
MATH. SCAND. 96 (2005), 31–48

RELATIONSHIP BETWEEN POLYNOMIALS WITH
MULTIPLE ROOTS AND RATIONAL FUNCTIONS

WITH COMMON ROOTS

YASUHIKO KAMIYAMA

Abstract

For F = R or C, let P lk,n(F ) denote the space of monic polynomials f (z) over F of degree k and

such that the number of n-fold roots of f (z) is at most l. LetXlk,n(F ) denote the space consisting
of all n-tuples (p1(z), . . . , pn(z)) of monic polynomials over F of degree k and such that there are
at most l roots common to all pi(z). In this paper, we prove that P lk,n(F ) andXl

[ kn ],n
(F ) are stably

homotopy equivalent. In fact, they are homotopy equivalent when F = C and (n, l) �= (2, 0). We
also consider the case that n-fold roots and common roots are not real. These results generalize
previous results concerning these spaces.

1. Introduction

The purpose of this paper is to study the relationship between the space of
polynomials with multiple roots and the space of rational functions with com-
mon roots. We prove a theorem which generalizes previous results concerning
these spaces.

Let Ck(C) denote the configuration space of unordered k-tuples of distinct
points in C. The space Ck(C) has some interesting connections with the theory
of algebraic functions and Artin’s theory of braids. For instance, Ck(C) is the
space of monic polynomials over C of degree k without multiple roots. On the
other hand, we have Ck(C) = K(βk, 1), where βk is Artin’s braid group on
k-strings and K(βk, 1) is the corresponding Eilenberg-MacLane space. Thus
the homology group of Ck(C) has a certain significance.

In [1], Arnold proved important theorems on the integral homology of
Ck(C), e.g. the stability of the homology. The proofs proceed as follows. Let
P lk,n(C) denote the space of monic polynomials over C of degree k and such
that the number of n-fold roots is at most l. (Compare Definition 2.1.) (We al-
low n-fold roots to coincide. Hence, an element of the complement of P lk,n(C)
in Ck is of the form (gl+1(z))

nhk−(l+1)n(z), where gl+1(z) and hk−(l+1)n(z) are
arbitrary monic polynomials of degrees l + 1 and k − (l + 1)n, respectively.)
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Let �
l

k,n denote the complement of P lk,n(C) in S2k = Ck ∪ {∞}. By induction
with making k larger and l smaller while n being fixed, one obtains inform-

ation on �
l

k,n for all k, n and l. By the Alexander duality, the information is
equivalent to that on P lk,n(C). In particular, setting n = 2 and l = 0, we obtain
information on Ck(C).

Later, the homology groupH∗(Ck(C);Z/p)was determined (using different
methods) in [8] for p = 2 and in [6] for an odd prime p . Using this, the
stable homotopy type of Ck(C)was described in [3] in terms of Snaith’s stable
summands of �2S3.

On the other hand, Segal studied the topology of spaces of rational func-
tions ([13]). Let Ratk(n) denote the space consisting of all n-tuples (p1(z), . . . ,

pn(z)) of monic polynomials over C of degree k and such that there are no
roots common to all pi(z). Ratk(n) is considered to be the space of holo-
morphic maps of degree k from S2 to CPn−1 with the basepoint condition
∞ �→ [1, . . . , 1]. There is an inclusion

ik : Ratk(n) ↪→ �2
kCP

n−1 
 �2S2n−1.

It is proved in [13] that ik is a homotopy equivalence up to dimension k(2n−3).
Later, the stable homotopy type of Ratk(n) was described (using different
methods) in [4] and [5] in terms of Snaith’s stable summands of �2S2n−1. In
particular, we consider the case n = 2. Combining the results of [3], [4] and
[5], we obtain a stable homotopy equivalenceCk(C) 


s
Rat[ k2 ](2), where

[
k
2

]
is

as usual the largest integer≤ k
2 . This result was generalized in [14] as follows:

(1.1) P 0
k,n(C) 


s
Rat[ kn ](n),

where P 0
k,n(C) is defined above. Later, (1.1) was improved to a homotopy

equivalence for n ≥ 3. (Compare (2.3).)
If we take Arnold’s proof and (1.1) into account, we naturally encounter the

following problem: what is the (stable) homotopy type of P lk,n(C) for k ≥ 1,
n ≥ 2 and l ≥ 0. The purpose of this paper is to study this. In fact, we consider
four cases according as whether polynomials are defined over R or C, and
whether we allow n-fold roots or common roots to be real or not. Our main
results will be stated in Section 2. (Compare Theorems A, B and C.) Here we
summarize the result for the most interesting case.

Theorem 1.2. Let Xlk,n(C) be the space consisting of all n-tuples (p1(z),

. . . , pn(z)) of monic polynomials over C of degree k and such that there are
at most l roots common to all pi(z). Then
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(i) For all k, n and l, Xlk,n(C) is stably homotopy equivalent to the k-th
filtration of the homotopy theoretic fiber of the inclusion J l(2n− 2) ↪→
�S2n−1, where J l(2n− 2) denotes the l-th stage of the James construc-
tion which builds �S2n−1.

(ii) Except when (n, l) = (2, 0), there is a homotopy equivalence

P lk,n(C) 
 Xl[ kn ],n(C).

Note that our information on P lk,n(C) gives that on �
l

k,n, since these spaces
are Spanier-Whitehead dual to one another.

