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RIGID OLp STRUCTURES OF NON-COMMUTATIVE
Lp-SPACES ASSOCIATED WITH HYPERFINITE

VON NEUMANN ALGEBRAS

MARIUS JUNGE, ZHONG-JIN RUAN and QUANHUA XU∗

Abstract
This paper is devoted to the study of rigid local operator space structures on non-commutative
Lp-spaces. We show that for 1 ≤ p �= 2 < ∞, a non-commutative Lp-space Lp(M) is a rigid
OLp space (equivalently, a rigid COLp space) if and only if it is a matrix orderly rigid OLp

space (equivalently, a matrix orderly rigid COLp space). We also show that Lp(M) has these
local properties if and only if the associated von Neumann algebra M is hyperfinite. Therefore,
these local operator space properties on non-commutative Lp-spaces characterize hyperfinite von
Neumann algebras.

1. Introduction

The aim of this paper is to study the completely positive approximation property
and the rigid local operator space structures on non-commutative Lp-spaces
associated with hyperfinite von Neumann algebras. Let us first recall from
Banach space theory that for 1 ≤ p ≤ ∞, a Banach space V is called an
Lp,λ space for some λ > 1 if for any x1, . . . , xn ∈ V , there exists a finite
dimensional subspace F in V such that x1, . . . , xn ∈ F and F is λ-isomorphic
to �mp with m = dim F . In this case, we let

Lp(V ) = inf{λ > 1 : V is an Lp,λ space}.
It was shown by Lindenstrass and Pelczyński [30] that for 1 ≤ p < ∞, a
Banach space V is an Lp,λ space with Lp(V ) = 1 if and only if V is isometric-
ally isomorphic to someLp(X,µ) space. This provides a local characterization
for classical Lp-spaces.

Classical Lp(X,µ) spaces (1 ≤ p < ∞) can also be characterized by a
more rigid Lp structure, i.e. there are sufficiently many finite dimensional sub-
spaces F in Lp(X,µ) which are isometrically isomorphic to some �mp spaces
and their union is norm dense in Lp(X,µ). Indeed, one can easily see this by
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considering the subspaces F = span{χEk
: 1 ≤ k ≤ m} spanned by character-

istic functions χEk
supported on mutually disjoint non-null sets Ej with finite

measure. It is easy to see that F is isometrically isomorphic to �mp under the
natural injection

(1.1) T :
m∑

j=1

αjej ∈ �mp 	→
m∑

j=1

αj

χEj

µ(Ej )
1
p

∈ F ⊆ Lp(X,µ).

We note that the map T in (1.1) is actually order preserving with range space
positively and contractively complemented in Lp(X,µ). Therefore, Lp(X,µ)

actually has an orderly rigid Lp structure.
In non-commutative theory, we are interested in non-commutative Lp-

spaces Lp(M) associated with von Neumann algebras M. In this case, the
canonical matrix order and canonical operator space matrix norm play a cent-
ral role in our study. For example, it is known that a von Neumann algebra M

is hyperfinite if and only if for some (equivalently for all) 1 ≤ p < ∞, Lp(M)

is a semidiscrete non-commutative Lp-space (see [10] and [38]). This charac-
terizes hyperfinite von Neumann algebras by the local matrix order structure
on their non-commutative Lp-spaces.

The local operator space structures on non-commutative Lp-spaces have
also been studied by Effros and Ruan [11], Junge, Ozawa and Ruan [19], Ng
and Ozawa [32], Junge and Ruan [20], and Junge, Nielsen, Ruan and Xu [18].
Let us recall from [11] that for 1 ≤ p ≤ ∞, an operator space V is called an
OLp,λ space for some λ > 1 if for any x1, . . . , xn ∈ V , there exists a finite
dimensional subspace F in V such that x1, . . . , xn ∈ F and F is λ-completely
isomorphic toLp(N ) for some finite dimensional von Neumann algebra N . If,
in addition, F is λ-completely complemented in V , then V is called a COLp,λ

space. To simplify our notation, we simply call V an OLp space (respectively,
a COLp space) if it is an OLp,λ space (respectively, a COLp,λ space) for some
λ > 1. In this case, we let

OLp(V ) = inf{λ > 1 : V is an OLp,λ space}
and

COLp(V ) = inf{λ > 1 : V is an COLp,λ space}.
An operator space V is called a rigid OLp space if given elements y1, . . . , yn ∈
V and ε > 0, there exists a finite dimensional von Neumann algebra N and a
completely isometric injection

(1.2) T : Lp(N ) → V
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such that
dist(T (Lp(N )), yj ) < ε

for all j = 1, . . . , n. If V = Lp(M) is a non-commutative Lp-space, we can
consider the matrix orderly rigid OLp structure by requiring that T in (1.2) be
a completely positive and completely isometric injection.

We note that for 1 ≤ p < +∞ if T : Lp(N ) → Lp(M) is a completely
isometric (respectively, a completely positive and completely isometric) injec-
tion, then its range space T (Lp(N )) is completely contractively (respectively,
completely positively and completely isometrically) complemented in Lp(M).
This is obvious when p = 2. The p = 1 case is known by Ng and Ozawa
[32] and the 1 < p �= 2 < ∞ case is due to a recent work of Junge, Ruan
and Sherman [21]. Therefore, the rigid OLp structure and the rigid COLp

structure (respectively, the matrix orderly rigid OLp structure and the matrix
orderly rigid COLp structure) are equivalent on non-commutative Lp-spaces.

It is known from [11] and [32] that if V = L1(M) is a non-commutative L1-
space then it satisfies any of the above discussed OL1 structures if and only if
M is a hyperfinite von Neumann algebra. For p = ∞, Junge, Ozawa and Ruan
proved in [19] that a C∗-algebra A is an OL∞ space if and only if A is a nuclear
C∗-algebra, and A is a rigid OL∞ space if and only if A is matrix orderly rigid
OL∞ space. In the latter case,A is called a strong NF-algebra by Blackadar and
Kirchberg [3]. General OLp and COLp structures on non-commutative Lp-
spaces (for 1 < p < ∞) have been intensively studied in [20] and [18]. It was
shown that there exist non-hyperfinite (discrete) group von Neumann algebras
VN(G) such that Lp(VN(G)) are COLp spaces. Therefore the general OLp

or COLp structure on Lp(M) can not characterize the hyperfiniteness of M.
The aim of this paper is to show that the hyperfiniteness of a von Neumann

algebra M can be fully characterized by the rigid OLp structure (respectively,
the matrix orderly rigid OLp structure) on its non-commutative Lp-spaces. We
can state our main results in the following theorem.

Theorem 1.1. Let M be a von Neumann algebra. Then the following are
equivalent:

(i) M is hyperfinite;

(ii) for some (equivalently for all) 1 < p < ∞, Lp(M) is a semidiscrete
non-commutative Lp-space;

(iii) for some (equivalently for all) 1 < p < ∞, Lp(M) has the CPAP;

(iv) for some (equivalently for all) 1 < p < ∞, Lp(M) is a matrix orderly
rigid OLp space (or a matrix orderly rigid COLp space);

(v) for some (equivalently for all) 1 < p �= 2 < ∞, Lp(M) is a rigid OLp

space (or a rigid COLp space).
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The paper is organized as follows. We first briefly recall the Haagerup’s
construction of non-commutative Lp-spaces in §2 and recall matrix order on
Lp(M) in §3. Schmitt has shown in [38] that a von Neumann algebra M is
hyperfinite if and only if Lp(M) is semidiscrete (1 ≤ p < ∞). We show
in Theorem 3.2 that this is also equivalent to Lp(M) having the completely
positive approximation property. In §4, we recall Kosaki’s construction of non-
commutative Lp-spaces and recall Pisier’s construction of canonical operator
space matrix norm on these spaces. We show in Theorem 5.2 that rigid OLp

structure and matrix orderly rigid OLp structure are equivalent on Lp(M)

spaces. Therefore, we can conclude that these rigid structures on Lp(M) imply
the semidiscreteness ofLp(M) and thus the hyperfiniteness of M. We also give
a direct proof in Theorem 5.5 that if Lp(M) is a rigid OLp space for some
1 < p < ∞, then L1(M) is a rigid OL1 space and thus M is hyperfinite.
In §6 and §7, we show that if M is a hyperfinite von Neumann algebra then
Lp(M) is a matrix orderly rigid COLp space. This is quite easy and known in
the semifinite case (see, for instance, [38, Chapter 4] or [35, Chapter 3]). The
main difficulty is the type III case. The key point is that we need to use the
direct integral theory to obtain an increasing sequence of normal conditional
expectations from M onto type I von Neumann subalgebras.

To end this section, we note that if M is a hyperfinite von Neumann algebra
then for any 1 < p < ∞ we can conclude from Theorem 1.1 that Lp(M) is an
OLp,λ space for all λ > 1, i.e. we have OLp(Lp(M)) = 1. We conjecture that
the converse is still true, i.e. if OLp(Lp(M)) = 1 for some 1 < p �= 2 < ∞,
then M must be hyperfinite. Unfortunately, we can not prove this conjecture
at this moment. The difficulty is that we do not have a good representation
theorem for general completely bounded maps on Lp(M) spaces.

