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TOPOLOGICAL TRIVIALITY OF FAMILIES OF REAL
ISOLATED SINGULARITIES AND THEIR MILNOR

FIBRATIONS

RAIMUNDO NONATO ARAÚJO DOS SANTOS∗

Abstract

The aim of this paper is to study the topological triviality and the topological equivalence of the
Milnor fibrations for families of real analytic map germs with no coalescing of critical points.

1. Introduction

In the case of complex germs, equivalent conditions to the topological triviality
of families of germs of functions with isolated singularity, had been gotten by
several authors (see [12], [2], [4]). A theorem due to G. M. Greuel summarizes
various of these results, presenting equivalent conditions to the topological
triviality of such families. As a consequence of his result it follows that no co-
alescing of critical points is a necessary and sufficient condition for topological
triviality of complex analytic families of function-germs. A natural question is
whether or not no coalescing of singularities also is a sufficient condition for
topological triviality of families of real analytic function-germs. The answer is
not. H. King [5] presents an example showing that the above question is false,
and gives sufficient conditions so that a family with no coalescing of critical
points is topologically trivial.

The aim of this paper is to introduce sufficient conditions for the topological
triviality of families of real analytic map-germs F : Rn × R, 0 → R2, 0, with
isolated singularities at the origin. The main result is the following:

Theorem 3.1. Let F(x, t) = (P (x, t),Q(x, t)) where P(x, t) = f (x)+
tθ(x), Q(x, t) = g(x) + tα(x) be a family of analytic map-germs. Suppose
that the following conditions hold:

(A) |〈∂Pt (x), ∂Qt(x)〉|
‖∂Pt (x)‖ ‖∂Qt(x)‖ ≤ 1 − ρ,
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in the neighborhood V of 0 in Rn, for all t ∈ R and 0 < ρ ≤ 1.

(Bf ) 〈∂Pt (x)〉An
= 〈∂P0(x)〉An

〈∂Qt(x)〉An
= 〈∂Q0(x)〉An

,

for all t ∈ R.

Then the family Ft is topologically trivial.

The conditions (A) and (Bf ) are inspired in the conditions introduced by
A. Jacquemard ([7, Theorem 1]) to study the Milnor fibrations to real analytic
singularities of the kind f = (P,Q) : Rn, 0 → R2, 0.

2. Previous results

Let F : (Rp × Rn,Rp × 0) → (Rk × 0) be a one-parameter family of map
germs with isolated singularity, Ft(x) = F(x, t). We will usually denote a
family of germs by Ft : (Rn, 0)→ (Rk, 0), t ∈ Rp, where Ft(x) = F(t, x).

Definition 2.1. A family F : (Rp×Rn,Rp× 0)→ (Rk, 0) is said to have
no coalescing of critical points (or to be a good deformation of F0) if there is
a neighborhood U of Rp × 0 in Rp × Rn and a representative G of F so that
G restricted to U ∩ (t × (Rn \ 0) is a submersion for each t ∈ Rp. Otherwise,
the family is said to coalesce.

Definition 2.2. The germs fi : (Rn, 0) → (Rk, 0), i = 0, 1 are topolo-
gically right-equivalent (C 0 − R-equivalent) if there is a germ of a homeo-
morphism h : (Rn, 0) → (Rn, 0) so that the germs f0h and f1 are the same.
The topological type of a germ is its topological right equivalence class.

Definition 2.3. We say that a family of map-germsFt : (Rn, 0)→ (Rk, 0),
t ∈ Rp and Ft(x) = F(t, x), is topologically trivial if there is a continuous
family of germs of homeomorphisms Gt : (Rn, 0) → (Rn, 0), t ∈ Rp, such
that F0(x) = Ft ◦Gt(x).

H. King [6] presents an example of a family of real analytic functions
which does not have coalescing of critical points and is not topolo-gically
trivial; moreover, he gives sufficient conditions so that a good deformation is
topologically trivial. To state King’s results we need the following definition.