This paper is organized as follows. In Section 2, we state the main results.
We define four kinds of spaces consisting of polynomials and four kinds of
spaces consisting of n-tuples of polynomials. Theorem A asserts that the cor-
responding spaces are stably homotopy equivalent. Theorem B gives stable
splittings of these spaces. Theorem C asserts that in the most interesting case,
the stable homotopy equivalence in Theorem A is in fact a homotopy equival-
ence. In Section 3, we recall previous results about the spaces in Section 2 and
see how they are contained in Theorems A, B and C. In Section 4, we prove
Theorem B. In Section 5, we prove Theorem A (i) for F = C and Theorem C.
In Section 6, we prove Theorem A (i) for F = R and (ii).

2. Main results

Definition 2.1. For F = R or C, we set

(i) P lk,n(F ) = {f (z) : f (z) is a monic polynomial over F of degree k

and such that the number of n-fold roots is at most l}.
(ii) Qlk,n(F ) = {f (z) ∈ P lk,n(F ) : f (z) has no n-fold roots in R}.

(iii) Xlk,n(F ) = {(p1(z), . . . , pn(z)) : each pi(z) is a monic polynomial

over F of degree k and such that there are at most

l roots common to all pi(z)}.
(iv) Y lk,n(F ) = {(p1(z), . . . , pn(z)) ∈ Xlk,n(F ) : there are no

real roots common to all pi(z)}.

Remarks. 1. By definition, we have P 0
k,n(F ) = Q0

k,n(F ) and X0
k,n(F ) =

Y 0
k,n(F ). In particular, X0

k,n(C) = Ratk(n).
2. Note that

Q2i+1
k,n (R) = Q2i

k,n(R) and Y 2i+1
k,n (R) = Y 2i

k,n(R),
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since if α ∈ H+ (where H+ is the open upper half-plane) is a root of a poly-
nomial over R, then so is α ∈ H− (where α is the complex conjugate of α).

We have the following diagrams:

Q
[ kn ]
k,n (F ) ⊃Q[ kn ]−1

k,n (F ) ⊃ · · · ⊃Qlk,n(F ) ⊃ · · · ⊃Q0
k,n(F )

∩ ∩ ∩

P
[ kn ]
k,n (F ) ⊃ P [ kn ]−1

k,n (F ) ⊃ · · · ⊃ P lk,n(F ) ⊃ · · · ⊃ P 0
k,n(F )

and

Y kk,n(F ) ⊃ Y k−1
k,n (F ) ⊃ · · · ⊃ Y lk,n(F ) ⊃ · · · ⊃ Y 0

k,n(F )

∩ ∩ ∩
Xkk,n(F ) ⊃ Xk−1

k,n (F ) ⊃ · · · ⊃ Xlk,n(F ) ⊃ · · · ⊃ X0
k,n(F )

where each subset is an open set.

Example 2.2. We set d = 1 for F = R and d = 2 for F = C. Then there
are homotopy equivalences

(i) P [ kn ]
k,n (F ) 
 {a point} and P [ kn ]−1

k,n (F ) 
 Sd[
k
n ](n−1)−1, where the case

for F = C and (k, n) = (3, 2) is excluded from the second homotopy
equivalence.

(ii) Q1
k,n(F ) 
 Sdn−2 (n ≤ k < 2n).

(iii) Xlk,n(F ) 
 {a point} (k ≤ l) and Xk−1
k,n (F ) 
 Sdk(n−1)−1.

(iv) Y 1
1,n(F ) 
 Sdn−2.

Proof. Since the proofs are similar, we prove only the second homotopy

equivalences of (i) and (iii). Let � be the complement of P [ kn ]−1
k,n (F ) in Fk . A

polynomial f ∈ Fk (hereafter we omit the variable z from each polynomial)
belongs to � if and only if the number of n-fold roots of f is exactly

[
k
n

]
,

hence f is of the form gn[ kn ]
hk−[ kn ]n, where g[ kn ] and hk−[ kn ]n are arbitrary monic

polynomials of degrees
[
k
n

]
and k−[ k

n

]
n, respectively. Thus� ∼= Fk−[ kn ](n−1).

By the Alexander duality, we obtain (i).
An element (p1, . . . , pn) ∈ (F k)n belongs toXk−1

k,n (F ) if and only ifpi �= pj
for some i, j . Hence (iii) holds. This completes the proof of Example 2.2.

The homotopy types ofQ[ kn ]
k,n (F ) and Y kk,n(F ) are known in [11]. (Compare

(3.1) and (3.2).) Note that Example 2.2 (ii) and (iv) are special cases of them.
Our first result is the following:
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Theorem A. For all k, n and l, there are stable homotopy equivalences

(i) P lk,n(F ) 

s
Xl[ kn ],n

(F ).

(ii) Qlk,n(F ) 

s
Y l[ kn ],n

(F ).

Remark. There are unstable maps P lk,n(F ) → Xlk,n(F ) and Qlk,n(F ) →
Y lk,n(F ) defined as follows:

f (z) �→ (f (z), f ′(z)+ f (z), . . . , f (n−1)(z)+ f (z)).
We can prove that these maps are homotopy equivalences as k→∞.

In [14], the resultP 0
kn,n(C) 


s
X0
k,n(C)was proved as follows. First, we prove

that the complements of these spaces in S2kn are stably homotopy equivalent.
Next, we use the fact that the Spanier-Whitehead duals of stably homotopy
equivalent spaces are stably homotopy equivalent. In contrast to this, we prove
Theorem A by constructing stable maps from the right-hand sides to the left-
hand sides along the lines of [5] and [10]. (Compare (B) of Sections 5 and
6.)