2. Non-commutative Lp-spaces

If M is a semifinite von Neumann algebra, then there exists a normal faithful
semifinite trace τ on M. In this case, the non-commutative Lp-space Lp(M)

is defined to be the norm closure

(2.1) Lp(M, τ ) = {x ∈ M : τ(|x|p) < ∞}‖·‖p

with norm given by

‖x‖p = (
τ
(
(x∗x)

p

2
)) 1

p .

For any general (not necessarily semifinite) von Neumann algebra M (acting
on a Hilbert spaceH ), we fix a normal faithful semifinite weightϕ on M and let
σ

ϕ
t denote the one-parameter modular automorphism group associated with ϕ.
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We consider the crossed product M�σϕ R, which is a von Neumann subalgebra
of B(L2(R, H)) generated by

π(x)(ξ(t)) = σ
ϕ
−t (x)(ξ(t)) and λ(s)(ξ(t)) = ξ(t − s)

for t ∈ R and ξ ∈ L2(R, H). Let W(s) be the unitary operator on L2(R, H)

defined by
W(s)(ξ(t)) = e−ist ξ(t).

The dual action θ on M �σϕ R is given by

θs(x) = W(s)xW(s)∗, x ∈ M �σϕ R.

With this dual action, we have

π(M) = {x ∈ M �σϕ R : θs(x) = x for all s ∈ R},
i.e. π(M) is the fixed point subalgebra of M �σϕ R under θ . We identify M

with π(M).
We may define a normal faithful operator valued weight

T (x) =
∫

R
θs(x) ds

from (M �σϕ R)+ into the extended positive part M̂+ of M (see [14] and [15]).
Since any normal weight ψ on M extends to a normal weight ψ̂ on M̂+, we
can obtain a normal weight

ψ̃ = ψ̂ ◦ T

on (M �σϕ R)+, which satisfies

(2.2) ψ̃ ◦ θs = ψ̃, s ∈ R.

Actually , this gives a bijection ψ ↔ ψ̃ between the normal semifinite weights
ψ on M and the normal semifinite weights ψ̃ on M �σϕ R satisfying (2.2).
Since the given normal weight ϕ is faithful on M, its dual weight ϕ̃ is also
faithful on M �σϕ R. It is known (see, for instance, [15, Lemma 5.2]) that there
exists a unique normal faithful semifinite trace τ on M �σϕ R characterized
by the Connes’ cocycle

(Dϕ̃ : Dτ)t = λt

and τ satisfies
τ(θs(x)) = e−sτ (x)
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for all (x ∈ M �σϕ R)+. Moreover, Pedersen and Takesaki [33] proved that
there exists an invertible positive self-adjoint operatorD onL2(R, H) affiliated
with M �σϕ R, the Radon-Nikodym derivative of ϕ̃ with respect to τ , such that

Dit = (Dϕ̃ : Dτ)t = λt

and

(2.3) ϕ̃(x) = τ
(
D

1
2 xD

1
2
) = τ(Dx)

for all x ∈ (M �σϕ R)+. We also call D in (2.3) the density operator associated
with ϕ, which has support supp(D) = 1 since ϕ is faithful on M. We refer the
reader to Terp [44] and Strǎtilǎ [40] for more details.

The HaagerupLp-spaceLp(M, ϕ) associated with the normal faithful semi-
finite weight ϕ is defined to be the space of all (unbounded) τ -measurable
operators affiliated with M �σϕ R such that

θs(x) = e
− s

p x

for all s ∈ R.
It is known from Terp [44, Chapter II] that there is a one-to-one corres-

pondence between ψ ∈ M+∗ and τ -measurable positive self-adjoint operators
hψ = (Dψ̃ : Dτ) in L1(M, ϕ)+ and we can define a trace linear functional
Tr : L1(M, ϕ) → C by

Tr(hψ) = ψ(1).

For any x ∈ Lp(M, ϕ), we have the polar decomposition x = u|x|, where u

is a partial isometry in M and |x| a positive self-adjoint operator in Lp(M, ϕ).
In this case |x|p is a positive element in L1(M, ϕ). Using this polar decom-
position, we define a Banach space norm on Lp(M, ϕ) by

‖x‖p = (Tr(|x|p)) 1
p .

With this norm, it is easy to see that L1(M, ϕ) is isometrically isomorphic to
M∗. We note that the non-commutative Lp-space constructed above is actually
independent of the choice of normal faithful semifinite weight on M up to
isometry. Therefore, we will simply write Lp(M) if there is no confusion.

The usual Hölder inequality holds for non-commutative Lp-spaces. If 1
r

=
1
p

+ 1
q

, then yz ∈ Lr(M) for any y ∈ Lp(M) and z ∈ Lq(M) and

‖yz‖r ≤ ‖y‖p‖z‖q .

In particular, if p′ denotes the conjugate index of p we have

| Tr(yz)| ≤ ‖yz‖1 ≤ ‖y‖p‖z‖p′
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for all y ∈ Lp(M) and z ∈ Lp′(M). From this we can deduce the isometric
isomorphism Lp(M)∗ = Lp′(M) for 1 ≤ p < ∞ given by the trace duality

〈x, y〉 = Tr(xy) = Tr(yx)

for all x ∈ Lp(M) and y ∈ Lp′(M).
It should be pointed out that Haagerup Lp-spaces have a drawback that

for p �= q, Lp(M) and Lq(M) have only trivial intersection, i.e. Lp(M) ∩
Lq(M) = {0}. Therefore, if M is a semifinite von Neumann algebra, we
would like to consider the original (classical) definition of non-commutative
Lp-spaces Lp(M, τ ) defined in (2.1), which is isometrically isomorphic to the
Haagerup Lp-space Lp(M) under the isometric isomorphism

Lp(M) ∼= Lp(M, τ ) ⊗ exp((·)/p).

3. Semidiscreteness and CPAP of Lp(M)

Let M be a von Neumann algebra. For each n ∈ N, the space Mn(M) =
Mn ⊗̄ M of all n × n matrices with entries in M is again a von Neumann
algebra and thus there exists a canonical order on Mn(M) determined by the
cone Mn(M)+ of all positive operators in Mn(M). Then M, together with
these cones {Mn(M)+}, is a matricially ordered space (in the sense of Choi
and Effros [4]). Any linear map u : N → M induces a linear map

idMn
⊗ u : [xij ] ∈ Mn(N ) 	→ [u(xij )] ∈ Mn(M).

A map u is called completely positive if each idMn
⊗ u is positive, i.e. idMn

⊗
u maps the positive cone Mn(N )+ into the positive cone Mn(M)+. A von
Neumann algebra M is called semidiscrete if there exist contractive normal
completely positive maps uα : M → Mn(α) and vα : Mn(α) → M such that
vα ◦ uα → idM in the point-weak∗ topology. Considering a slightly weaker
condition, we say that M has the completely positive approximation property
(CPAP) if there exists a net of contractive normal completely positive finite
rank maps uα : M → M such that uα → idM in the point-weak∗ topology.
It is known (see Effros and Lance [10]) that a von Neumann algebra M is
semidiscrete if and only if it has the CPAP. It is also well-known (due to the
deep work of Connes [7]) that a von Neumann M is semidiscrete if and only
if it is hyperfinite.

Semidiscreteness for non-commutative Lp-spaces has been studied by
Schmitt [38]. He proved that a von Neumann algebra M is hyperfinite if and
only if for any 1 ≤ p < ∞, Lp(M) is a semidiscrete Lp-space. Our goal of
this section is to show that this is also equivalent to the CPAP of Lp(M). Let
us first get ready by recalling some necessary notions and definitions.
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Let trn denote the canonical trace on Mn. If ϕ is a normal faithful semifinite
weight on M, then trn⊗ ϕ is a normal faithful semifinite weight on Mn ⊗̄ M.
The non-commutative Lp-space Lp(Mn ⊗̄ M) is linearly isomorphic to the
(vector) space Mn(Lp(M)) of all n×n matrices with entries in Lp(M). In this
case, we have a canonical Banach space norm on Lp(Mn ⊗̄ M) induced by

‖x‖Lp(Mn⊗̄M) = (
(trn ⊗ Tr)(|x|p)) 1

p

for all x ∈ Lp(Mn ⊗̄ M). For each n ∈ N, there is a canonical order on
Lp(Mn ⊗̄ M) given by the positive cone Lp(Mn ⊗̄ M)+ of all positive self-
adjoint operators in Lp(Mn ⊗̄ M). With this matrix order {Lp(Mn ⊗̄ M)+},
Lp(M) is a matricially ordered space. Like in the von Neumann algebra case,
a map u : Lp(N ) → Lq(M) is called completely positive if each idMn

⊗ u

maps the positive cone Lp(Mn ⊗̄ N )+ into the positive cone Lq(Mn ⊗̄ M)+.
We note that by a standard argument, it can be shown that every positive and
thus completely positive map on a non-commutative Lp-space is automatically
bounded.

For 1 ≤ p < ∞ we let Sn
p = Lp(Mn) denote the space of all n × n

matrices equipped with the Schatten p-norm. It is clear that for any 1 ≤ p <

∞, Sn
p has a canonical matrix order, which coincides with the matrix order

on Mn. For 1 ≤ p < ∞, a non-commutative Lp-space Lp(M) is called
semidiscrete if there exist completely positive maps uα : Lp(M) → Sn(α)

p and
vα : Sn(α)

p → Lp(M) such that vα ◦uα → idLp(M) in the point-norm topology.
We can also define completely positive approximation property (CPAP) for
non-commutative Lp-spaces by assuming that there exists a net of completely
positive finite rank maps uα : Lp(M) → Lp(M) such that uα → idLp(M) in
the point-norm topology. In these definitions, the completely positive maps
under consideration are not assumed to be uniformly bounded.

