . . , n and, since rDi =
∂
∂λi
r , i = 1, 2, for j ≥ 1 and i = 0, . . . , n− j , we have

(4.15) g
(j)

i = (i + 1)
∂g

(j−1)
i+1

∂λ2
− (n− (j − 1)− i)

∂g
(j−1)
i

∂λ1
.

Also, by (4.14), we have that for λ in B2, j = 0, . . . , n,

(4.16)
n−j∑
i=0

λi1λ
n−j−i
2 g

(j)

i (λ) = 0.

In particular, g(n)0 = 0 which implies by (4.15) (with j = n) that

∂g
(n−1)
1

∂λ2
= ∂g

(n−1)
0

∂λ1
.
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By (4.16) with (j = n − 1), λ2g
(n−1)
0 (λ) + λ1g

(n−1)
1 (λ) = 0, for all λ ∈ B2.

It follows by Lemma 4.4 that g(n−1)
0 = g

(n−1)
1 = 0. This in turn implies, by

(4.15) (with j = n− 1), that for i = 0, 1, 2

(i + 1)
∂g

(n−2)
i+1

∂λ2
= (2 − i)

∂g
(n−2)
i

∂λ1
.

Again, by (4.16) with (j = n − 2),
∑2

i=0 λ
i
1λ

2−i
2 gi(λ) = 0 for all λ ∈ B2.

Thus, by Lemma 4.4, g(n−2)
i = 0, i = 0, 1, 2. Continuing in this fashion we

arrive at g(0)i = rfi = 0, i = 0, . . . , n. The proof is now complete.

Corollary 4.6. V n
D 
 V n+1

D = ⊕n
j=0(KerR(n)j )⊥, n ≥ 0.

Now we want to identify the relative quotientV n
D
V n+1

D with a direct sum of
weighted Bergman spaces on B2. To be precise, for each j = 0, . . . , n, we will
identify the space (KerR(n)j )⊥ with the subspace of functions inH(kα+β+2n+j )
which vanish up to order n−j at the origin. To do this, define kernel functions
K
(n)
j , j = 0, . . . , n, on B2 × B2 by

K
(n)
j (z, λ) = 〈z, λ〉n−j2 kα+β+2n+j (z, λ) = 〈z, λ〉n−j2

(
1

1 − 〈z, λ〉2

)α+β+2n+j
.

It is easy to see that for each 0 ≤ j ≤ n the space generated by the kernel
function K(n)

j is

{n−j∑
i=0

zi1z
n−j−i
2 fi(z) : f0, . . . , fn−j ∈ H(kα+β+2n+j )

}
.

We provide a quick proof of this for general parameters.

Proposition 4.7. Fix an integer m ≥ 0 and a parameter γ > 0. Let
kγ (z, λ) = (1 − 〈z, λ〉2)

−γ , z, λ ∈ B2. Set Km(z, λ) = 〈z, λ〉m2 kγ (z, λ), z, λ ∈
B2 and let H(Km) denote the Hilbert space of holomorphic functions on B2

with reproducing kernel Km. Then

H(Km) =
{ m∑
i=0

zi1z
m−i
2 fi(z) : f0, . . . , fm ∈ H(kγ )

}

with norm given by

‖f ‖H(Km) = inf

√√√√ m∑
i=0

∥∥fi∥∥2
H(kγ )
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where the infimum is over all (m+ 1)-tuples (f0, . . . , fm) ∈ ⊕m
i=0H(kγ ) with

f (z) = ∑m
i=0 z

i
1z
m−i
2 fi(z).

Proof. Let Ti = Mi
z1
Mm−i
z2

, i = 0, . . . , m acting on the space H(kγ ). The
positive operator P = ∑m

i=0

(
m

i

)
TiT

∗
i satisfies, for z,w ∈ B2

〈Pkγ (·, w), kγ (·, z)〉 =
m∑
i=0

(
m

i

)
zi1z

m−i
2 w̄i1w̄

m−i
2 kγ (z, w)

w̄i1w̄
m−i
2 = 〈z,w〉m2 kγ (z, w).