Next, we give stable splittings ofXlk,n(F ) and Y lk,n(F ). For that purpose, we
prepare some notations. (Compare [10] or Section 5.) Let J l(2n − 2) denote
the l-th stage of the James construction which builds �S2n−1, and let Wl(n)

be the homotopy theoretic fiber of the inclusion J l(2n− 2) ↪→ �S2n−1. The
May-Milgram model for �2S2n−1 is generalized to construct a space ξ l(n)
combinatorially so that ξ l(n) 
 Wl(n). ξ l(n) has a filtration {Fqξ l(n)} and we
set Dqξ l(n) = Fqξ l(n)/Fq−1ξ

l(n). Then we have a stable splitting

Wl(n) 

s

∨
1≤q
Dqξ

l(n),

which is a generalization of Snaith’s stable splitting of �2S2n−1 for l = 0.

Theorem B. There are stable homotopy equivalences

(i) Xlk,n(C) 

s

∨k
q=1Dqξ

l(n).

(ii) X2i+1
k,n (R) 


s
Xi[ k2 ],n(C), and

X2i
k,n(R) 


s
Xi[ k2 ],n(C)∨�2i(n−1)

( ∨
p+2q≤k−2i

1≤p

�p(n−2)Dqξ
0(n)∨

k−2i∨
p=1

Sp(n−2)

)
.

(iii) Y lk,n(C) 

s
Xlk,n(C) ∨

∨l
q=1�

2q(n−1)
(
X
l−q
k−q,n(C) ∨ S0

)
, 0 ≤ l ≤ k.
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(iv) Y 2i
k,n(R) 


s

∨
p+2q≤k �p(n−2)Dqξ

i(n) ∨∨k
p=1 S

p(n−2).

Remark. The first stable homotopy equivalence of Theorem B (ii) is in
fact a homotopy equivalence: X2i+1

k,n (R) 
 Xi[ k2 ],n(C).

The following theorem is a stronger version of Theorem A (i) for F = C.

Theorem C. Except when (n, l) = (2, 0), there are homotopy equivalences

P lk,n(C) 
 F[ kn ]ξ
l(n) 
 Xl[ kn ],n(C),

where F[ kn ]ξ
l(n) is a filtration of ξ l(n).

Remark. When l = 0, Theorem C is known in [7] and [9]:

(2.3) P 0
k,n(C) 
 F[ kn ]ξ

0(n) 
 X0
[ kn ],n

(C) (n ≥ 3).

3. Previous results

Theorem A has been studied for special cases and for these cases there are
natural maps from the n-tuples of polynomials to certain loop spaces. We
recall the known results below.

(i) As in Section 1, there is an inclusion

ik : X0
k,n(C) ↪→ �2

kCP
n−1 
 �2S2n−1.

(1.1) is same as P 0
k,n(C) 


s
X0

[ kn ],n
(C). The first homotopy equivalence of (2.3)

is proved in [9] and the second is proved in [7]. The condition n ≥ 3 in (2.3)
implies that each space is simply connected. But (2.3) does not hold for n = 2.
In fact, the facts that π1(P

0
k,2(C)) ∼= βk and π1(X

0
[ k2 ],2(C))

∼= Z (compare

[13]) imply that P 0
k,2(C) �
 X0

[ k2 ],2(C) for k ≥ 3. It is also shown in [7] that

F2ξ
0(2) �
 X0

2,2(C).
Theorem B (i) is proved in [4] and [5] for l = 0, and in [10] for general l.
(ii) Let MapTk (CP

1,CPn−1) be the space of continuous basepoint-preser-
ving conjugation-equivariant maps of degree k from CP 1 to CPn−1. There is
an inclusion

ik : X0
k,n(R) ↪→ MapTk (CP

1,CPn−1) 
 �Sn−1 ×�2S2n−1.

As far as the author knows, there is no published matter which proves the fact
that P 0

k,n(R) 

s
X0

[ kn ],n
(R). By the same reason as in (i), it seems likely that this
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is in fact a homotopy equivalence for n ≥ 4. In connection with this, we have

P 0
k,2(R) 


[ k2 ]∐
q=0

Cq(C) and X0
[ k2 ],2(R) 


[ k2 ]∐
q=0

X0
min(q,[ k2 ]−q),2(C).

The first homotopy equivalence is clear and the second is proved in [13]. Hence,
P 0
k,2(R) and X0

[ k2 ],2(R) are not unstably homotopy equivalent.

(iii) Note thatQ[ kn ]
k,n (F ) is the space of polynomials withoutn-fold real roots,

andY kk,n(F ) is the space ofn-tuples of polynomials without real common roots.
Restricting to the real line, there is a natural map

ik : Y kk,n(C)→ �S2n−1.

It is proved in [11] that there are homotopy equivalences

(3.1) Q
[ kn ]
k,n (C) 
 J [ kn ](2n− 2) 
 Y [ kn ]

[ kn ],n
(C) (n ≥ 2),

where as in Section 2, J [ kn ](2n − 2) denotes the
[
k
n

]
-th stage of the James

construction which builds �S2n−1.
(iv) As in (iii), there is a natural map

ik : Y kk,n(R)→ �Sn−1.