Theorem 3.1. Let N be a σ -finite von Neumann algebra with a normal
faithful state ϕ and let D ∈ L1(N ) denote the density operator of ϕ. If 1 ≤ p,
q < ∞ and u : Lp(N ) → Lq(M) is a completely positive map, then there
exists a normal completely positive contraction v : N → M such that

u(D
1

2p xD
1

2p ) = u(D
1
p )

1
2 v(x)u(D

1
p )

1
2

for all x ∈ N .
If u is of finite rank, then v is also of finite rank with rank(v) = rank(u).

Proof. Let us first assume that supp
(
u(D

1
p )

) = 1M . Given x ∈ N +,

u(D
1

2p xD
1

2p ) is a positive element in Lq(M)+ such that

0 ≤ u(D
1

2p xD
1

2p ) ≤ ‖x‖u(D 1
p ).
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It is known from [39, Lemma 2.2] that there exists a unique positive element
v(x) ∈ M �σϕ R such that ‖v(x)‖ ≤ ‖x‖ and

u(D
1

2p xD
1

2p ) = u(D
1
p )

1
2 v(x)u(D

1
p )

1
2 .

Since u(D
1

2p xD
1

2p ) ≤ ‖x‖u(D 1
p ) we conclude that v is a well-defined map

from the positive cone of N into the positive cone of M �σϕ R such that
‖v(x)‖ ≤ ‖x‖. Since for any s ∈ R,

e
− s

q u(D
1
p )

1
2 v(x)u(D

1
p )

1
2 = e

− s
q u(D

1
2p xD

1
2p )

= θs
(
u(D

1
2p xD

1
2p )

)
= θs

(
u(D

1
p )

1
2 v(x)u(D

1
p )

1
2
)

= e
− s

q u(D
1
p )

1
2 θs(v(x))u(D

1
p )

1
2 ,

we deduce that θs(v(x)) = v(x) and thus v(x) ∈ M+.
Now if x is a self-adjoint element in Ns.a., there exist positive elements x1

and x2 in N + such that x = x1 − x2. We define

v(x) = v(x1) − v(x2).

If x = x ′
1 − x ′

2 for some other x ′
i ∈ N+, we have

u(D
1
p )

1
2 (v(x ′

1) − v(x ′
2))u(D

1
p )

1
2 = u(D

1
2p (x ′

1 − x ′
2)D

1
2p )

= u(D
1

2p xD
1

2p ) = u(D
1

2p (x1 − x2)D
1

2p )

= u(D
1
p )

1
2 (v(x1) − v(x2))u(D

1
p )

1
2 ;

whence
v(x ′

1) − v(x ′
2) = v(x1) − v(x2).

Therefore v is a well-defined map from Ns.a. into Ms.a.. In particular, if we
consider the orthogonal decomposition x = x+ − x−, we obtain

‖v(x)‖ = ‖v(x+) − v(x−)‖ = sup{|〈v(x+)ξ |ξ〉 − 〈v(x−)ξ |ξ〉| : ‖ξ‖ ≤ 1}
≤ max{‖v(x+)‖, ‖v(x−)‖} ≤ ‖x‖.

Therefore, v is a real contractive linear map from Ns.a to Ms.a.. Furthermore,
we extend v to a complex linear map

v(x + iy) = v(x) + iv(y)
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from N into M. By the complete positivity of u, we conclude that v is a
completely positive contraction such that

u(D
1

2p xD
1

2p ) = u(D
1
p )

1
2 v(x)u(D

1
p )

1
2 .

Since 1 ≤ p, q < ∞, we may consider u∗ : Lq ′(M) → Lp′(N ). We define

ξ = u(D
1
p )q and consider the densely defined map w : L1(M) → L1(N ) as

follows
w(ξ

1
2 yξ

1
2 ) = D

1
2p u∗(ξ

1
2q′ yξ

1
2q′ )D

1
2p , y ∈ M.

Note that
Tr(w(ξ

1
2 yξ

1
2 )x) = Tr(D

1
2p u∗(ξ

1
2q′ yξ

1
2q′ )D

1
2p x)

= Tr(u∗(ξ
1

2q′ yξ
1

2q′ )D
1

2p xD
1

2p )

= Tr(ξ
1

2q′ yξ
1

2q′ u(D
1

2p xD
1

2p ))

= Tr(ξ
1

2q′ yξ
1

2q′ ξ
1

2q v(x)ξ
1

2q )

= Tr(ξ
1
2 yξ

1
2 v(x)).

This implies
| Tr(w(ξ

1
2 yξ

1
2 )x)| ≤ ‖ξ 1

2 yξ
1
2 ‖‖v‖‖x‖.

Therefore w extends to a contraction from L1(M) into L1(N ) and it is clear
that w∗ = v. Hence v is indeed normal.

Assume that u is a finite rank map. Since

J
D

1
2p

: x ∈ N 	→ D
1

2p xD
1

2p ∈ Lp(N )

is a contractive map with dense range in Lp(N ), we can easily conclude that

rank(u) = rank(u ◦ J
D

1
2p
).

Moreover, since we assume that supp(u(D
1
p )) = 1M ,

J
u(D

1
p )

1
2

: y ∈ M 	→ u(D
1
p )

1
2 yu(D

1
p )

1
2

is an injective inclusion from M into Lp(M). Then it is easy to show that

rank(v) = rank(J
u(D

1
p )

1
2

◦ v) = rank(u ◦ J
D

1
2p
) = rank(u).

In general we let e be the support projection ofu(D
1
p ). Then e is a projection

in M and for any x ∈ N +, we have

u(D
1

2p xD
1

2p ) ≤ ‖x‖u(D 1
p ).
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This implies
(1 − e)u(D

1
2p xD

1
2p )(1 − e) = 0.

Since u(D
1

2p xD
1

2p ) is positive, we also have

eu(D
1

2p xD
1

2p )(1 − e) = 0 = (1 − e)u(D
1

2p xD
1

2p )e.

By continuity, we deduce that

u(x) = eu(x)e

for all x ∈ Lp(N ). So we actually have u : Lp(N ) → eLq(M)e = Lq(eMe),
and hence we can repeat the above argument by replacing M by eMe.

We note that if q = ∞ and u : Lp(N ) → M is a completely positive map,
then we can obtain a completely positive map v : N → M given by

v(x) = u(D
1

2p xD
1

2p ).

But in this case, we can not claim that v is a normal map.
The following improves a result of Schmitt [38], who showed the equival-

ence between (i) and (ii) below. Note that in the case p = 1, this is due to
Effros and Lance [10].

Theorem 3.2. Let M be a von Neumann algebra and let 1 ≤ p < ∞.
Then the following are equivalent:

(i) M is semidiscrete;

(ii) Lp(M) is semidiscrete;

(iii) Lp(M) has the CPAP.

Proof. We first recall the following elementary fact that given an arbitrary
von Neumann algebra M, we can always find a normal faithful semifinite
weight ϕ on M and an increasing net of projections ei → 1M in M such that
for every i, σϕ

t (ei) = ei for all t ∈ R and such that the reduced von Neumann
subalgebra eiMei is σ -finite. In this case, we can completely (orderly) identify
Lp(eiMei) with a subspace of Lp(M) and there exists a completely positive
projection from Lp(M) onto Lp(eiMei) (given by x 	→ eixei). Moreover
the union of these spaces is norm dense in Lp(M). Then M and Lp(M) are
semidiscrete if and only if eiMei and Lp(eiMei) are semidiscrete for each i.
Therefore, it suffices to prove Theorem 3.2 in the σ -finite case, and so in the
following we assume that M is σ -finite and equipped with a normal faithful
state ϕ.
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(i) ⇒ (ii) This was proved by Schmitt in his thesis [38]. According to our
knowledge, this result has not been published in print. For the completeness
and the convenience of the reader, we include his argument here.

Given positive elements x1, . . . , xk ∈ Lp(M)+ with ‖xi‖ ≤ 1, there exists
a positive operator x̃ ∈ Lp(M)+ such that supp(x̃) = 1 and 0 ≤ ∑k

i=1 xi ≤ x̃.
It follows from [39, Lemma 2.2] that there exists ri ∈ M such that 0 ≤ ri ≤ 1
and xi = x̃

1
2 ri x̃

1
2 . For any positive elements y1, . . . , yl ∈ Lp′(M)+ and ε > 0,

we have x̃
1
2 yj x̃

1
2 ∈ L1(M)+. Since M is semidiscrete, there exist normal

completely positive maps ũ : M → Mn and ṽ : Mn → M such that

|〈ṽ ◦ ũ(ri) − ri, x̃
1
2 yj x̃

1
2 〉| < ε.

Since Mn and Sn
p have the same matrix order structure we can regard v(·) =

x̃
1
2 ṽ(·)x̃ 1

2 as a completely positive map from Sn
p into Lp(M).

