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A NOTE ON MYRBERG POINTS
AND ERGODICITY

KURT FALK∗

Abstract

The main purpose of this note is to further clarify the strong relationship between ergodicity and
Myrberg type dynamics in hyperbolic manifolds. This is achieved mainly via a new suggestive
proof of the fact that the Myrberg limit set of a Kleinian group is of full Patterson measure if
the geodesic flow on the associated hyperbolic manifold is ergodic with respect to the Patterson-
Sullivan measure.

1. Introduction

In [8] Myrberg proved the following theorem.

Satz. Fast alle geodätischen Linien einer Fläche negativer Krümmung
sind quasiergodisch, d.h. sie haben die Eigenschaft, unbegrenzt auf der Fläche
fortgesetzt jeden geodätischen Bogen mit jeder Genauigkeit zu approximieren.
Genauer: Unter allen durch irgend einen beliebig gewählten Punkt gehenden
geodätischen Linien sind nur diejenigen nicht quasiergodisch, deren Schnitt-
punkte mit einer um den betreffenden Punkt beschriebenen geschlossenen regu-
lären Kurve einer gewissen Menge angehören deren lineares Maß gleich Null
ist und welche die Mächtigkeit des Kontinuums hat.

This means that Myrberg rays (referred to as ‘quasiergodic’ rays), namely
those geodesic rays in the surface which approximate infinitely often every
geodesic segment with arbitrary accuracy, form a thick set in a certain measure
theoretical sense. His theorem has been generalised for instance in [20], [9] and
[2]. The most general version known to the author in the context of Kleinian
groups is given in [21] and [15]:

Theorem. The Myrberg limit set LM(G) of a Kleinian group G has full Pat-
terson measure µ if and only if the geodesic flow on the associated hyperbolic
manifold M is ergodic w.r.t. the Patterson-Sullivan measure ν.
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For brief descriptions of µ and ν we refer to Section 2. In this note we give
a new direct proof of the fact that the ergodicity of ν implies that LM(G) has
full µ-measure (Theorem 4.2). This is done by using the so-called Birkhoff-
Hopf limit set LBH(G) of G. LBH(G) stems from Hopf’s generalisation [6] [7]
of Birkhoff’s ergodic law which, roughly speaking, states that for an ergodic
system of finite mass the time mean equals the space mean. The idea is to
consider a certain countable family of measurable subsets of the sphere bundle
SM of M and, for each of these subsets, to look at the dynamics that satisfies
Hopf’s ergodic law (1). These dynamics give rise to certain subsets of the
limit set of G which are naturally associated to the initial subsets of SM .
LBH(G) is the intersection of all these subsets of the limit set. The ergodicity
of ν immediately implies that each of them has full µ-measure (Lemma 4.1),
hence LBH(G) is of full µ-measure. Furthermore, LBH(G) is contained in
LM(G) (Proposition 3.5), and Theorem 4.2 thus follows.

Moreover, LBH(G) turns out to be a proper subset of LM(G) (Remark 3.6).
Hence, we have in fact refined the afore-mentioned result [21], [15] that LM(G)

has full µ-measure if and only if ν is ergodic. This in turn was a refinement of
Sullivan’s result [16] that ν is ergodic if and only if the radial limit set of G is
of full µ-measure. Sullivan’s result is stated in detail in Section 2.

This paper is organised as follows. In Section 2 we give some preliminaries
which are required in the sequel. In Section 3 we introduce the Myrberg and
the Birkhoff-Hopf limit sets and discuss some of their properties. In Section 4
we investigate the relationship between ergodicity and LM(G).
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2. Preliminaries

We use the Poincaré ball model of hyperbolic space H which is defined as
{x ∈ Rk : |x| < 1}, k ≥ 2, together with the metric d(·, ·) derived from
ds = 2|dx|/(1 − |x|2). The sphere at infinity or boundary ∂H of hyperbolic
space is the unit sphere in Rk . In the sequel we shall refer to discrete subgroups
of the group of orientation preserving isometries of H as Kleinian groups.

Let L(G) denote the limit set of the Kleinian group G. A point ξ ∈ L(G)

is called a radial limit point of G if there exists a ball B in H such that for
every geodesic ray r with endpoint ξ we have g(B)∩r �= ∅ for infinitely many
distinct g ∈ G. The set of radial limit points is called the radial limit set and
we denote it by Lr(G). Lr(G) is also referred to as the conical limit set of G.