It is proved in [14] that there is a homotopy equivalence

(3.2) Q
[ kn ]
k,n (R) 
 J [ kn ](n− 2) 
 Y [ kn ]

[ kn ],n
(R) (n ≥ 4).

By [14, p. 88], (3.2) does not hold for n = 3 (i.e. for k = 6, 7 or 8,Q2
k,3(R) �


J 2(1)). But we have

Q
[ k2 ]
k,2 (R) 


{([
k

2

]
+ 1

)
points

}

 Y [ k2 ]

[ k2 ],2(R).

The first homotopy equivalence is clear and the second is proved in [12].
When n = 2, Theorem B (iv) holds unstably:

Y 2i
k,2(R) 


k∐
q=0

Ximin(q,k−q),2(C).

Setting i = 0 or i = ∞ in the homotopy equivalence, we obtain the result for

X0
[ k2 ],2(R) in (ii) or the result for Y [ k2 ]

[ k2 ],2(R) in (iv).
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In [1], Arnold performed calculations of H∗(P k−1
2k+i,2(C);Z) (i ≥ 0) in low

dimensions. The results are given as follows (compare [1, p. 48]).

(1) For 1 ≤ q ≤ 2k − 2, Hq(P
k−1
2k+i,2(C);Z) = 0.

(2) For 2k − 1 ≤ q ≤ 2k + 3, Hq(P
k−1
2k+i,2(C);Z) are cyclic and the orders

are given by the following table.

Table 1. The orders of the groups Hq(P
k−1
2k+i,2(C);Z) (2k − 1 ≤ q ≤ 2k + 3)

i \ q 2k − 1 2k 2k + 1 2k + 2 2k + 3

0, 1 ∞ 0 0 0 0
2, 3 ∞ k + 1 0 0 0
4, 5 ∞ k + 1 2/k (k + 2)/2 0
6, 7 ∞ k + 1 2/k ((k + 2)/2)(2/k) 3/k
8, 9 ∞ k + 1 2/k ((k + 2)/2)(2/k) 6/kv
...

...
...

...
...

...

∞ ∞ k + 1 2/k ((k + 2)/2)(2/k) 6/kv

Here

(1) We introduce the notation

a/b = a

gcd(a, b)
,

where gcd(a, b) is the greatest common divisor of the integers a and b.

(2) We have v = 1 if k �≡ 1 (mod 4). If k ≡ 1 (mod 4), then v is either 1 or
2. But the exact value is left unknown.

The stability theorem in [1, p. 43] is stated as follows: For a fixed q,
Hq(P

k−1
2k+i,2(C);Z) is stable for i ≥ 2(q − 2k + 1).

Using Theorems B and C, we can calculate Table 1 easily as follows.
First, by Theorem C, we can replace P k−1

2k+i,2(C) by Xk−1
k+[ i2 ],2(C). Next, using

Theorem B (i), we see that as a vector space, H∗
(
Xk−1
k+[ i2 ],2(C);Z/p

)
(where

p is a prime) is isomorphic to the subspace of H∗
(
Wk−1(2);Z/p) spanned

by monomials of weight ≤ k + [ i2 ]. (Hence, the above stability theorem is
equivalent to the following assertion, which can be proved easily: each ele-
ment of Hq(Wk−1(2);Z/p) has weight ≤ q − k + 1.) It is easy to determine
H∗(Wk−1(2);Z/p) from the mod p Serre spectral sequence for the fibration

�2S3 → Wk−1(2)→ J k−1(2).
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The result is given in [10]. As an application, we can determine the value of v.

Lemma 3.3. In Table 1, we have v = 1 if k ≡ 1 (mod 4).

Proof. We set k = 4s + 1. Since 6/kv is in the stable range, it suffices to

determine H8s+5(W
4s(2);Z). Since 6/kv =

{
even v = 1
odd v = 2

and 2/k = 2, we

have

H8s+5(W
4s(2);Z/2) ∼=

{
Z/2⊕ Z/2 v = 1

Z/2 v = 2.

From the mod 2 Serre spectral sequence for the fibration �2S3 → W 4s(2)→
J 4s(2), we have

E8
p,∗ ∼=


x4i ⊗ H∗(�

2S3;Z/2)
(ι,Q1(ι))

p = 8i with 0 ≤ i ≤ s − 1

x4s ⊗H∗(�2S3;Z/2) p = 8s

0 otherwise

wherex and ι are (torsion free) generators ofH2(�S
3;Z/2) andH1(�

2S3;Z/2),
respectively, and (ι,Q1(ι)) is the ideal generated by ι and Q1(ι). It is clear
that x4s ⊗ ι5 and x4s ⊗ ι2 ∗ Q1(ι) are nonzero permanent cycles. Hence,
H8s+5(W

4s(2);Z/2) ∼= Z/2⊕ Z/2. This completes the proof of Lemma 3.3.

4. Proof of Theorem B

In this section, every homology is with Z/p-coefficients, where p is a prime.
Theorem B (i) is proved in [10]. Since the proofs of (ii)–(iv) are similar, we
prove (ii).

Proposition 4.1. The homologies of the both sides of Theorem B (ii) are
isomorphic.

Proof. We prove by induction with making l larger. The case for l = 0
is proved as follows. First, by constructing homology classes explicitly, we
find a lower bound for the mod p homology of X0

k,n(R). (Compare Lemma
4.2.) Next, considering a geometrical resolution of a resultant, we construct a
spectral sequence of the Vassiliev type. The spectral sequence converges to the
mod p homology ofX0

k,n(C) and the E1-term coincides with the lower bound.
Hence, the spectral sequence collapses at the E1-term and the lower bound is
in fact an upper bound. (Compare Lemma 4.4.)