Now factor P = AA∗ where

A =
(√(

m

0

)
T0,

√(
m

1

)
T1, . . . ,

√(
m

m

)
Tm

)
:

m⊕
i=0

H(kγ ) → H(kγ ).

It follows that

〈AA∗kγ (·, w), kγ (·, z)〉 = 〈z,w〉m2 kγ (z, w), z,w ∈ B2.

Thus, the range space of the row operatorA coincides (isometrically) with the
space H(Km). Now the range of A is{ m∑

i=0

zi1z
m−i
2 fi(z) : f0, . . . , fm ∈ H(kγ )

}

and the range space norm of A is given by

‖Af ‖RanA = inf ‖g‖
where the infimum is over all g ∈ ⊕m

i=0H(kγ ) with Af = Ag. The proof is
now complete.

Theorem 4.8. Fixn ≥ 0. The operatorR(n)j mapsH(kα⊗kβ)ontoH(K(n)
j ),

j = 0, . . . , n. Consequently, if we decomposeV n
D
V n+1

D = ⊕n
j=0(KerR(n)j )⊥

then the map
⊕n

j=0 R
(n)
j : V n

D 
 V n+1
D → ⊕n

j=0 H(K
(n)
j ) is invertible.

Proof. Fix 0 ≤ j ≤ n. Define the kernel function G(n)
j on B2 × B2 by

G
(n)
j (ζ, λ) := (

R
(n)
j (412)

j 〈z− w, λ〉n−j2 kα+n(·, λ)⊗ kβ+n(·, λ)
)
(ζ ).

By Proposition 4.3, for all ζ, λ in B2

G
(n)
j (ζ, λ) = j !C(n)j

(α)j (β)j
〈ζ, λ〉n−j2 (R2 + n+ 2 − j)j kα+β+2n(ζ, λ).
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We first show that the space generated by the kernel functions (R2 + n+ 2 −
j)j kα+β+2n coincides with the space generated by kα+β+2n+j . Both kernels are
diagonal and so we just need to compare the weights. Now(

(R2 + 2 + n− j)j kα+β+2n(·, λ)
)
(z)

=
∞∑
m=0

(α + β + 2n)m
m!

(R2 + 2 + n− j)j 〈z, λ〉m

=
∞∑
m=0

(α + β + 2n)m
m!

(m+ 2 + n− j)j 〈z, λ〉m.

Asymptotically, we have by Stirling’s formula,

(γ )m(m+ 2 + n− j)j

m!
∼ mγ−1−j ∼ (γ + j)m

m!
.

Setting γ = α+β+2nwe see that the two kernels are equivalent in the sense
of positivity, that is they span the same space, namely H(kα+β+2n+j ), and the
norms are equivalent. In other words, the inclusion

H((R2 + 2 + n− j)j kα+β+2n) → H(kα+β+2n+j )

is bounded above and below. The Schur product of kernels preserves equi-
valence and so the kernels, 〈ζ, λ〉n−j2 (R2 + n + 2 − j)j kα+β+2n(ζ, λ) and
K
(n)
j (ζ, λ) = 〈ζ, λ〉n−j2 kα+β+2n+j (ζ, λ) are equivalent. Thus, the space gen-

erated by G(n)
j coincides with the space generated by the kernel K(n)

j and we
showed above that

H(K
(n)
j ) =

{n−j∑
i=0

zi1z
n−j−i
2 fi(z) : f0, . . . , fn−j ∈ H(kα+β+2n+j )

}
.

Set
η
(n)
λ = kα+n(·, λ)⊗ kβ+n(·, λ).

By the definition of the kernel G(n)
j ,

〈R(n)j (412)
j 〈z− w, λ〉n−j2 η

(n)
λ , R

(n)
j (412)

j 〈z− w, ζ 〉n−j2 η
(n)
ζ 〉

H(G
(n)
j )

= 〈G(n)
j (·, λ),G(n)

j (·, ζ )〉
H(G

(n)
j )

= G
(n)
j (ζ, λ).

On the other hand by (4.7)( ∑
|N |=n−j

(n− j)!