The quotient M = H/G of the k-dimensional hyperbolic space H through
a torsion free Kleinian group G, i.e. a group without elliptic elements, is a
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k-dimensional hyperbolic manifold. For ease of notation, we keep the notation
d for the projected metric on M .

Geodesics with both their endpoints in L(G) and their projections to M

are called canonical. The hyperbolic convex hull in H of the union of all ca-
nonical geodesics viewed as subsets of H is called the convex hull of L(G)

(or the Nielsen region of G). Clearly, G acts discontinuously on the convex
hull of L(G), and quotienting out G yields the convex core of M . Equival-
ently, the convex core of M is the smallest convex subset of M containing
all closed geodesics in M . A non-elementary, torsion free Kleinian group is
called geometrically finite if the unit neighbourhood of the convex core has
finite hyperbolic volume.

Let SH and SM denote the sphere bundles of H and M = H/G respectively,
where G is a torsion free Kleinian group. G acts discontinuously on SH,
hence we obtain that SM = SH/G. The geodesic flow φt on SH projects
onto the geodesic flow on SM which we also denote by φt . The forward orbit
O+(v) = {φt(v) : t ≥ 0} of v ∈ SH projects onto a geodesic ray r , in the
sense that O+(v) consists of those vectors which are tangent to r and which
point towards the endpoint of r in ∂H. Two geodesic rays in H are asymptotic
if they have the same point at infinity. We can also express this by saying that
the forward orbits of two vectors v, v′ ∈ SH are asymptotic if there exists
a constant c ≥ 0 such that the distance between the base points in H of the
vectors φt(v) and φt(v′) tends to c for t tending to infinity. Both notions are
established in an analogous way for M and SM by canonical projection.

The sphere bundle SH can be parametrised as follows. Any vector v ∈ SH
determines an oriented geodesic l which is tangential to v. Also, any vector v ∈
SH determines a geodesic ray r , namely the geodesic ray which corresponds
to O+(v). Clearly, r is contained in the geodesic l. Let η ∈ ∂H denote the
endpoint of r , and let ξ ∈ ∂H denote the endpoint of l which is different from
η. Furthermore, let s denote the signed hyperbolic distance from the base point
of v in H to the Euclidean midpoint of l. Thus, a unit tangent vector v ∈ SH is
parametrised by a triple (ξ, η, s), where ξ , η are two distinct elements of ∂H,
and s ∈ R.

Recall Patterson’s construction [11], [12] of a probability measure µ sup-
ported on the limit set L(G) of a Kleinian group G. If δ denotes the critical
exponent of the Poincaré series Ps(x) := ∑

g∈G e−s d(x,g(0)), x ∈ H, associated
to G, then this Patterson measure is δ-conformal, i.e. for every g ∈ G and any
measurable A ⊂ ∂H we have µ(g(A)) = ∫

A
|g′(ξ)|δdµ(ξ). Here, g′ denotes

the conformal distortion of g. Note that in general µ is not unique.
Using µ and the parametrisation of SH given above, one defines the meas-

ure ν̃ on SH by dν̃(ξ, η, s) := dµ(ξ) dµ(η) ds / |ξ − η|2δ . Now, G acts dis-
continuously on SH in the following way. For an arbitrary element g of G,
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and the parametrisation (ξ, η, s) of some arbitrary vector in SH, we have
g(ξ, η, s) = (g(ξ), g(η), s + t). Here, t denotes the signed hyperbolic dis-
tance between the image under g of the Euclidean midpoint of the geodesic
with endpoints ξ and η, and the Euclidean midpoint of the geodesic with en-
dpoints g(ξ) and g(η). The δ-conformality of µ implies that ν̃ is G-invariant,
i.e. ν̃(g(A)) = ν̃(A) for every g ∈ G and every measurable A ⊂ SH. There-
fore, ν̃ projects canonically onto the Patterson-Sullivan measure ν defined on
the sphere bundle SM of M . Since µ is supported on L(G), it follows that
the support of ν is given by the set of all v ∈ SM which are tangential to
some canonical geodesic. Sullivan [16] generalised a method of Hopf [6], [7]
in order to obtain the following result (see also [14]).

Theorem. The following conditions are equivalent.