Lemma 4.2. We define the weight of an element of H∗(�Sn−1) as usual,
but that of H∗(�2S2n−1) to be twice the usual one. Let Lk be the subspace
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of H∗(�Sn−1 × �2S2n−1) spanned by monomials of weight ≤ k. Then every
element of Lk is in the image of ik∗, where ik : X0

k,n(R) ↪→ �Sn−1 ×�2S2n−1

is the inclusion. Hence, these elements are a lower bound for H∗(X0
k,n(R)).

Proof. The proof of the lemma is similar to [2] and proceeds as follows.
First, there is an inclusion

(4.3) ηq,i,n : Xiq,n(C) ↪→ X2i
2q,n(R).

To construct this, we fix a homeomorphism h : C
∼=→ H+. For (p1(z), . . . ,

pn(z)) ∈ Xiq,n(C), we write pj (z) =∏q

s=1(z− αs,j ). Then we set

ηq,i,n(p1(z), . . . , pn(z))

=
( q∏
s=1

(z− h(αs,1))(z− h(αs,1)), . . . ,
q∏
s=1

(z− h(αs,n))(z− h(αs,n))
)
.

Take an element α ⊗ β ∈ H∗(�Sn−1 × �2S2n−1) of weight ≤ k. By [2], we
can construct β in X0

q,n(C) for some q, hence using ηq,0,n, we can construct β
inX0

2q,n(R). Then using the loop sum µ : X0
k1,n
(R)×X0

k2,n
(R)→ X0

k1+k2,n
(R),

which is defined in the same way as in the loop sum X0
k1,n
(C) × X0

k2,n
(C)→

X0
k1+k2,n

(C) in [2], we can construct α⊗β inX0
k,n(R). This completes the proof

of Lemma 4.2.

Lemma 4.4. The lower bound of Lemma 4.2 is in fact an upper bound.

Proof. We prove the lemma along the lines of [14, p. 151]. We indicate
where to change. Let � be the complement of X0

k,n(R) in Sk = Rk ∪ {∞}.
There is a space G(�), a geometrical resolution of � , so that G(�) 
 � .
G(�) has a filtration
(4.5)
F0(G(�)) = {∞} ⊂ F1(G(�)) ⊂ F2(G(�)) ⊂ · · · ⊂ Fk(G(�)) = G(�).
Fp(G(�))−Fp−1(G(�)) has connected components indexed by non-negative
integers (s, t)with s+2t=p. If we forget the “simplex part”, thenFp(G(�))−
Fp−1(G(�)) consists of n-tuples of polynomials which have exactly p distinct
common roots. The integers (s, t) with s + 2t = p parametrize the connected
component in which s of the common roots are real and t of them belong
to H+ (where H+ is the open upper half-plane), hence t of them belong to
H− since polynomials are real. The connected component parametrized by
(s, t) is a fibered product of the following two fiber bundles: They have a
common base Cs(R)×Ct(H+), where Ci(X) denotes the configuration space
of unordered i-tuples of distinct points in X. The fibers of the two bundles
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are the (s + t − 1)-dimensional open simplex and R(k−p)n, respectively. Let
Er(G(�)) be the mod p spectral sequence associated to the filtration (4.5).
The above argument shows that E1

p,q may be nontrivial only for 1 ≤ p ≤ k so
that

E1
p,q =

⊕
s+2t=p

H (k−p)n+s+t−q−1(Ct (C);±Z/p),

where ±Z/p denotes the local system locally isomorphic to Z/p but changes
the orientation over the loops defining odd permutations. Using the fact that
Dtξ

0(n) 
 �2t (n−2)Dtξ
0(2) (compare [3]), this is equivalent to

E1
p,q =

[ p2 ]⊕
t=1

H̃ kn+2t (n−2)−p(n−1)−q−1(Dtξ
0(n))⊕ H̃ kn−p(n−1)−q−1(S0).

Let 1 ≤ ∗. From the Alexander duality, we have

dimH∗(X0
k,n(R))

≤
k∑
p=2

[ p2 ]∑
t=1

dimH∗(�(p−2t)(n−2)Dtξ
0(n))+

k∑
p=1

dimH∗(Sp(n−2)).

Let un−2 be the generator of Hn−2(�S
n−1). Identifying H∗(�(p−2t)(n−2)

Dtξ
0(n)) with up−2t

n−2 ⊗ H̃∗(Dtξ 0(n)) and H∗(Sp(n−2)) with upn−2, we see that
H∗(X0

k,n(R)) is at most as big as Lk . This completes the proof of Lemma 4.4,
and, consequently, Proposition 4.1 holds for l = 0.

Next, we prove Proposition 4.1 for general l. By the same arguments as in
[10, Propositions 4.5, 5.4], we have the following long exact sequence:

(4.6) · · · −→ H∗(Xl−1
k,n (R))

i∗−→ H∗(Xlk,n(R))

−→ H∗−l(n−1)(X
0
k−l,n(R))

5−→ H∗−1(X
l−1
k,n (R)) −→ · · ·

where i is the inclusion. To construct this, note the following decomposition
as sets

Xlk,n(R)−Xl−1
k,n (R) =

∐
s+2t=l

SPs(R)× SPt (H+)×X0
k−l,n(R)

and use the fact thatH ∗
c (SPs(R)) = 0 for s ≥ 2, whereH ∗

c is the cohomology
with compact supports.