The map ũ : M → Mn can be identified with a positive element [ũij ] in
L1(Mn ⊗̄ M) under the trace duality

〈[ũij ], [rij ]〉 =
n∑

i,j=1

Tr(ũij rji)

for all [rij ] ∈ Mn(M). Since supp(x̃) = 1, x̃
1
2 Lp′(M)x̃

1
2 is norm dense in

L1(M) and its matrix space

(x̃
1
2 ⊕ · · · ⊕ x̃

1
2 )Lp′(Mn⊗̄M)(x̃

1
2 ⊕ · · · ⊕ x̃

1
2 ) = {[x̃ 1

2 zij x̃
1
2 ] : zij ∈ Lp′(M)}

(respectively, its positive cone) is norm dense in L1(Mn ⊗̄ M) (respectively,
norm dense in its positive cone). Then we can choose a positive element z =
[zij ] in Lp′(Mn ⊗̄ M) such that

(3.1)
∥∥[x̃

1
2 zij x̃

1
2 − ũij ]

∥∥
L1(Mn⊗̄M)

<
ε

K
,

where K = max{‖ṽ‖ ‖x̃ 1
2 yj x̃

1
2 ‖}. Since [zij ] is a positive element in Lp′(Mn ⊗̄

M) it induces a completely positive map u from Lp(M) into Sn
p by letting

u(x) = [Tr(zij x)]

for x ∈ Lp(M). In particular, if we restrict u to x̃
1
2 Mx̃

1
2 , we have

(3.2) u(x̃
1
2 rx̃

1
2 ) = [Tr(zij (x̃

1
2 rx̃

1
2 ))] = [Tr((x̃

1
2 zij x̃

1
2 )r)].
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It follows from (3.1) and (3.2) that

|〈v ◦ u(xi) − xi, yj 〉| = |〈v ◦ u(x̃
1
2 ri x̃

1
2 ) − x̃

1
2 ri x̃

1
2 , yj 〉|

= |〈ṽ ◦ u(x̃
1
2 ri x̃

1
2 ) − ri, x̃

1
2 yj x̃

1
2 〉|

≤ |〈ṽ ◦ ũ(ri) − ri, x̃
1
2 yj x̃

1
2 〉| + ε < 2ε.

This shows that we can find completely positive finite rank mapsuα:Lp(M) →
Sn(α) and vα : Sn(α) → Lp(M) such that vα ◦ uα → idLp(M) in the point-weak
topology. By a standard convexity argument, we can find such maps converging
to idLp(M) in the point-norm topology. This shows that Lp(M) is semidiscrete.

(ii) ⇒ (iii) This is obvious.
(iii) ⇒ (i) Let uα : Lp(M) → Lp(M) be a net of completely positive finite

rank maps such that uα → idLp(M) in the point-norm topology. It is known
from Theorem 3.1 that for each α there exists a normal completely positive
finite rank contractions vα : M → M such that

uα(D
1

2p xD
1

2p ) = uα(D
1
p )

1
2 vα(x)uα(D

1
p )

1
2 .

We claim that vα → idM in the point-weak∗ topology. To see this we note that

D
1

2p Lp′(M)D
1

2p is norm dense in L1(M). We also note that since D
1
p is an

element in Lp(M) we have uα(D
1
p ) → D

1
p in Lp(M) and thus uα(D

1
p )

1
2 →

D
1

2p in L2p(M). Then for any x ∈ M and y ∈ Lp′(M), we have

D
1

2p yD
1

2p = lim uα(D
1
p )

1
2 yuα(D

1
p )

1
2 .

It is routine to verify that

|〈vα(x) − x,D
1

2p yD
1

2p 〉| → 0.

This shows that vα → idM in the point-weak∗ topology. Therefore M is a
semidiscrete von Neumann algebra.

4. Canonical operator space structure on Lp(M)

As we have discussed in the previous section, for each n ∈ N, there is a
canonical norm on the non-commutative Lp-space Lp(Mn ⊗̄ M). However,
this family of norms {‖ · ‖Lp(Mn⊗̄M)} on the matrix spaces over Lp(M) only
satisfies the Lp-matricial condition

‖x ⊕ y‖Lp(Mm+n⊗̄M) = (‖x‖p

Lp(Mm⊗̄M)
+ ‖x‖p

Lp(Mn⊗̄M)
)

1
p
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for all x ∈ Lp(Mm ⊗̄ M), y ∈ Lp(Mn ⊗̄ M). Therefore, it is not an oper-
ator space matrix norm on Lp(M). In [35], Pisier succeeded in constructing
a canonical operator space matrix norm on non-commutative Lp-spaces by
using the complex interpolation method. In the following let us first recall this
construction for σ -finite von Neumann algebras, which on Banach space level
is due to Kosaki [28]. The construction for general von Neumann algebras can
be obtained similarly by applying Terp’s contruction developed in [45].

Let M be a σ -finite von Neumann algebra with a normal faithful posi-
tive linear functional (or state) ϕ. We may obtain a standard representation
(Hϕ, ξϕ, Jϕ, P ) of M induced by ϕ, where ξϕ = 1ϕ is a cyclic and separating
vector for M such that ϕ(x) = 〈xξϕ | ξϕ〉 for all x ∈ M and Jϕ is the conjugate

linear isomorphism on Hϕ obtained from the polar decomposition Sϕ = Jϕ>
1
2
ϕ .

The map Sϕ is the closure of the involution

xξϕ 	→ x∗ξϕ.

The operator >ϕ = S∗
ϕSϕ is a self-adjoint positive unbounded operator for

non-tracial ϕ. If ϕ is tracial, then >ϕ = idHϕ
. We have

(4.1) Jϕ>
1
2
ϕ = >

− 1
2

ϕ Jϕ, >ϕξϕ = ξϕ and Jϕξϕ = ξϕ,

and a one-parameter ∗-automorphism group σ
ϕ
t on M given by

σ
ϕ
t (x) = >it

ϕ x>
−it
ϕ

for all t ∈ R. Kosaki showed in [28, Theorem 2.5] that for every x ∈ M, the
map

t ∈ R 	→ σ
ϕ
t (x) · ϕ = ϕ( · σϕ

t (x)) ∈ M∗

extends to a bounded and continuous M∗-valued function

(4.2) fx(z) =
{
g(z) = 〈 ·>iz

ϕ xξϕ | ξϕ〉 if − 1
2 ≤ Im z ≤ 0

h(z) = 〈 · ξϕ | >1+iz̄
ϕ x∗ξϕ〉 if −1 ≤ Im z ≤ − 1

2

on the strip {z ∈ C : −1 ≤ Im z ≤ 0}, which is analytic in the interior of the
strip and satisfies

fx(−i + t) = ϕ · σϕ
t (x) = ϕ(σ

ϕ
t (x) · ).

Therefore, for any η ∈ [0, 1], we obtain a bounded injective embedding

(4.3) I ϕ
η : x ∈ M 	→ fx(−iη) ∈ M∗.
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With this notation, the left embedding x ∈ M 	→ x · ϕ = ϕ( · x) ∈ M∗ and
the right embedding x ∈ M 	→ ϕ · x = ϕ(x · ) ∈ M∗ are given by I

ϕ
0 and I

ϕ
1 ,

respectively.
For any 1 ≤ p ≤ ∞ and η ∈ [0, 1], we let

Lp(M,I ϕ
η ) = (I ϕ

η (M),M∗) 1
p

denote the complex interpolation space associated with the embedding I ϕ
η . Ko-

saki [28] proved that these spaces Lp(M,I ϕ
η ) are all isometric to the Haagerup

Lp-space Lp(M).
If η = 1

2 , we obtain from (4.1) and (4.2) that

I
ϕ
1
2
(x)(y) = 〈> 1

2
ϕ xξϕ | y∗ξϕ〉 = 〈> 1

2
ϕ (>

− 1
2

ϕ Jϕ)x
∗ξϕ | y∗ξϕ〉

= 〈Jϕx
∗ξϕ | y∗ξϕ〉 = 〈Jϕy

∗ξϕ | x∗ξϕ〉 = 〈xJϕy
∗Jϕξϕ | ξϕ〉

for all x, y ∈ M. In this case, we can regard I
ϕ
1
2

as a map

(4.4) I
ϕ
1
2

: x ∈ M 	→ I
ϕ
1
2
(x) ∈ (M ′)∗,

where M ′ denotes the commutant of M. This is of particular interest since
we may regard M ′ as a concrete representation of Mop on Hϕ with the ∗-
isomorphism given by

π : xop ∈ Mop 	→ Jϕx
∗Jϕ ∈ M ′.

The operator predual (M ′)∗ of M ′ can be (completely isometrically) identified
with the operator predual (Mop)∗ of Mop, where the latter space can be iden-
tified with M∗ as a Banach space but is equipped with the opposite operator
space matrix norm ‖[ωop

ij ]‖ = ‖[ωji]‖,
i.e. the matrix norm on Mn((M

op)∗) is given by the isometric identification

Mn ⊗̌ (Mop)∗ = Mop
n ⊗̌ M∗.

Then we can regard (4.4) as a canonical embedding

I
ϕ
1
2

: M → (M∗)op = (Mop)∗.