Definition 2.4. For a polynomial f : (Rn, 0) → (Rk, 0), n ≥ p, with
an isolated critical point at 0, define r(f ), the Milnor radius of f , to be the
smallest critical value of the distance function ‖x‖2 restricted to f −1(0)\0 (or
∞ if there are no critical values). In other words, r(f ) is the biggest ε0 > 0
such that there is 0 < ε ≤ ε0 with (f −1(0) \ 0) � Sn−1

ε .
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In [6], H. King shows the following results:

Theorem 2.5. Suppose Ft : (Rn, 0) −→ (Rk, 0), t ∈ Rp is a conti-nuous
family of polynomial germs with no coalescing of critical points and there is
a δ > 0 so that r(Ft ) > δ for all t ∈ Rp. Then there is a continuous family of
homeomorphism germs Ht : (Rm, 0) → (Rm, 0) so that F0 = Ft ◦ Ht for all
t ∈ Rp.

Theorem 2.6. Let Ft : (Rn, 0) −→ (Rk, 0), t ∈ Rp be a family of germs
with no coalescing of critical points and suppose there is a family of homeo-
morphism germs Gt : (Rm, 0) −→ (Rm, 0), t ∈ Rp so that the germ at 0 of
each set Gt ◦ F−1

t (0) is the germ of F−1
0 (0). Then there is a family of homeo-

morphism germs Ht : (Rm, 0) −→ (Rm, 0), t ∈ Rp and a neighborhood V of
0 in Rp so that the germ at 0 of Ft ◦Ht is the germ of F0 for each t ∈ V .

The C 0 − R-equivalence class of f0 relates to the equivalence class of
its Milnor fibration. More precisely, given f0, g0 : (Rn, 0) → (Rk, 0) with
isolated singularity, f0 is C 0 − R-equivalent to g0 if and only if their Milnor
fibrations are also equivalent. (See [5, Theorem 1]).

Recall that if f : (Cn+1, 0)→ (C, 0) is the germ of a holomorphic function
with a critical point at 0, then for every sufficiently small ε > 0, the map
φ := f

‖f ‖ : S 2n+1
ε \ S 1, is the projection map of a locally trivial fiber bundle,

where K = f −1(0) ∩ Sε is the link of 0. This is the Milnor fibration of f .
Milnor also proves in the last chapter of his book a fibration theorem for real
singularities. He shows that if f : (Rn, 0) → (Rp, 0), n ≥ p ≥ 2, is the germ
of a real analytic map-germ whose derivative Df has rank p on a punctured
neighborhood of 0 ∈ Rn, then, for every sufficiently small sphere S n−1

ε ⊂ Rn

centered at 0, one has a locally trivial fiber bundle, f = f

‖f ‖ : S n−1
ε \ NK →

S p−1, where NK denotes a tubular neighborhood of the link K in S n−1
ε .

Moreover, f can be extended to S n−1
ε \K as the projection map of a fiber

bundle, but this extension may not be given by the obvious map f

‖f ‖ . The

problem of studying real isolated singularities at 0, for which the map f

‖f ‖
extends to all of S n−1 \ K → S p−1 as the projection map of a fiber bundle
(as in the case of holomorphic maps) was first studied by A. Jacquemard in [7]
(see also [8]).

Let f = (P,Q) : (Rn, 0) → (R2, 0) be a real analytic map-germ with an
isolated singularity at 0. Let An be the ring of real analytic germs in Rn, 0
and I = 〈∂P (x)〉 (resp. 〈∂Q(x)〉) the ideal in An generated by the partial
derivatives of P (resp.Q), and by I the integral closure of I , that is, I = {h ∈
An| ∃ ai ∈ I i with hn + a1h

n−1 + · · · + an = 0}.
Theorem ([7, Theorem 1]). Suppose that there exists a neighborhood V
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of 0 in Rn such that:

(A) |〈∂P (x), ∂Q(x)〉|
‖∂P (x)‖ ‖∂Q(x)‖ ≤ 1 − ρ,

in the neighborhood V of 0 in Rn, 0 < ρ ≤ 1.

(B)
〈∂P (x)〉 = 〈∂Q(x)〉.

Then there exists a sufficiently small ε0 > 0, such that for all 0 < ε ≤ ε0,
φ = f

‖f ‖ : S n−1
ε \ Kε → S 1 is the projection map of a locally trivial fiber

bundle. Furthermore, this fiber bundle is equivalent to the fibration given
Milnor in [9].

In [11] the authors replace the condition (B) in Theorem above by condition
(BR): 〈∂P (x)〉R = 〈∂Q(x)〉R, where 〈∂P (x)〉R denotes the real integral closure
as defined by T. Gaffney [3]. In the complex analytic category, both conditions
are equivalent (see [3], [12]).