The homomorphism

5 : H∗−l(n−1)(X
0
k−l,n(R)) −→ H∗−1(X

l−1
k,n (R))



42 yasuhiko kamiyama

is given as follows. We give the case for l = 2i. It is easy to see that the second
homotopy equivalence of Theorem B (ii) is equivalent to

(4.7) X2i
k,n(R) 


s
Xi[ k2 ],n(C) ∨�(2i+1)(n−1)−1

(
X0
k−2i−1,n(R) ∨ S0

)
.

From inductive hypothesis, we have

(4.8) H∗−2i(n−1)(X
0
k−2i,n(R))

∼= H∗−2i(n−1)
(
X0

[ k2 ]−i,n(C)
)⊕ H̃∗−2i(n−1)(�

n−2X0
k−2i−1,n(R) ∨ Sn−2)

and

(4.9) H∗−1(X
2i−1
k,n (R)) ∼= H∗−1

(
Xi−1

[ k2 ],n(C)
)
.

Let
ψ : H∗−2i(n−1)

(
X0

[ k2 ]−i,n(C)
) −→ H∗−1

(
Xi−1

[ k2 ],n(C)
)

be the homomorphism corresponding to 5 in the long exact sequence (4.6)
with X(R) replaced by X(C). Then 5 : (4.8) → (4.9) is given by mapping
the first summand by ψ and the second summand by 0. Hence Proposition 4.1
holds for general l.

Finally, we construct (stable) maps from the right-hand side of Theorem
B (ii). First, the unstable map from the right-hand side of the first homotopy
equivalence of Theorem B (ii) or the first stable summand in (4.7) is essen-
tially the inclusion ηq,i,n in (4.3). Next, the stable map from the second stable
summand in (4.7) is constructed as follows. By Example 2.2 (iii), we have an
inclusion ι : S(2i+1)(n−1)−1 ↪→ X2i

2i+1,n(R). Consider the following composite
of maps

(4.10) S(2i+1)(n−1)−1 × (X0
k−2i−1,n(R) ∨ S0)

ι×1−→ X2i
2i+1,n(R)×X0

k−2i−1,n(R)
µ−→ X2i

k,n(R),

where µ is the loop sum. This induces a stable map from the second stable
summand in (4.7). Note that the unstable (resp. stable) map for the first (resp.
second) homotopy equivalence of Theorem B (ii) are compatible with the
homology splitting by weights. Using Proposition 4.1, it is easy to show that
these maps induce isomorphisms in homology, hence are stable homotopy
equivalences. This completes the proofs of Theorems B (ii).

5. Proofs of Theorem A (i) for F = C and Theorem C

The proof of Theorem A proceeds as follows.
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(A) For 0 ≤ j ≤ n− 1, the inclusions

P lkn,n(F ) ↪→ P lkn+j,n(F ) and Qlkn,n(F ) ↪→ Qlkn+j,n(F )

induce isomorphisms in homology. Hence, we consider P lkn,n(F ) orQlkn,n(F )
instead of P lk,n(F ) orQlk,n(F ).

(B) We construct stable maps

f lk,n(F ) : Xlk,n(F )→ P lkn,n(F ) and glk,n(F ) : Y lk,n(F )→ Qlkn,n(F )

so that f 0
k,n(F ) = g0

k,n(F ). Here we consider the domainsXlk,n(F ) and Y lk,n(F )
to be the right-hand sides of the stable homotopy equivalences in Theorem B.
(Compare (5.2) for the construction of f lk,n(C).)

(C) We prove that f 0
k,n(F ) is a stable homotopy equivalence.

By (1.1), we know P 0
kn,n(C) 


s
X0
k,n(C) without specifying a stable map.

Hence, for f 0
k,n(C), the problem is only to prove that the stable homotopy

equivalence is given by f 0
k,n(C). But this is immediate from the construction

of a stable map.
On the other hand, for f 0

k,n(R), we need to prove that P 0
kn,n(R) 


s
X0
k,n(R)

at least without specifying a map.
(D) We prove inductively that f lk,n(F ) and glk,n(F ) are stable homotopy

equivalences.
We prove Step (D) by induction with making l larger.
(i) Since f 0

k,n(F ) = g0
k,n(F ), the initial steps for inductions are proved in

Step (C).
(ii) In order to prove the case for f lk,n(F ), we construct two long exact se-

quences. One is to calculate H∗(Xlk,n(F )) from H∗(Xl−1
k,n (F )) and

H∗(X0
k−l,n(F )), and the other is to calculateH∗(P lkn,n(F )) fromH∗(P l−1

kn,n(F ))

and H∗(P 0
(k−l)n,n(F )) (where homology is with Z coefficients). These exact

sequences are connected by f lk,n(F ), f
l−1
k,n (F ) and f 0

k−l,n(F ). Hence we can
perform inductions.

The case for glk,n(F ) is proved similarly.
Theorem C is proved by constructing unstable maps Fkξ l(n) → P lkn,n(C)

and Fkξ l(n) → Xlk,n(C) which are homotopy equivalences. The arguments
are refinements of the construction of the map f lk,n(C) in (5.2). (Compare
Proposition 5.4.)

In this section, we prove Theorem A (i) for F = C and Theorem C.