With this embedding, we can define a canonical operator space matrix norm
on Lp(M) by the complex interpolation

(4.5) Mn(Lp(M,I
ϕ
1
2
)) = ((Mn(I

ϕ
1
2
(M))),Mn(M

op
∗ ))) 1

p
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(see Pisier [35] and [36]).
The reason we should consider the opposite space M

op
∗ in (4.5) is because

the canonical duality between Mn and its operator dual Tn = M∗
n is given by

the parallel duality

〈x, ω〉 =
n∑

i,j=1

〈xij , ωij 〉.

With this duality, we obtain the complete isometry

(Mn ⊗̄ M)∗ = Tn ⊗̂ M∗

(see [12]). However if we wish to use the trace duality

〈x, ω〉trn =
n∑

i,j=1

〈xij , ωji〉,

(which corresponds to the parallel duality between Mn ⊗ M and T
op
n ⊗ M∗)

we obtain the complete isometries

(Mn ⊗̄ M)trn∗ = T op
n ⊗̂ M∗.

Therefore, it is more appropriate to define L1(M, ϕ) = M
op
∗ in the operator

space setting. With this notation, we have the complete isometries

L1(Mn⊗̄M, trn ⊗ϕ) = (Tn⊗̂M∗)op = T op
n ⊗̂Mop

∗ = L1(Mn, trn)⊗̂L1(M, ϕ).

Let Rn and Cn denote the n-dimensional row and column Hilbert spaces,
respectively. For 1 < p < ∞, Pisier [35] showed that for every operator space
V , there is a canonical non-commutative Sn

p integral defined by the Haagerup
tensor product

Sn
p[V ] = (Cn, Rn) 1

p
⊗h V ⊗h (Rn, Cn) 1

p
.

Then for each n ∈ N, we claim the following isometric identification

(4.6) Sn
p[Lp(M,I

ϕ
1
2
)] = Lp(Mn ⊗̄ M,I

trn ⊗ϕ
1
2

).

Indeed, by Pisier [34, Theorem 2.3] and the preceding discussion we obtain
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the isometries

Sn
p[Lp(M,I

ϕ
1
2
)] = (Cn, Rn) 1

p
⊗h (I

ϕ
1
2
(M), (Mop)∗) 1

p
⊗h (Rn, Cn) 1

p

= (Cn ⊗h I
ϕ
1
2
(M) ⊗h Rn, Rn ⊗h (Mop)∗ ⊗h Cn) 1

p

= ((idMn
⊗ I

ϕ
1
2
)(Mn ⊗̄ M), Tn ⊗̂ Mop

∗ ) 1
p

= (I
trn⊗ϕ
1
2

(Mn ⊗̄ M), T op
n ⊗̂ Mop

∗ ) 1
p

= Lp(Mn ⊗̄ M,I
trn⊗ϕ
1
2

).

On the other hand, Pisier proved in [35] that the operator space matrix norms
on Mn(Lp(M,I

ϕ
1
2
)) can be recovered from the norms on Sn

p[Lp(M,I
ϕ
1
2
)], i.e.

for every x ∈ Mn(Lp(M,I
ϕ
1
2
)) we have

(4.7) ‖x‖Mn(Lp(M,I
ϕ
1
2
)) = sup{‖αxβ‖Lp(Mn⊗̄M)) : ‖α‖Sn

2p
, ‖β‖Sn

2p
≤ 1}.

Moreover, a linear map T : V → W between operator spaces V and W

is a complete contraction (respectively, a complete isometry, or a complete
quotient map) if and only if for each n ∈ N, the induced map

idSn
p
⊗ T : Sn

p[V ] → Sn
p[W ]

is a contraction (respectively, an isometry or a quotient map). Therefore, we
only need to work with the Haagerup non-commutativeLp-spacesLp(Mn⊗̄M)

in the rest of this paper.
In the above construction, we have used the symmetric embedding I

ϕ
1
2

from

M into L1(M). It is worthy to note that we can also consider the more general
embeddings I ϕ

η given in (4.3). In virtue of (4.6) (and its analogue for I ϕ
η )

and Kosaki [28], we see that the resulting non-commutative Lp-spaces are all
completely isometric (by completely positive isometries). Similarly, all these
non-commutative Lp-spaces are independent of ϕ up to complete isometry.

Finally for each non-σ -finite von Neumann algebra M, we can define a ca-
nonical operator space structure on Lp(M) by using the complex interpolation
technique developed by Terp [45]. We can also use equation (4.7) to determine
this canonical operator space matrix norm on Lp(M).

5. Rigid OLp structure

Our goal of this section is to show in Theorem 5.2 that the rigid OLp structure
and the matrix orderly rigid OLp structure are equivalent on non-commutative
Lp-spaces. A major tool needed is a generalization of Yeadon’s theorem for
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completely isometric inclusions between non-commutative Lp-spaces. Let us
first recall that the structure of isometric isomorphisms between classical
Lp-spaces has been studied by Banach [2] and Lamperti [29]. Broise [9],
Russo [37], Arazy [1], Katavolos [24], [25], [26], and Tam [43] developed
a corresponding structure theory for isometric isomorphisms between non-
commutative Lp-spaces. In 1981, Yeadon obtained the following very satis-
factory result for isometric inclusions between non-commutative Lp-spaces
associated with semifinite von Neumann algebras.

Theorem 5.1 (Yeadon [46, Theorem 2]). Let N and M be semifinite von
Neumann algebras with normal faithful semifinite traces ϕN and ϕM , respect-
ively. For 1 ≤ p �= 2 < ∞, a linear map

T : Lp(N , ϕN ) → Lp(M, ϕM)

is an isometric injection if and only if there exist a weak∗ continuous ∗-Jordan
isomorphism J : N → J (N ) ⊆ M, a positive operator B ∈ Lp(M, ϕM)

commuting with all J (x) with x ∈ N , and a partial isometry W ∈ M with
W ∗W = J (1) = supp(B) such that

(5.1) T (x) = WBJ(x)

for all x ∈ N
⋂

Lp(N , ϕN ) and

(5.2) ϕN (x) = ϕM(BpJ (x))

for all x ∈ N +.

Slightly modifying Yeadon’s argument we proved in [21] that Yeadon’s
result still holds if N is finite (or semifinite) and M is an arbitrary von Neumann
algebra. In this general case, we only need to replace (5.2) by

(5.3) ϕN (x) = TrM(BpJ (x)),

where TrM is the distinguished tracial functional on L1(M). It was also shown
in [21] that if T is a completely isometric injection, then J in (5.1) is actually
a normal injective ∗-isomorphism from N into M. In this case, it is easy to
see that

(5.4) S(x) = W ∗T (x) = B
1
2 J (x)B

1
2

is a completely positive and completely isometric injection from Lp(N ) into
Lp(M). Using these facts, we can obtain the following result.
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Theorem 5.2. Let M be a von Neumann algebra and let 1 ≤ p �= 2 < ∞.
Then the rigid OLp structure is equivalent to the matrix orderly rigid OLp

structure on Lp(M).

Proof. We need to prove that for 1 ≤ p �= 2 < ∞ the rigid OLp structure
implies the matrix orderly rigid OLp structure on Lp(M). Assume that we are
given positive operators y1, . . . , yn ∈ Lp(M)+. Since Lp(M) is a rigid OLp

space, for any εk > 0 (εk → 0 as k → 0), there exist a finite dimensional von
Neumann algebra Nk and a completely isometric injection T k : Lp(Nk) →
Lp(M) such that

dist(T k(Lp(Nk)), yj ) < εk

for all j = 1, . . . , n, i.e. there exist xk
1 , . . . , x

k
n ∈ Lp(Nk) such that

‖T k(xk
j ) − yj‖p < εk.

Then each T k has the Yeadon representation

T k = WkBkJk

and as we discussed in (5.4),

Sk = W ∗
k T

k = BkJk

is a completely positive and completely isometric injection from Lp(Nk) into
Lp(M). If we let xk

j = uk
j |xk

j | denote the polar decomposition of xk
j , we claim

that

(5.5) ‖Sk(|xk
j |) − yj‖p → 0

as k → ∞. Therefore we can replace T k by Sk in the approximation. This
shows that the rigid OLp structure implies the matrix orderly rigid OLp struc-
ture on Lp(M).

To prove (5.5), we need to apply a result of Kosaki [27, Theorem 4.4]. Let
us first consider

T k(xk
j ) = WkBkJk(u

k
j |xk

j |) = WkJk(u
k
j )BkJk(|xk

j |).
From the construction of Wk,Bk and Jk in Yeadon [46], it is easy to check
that WkJk(u

k
j ) is a partial isometry in M and BkJk(|xk

j |) a positive operator in
Lp(M) such that

ker WkJk(u
k
j ) = ker Jk(u

k
j ) = ker Jk(|xk

j |) = ker BkJk(|xk
j |).
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Thus by the uniqueness of polar decomposition, we conclude that

|T k(xk
j )| = BkJk(|xk

j |) = Sk(|xk
j |).

Since ‖T (xk
j ) − yj‖p < εk → 0 for each j = 1, . . . , n, by Kosaki [27,

Theorem 4.4],

‖Sk(|xk
j |) − yj‖p = ‖|T (xk

j )| − |yj |‖p → 0.

This proves our claim.

We note that the case p = 1 of Theorem 5.2 has been implicitly proved in
[11].

Corollary 5.3. Let M be a von Neumann algebra. If Lp(M) is a rigid
OLp space for some 1 < p �= 2 < ∞, then M is a hyperfinite von Neumann
algebra.