Definition 2.7. Let I be an ideal in the ring An. The real integral closure
of I , denoted by IR, is the set of h ∈ An such that for all real analytic curve
γ : (R, 0)→ (Rn, 0), we have h ◦ γ ∈ (γ ∗(I ))A1.

3. The Main Theorem

In this section we present the main result of this paper as well as its main
consequences. Let f = (P0,Q0) : (Rn, 0) → (R2, 0), be the germ of a real
analytic map-germ with isolated singularity at zero, and F : (Rn × R, 0) →
(R2, 0)be a deformation off given byF(x, t) = (P (x, t),Q(x, t)),P(x, t) =
P0(x)+ tθ(x),Q(x, t) = Q0(x)+ tα(x).

Theorem 3.1. Let F be as above and ∂xP (x, t) = Gradx Pt (x), ∂P =
(∂xP (x, t),

∂P
∂t
). Suppose that the following conditions hold:

(A) |〈∂xP (x, t), ∂xQ(x, t)〉|
‖∂xP (x, t)‖ ‖∂xQ(x, t)‖ ≤ 1 − ρ,

x �= 0 near zero, for all t ∈ R and 0 < ρ ≤ 1.

(Bf ) 〈∂xP (x, t)〉R = 〈∂xP (x, 0)〉R

〈∂xQ(x, t)〉R = 〈∂xQ(x, 0)〉R,

for all t ∈ R.



100 raimundo nonato araújo dos santos

Then the family Ft is topologically trivial.

Proof. The idea of the proof is to construct a vector field V (x, t) =
a(x, t)∂xP (x, t) + b(x, t)∂xQ(x, t) + ∂

∂t
(where ∂

∂t
is the unit vector in t-

direction) such that:

(1)

{ 〈∂P (x, t), V (x, t)〉 = 0

〈∂Q(x, t), V (x, t)〉 = 0

The vector field V (x, t) is tangent to the levels X = F−1(c) = P−1(c1) ∩
Q−1(c2), where c = (c1, c2) ∈ R2. In particular for c = 0, V is tangent to the
variety F−1(0) = P−1(0) ∩Q−1(0).

The flow φ(x, t), φ(x, 0) = x, satisfies the following:

(2)




∂P (φ(x, t))

∂t
= 〈∂P, V 〉 = 0

∂Q(φ(x, t))

∂t
= 〈∂Q, V 〉 = 0.

Hence, F(φ(x, t)) = F(φ(x, 0)) = (f (x), g(x)).
From (1) it follows that:

(3)




〈∂P, V 〉 = a‖∂xP ‖2 + b〈∂xP, ∂xQ〉 + ∂P

∂t
= 0

〈∂Q, V 〉 = a〈∂xP, ∂xQ〉 + b‖∂xQ‖2 + ∂Q

∂t
= 0

The matrix of the system is

( ‖∂xP ‖2 〈∂xP, ∂xQ〉
〈∂xP, ∂xQ〉 ‖∂xQ‖2

) (
a

b

)
= −

(
θ(x)

α(x)

)

and it follows from condition (A) that its determinant:

(4) +(x, t) := ‖∂xP (x, t)‖2‖∂xQ(x, t)‖2 − 〈∂xP (x, t), ∂xQ(x, t)〉2

satisfies the condition+(x, t) �= 0 for all x ∈ V , in a neighborhood of 0 ∈ Rn,
∀t . Then we can write:

(
a

b

)
= − 1

+

( ‖∂xQ‖2 −〈∂xP, ∂xQ〉
−〈∂xP, ∂xQ〉 ‖∂xP ‖2

) (
θ(x)

α(x)

)
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Hence,

(5)



a = − 1

+
(‖∂xQ‖2θ(x)− 〈∂xP, ∂xQ〉α(x))

b = − 1

+
(‖∂xP ‖2α(x)− 〈∂xP, ∂xQ〉θ(x))

This vector field is well defined and smooth inU , whereU ⊂ Rn×R\({0}×R).
To show that V is integrable at the points (0, t), it is sufficient to guarantee
that there exists a constant C > 0 such that:

(6)

∥∥∥∥V (x, t)− ∂

∂t

∥∥∥∥ ≤ C‖x‖,

for x sufficiently close to zero. This will follow from Lemma 3.2 and Propos-
ition 3.3 below.