(i) µ(Lr(G)) = 1;

(ii) the product action of G on (∂H×∂H)\{diag.} is ergodic w.r.t. the product
measure µ×µ (i.e. for any invariant set under this action, either the set
itself or its complement is of zero µ × µ-measure);

(iii) φt is ergodic w.r.t. ν (i.e. for any flow invariant subset of SM , either the
set or its complement is of zero ν-measure);

(iv) G is of δ-divergence type (i.e. Pδ(x) = ∞).

Furthermore, if these three conditions are valid, then µ is unique.

The ergodicity of φt w.r.t. ν can be expressed via Hopf’s version of the
Birkhoff Ergodic Theorem:

Theorem. If h, h1 are integrable functions on M such that h1 > 0 and
limt→∞

∫ t

0 h1(φsv) ds = ∞ for ν-almost every v ∈ SM , then

(1) lim
t→∞

∫ t

0 h(φsv) ds∫ t

0 h1(φsv) ds
=

∫
SM

h dν∫
SM

h1 dν

for ν-almost all v ∈ SM .

Now, a central point in this situation is that there exists an integrable func-
tion h1 with the properties required above (see [10] Theorem 7.2.10 or [16]
Proposition 13). For the rest of this paper we fix such a function h1. If G is
geometrically finite, then ν is a finite measure and all four afore-mentioned
conditions are true [18]. However, there are classes of examples of geomet-
rically infinite groups, for which these conditions are also known to hold true
(see for instance [19], [17], [13] or [1]).



a note on myrberg points and ergodicity 111

3. Myrberg and Birkhoff-Hopf limit sets

Roughly speaking, a geodesic ray in a hyperbolic manifold M is called Myrberg
if it approximates with arbitrary accuracy and infinitely often every finite seg-
ment of any canonical geodesic. If we identify ∂H with the set of unit tangent
vectors based at some fixed point in M , then Myrberg rays determine a certain
subset of the limit set, which will be referred to as the Myrberg limit set. We
remark that our definition of Myrberg rays is in the tradition of [8] and [15].
The points of view for instance in [2] or [21] are different but equivalent to
ours.

As before, G denotes a non-elementary, torsion free Kleinian group and
M = H/G the associated hyperbolic manifold. Let u be a geodesic segment
with endpoints x, y ∈ H, and consider some ε > 0. The ε-flow tube Tε(u)

associated to u consists of all vectors v ∈ SH which are tangential to some
geodesic segment u′ with endpoints x ′, y ′ ∈ H such that x ′ and y ′ project ortho-
gonally onto x and y respectively, and such that d(x, x ′) ≤ ε and d(y, y ′) ≤ ε.
Keeping the same notation we can project such flow tubes in a canonical way
onto SM , where they may have selfintersections.

Let r be a geodesic ray in M with initial vector v ∈ SM , i.e. O+(v) projects
to r . Then r is called a Myrberg ray if, for every ε > 0, and every geodesic
segment u on any canonical geodesic in M , there exists a sequence of positive
real numbers tn ↗ ∞ such that φtn(v) ∈ Tε(u) for all n. Also, we say that
a geodesic ray in H is Myrberg if it projects onto a Myrberg ray in M . The
next two lemmata give useful characterisations of Myrberg rays. The proofs
are straightforward.

Lemma 3.1. Let r be a geodesic ray with initial vector v ∈ SM . Then, r is
Myrberg if and only if the set of accumulation points of O+(v) in SM is equal
to the support of ν, i.e. the set of all vectors in SM which are tangential to
some canonical geodesic of M .

Lemma 3.2. A geodesic ray r in H is Myrberg if and only if for every ε > 0
and for every geodesic segment u on any canonical geodesic, there exists a
sequence (gn) of pairwise distinct elements of G such that, for all n ∈ N, each
point on (gn) ist at most ε away from r , and such that the images of the centre
of u under the elements of the sequence (gn) converge in the Euclidean metric
to the endpoint of r in ∂H.

Clearly, every ray asymptotic to some Myrberg ray is also Myrberg, which
enables us to define Myrberg limit points. A point in ∂H is called a Myrberg
limit point of G if it is the endpoint of some Myrberg ray of G. The set of
Myrberg limit points of G is denoted by LM(G). Obviously, LM(G) is a G-
invariant subset of Lr(G). Roughly speaking, Myrberg limit points describe



112 kurt falk

arbitrarily fine recurrence, rather than ‘coarse’ recurrent dynamical behaviour
given by radial limit points.