Proof of Theorem A (i) for F = C. We follow Steps (A)–(D) above.
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(A) By the Alexander duality, the assertion of (A) is equivalent to the repe-
tition theorem in [1, p. 42].

(B) We construct a stable map f lk,n(C) along the lines of [5] and [10]. We
recall the stable splittingWl(n) 


s

∨
1≤q Dqξ l(n) in Section 2. (Compare [10,

§ 2].) Let C2(q) be the set of q-tuples 〈c1, . . . , cq〉 of little 2-cubes which
are pairwise non-overlapping. For a unit disc D2n−2, we take a basepoint
equal to (1, 0, . . . , 0). Define8lq(n) to be the subspace of C2(q)×�q (D2n−2)q

consisting of all elements of the form (〈c1, . . . , cq〉, y1, . . . , yq) such that there
are at most l of y1, . . . , yq belong to D2n−2 − S2n−3. We define ξ l(n) by

ξ l(n) =
∐
0≤q
8lq(n)/ ≈ .

Here

(〈c1, . . . , cq〉, y1, . . . , yq) ≈ (〈c1, . . . , ĉi , . . . , cq〉, y1, . . . , ŷi , . . . , yq)

if yi = ∗ (where ẑ means delete z). We set

Fqξ
l(n) =

q∐
j=0

8lj (n)/ ≈ and Dqξ
l(n) = Fqξ l(n)/Fq−1ξ

l(n).

Then ξ l(n) is unstably homotopy equivalent toWl(n) such that there is a stable
homotopy equivalence ξ l(n) 


s

∨
1≤q Dqξ l(n).

We construct an unstable map

(5.1) ϑlq,n : 8lq(n)→ P lqn,n(C).

We identify

D2n−2 =
{
f = zn + 0 · zn−1 + a1z

n−2 + · · · + an−1 : ai ∈ C,
n−1∑
i=1

|ai |2 ≤ 1

}
.

A little 2-cube c naturally defines a map c̃ : D2n−2 → Cn (where we identify
Cn with the space of monic polynomials over C of degree n) as follows. We fix

a homeomorphism h : C
∼=−→ J 2, where J = (0, 1). For f =∏n

i=1(z− αi) ∈
D2n−2, we set

c̃(f ) =
n∏
i=1

(z− c ◦ h(αi)) ∈ Cn.
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Now we set

ϑlq,n(〈c1, . . . , cq〉, f1, . . . , fq) =
q∏
i=1

c̃i (fi),

where the right-hand side is a multiplication of polynomials. Note that for
i �= j , c̃i (fi) and c̃j (fj ) do not have a common root. Since at most l of fi is
of the form zn, ϑlk,n is indeed a map to P lqn,n(C).

Remark. Let f =∏qn

j=1(z−αj ) ∈ Im ϑlq,n. Then, by the definition of ϑlq,n,
we have αj ∈ J 2 (1 ≤ j ≤ qn). We use this fact in Section 6.

Now we define a stable map f lk,n(C) :
∨k
q=1Dqξ

l(n)→ P lkn,n(C) to be the
following composite of maps:

(5.2) f lk,n(C) :
k∨
q=1

Dqξ
l(n)

∨elq,n−→
k∨
q=1

8lq(n)
∨ϑlq,n−→

k∨
q=1

P lqn,n(C)
j−→ P lkn,n(C),

where elq,n : Dqξ l(n)→ 8lq(n) is a generalization of the Snaith stable splitting
map and j is the map induced from inclusions P lqn,n(C) ↪→ P lkn,n(C).

(C) We have a stable homotopy equivalence P 0
kn,n(C) 


s
X0
k,n(C) without

specifying a map. (Compare (1.1).) From the construction of the mapf lk,n(C) in
(5.2), it is easy to see that f 0

k,n(C) indeed gives a stable homotopy equivalence.
(D) The initial step for induction is proved in (C).

Lemma 5.3. There is a commutative diagram

· · · −−→ H∗(Xl−1
k,n (C))

i∗−−−→ H∗(Xlk,n(C)) −−→ H∗−2l(n−1)(X
0
k−l,n(C))

↓f l−1
k,n (C)∗ ↓f lk,n(C)∗ ↓f 0

k−l,n(C)∗

· · · −−→ H∗(P l−1
kn,n(C))

i∗−−−→ H∗(P lkn,n(C)) −−→ H∗−2l(n−1)(P
0
(k−l)n,n(C))

−−→ H∗−1(X
l−1
k,n (C)) −−→ · · ·

↓f l−1
k,n (C)∗

−−→ H∗−1(P
l−1
kn,n(C)) −−→ · · ·

where each row is exact and i are suitable inclusions.

Proof. The first row is similar to (4.6) and is proved in [10, Propositions
4.5, 5.4]. The second row can be proved similarly using the fact that

P lkn,n(C)− P l−1
kn,n(C) = SPl(C)× P 0

(k−l)n,n(C).
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From the construction of the stable map f lk,n(C) in (5.2), the diagram of the
lemma is commutative. This completes the proof of Lemma 5.3.

Now using Lemma 5.3, we can prove inductively that f lk,n(C) induces an
isomorphism in homology, hence is a stable homotopy equivalence. This com-
pletes the proof of Theorem A (i) for F = C.