Lemma 3.2. There exist constants c1 > 0 and c2 > 0 such that:

(a) |θ(x)| ≤ c1‖x‖ ‖∂xP ‖ and

(b) |α(x)| ≤ c2‖x‖ ‖∂xQ‖.

Proof. (a) The function θ(x) is analytic and θ(0) = 0, then it follows from
the Bochnak-Lojasiewicz inequality [1] that,

(7) |θ(x)| ≤ c0‖x‖ ‖∂xθ(x)‖
On the other hand,

|t | ‖∂xθ‖ − ‖∂xf (x)‖ ≤ ‖∂xf (x)+ t∂xθ(x)‖ = ‖∂xP (x, t)‖ ≤ c1‖∂xf (x)‖,
where in the last inequality we use condition (B).

Thus, |t | ‖∂xθ‖ ≤ (1 + c1)‖∂xf (x)‖ ∀t .
In particular taking t = 1, we have

‖∂xθ‖ ≤ (1 + c1)‖∂xf (x)‖.
Now using again condition (B), we have:

‖∂xθ‖ ≤ (1 + c1)‖∂xf (x)‖ ≤ c2‖∂xP (x, t)‖
for all t . Therefore,

(8) ‖∂xθ(x)‖ ≤ c2‖∂xP (x, t)‖, ∀t
From (7) and (8) it follows that:

‖θ(x)‖ ≤ c0‖x‖ ‖∂xθ(x)‖ ≤ c‖x‖ ‖∂xP (x, t)‖.
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Part (b) can be proved in the same way.

Proposition 3.3.
∥∥V (x, t)− ∂

∂t

∥∥ ≤ c‖x‖.

Proof.∥∥∥∥V (x, t)− ∂

∂t

∥∥∥∥ = ‖a(x, t)∂xP (x, t)+ b(x, t)∂xQ(x, t)‖
≤ ‖a(x, t)∂xP (x, t)‖ + ‖b(x, t)∂xQ(x, t)‖

From (5) we have

‖a(x, t)∂xP (x, t)‖
=

∣∣∣∣ 1

+
(‖∂xQ‖2θ(x)− 〈∂xP, ∂xQ〉α(x))

∣∣∣∣ ‖∂xP (x, t)‖(9)

≤ 1

|+| ‖∂xQ‖2|θ(x)| ‖∂xP ‖ + 1

|+| |〈∂xP, ∂xQ〉| |α(x)| ‖∂xP ‖.

Furthermore,

1

|+| ‖∂xQ‖2|θ(x)| ‖∂xP ‖
(‖∂xP ‖2‖∂xQ‖2

‖∂xP ‖2‖∂xQ‖2

)
(10)

= |θ(x)|
‖∂xP ‖

(‖∂xP (x, t)‖2‖∂xQ(x, t)‖2 − 〈∂xP (x, t), ∂xQ(x, t)〉2

‖∂xP ‖2‖∂xQ‖2

)−1

= |θ(x)|
‖∂xP ‖

(
1 − 〈∂xP (x, t), ∂xQ(x, t)〉2

‖∂xP ‖2‖∂xQ‖2

)−1

.

From condition (A), there exist δ, 0 < δ < 1 such that |〈∂xPt (x),∂xQt (x)〉|2
|∂xPt (x)|2|∂xQt (x)|2 ≤ δ,

hence

(11) 1 − |〈∂Pt (x), ∂Qt(x)〉|2
‖∂Pt (x)‖2‖∂Qt(x)‖2

≥ 1 − δ

From Lemma 3.2(a), it follows that

(12)
|θ(x)|
‖∂xP ‖ ≤ c1‖x‖.

Replacing (11) and (12) in (10), we obtain

(13)
1

|+| ‖∂xQ‖2|θ(x)| ‖∂xP ‖ ≤ c2‖x‖
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Similarly, we have

(14)
1

|+| |〈∂xP, ∂xQ〉| |α(x)| ‖∂xP ‖ ≤ c3‖x‖.

Replacing (13) and (14) in (9), we get

‖a(x, t)∂xP (x, t)‖ < c4‖x‖.
In the same way, we can prove that

‖b(x, t)∂xQ(x, t)‖ < c5‖x‖.

