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PRESTABLE IDEALS AND SAGBI BASES

HIDEFUMI OHSUGI and TAKAYUKI HIBI

Abstract

In order to find a reasonable class of squarefree monomial ideals I for which the toric ideal of the
Rees algebra of I has a quadratic Gröbner basis, the concept of prestable ideals will be introduced.
Prestable ideals arising from finite pure posets together with their application to Sagbi bases will
be discussed.

Introduction

Let R = K[x1, . . . , xn] denote the polynomial ring in n variables over a field
K with each deg xi = 1 and let I ⊂ R be an ideal which is generated by
monomials u1, . . . , um with deg u1 = · · · = deg um. The Rees algebra of
I is the subalgebra R(I ) = K[x1, . . . , xn, u1t, . . . , umt] of R[t]. Let A =
K[x1, . . . , xn, y1, . . . , ym] = R[y1, . . . , ym] denote the polynomial ring over
K and define the surjective homomorphism π : A → R(I ) by setting π(xi) =
xi and π(yj ) = uj t . The toric ideal JR(I ) of R(I ) is the kernel of π . Blum
[1] proved that if R(I ) is Koszul, then all powers of I have linear resolutions.
Thus in particular if JR(I ) has a quadratic Gröbner basis, then all powers of I
have linear resolutions. However, the existence of a quadratic Gröbner basis
of JR(I ) is a rather strong condition which guarantees that all powers of I have
linear resolutions. In [8] a much weaker condition, called the x-condition, for
JR(I ) is introduced and it is proved that if JR(I ) satisfies the x-condition, then
all powers of I have linear resolutions.

In the present paper, a new class of monomial ideals, the class of prestable
ideals, which contains the stable ideals [4] is introduced. If I is prestable, then
JR(I ) satisfies the x-condition and all powers of I have linear resolutions. See
Corollary 1.5. We then discuss a class of prestable squarefree monomial ideals
I arising from finite pure posets (partially ordered sets) such that JR(I ) has a
quadratic Gröbner basis. See Theorem 2.1 and Corollary 2.2. Finally, as one of
the applications of such prestable ideals coming from finite pure posets, Sagbi
bases of the algebras studied in [5] will be determined. See Theorem 3.2.
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1. Prestable sets

Let R = K[x1, . . . , xn] denote the polynomial ring in n variables over a field
K with each deg xi = 1, and write V (d)

n for the set of all monomials of R of
degree d.

A nonempty subset N = {u1, u2, . . . , um} ⊂ V (d)
n is said to be a prestable

set if N possesses the exchange property (∗) as follows:

(∗) For all N = 1, 2, . . . and for any two monomials
∏N

j=1 uij and
∏N

�=1 uk�

with
∏N

j=1 uij = x
a1
1 x

a2
2 · · · xan

n and
∏N

�=1 uk� = x
b1
1 x

b2
2 · · · xbn

n such that
a1 = b1, . . . , aq−1 = bq−1 and aq < bq for some 1 ≤ q < n, there exist
1 ≤ j ≤ N and q < p ≤ n such that xq(uij /xp) ∈ N .

One of the most fundamental classes of prestable sets is

Example 1.1. Recall that a set of monomials N ⊂ V (d)
n is stable if, for

all u ∈ N and for all i < m(u), one has xi(u/xm(u)) ∈ N . Here m(u) is
the largest i for which xi divides u. A stable set N is prestable. In fact, if∏N

j=1 uij = x
a1
1 x

a2
2 · · · xan

n and
∏N

�=1 uk� = x
b1
1 x

b2
2 · · · xbn

n , with each uij , uk� ∈
N such that a1 = b1, . . . , aq−1 = bq−1 and aq < bq , then there is p > q with
ap > bp. In particular xp divides some uij . Since m(uij ) ≥ p > q and since
N is stable, one has xq(uij /xm(uij

)) ∈ N . We will give a prestable set which
is not stable. See Example 2.3.

Let I ⊂ R be an ideal generated by monomials of degree d and G(I) the
minimal system of monomial generators of I , i.e., G(I) = I ∩ V (d)

n . We say
that I is prestable if G(I) ⊂ V (d)

n is a prestable set. The Rees algebra of I is
the semigroup ring

R(I ) = K[x1, . . . , xn, {ut}u∈G(I)] (⊂ R[t] = K[x1, . . . , xn, t]).

Let A = K[x1, . . . , xn, {yu}u∈G(I)] = R[{yu}u∈G(I)] denote the polynomial
ring over K with each deg xi = deg yu = 1. The toric ideal of R(I ) is the ideal
JR(I ) ⊂ Awhich is the kernel of the surjective homomorphismπ : A → R(I )

defined by setting π(xi) = xi for each 1 ≤ i ≤ n and π(yu) = ut for each
u ∈ G(I).