Proof. It follows from Theorem 5.2 that if Lp(M) is a rigid OLp space,
then it is a matrix orderly rigid OLp space. It was shown in a recent work
of Junge, Ruan and Sherman [21] that the image space of any completely
positive and completely isometric injection from a finite dimensional Lp(N )

space into Lp(M) must be completely positively and completely contractively
complemented in Lp(M). Therefore, Lp(M) is a matrix orderly rigid COLp

space and thus is a semisdiscrete non-commutative Lp-space. It follows from
Theorem 3.2 that M is hyperfinite.

Using the generalized Yeadon representation theorem for completely iso-
metric injections, we may obtain the following lemma.

Lemma 5.4. Let N be a finite von Neumann algebra and M an arbitrary
von Neumann algebra. Let 1 < p �= 2 < ∞. If T : Lp(N ) → Lp(M) is a
completely isometric injection with Yeadon representation T (x) = WBJ(x)

for all x ∈ N , then
δ(x) = WBpJ (x)

extends to a completely isometric injection from L1(N ) into L1(M) and

γ (x) = BpJ (x)

extends to a completely positive and completely isometric injection fromL1(N )

into L1(M).

Proof. It is clear that δ(x) = WBpJ (x) is a well-defined linear map from
L1(N ) into L1(M). Let τN denote the normal faithful tracial state on N and
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let TrM denote the canonical tracial functional on L1(M). It follows from (5.3)
that ‖x‖L1(N ) = τN (|x|) = TrM(BpJ (|x|)) = ‖δ(x)‖L1(M).

This shows that δ preserves the L1-norms and thus extends to an isometric
injection from L1(N ) into L1(M). To show that δ is a complete isometry, for
each n ∈ N we consider the induced map idSn

1
⊗ δ = idSn

1
⊗ WBpJ . Applying

the above argument to this, we see that idSn
1
⊗ δ is an isometric injection from

Sn
1 [L1(N )] = L1(Mn ⊗̄ N ) into Sn

1 [L1(M)] = L1(Mn ⊗̄ M). Therefore, δ is
completely isometric.

Since γ = BpJ = W ∗δ, it is immediate that γ extends to a completely
positive and completely isometric injection from L1(N ) into L1(M).

Using Lemma 5.4, we can give the following direct proof for Corollary 5.3.

Theorem 5.5. Let M be a von Neumann algebra. If Lp(M) is a rigid OLp

space for some 1 < p �= 2 < ∞, then L1(M) is a rigid OL1 space and thus
M is a hyperfinite von Neumann algebra.

Proof. Assume that for some 1 < p �= 2 < ∞, Lp(M) is a rigid OLp

space. Given positive operatorsy1, . . . , yn ∈ L1(M)+, y
1
p

1 , . . . , y
1
p

n are positive
operators in Lp(M)+. Since Lp(M) is a rigid OLp space, for any sequence
of positive numbers εk → 0, there exist a sequence of finite dimensional
von Neumann algebras Nk , completely isometric injections T k = WkBkJk :
Lp(Nk) → Lp(M) and operators xk

j in Nk such that

‖T k(xk
j ) − y

1
p

j ‖p < εk

for all j = 1, . . . , n. Then for each k, it is known from Lemma 5.4 that

γ k = B
p

k Jk : x ∈ L1(Nk) 	→ B
p

k Jk(x) ∈ L1(M)

is a completely positive and completely isometric injection from L1(Nk) into
L1(M) such that

γ k(|xk
j |p) = B

p

k Jk(|xk
j |p) = |T k(xk

j )|p.
It follows from Kosaki [27, Theorem 4.2], in which he proved that the map
y ∈ Lp(M)+ 	→ yp ∈ L1(M) is norm continuous, that

‖γ k(|xk
j |p) − yj‖L1(M) → 0.

This shows that L1(M) is a (matrix orderly) rigid OL1 space. Therefore, M is
hyperfinite by [11].
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6. Conditional expectations

To complete the proof of Theorem 1.1, it remains to show that Lp(M) is a
matrix orderly rigid COLp space for every hyperfinite von Neumann algebra
M and for every 1 < p < ∞. When M is semifinite or a type III factor,
this result is easy to prove and is known to experts. The main difficulty is for
general hyperfinite type III von Neumann algebras. The rest of this paper is es-
sentially devoted to this problem. Our main tool is disintegration. We will need
to integrate a Borel field of increasing normal faithful conditional expectations
onto finite dimensional von Neumann subalgebras. In order to guarantee that
the resulting mappings are still increasing normal faithful conditional expect-
ations, we need some sufficient conditions for a sequence of mappings to be
a sequence of increasing normal faithful conditional expectations. We do this
in this section. We will consider direct integral in the next one.

We recall that if N is a von Neumann subalgebra of M, i.e. a unital weak∗
closed ∗-subalgebra of M, a conditional expectation of M onto N is a map
E : M → N such that E 2 = E and ‖E ‖ ≤ 1. A conditional expectation E is
normal if it is weak∗ continuous, and E is said to be faithful if for any x ∈ M+,
E (x) = 0 implies that x = 0.

Given a normal faithful state ϕ on M, it is known from Takesaki [41]
that a von Neumann subalgebra N of M is invariant with respect to σ

ϕ
t , i.e.

σ
ϕ
t (N ) = N for all t ∈ R, if and only if there is a (unique) normal faithful

conditional expectation E : M → N such that ϕ ◦ E = ϕ (E is then called
ϕ-invariant).

If {Ek} is a sequence of ϕ-invariant normal conditional expectations from
M onto an increasing sequence of von Neumann subalgebras {Nk}, then Ek

are all faithful and satisfy the ascending condition

Ek ◦ Ek+1 = Ek = Ek+1 ◦ Ek, k ∈ N.

In this case we say that {Ek} is an increasing sequence of ϕ-invariant normal
conditional expectations on M.

In the rest of this section we assume that M is a von Neumann algebra with
a separable predual. Then there exists a countable dense subset {fm} in M∗
and the weak∗ topology on the closed unit ball Mb is metrizable. It follows
that there exists a countable weak∗ dense subset {rm} in Mb. Here and in the
sequel, we denote by Xb the closed unit ball of a normed space X. Similarly,
we have a countable weak∗ dense subset {r ′

m} in the closed unit ball M ′
b of the

commutant M ′. Let us fix these dense subsets throughout this section.
Let us assume that M is standardly represented on H = L2(M). Then every

contractive normal linear functional f ∈ M∗ has the form f (x) = ωξ,η(x) =
〈xξ |η〉 for some contractive vectors ξ, η ∈ H . In this case, every finite rank
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normal map E : M → B(H) can be written as

E =
n∑

i=1

ωξi,ηi
⊗ xi

for some ξi, ηi ∈ H and xi ∈ B(H). If E is contractive, then we may choose
‖ξi‖, ‖ηi‖ ≤ 1 and ‖xi‖ ≤ 1. In the following, we discuss the conditions under
which E is a normal conditional expectation from M onto a finite dimensional
von Neumann subalgebra N = E (M) of M.

The map E is unital and contractive if and only if it satisfies

(6.1) E (1) = 1 and ‖E (rm)‖ ≤ 1, ∀ m ∈ N.

It is an idempotent, i.e. E 2 = E if and only if

(6.2) E (E (rm)) = E (rm), ∀ m ∈ N.

The range space E (M) is contained in M if and only if

(6.3) E (rm)r
′
l = r ′

lE (rm), ∀ m, l ∈ N.

To ensure that E (M) is a von Neumann subalgebra of M, we need to assume
that E satisfies

(6.4) E (E (rm)E (rl)) = E (rm)E (rl), ∀ m, l ∈ N.

If we are given a sequence of finite rank normal conditional expectations

Ek =
nk∑
i=1

ωξk
i ,η

k
i
⊗ xk

i ,

then {Ek} is an increasing sequence if and only if

(6.5) Ek ◦ Ek+1(rm) = Ek(rm) = Ek+1 ◦ Ek(rm), ∀ m, k ∈ N.

The following lemmas provide a density condition for the range spaces of
such an increasing sequence of normal conditional expectations. The first one
is well-known. For the convenience of the reader, we include a proof.

Lemma 6.1. Let {Ek} be an increasing sequence of normal faithful condi-
tional expectations from M onto von Neumann subalgebras {Nk}. Then the
∗-subalgebra

⋃
k∈N Nk is weak∗ dense in M if and only if

‖f ◦ Ek − f ‖ → 0, ∀ f ∈ M∗.
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Proof. ⇐ This is obvious.
⇒ Let ψ be a normal faithful state on N1. Then ϕ = ψ ◦ E1 is a normal

faithful state on M such that ϕ ◦Ek = ϕ for all k ∈ N. If we let (πϕ,Hϕ, ξϕ) be
the cyclic representation of M related to ϕ, then M is standard on Hϕ and ξϕ
is a separating and cyclic vector of M. In this case, every contractive normal
linear functional f on M has the form f = ωξ,η for some contractive vectors ξ
and η ∈ Hϕ . Since the weak∗ closure coincides with the weak operator closure
on the ∗-subalgebras

⋃
k∈N Nk ,

⋃
k∈N Nkξϕ is norm dense in Hϕ . Then we may

find an integer k0 and elements x, y in Nk0 such that ‖xξϕ‖, ‖yξϕ‖ ≤ 1 and

‖f − ωxξϕ,yξϕ‖ <
ε

2
.