It is clear that condition (A) in Theorem 3.1 is a sufficient condition for the
no coalescing of critical points for the family F(x, t). It is not clear whether
(A) implies the constance of the Milnor radius of the family. However, we can
replace condition (Bf ) by a weaker condition namely, condition(Bf ) along
the zero sets of P and Q, and use King’s result (see Theorem 2.6) to get the
following:

Proposition 3.4. Let F be as above and ∂xP (x, t) = Gradx Pt (x), ∂P =(
∂xP (x, t),

∂P
∂t

)
. Suppose that the following conditions hold:

(A) |〈∂xP (x, t), ∂xQ(x, t)〉|
‖∂xP (x, t)‖ ‖∂xQ(x, t)‖ ≤ 1 − ρ,

x �= 0 near zero, for all t ∈ R and 0 < ρ ≤ 1.

(B∗
f )

〈∂xP (x, t)〉OXt
= 〈∂xP (x, 0)〉OX0

〈∂xQ(x, t)〉OXt
= 〈∂xQ(x, 0)〉OX0

,

where OXt is the local ring of the real analytic variety forXt = F−1
t (0).

Then the family Ft is topologically trivial.

Proof. The proof is analogous to the proof of Theorem 3.1. We use con-
dition (A) and (B∗

f ) to construct a vector field V which leaves X = F−1(0)
invariant.

The next result is an application of the Theorem 3.1 to deformations of
Newton non-degenerate map-germs F0 = (P0,Q0) : Rn, 0 → R2, 0. We first
recall the basic notions of Newton diagram of an ideal.
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For this, we fix a coordinate system x = (x1, . . . , xn) in Rn, so that An

is identified with the ring R[[x]] of convergent power series. For each germ
g(x) = ∑

akx
k , we define supp(g) = {k ∈ Zn : ak �= 0}.

Definition 3.5.
(i) Let I be an ideal in An, define

supp I = ∪{supp g : g ∈ I }.
(ii) The Newton polyhedron of I , denoted by -+(I ), is the convex hull in

Rn+ of the set ∪{r + v : r ∈ supp I, v ∈ Rn+}.
(iii) -(I) is the union of all compact faces of -+(I ).
(iv) I = 〈g1, . . . , gs〉 is Newton non-degenerate if for each compact face

� ⊂ -(I), the equations g1�(x) = g2�(x) = · · · = gs�(x) = 0 have
no common solution in (R \ {0})n, where gi� is the restriction of gi to
the face �, that is, if gi(x) = ∑

arx
r then gi�(x) = ∑

r∈� arxr .

Corollary 3.6. Let F0 = (P0,Q0) : Rn, 0 → R2, 0 and F(x, t) =
(P0(x)+ tθ(x),Q0(x)+ tα(x)). Suppose -+(∂P0(x)) and -+(∂Q0(x)) are
Newton non-degenerate and -+(∂θ(x)) ⊂ -+(∂P0(x)), -+(∂α(x)) ⊂
-+(∂Q0(x)).

(1) If F0 satisfies condition (A), then F is topologically trivial.

(2) If F0 satisfies conditions (A) and (BR), then there exists ε0 such that for
all 0 < ε ≤ ε0, Ft

‖Ft‖ : S n−1
ε \ Kt → S 1 is the projection of a locally

trivial fiber bundle, where Kt = F−1
t (0) ∩ S n−1

ε . Moreover, ∀t, t ′ ∈ R,
the Milnor fibrations associated to Ft and Ft ′ are equivalent.

Proof. To verify condition (A) for the family Ft , let r : R, 0 → Rn, 0 be
a non constant real analytic curve, with r(0) = 0.

Therefore, for each t , fixed, we have:

∂xPt (r(s)) = ∂xP0(r(s))+ ∂xR(r(s))
∂xQt(r(s)) = ∂xQ0(r(s))+ ∂xS(r(s))

Taking the Taylor developments we get,

∂xPt (r(s)) = α1s
a1 + · · · + α2s

n1 + · · ·
∂xQt(r(s)) = β1s

a1 + · · · + β2s
n2 + · · · .