N !
ζNJ

(j)

N �j
)∗
kα(·, ζ )⊗kβ(·, ζ ) = (412)

j 〈z−w, ζ 〉n−j2 η
(n)
ζ
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and thus,〈
(412)

j 〈z− w, λ〉n−j2 η
(n)
λ , (412)

j 〈z− w, ζ 〉n−j2 η
(n)
ζ

〉
=
〈( ∑

|N |=n−j

(n− j)!

N !
ζNJ

(j)

N �j
)
(412)

j 〈z− w, λ〉n−j2 η
(n)
λ , kα(·, ζ )⊗ kβ(·, ζ )

〉

= (R(n)j (412)
j 〈z− w, λ〉n−j2 η

(n)
λ

)
(ζ )

= G
(n)
j (ζ, λ)

Hence for all ζ, λ ∈ B2,〈
R
(n)
j (412)

j 〈z− w, λ〉n−j2 η
(n)
λ , R

(n)
j (412)

j 〈z− w, ζ 〉n−j2 η
(n)
ζ

〉
H(G

(n)
j )

= 〈
(412)

j 〈z− w, λ〉n−j2 η
(n)
λ , (412)

j 〈z− w, ζ 〉n−j2 η
(n)
ζ

〉
.

It follows that the operatorR(n)j establishes an isometric isomorphism between

(KerR(n)j )⊥ and H(G(n)
j ). Since H(G(n)

j ) = H(K
(n)
j ) and the norms are equi-

valent, the proof is complete.

5. Questions

Finally we mention briefly several areas where we think there is interesting
work to be done.

First, as noted in the introduction, higher order Hankel forms can be defined
by their interaction with a natural group action or by their commutation prop-
erties with multiplication operators. We saw in Corollary 3.4 that for classical
spaces of functions on the disk and polydisk these two approaches give the
same classes of forms. It is not clear if the analogous identification holds for
function spaces on the ball. More specifically, for certain function spaces on
the ball (4.1) and Corollary 4.8 together give an orthogonal direct sum de-
composition of H(kα ⊗ kβ). There is another direct sum decomposition one
can consider. First identify H(kα ⊗ kβ) with H(kα) ⊗ H(kβ) next note that
the group of conformal automorphisms of the ball induces a group action on
each factor of this tensor product and hence on the product itself. One can
now decompose the product into components invariant under this group action
and obtain an orthogonal direct sum decomposition of the product and hence
also ofH(kα ⊗ kβ). Part of this program, for the ball and for general bounded
symmetric domains, is carried out by Peetre in [12] and [13]. It would be quite
interesting to know how those results are related to the one we obtained. In
a related direction, in [7] the authors identify the irreducible components of
tensor product spaces which are, in our notation, H(kα)⊗H(kα).
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Second, one theme of classical invariant theory is the study of certain linear
differential and partial differential operators which interact in natural ways
with an ambient group action. The differential operators which arise when
studying higher order Hankel forms are of this sort. It was noticed in [9] that
the differential operators (3.2) were instances of transvectants of the sort first
introduced by Clebsch. Here we note that the literature on classical invariant
theory, the operator � of (4.4) is an instance of the so-called omega process
introduced by Cayley. However, at the moment these are merely observations
and we do not know if the ideas and tools from invariant theory can used to study
higher order Hankel forms. Certainly the representation theoretic approach of,
for instance, [12], [13], [7], and [24] suggest this may be possible. For more
on invariant theory we refer to (cf. [11]).

Finally, it would be very interesting to understand the results developed
here in the context of the general analysis of Hilbert modules and their quotient
modules by Douglas, Misra, and Varughese. In particular, in [5] those authors
consider a class of quotient modules for which the modules Wn which we
discuss in Section 3 are natural and non-trivial examples.

6. Afterword

After this manuscript was completed the authors learned of work of Peng
and Zhang which has since appeared as [15]. In that very interesting paper the
authors find, for the tensor product of any pair of (analytic continuations) of the
weighted Bergman spaces on bounded symmetric domains, the decomposition
of the tensor product into irreducible summands. They also give formulas for
the generalized transvectants which intertwine the product to the summands.
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