Proof of Theorem C. Hereafter we assume (n, l) �= (2, 0). By a similar
argument to the construction of the unstable map ϑlq,n in (5.1), we construct
an unstable map

<lq,n : 8lq(n)→ Xlq,n(C)

as follows. We identify

D2n−2 =
{
g = (z, z− α1, . . . , z− αn−1) : αi ∈ C,

n−1∑
i=1

|αi |2 ≤ 1

}
.

A little 2-cube c naturally defines a map c̃ : D2n−2 → Cn as follows. For
g = (z, z− α1, . . . , z− αn−1) ∈ D2n−2, we set

c̃(g) = (z− c ◦ h(0), z− c ◦ h(α1), . . . , z− c ◦ h(αn−1)) ∈ Cn.

Then we set

<lq,n(〈c1, . . . , cq〉, g1, . . . , gq) = µ(̃c1(g1), . . . , c̃q(gq)),

where the right-hand side means componentwise multiplication of n-tuples of
polynomials. Since at most l of gi is of the form (z, . . . , z), <lk,n is indeed a
map to Xlq,n(C).

SinceP lk,n(C) andXlk,n(C) are simply connected, the inclusion of Step (A) is
in fact a homotopy equivalence. Hence, Theorem C follows from the following:

Proposition 5.4. (i) There are unstable maps Hl
k,n : Fkξ l(n)→ P lkn,n(C)

and H̃ l
k,n : Fkξ l(n)→ Xlk,n(C) so that the following diagrams are homotopy

commutative:

k∐
q=0
8lq(n)

∐
ϑlq,n−−−−→

k∐
q=0
P lqn,n(C)

↓ ↓j
Fkξ

l(n)
Hl
k,n−−−−→ P lkn,n(C)

and

k∐
q=0
8lq(n)

∐
<lq,n−−−−→

k∐
q=0
Xlq,n(C)

↓ ↓j
Fkξ

l(n)
H̃ l
k,n−−−−→ Xlk,n(C)

(ii) The maps Hl
k,n and H̃ l

k,n are homotopy equivalences.
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Proof. (i) The right diagram for l = 0 and n ≥ 3 is Theorem 1.4 in [7].
By a similar argument, we can prove (i).

(ii) By Theorem A (i) for F = C and Theorem B (i), Hl
k,n and H̃ l

k,n in-
duce isomorphisms in homology. Since the both sides of Hl

k,n and H̃ l
k,n are

simply connected, (ii) follows. This completes the proof of Proposition 5.4,
and, consequently, of Theorem C.

6. Proofs of Theorem A (i) for F = R and (ii)

We follow Steps (A)–(D) in Section 5.
(A) By a similar argument to the repetition theorem in [1, p. 42], it is easy

to show that (A) holds for P lkn+j,n(R) andQlkn+j,n(F ) (0 ≤ j ≤ n− 1).
(B) Since the arguments are similar, we construct g2i

k,n(R) and give remarks
for the other cases. Similarly to ηq,i,n in (4.3), there is an inclusion νiq,n :
Im ϑiq,n → Q2i

2qn,n(R) defined as follows. Let f = ∏qn

j=1(z − αj ) ∈ Im ϑiq,n.
By Remark after (5.1), we have αj ∈ J 2 (1 ≤ j ≤ qn). We define νiq,n(f ) to
be the polynomial whose roots are αj and αj (1 ≤ j ≤ qn). Using this, we
have a stable map

νiq,n ◦ ϑiq,n ◦ eiq,n : Dqξ
i(n)→ Q2i

2qn,n(R).

By a similar argument to (4.10), the factQ0
n,n(R) = P 0

n,n(R) 
 Sn−2 (compare
Example 2.2 (i)) gives a stable map �p(n−2)Dqξ

i(n) → Q2i
(p+2q)n,n(R). This

map naturally defines g2i
k,n(R).

In order to construct f 2i
k,n(R), it is convenient to use (4.7), and in order to

construct glk,n(C), note that the map f lk,n(C) in (5.2) is in fact a map toQlkn,n(C).
(C) In order to prove thatf 0

k,n(R) is a stable homotopy equivalence, it suffices
to prove that

(6.1) P 0
kn,n(R) 


s
X0
k,n(R)

without specifying a map. This is proved in the same way as in the proof
of P 0

kn,n(C) 

s
X0
k,n(C) in [14, p. 151] and an outline is as follows. Let �1

and �2 be the complements of P 0
kn,n(R) and X0

k,n(R) in Skn = Rkn ∪ {∞},
respectively. Recall that in Lemma 4.4, we discussed the spectral sequence
Er(G(�2)) which converges to H∗(G(�2)). Similarly, we can consider the
spectral sequence Er(G(�1)). We see that E1(G(�1))

∼= E1(G(�2)). Then
by the same argument as in [14, p. 151], we can prove that G(�1) 


s
G(�2).

SinceG(�i) 
 �i and the Spanier-Whitehead duals of stably homotopy equi-
valent spaces are stably homotopy equivalent, we have P 0

kn,n(R) 

s
X0
k,n(R).
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This completes the proof of (6.1), and hence f 0
k,n(R) is a stable homotopy

equivalence.
Since f 0

k,n(F ) = g0
k,n(F ), g

0
k,n(F ) is also a stable homotopy equivalence.

(D) The initial step for induction for Theorem A for F = R is proved in
(6.1). Similar diagrams to Lemma 5.3 hold. For example, in order to prove
Theorem A (i) for F = R, we substitute (4.6) for the first row of Lemma 5.3.
Then we can prove inductively that f lk,n(R) and glk,n(F ) are stably homotopy
equivalent.
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