Remark 3.3. Note that LM(G) �= ∅ for every non-elementary Kleinian
group G. A proof for groups of the first kind, i.e. for which L(G) = ∂H,
can be found in [10] (see Theorem 2.2.2) where Myrberg points are called line
transitive points. It is straightforward to extend this method to the general case.

Given some integrable function h on SM , if (1) holds for a vector v ∈ SM ,
then it holds of course for any other vector in O+(v). We call a point ξ ∈ L(G)

generic w.r.t. h if there exists a geodesic ray r with endpoint ξ and initial point
z ∈ H, such that the following holds. The vector ṽ ∈ SH tangential to r at
z and pointing towards ξ projects onto a vector v ∈ SM which satisfies (1)
for the function h. The set of such points will be denoted by Lh(G), and we
shall refer to it as the generic limit set associated to h. In particular, if h is
the characteristic function χ

A
of some measurable set A in SM , then we shall

denote its generic limit set by LA(G). Note that for each integrable function h

on SM , the generic limit set Lh(G) is G-invariant.
Recall that the family of closed geodesics in M is countable. Therefore,

the family which consists of all lifts of closed geodesics in M to H is also
countable. On each lift γ of every closed geodesic in M consider all geodesic
segments which have rational length and which are centred at points whose
hyperbolic distance to some fixed point on γ is rational. Clearly, this family of
segments is countable. Therefore, the family T of all εn-flow tubes associated
to these segments is countable as well, where (εn) denotes the sequence of
positive rational numbers. For each tube T ∈ T we have a generic limit set
LT (G) associated to its characteristic function which allows us to define the
Birkhoff-Hopf limit set of G by

LBH(G) :=
⋂

T ∈T

LT (G).

Remark 3.4. It is not difficult to see that for every ε > 0 and each geodesic
segment u on some canonical geodesic of M we have LBH(G) ⊂ LTε(u)(G).

We shall now see that, as one would expect, the Birkhoff-Hopf limit set is
contained in the Myrberg limit set of G. This is the crucial observation required
for the proof of Theorem 4.2.

Proposition 3.5. For every non-elementary Kleinian group G we have that
LBH(G) ⊂ LM(G).

Proof. Let ξ ∈ LBH(G) and a geodesic ray r with endpoint ξ be arbitrarily
chosen, and consider some ε > 0 and some geodesic segment u on an arbitrary
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canonical geodesic. Project this situation onto M , and keep the notations for
simplicity.

We know that the set of lifts of all closed geodesics in M is dense in the set
of geodesics with both their endpoints in the limit set. More precisely, for any
pair of disjoint open subsets O1 and O2 of ∂H both meeting the limit set of G,
there exists a lift of a closed geodesic of M which has one endpoint in O1 and
the other endpoint in O2 (see e.g. [4] p. 97). This together with the definition
of T implies that there exists T ∈ T which is properly contained in Tε(u), in
the sense that T ⊂ Tε(u) and the topological boundaries of the two tubes do
not have common points.

Now, since ξ ∈ LBH(G), we also know that ξ ∈ LT (G). Let rT be the
geodesic ray that gives ξ ∈ LT (G), and consider a vector vT ∈ SH which is
tangential to rT and which points towards ξ . Project this situation onto M , and
keep the notations rT and vT for simplicity. We thus have that (1) holds for vT

and for the characteristic function of T . (Note that each flow tube in T has
strictly positive ν-measure.)

Finally, by (1) and since limt→∞
∫ t

0 h1(φsvT ) ds = ∞, it follows that
O+(vT ) visits T , and thus Tε(u), infinitely often. Since r and rT are asymp-
totic, and since T is properly contained in Tε(u), the same holds for some
vector tangential to r and pointing towards ξ . Hence, by the arbitrary choice
of ε and u, we conclude that r is a Myrberg ray.

Remark 3.6. In general LBH(G) is a proper subset of LM(G). In the case
of finitely generated Schottky groups this can be seen as follows. First note
that Artin [3] had already observed the occurence of Myrberg limit points (re-
ferred to as ‘quasiergodic’) by establishing the connection between continued
fractions and the dynamics on the modular surface.