Since -+(∂P0(x)) and -+(∂Q0(x)) are Newton non degenerate, then a1 ≤ n1

and a1 ≤ n2.
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Then,

|〈∂Pt (r(s)), ∂Qt(r(s))〉|
‖∂Pt (r(s))‖ ‖∂Qt(r(s))‖ = |〈α1s

a1 + · · · , β1s
a1 + · · ·〉|

‖α1sa1 + · · · ‖ ‖β1sa1 + · · · ‖

= |〈α1, β1〉|s2a1 + · · ·
s2a1‖α1‖(1 + · · ·)‖β1‖(1 + · · ·) = |〈α1, β1〉|s2a1(1 + · · ·)

‖α1‖ ‖β1‖s2a1(1 + · · ·)
= |〈α1, β1〉|

‖α1‖‖β1‖ + s(· · ·) = |〈α1, β1〉|
‖α1‖ ‖β1‖ + u(s)

From the hypothesis it follows that |〈α1,β1〉|
‖α1‖‖β1‖ < 1 and lims→0 u(s) = 0. Then

for sufficiently small s, we have:

|〈∂Pt (r(s)), ∂Qt(r(s))〉|
‖∂Pt (r(s))‖ ‖∂Qt(r(s))‖ ≤ 1 − ρ

where 0 < ρ ≤ 1 for t ∈ R fixed. Then, there exist a neighborhood V � Rn,
0 ∈ V such that

∀x ∈ V \ {0} :
|〈∂Pt (x)), ∂Qt(x)〉|
‖∂Pt (x)‖ ‖∂Qt(x)‖ ≤ 1 − ρ, 0 < ρ ≤ 1.

Since the Newton polyhedrons -+(∂P0(x)) and -+(∂Q0(x)) are non degen-
erate and -+(∂Pt (x)) ⊂ -+(∂P0(x)), -+(∂Qt(x)) ⊂ -+(∂Q0(x)), it follows
from Theorem 3.4 [10] that 〈∂Pt (x)〉An

= 〈∂P0(x)〉An
and 〈∂Qt(x)〉An

=
〈∂Q0(x)〉An

. Then (1) follows from Theorem 3.1.
Now, if condition (BR)holds forF0, it follows that 〈∂Pt (x)〉An

=〈∂Qt(x)〉An
.

Thus, we can apply Jacquemard’s result to prove that for each t , there exists
ε0, such that for all 0 < ε ≤ ε0, Ft

‖Ft‖ : S n−1
ε \Kt → S 1 is the projection of a

locally trivial fiber bundle. Moreover, it follows from [5] Theorem 1 that these
fibrations are equivalent.

Acknowledgments. I would like to thank my thesis advisor MariaApare-
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1. Parusiński, Adam, Topological Triviality of µ-constant deformations of type f (x) + tg(x),
Canad. J. Math. 53 (2001), 73–97.

2. Damon, J., Gaffney, T., Topological triviality of deformations of functions and Newton filtra-
tions, Invent. Math. 72 (1983), 335–358.

3. Gaffney, T., The integral closure of Modules and Whitney equisingularity, Invent. Math. 102
(1992), 301–322.



106 raimundo nonato araújo dos santos

4. Martin Greuel, G., Constant Milnor number implies constant multipllicity for quasihomogen-
eous singularities, Manuscripta Math. 56 (1986), 159–166.

5. King, H. C., Topological type of isolated critical points, Ann. of Math. 107 (1978), 385–397.
6. King, H. C., Topological Type in Families of Germs, Invent. Math. 62 (1980), 1–13.
7. Jaquemard, A., Fibrations de Milnor pour des applications réelles, Boll. Un. Mat. Ital. B (7)

37, 1 (1989), 45–62.
8. Jacquemard, A., Thèse 3ème cycle Université de Dijon, 1982.
9. Milnor, J., Singular Points of Complex Hypersurfaces, Ann. of Math. Stud. 61 (1968).
10. Saia, M. J., The integral closure of ideals and the Newton filtration, J. Algebraic Geom. 6

(1996), 1–11.
11. Ruas, M. A. S., Seade, J., and Verjovsky, On real singularities with a Milnor fibration, Trends

Math.: trends in Singularities (2002), 191–213.
12. Teissier, B., Introduction to equisingularity problems, Proc. Sympos. Pure Math. 29 (1975),

539–632.

INSTITUTO DE MATEMÁTICA
UNIVERSIDADE FEDERAL DA BAHIA
AV. ADEMAR DE BARROS, S/N
ONDINA SALVADOR
BAHIA – BRASIL
E-mail: rnonato@ufba.br