Then for any k ≥ k0, we have x, y ∈ Nk and thus

ωxξϕ,yξϕ ◦ Ek = ωxξϕyξϕ ,

since for any r ∈ M,

ωxξϕ,yξϕ (r) = ϕ(y∗rx) = ϕ(Ek(y
∗rx)) = ϕ(y∗Ek(r)x) = ωxξϕ,xξϕ ◦ Ek(r).

It follows that

‖f − f ◦ Ek‖ ≤ ‖f − ωxξϕ,yξϕ‖ + ‖ωxξϕ,yξϕ ◦ Ek − f ◦ Ek‖ < ε.

Lemma 6.2. Let {Ek} be an increasing sequence of normal conditional ex-
pectations onto von Neumann subalgebras {Nk} of M. Then the ∗-subalgebra⋃

k∈N Nk is weak∗ dense in M if and only if for any m, l ∈ N, there exists
k0 ∈ N such that

(6.6) ‖fm ◦ Ek − fm‖ <
1

l

for all k ≥ k0.

We will also need the following elementary lemma, which provides a faith-
fulness condition for a normal state ϕ on M.

Lemma 6.3. Let {fn} be a countable dense subset in M∗. A normal state
ϕ ∈ M∗ is faithful if and only if for any n, l ∈ N, there exists rm such that

(6.7) ‖ϕ · rm − fn‖ <
1

l
.
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Proof. ⇐ Suppose that we are given b ∈ M+ such that ϕ(b) = 0. We
claim that b

1
2 = 0 and thus b = 0. To see this, let us first fix an arbitrary

n ∈ N. For any l ∈ N, there exists rm such that

‖ϕ · rm − fn‖ <
1

l
.

Since |ϕ · rm(b 1
2 )| = |ϕ(rmb 1

2 )| ≤ ‖rm‖ϕ(b) 1
2 = 0,

we have ϕ · rm(b 1
2 ) = 0. This implies that

|fn(b
1
2 )| ≤ ‖(ϕ · rm − fn)(b

1
2 )‖ <

1

l
‖b 1

2 ‖.

Letting l → ∞, we get fn(b
1
2 ) = 0. Since {fn} is norm dense in M∗, we can

conclude that b
1
2 = 0, and thus b = 0. This shows that ϕ is faithful.

⇒ Let V be the norm closed subspace of M∗ spanned by {ϕ · rm}. It suffices
to show V = M∗. Let a ∈ V ⊥ ⊆ M with ‖a‖ ≤ 1. Then we have ϕ(rma) = 0
for all m ∈ N. Since a∗ ∈ Mb and {rm} is weak∗ dense in Mb, we can conclude
that ϕ(a∗a) = 0. By the faithfulness of ϕ, we must have a∗a = 0, and thus
a = 0. This yields the desired equality V = M∗.

7. Direct Integrals

The key to the implication (i) ⇒ (iv) in Theorem 1.1 is the following result.

Theorem 7.1. Let M be a hyperfinite von Neumann algebra with a separ-
able predual. Then there exists a normal faithful stateϕ on M and an increasing
sequence of ϕ-invariant normal faithful conditional expectations {Ek} from M

onto type I von Neumann subalgebras {Nk} of M such that
⋃

Nk is weak∗
dense in M.

In the case where M is semifinite, this result is due to Pisier [35, The-
orem 3.4]. To treat the type III case, we need to develop a direct integral
theory for increasing sequences of normal conditional expectations from M

onto finite dimensional (or type I ) von Neumann subalgebras. Let us assume
that M is a hyperfinite type III von Neumann algebra on a separable Hilbert
space H . Then there exists a standard Borel space (Z,µ) and a measurable
field of hyperfinite type III factors M(z) such that

M =
∫ ⊕

Z

M(z) dµ(z)

(see details in Takesaki [42] and Kadison-Ringrose [23] vol. II). Since each
M(z) is a hyperfinite type III factor, there exists a normal faithful state ϕ(z)
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on M(z) and an increasing sequence of ϕ(z)-invariant normal faithful con-
ditional expectations {Ek(z)} of M(z) onto finite dimensional von Neumann
subalgebras {Nk(z)} such that

⋃∞
k=1 Nk(z) is weak∗ dense in M(z) (see [5],

[6] [7], [8], and [16], or [40] §28–30 and [23] §13.4).
What we need to do is to “select” a measurable field of normal faithful

states ϕ(z) and for each fixed k ≥ 0, a measurable field of normal faithful
conditional expectations {Ek(z)} on finite dimensional subalgebras {Nk(z)} of
M(z) such that

ϕ =
∫ ⊕

Z

ϕ(z) dµ(z)

is a normal faithful state on M and

Ek =
∫ ⊕

Z

Ek(z) dµ(z)

give an increasing sequence of ϕ-invariant normal faithful conditional expect-
ations of M onto type I subalgebras

Nk =
∫ ⊕

Z

Nk(z) dµ(z)

with
⋃∞

k=0 Nk weak∗ dense in M.
We may assume that for each z ∈ Z, M(z) acts standardly on H(z) and

assume that H(z) is isometric to a fixed Hilbert space H0 = �2. Then we can
write

H =
∫ ⊕

Z

H(z) dµ(z) = L2(Z,µ) ⊗ H0.

Up to a null-set equivalence, each vector ξ ∈ H corresponds to a Borel function
z ∈ Z 	→ ξ(z) ∈ H0 such that

‖ξ‖ =
(∫

Z

‖ξ(z)‖2 dµ(z)

) 1
2

.

We will use the notation

ξ =
∫ ⊕

Z

ξ(z) dµ(z)

for the equivalence class of ξ . Similarly, up to a null-set equivalence, every
operator r ∈ M corresponds to a Borel function z ∈ Z 	→ r(z) ∈ M(z)

(relative to the weak* topology) and we have

‖r‖ = ess sup
z∈Z

‖r(z)‖.
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For every normal linear functional f ∈ M∗, there exist two measurable fields
of vectors ξ = ∫ ⊕

Z
ξ(z) dµ(z) andη = ∫ ⊕

Z
η(z) dµ(z) inH such thatf = ωξ,η.

Therefore, we may obtain a measurable field of normal linear functionals

z ∈ Z 	→ f (z) = ωξ(z),η(z) ∈ M(z)∗

such that z ∈ Z 	→ 〈r(z), f (z)〉 is Borel onZ. In this case, z ∈ Z 	→ ‖f (z)‖ ∈
R is a Borel function and

‖f ‖ =
∫
Z

‖f (z)‖ dµ(z).

We simply write

f =
∫ ⊕

Z

f (z) dµ(z).

Since M∗ is separable, M∗ contains a countable norm dense subset {fn},
for which there exist Borel measurable fields of normal linear functionals such
that

fn =
∫ ⊕

Z

fn(z) dµ(z).

It can be shown that for almost all z ∈ Z, {fn(z)} is norm dense in M(z)∗ (left
to the reader). Similarly, if we let {rm} be a countable weak* dense subset in
the unit ball Mb, then we can write

rm =
∫ ⊕

Z

rm(z) dµ(z)

such that for almost all z ∈ Z, {rm(z)} is weak∗ dense in M(z)b. Accordingly,
we can also choose a similar subset {r ′

m} in the unit ball M ′
b of the commutant

M ′ such that

r ′
m =

∫ ⊕

Z

r ′
m(z) dµ(z).

We will fix these countable dense Borel measurable fields in the sequel.
Let us setK0 = {ξ ∈ H0 : ‖ξ‖ = 1}. ThenK0 is a separable metric space and

thus is a standard Borel space. It is clear that the mapping ξ ∈ K0 	→ ωξ,ξ ∈ M∗
is continuous with respect to the norm topology on M∗. Since (H0)b andB(H)b
are standard Borel spaces with respect to the norm topology and the weak*
topology, respectively, the Cartesian products

K = (H0)b × (H0)b × B(H0)b and Kk =
k︷ ︸︸ ︷

K × · · · × K
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are standard Borel spaces. Now each element [(ξ k
i , η

k
i , x

k
i )i=1,2,...,k] ∈ Kk de-

termines a finite rank normal map

Ek =
k∑

i=1

ωξk
i ,η

k
i
⊗ xk

i : B(H0) → B(H0).

It is clear that the mapping

[(ξ k
i , η

k
i , x

k
i )i=1,2,...,k] ∈ Kk 	→ Ek ∈ B

(
B(H0), B(H0)

)
is continuous with respect to the point-weak∗ topology on B

(
B(H0), B(H0)

)
.