In this spirit, we shall employ one of various existing procedures for coding
the dynamics on a hyperbolic manifold in order to construct certain Myrberg
points which cannot be generic for a wide class of flow tubes. Let G be a
finitely generated Schottky group with generating set A . By embedding the
associated Cayley graph into H (see for instance [5]), it is not difficult to see
that limit points correspond to reduced infinite words of the form a0a1a2 . . .

with ai ∈ A .
Now, using the definition of the Cayley graph, which in our case is a tree,

Lemma 3.2 and some elementary observations in hyperbolic geometry, one
can show that there is a bijection from LM(G) to the set of all infinite words
which contain every finite word in the alphabet A at least once.

We construct a point ξ ∈ LM(G) \ LBH(G) in the following way. First,
since A is finite, there exists a listing ω1, ω2, ω3, . . . of all finite words in
A . Next, choose some letter a ∈ A and let αk denote the word a . . . a of
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length ik , where ik → ∞ is some increasing sequence of natural numbers.
Finally, using concatenation, set ω = ω1α1ω2α2ω3α3 . . . which gives a point
ξ ∈ LM(G). However, if (ik) tends sufficiently fast to infinity, one can prove
that ξ /∈ LTε(u)(G) for ε > 0 sufficiently small and that u is not contained in the
closed geodesic corresponding to the generator a. Hence ξ ∈ LM(G)\LBH(G).

4. Myrberg density

From now on we restrict our attention to such Kleinian groups G and their
associated hyperbolic manifolds M for which the geodesic flow is ergodic w.r.t.
the Patterson-Sullivan measure ν. Employing ergodicity we find that generic
limit sets associated to integrable functions have full Patterson measure. This
observation will be used in the proof of Theorem 4.2.

Lemma 4.1. If the geodesic flow on SM is ergodic w.r.t. ν, then for each
integrable function h on SM , we have µ(Lh(G)) = 1.

Proof. Consider some arbitrary integrable function h on SM . Let E denote
the set of all vectors v ∈ SM such that (1) holds for v and h. Clearly, O+(v) ⊂
E for every v ∈ E. Therefore, both E and its complement Ec in SM are
invariant sets for the geodesic flow. It follows that the lift Ẽ of E to SH and
the lift Ẽc of Ec to SH are both invariant under the geodesic flow. Hence, we
have that (Ẽ)c = Ẽc. By definition, Lh(G) is the projection along geodesic
rays of Ẽ to ∂H, in the sense that every v ∈ E determines a geodesic ray
with endpoint in Lh(G). Also, ∂H \ Lh(G) is the projection along geodesic
rays of (Ẽ)c to ∂H. Since (1) holds for all vectors in E, it follows that Ec

is of zero ν-measure. Recall that the Patterson-Sullivan measure ν on SM is
the projection of the measure ν̃ on SH (see Section 2). Since ν(Ec) = 0, it
follows that ν̃(Ẽc) = ν̃((Ẽ)c) = 0. Now, using the definition of ν̃, we obtain
µ(∂H \ Lh(G)) = 0.

The following theorem relates Myrberg limit points to the phenomenon of
ergodicity. The proof of this theorem in [15] mainly uses the ergodicity of the
product action of G on (L(G) × L(G)) \ {diag.} and was inspired by Tsuji’s
proof [20] of Myrberg’s result. We give an alternative proof which makes direct
use of Hopf’s Ergodic Theorem when applied to the geodesic flow on M .

Theorem 4.2. If the geodesic flow on SM is ergodic w.r.t. the Patterson-
Sullivan measure ν, then µ(LM(G)) = 1.

Proof. By Lemma 4.1 we know that the family {LT (G) : T ∈ T } con-
sists of countably many sets of full Patterson measure. Hence, by definition of
LBH(G), we have µ(LBH(G)) = 1. The theorem now follows, since Proposi-
tion 3.5 states that LBH(G) is contained in LM(G).
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Remark 4.3. Note that the converse of the assertion in Theorem 4.2 also
holds. This can be seen mainly by using the facts that LM(G) ⊂ Lr(G), and
that if Lr(G) has full Patterson measure, then the geodesic flow on M is ergodic
w.r.t. ν (see [16]).

Remark 4.4. In fact we have refined the main result of [15], namely that ν

is ergodic if and only if µ(LM(G)) = 1, to obtain that ν is ergodic if and only
if µ(LBH(G)) = 1.
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