Now let us put KF = ∏
k∈N Kk . We let S be the subset of Z × K0 × KF

consisting of all points
(
z, ξ,

{
[(ξ k

i , η
k
i , x

k
i )i=1,2,...,k]

}
k∈N

)
such that the normal

state ϕ(z) = ωξ,ξ and the finite rank normal mappings

Ek(z) =
k∑

i=1

ωξk
i ,η

k
i
⊗ xk

i : M(z) → B(H0)

satisfy (6.1)–(6.7) discussed in section §6 with respect to the dense subsets
{fm(z)} ⊂ M(z)∗, {rm(z)} ⊂ M(z) and {r ′

m(z)} ⊂ M(z)′. By the previous
discussion, one can easily see that for each fixed z ∈ Z, there exists a point(
z, ξ,

{
[(ξ k

i , η
k
i , x

k
i )i=1,2,...,k]

}
k∈N

)
verifying these conditions (the correspond-

ing components ξ and
{
[(ξ k

i , η
k
i , x

k
i )i=1,2,...,k]

}
k∈N depend on z). Therefore, S

is non-empty. Moreover, S is a Borel subset since the mappings

ξ 	→ ωξ,ξ and [(ξ k
i , η

k
i , x

k
i )i=1,2,...,k] 	→ Ek

are continuous (actually independent of z), and there are at most countably
many restrictions involved in the conditions (6.1)–(6.7). Thus we may use the
“measurable axiom of choice” (see [31, Mackey Theorem 6.3]) to select a
Borel field of vectors

z ∈ Z 	→ (
ξ(z),

{
[(ξ k

i (z), η
k
i (z), x

k
i (z))i=1,2,...,k]

}
k∈N

) ∈ K0 × KF .

From this construction, we obtain a Borel measurable field of normal states

z ∈ Z 	→ ϕ(z) = ωξ(z),ξ(z) ∈ M(z)∗

on M(z) and an increasing sequence of finite rank ϕ(z)-invariant normal con-
ditional expectations

z ∈ Z 	→ Ek(z) =
k∑

i=1

ωξk
i (z),η

k
i (z)

⊗ xk
i (z)
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from M(z) onto finite dimensional von Neumann subalgebras Nk(z) =
Ek(z)(M(z)) (with dim Nk(z) ≤ k). Then

ϕ =
∫ ⊕

Z

ϕ(z) dµ(z)

is a normal state on M and

Ek =
∫ ⊕

Z

Ek(z) dµ(z)

is an increasing sequence of ϕ-invariant normal conditional expectations from
M onto type I (actually sub-homogeneuous) von Neumann subalgebras

Nk =
∫ ⊕

Z

Nk(z) dµ(z).

To complete the proof of Theorem 7.1, we only need to show that ϕ is faithful
on M and the union

⋃
Nk is weak∗ dense in M. These will be proved in the

following two lemmas.

Lemma 7.2. The normal state ϕ = ∫ ⊕
Z

ϕ(z) dµ(z) is faithful on M.

Proof. Let e be a projection in M such that ϕ(e) = 0. Then there exists a
measurable field of projections z 	→ e(z) ∈ M(z) such that

e =
∫ ⊕

Z

e(z) dµ(z) and
∫ ⊕

Z

ϕ(z)(e(z)) dµ(z) = ϕ(e) = 0.

This implies that ϕ(z)(e(z)) = 0 for almost all z ∈ Z. Since the ϕ(z) are
faithful on M(z), we must have e(z) = 0 for almost all z ∈ Z and thus
e = ∫ ⊕

Z
e(z) dm(z) = 0. Therefore, ϕ is faithful on M.

Lemma 7.3. The union
⋃

Nn is weak* dense in M.

Proof. By Lemma 6.1, for each z ∈ Z and m ∈ N

‖fm(z) ◦ Ek(z) − fm(z)‖ → 0 as k → ∞.

Since for every m, the function z ∈ Z 	→ ‖fm(z) ◦ Ek(z) − fm(z)‖ ∈ R is
Borel and bounded, by Lebesgue dominated convergence theorem,

lim
k→∞ ‖fm ◦ Ek − fm‖ = lim

k→∞

∫
Z

‖fm(z) ◦ Ek(z) − fm(z)‖ dµ(z)

=
∫
Z

lim
k→∞ ‖fm(z) ◦ Ek(z) − fm(z)‖ dµ(z) = 0.
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It follows from Lemma 6.2 that
⋃

Nk is weak∗ dense in M.

Now we turn to the only remaining implication (i) ⇒ (iv) in Theorem 1.1.
Let M be a hyperfinite von Neumann algebra. As we have discussed at the
beginning of the proof of Theorem 3.2, there exists an increasing net of pro-
jections ei → 1M in M such that each reduced von Neumann subalgebra
eiMei is σ -finite and we can completely identify Lp(eiMei) with a completely
positively and completely contractively complemented subspace in Lp(M).
Moreover the union of these spaces is norm dense in Lp(M). Therefore, to
show that Lp(M) is a matrix orderly rigid COLp space, it sufficies to show
that each Lp(eiMei) is a matrix orderly rigid COLp space. So we only need
to prove the σ -finite case.

Let M be a σ -finite von Neumann algebra equipped with a normal faithful
state ϕ. Let N ⊂ M be a von Neumann subalgebra and E : M → N a
ϕ-invariant normal faithful conditional expectation. Then we have

E ◦ σ
ϕ
t = σ

ϕ
t ◦ E , ∀ t ∈ R.

It follows that the modular automorphism group of the restriction of ϕ to N

is equal to the restriction of σ
ϕ
t to N . We can thus regard N �σϕ R as a von

Neumann subalgebra of M �σϕ R. Moreover, the canonical faithful normal
semifinite trace on N �σϕ R coincides with the restriction of that on M �σϕ R
to N �σϕ R. Hence Lp(N ) can be naturally viewed as a subspace of Lp(M).

Let Ma denote the set of all analytic elements in M, i.e. x ∈ M such that
t ∈ R 	→ σ

ϕ
t (x) has an analytic extension from C into M and let D be the

density of ϕ in L1(M). Then for 1 ≤ p < ∞, D
1−θ
p MaD

θ
p = MaD

1
p (with

any θ ∈ [0, 1]) is norm dense in Lp(M) and we can get a well-defined map

Ep(D
1−θ
p xD

θ
p ) = D

1−θ
p E (x)D

θ
p (x ∈ Ma),

which extends to a positive and contractive projection (which is still denoted by
Ep) from Lp(M) onto Lp(N ) (see [22, §2]). The map Ep is actually completely
positive and completely contractive since for each n ∈ N, idMn

⊗E is a trn ⊗ϕ-
invariant normal faithful conditional expectation from Mn ⊗̄ M onto Mn ⊗̄ N

and thus

idSn
p
⊗ Ep = (idMn

⊗ E )p : Lp(Mn ⊗̄ M) → Lp(Mn ⊗̄ N )

is a positive and contractive projection. Therefore, we may identify Lp(N )

with a completely positively and completely contractively complemented sub-
space in Lp(M).

Lemma 7.4. Let ϕ be a normal faithful state on M and let {Eα} be an in-
creasing family of ϕ-invariant normal conditional expectations from M onto
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von Neumann subalgebras {Nα}. Assume that the ∗-subalgebra
⋃

α Nα is
weak∗ dense in M and each Lp(Nα) is a matrix orderly rigid COLp space
(1 ≤ p < ∞). Then Lp(M) is a matrix orderly rigid COLp space.

Proof. Let {Eα} be an increasing family of ϕ-invariant normal faithful con-
ditional expectations from M onto von Neumann subalgebras {Nα}. According
to the above discussion, we may identify {Lp(Nα)} with an increasing family of
completely positively and completely contractively complemented subspaces
in Lp(M). Since the union

⋃
α Nα is weak* dense in M, we can conclude from

[17, Lemma 2.2] that for 1 ≤ p < ∞, the union
⋃

α Lp(Nα) is norm dense
in Lp(M). In fact, with this weak∗ density assumption, we have Eα(x) → x

in Lp(M) for every x ∈ Lp(M). If we assume that each Lp(Nα) is a matrix
orderly rigid COLp space, then it is easy to see that Lp(M) is also a matrix
orderly rigid COLp space.

We are finally ready to accomplish the proof of Theorem 1.1.

End of the proof of Theorem 1.1. (i) ⇒ (iv). Let us first assume that
M is a hyperfinite von Neumann algebra with a separable predual. Then we
can apply Theorem 7.1 to get a normal faithful state ϕ on M and an increasing
sequence of ϕ-invariant normal faithful conditional expectations {Ek} from M

onto type I von Neumann subalgebras Nk of M such that
⋃

Nk is weak∗ dense
in M. It is clear that each Lp(Nk) is a matrix orderly rigid COLp and thus we
can conclude from Lemma 7.4 that Lp(M) is a matrix orderly rigid COLp.

The σ -finite case can be deduced from separable case by applying a result
of Haagerup (see [13, Appendix]). Indeed, we may let I denote the family
of all subsets of M which are at most countable and we partially order I

by inclusion. Given any α ∈ I , let Nα denote the von Neumann subalgebra
generated by {σϕ

t (x) : x ∈ α, t ∈ Q}, where ϕ is a fixed normal faithful
state on M and Q is the set of rational numbers. Then each Nα has a separable
predual and is σϕ-invariant. By Takesaki [41], there exists a unique ϕ-invariant
normal faithful conditional expectation Eα : M → Nα . The uniqueness of Eα

implies that the family {Eα} is increasing. It is clear that each Nα is hyperfinite
and the union of {Nα} is weak∗ dense in M. Then each Lp(Nα) is a matrix
orderly rigid COLp space and we can conclude from Lemma 7.4 that Lp(M) is
a matrix orderly rigid COLp space. This completes the proof of Theorem 1.1.

Acknowledgements. We are very grateful to Uffe Haagerup for fruitful
communication on Theorem 7.1 and for bringing his result in [13, Appendix]
to our attention.
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