Let<( ) be an arbitrary monomial order on the polynomial ringK[{yu}u∈G(I)]
and <lex the lexicographic order on R induced by x1 > x2 > · · · > xn. We
then introduce the new monomial order <( )

lex on A by setting xayb <
( )

lex xa′
yb′

if either (i) xa <lex xa′
or (ii) xa = xa′

and yb <( ) yb′
. Here each of xa and xa′

is a monomial belonging to R and each of yb and yb′
is a monomial belonging

to K[{yu}u∈G(I)].
We now state the reason why we are interested in prestable ideals. We refer

the reader to, e.g., [3] for fundamental materials on Gröbner bases.
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Since a prestable set satisfies the �-exchange property [7] for all monomial
orders <( ) on K[{yu}u∈G(I)], Theorem 1.2 below is a special case of [7, The-
orem 5.1]. However, for the sake of completeness, a proof of Theorem 1.2 will
be given.

Theorem 1.2. Work with the same notation as above. Suppose that I ⊂ R

is a prestable ideal and G is a Gröbner basis of JR(I ) ∩ K[{yu}u∈G(I)] with
respect to <( ). Then

G ∪ {xiyu − xjyv; u, v ∈ G(I), xiu = xjv}

is a Gröbner basis of JR(I ) with respect to <
( )

lex .

Proof. It is known, e.g., [12] that the reduced Gröbner basis of the toric
ideal JR(I ) consists of binomials. Let f = xi1 · · · xipyu1 · · · yuq

− xj1 · · · xjpyv1

· · · yvq be an irreducible binomial belonging to JR(I ) with p ≥ 1, where i1 ≤
i2 ≤ · · · and j1 ≤ j2 ≤ · · · with i1 < j1. Thus the initial monomial of
f is in

<
( )

lex
(f ) = xi1 · · · xipyu1 · · · yuq

. Write u1u2 · · · uq = x
a1
1 x

a2
2 · · · xan

n and

v1v2 · · · vq = x
b1
1 x

b2
2 · · · xbn

n . Then a1 = b1, . . . , ai1−1 = bi1−1 and ai1 < bi1 .
Since I is prestable, it follows that there exist i and j with 1 ≤ i ≤ q

and i1 < j ≤ n such that xi1(ui/xj ) ∈ G(I). Let w = xi1(ui/xj ). Then
g = xi1yui

− xjyw ∈ JR(I ). Since xjyw <
( )

lex xi1yui
, the initial monomial of g

is in
<

( )

lex
(g) = xi1yui

. Thus in
<

( )

lex
(g) divides in

<
( )

lex
(f ).

The elimination property of the lexicographic order together with The-
orem 1.2 guarantees that

Corollary 1.3. Suppose that I ⊂ R is a prestable ideal and G is a
Gröbner basis of JR(I ) ∩ K[{yu}u∈G(I)] with respect to <( ). Then for each
1 ≤ � ≤ n

G ∪ { xiyu − xjyv; u, v ∈ G(I), � ≤ i, j ≤ n, xiu = xjv }
is a Gröbner basis of

JR(I ) ∩ K[x�, x�+1, . . . , xn, {yu}u∈G(I)]

with respect to <
( )

lex on K[x�, x�+1, . . . , xn, {yu}u∈G(I)].

Corollary 1.4. Let I ⊂ R be a prestable ideal and suppose that JR(I ) ∩
K[{yu}u∈G(I)] possesses a quadratic Gröbner basis. Then the toric ideal JR(I )

has a quadratic Gröbner basis. Thus in particular the Rees algebra R(I ) is
Koszul.
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A monomial ideal I is called strongly stable if, for all u ∈ G(I) and for
all xj that divies u, one has xi(u/xj ) ∈ G(I) for all i < j . Conca and De
Negri [2] discovered an example of a strongly stable ideal I ⊂ R for which
JR(I ) ∩ K[{yu}u∈G(I)] possesses no quadratic Gröbner basis.

If f ∈ A is a homogeneous polynomial, then its x-degree is the degree
degx(f ) of f as a polynomial in the variables x1, . . . , xn with coefficients in
K[{yu}u∈G(I)]. For example, if f = x2

1x2y1y2 − x3
3y3y4, then its x-degree is

degx(f ) = 3. We say that JR(I ) satisfies the x-condition [8] if there exists a
Gröbner basis G of JR(I ) such that degx(g) ≤ 1 for each g ∈ G .

Corollary 1.5. Let I ⊂ R be a prestable ideal. Then all powers of I have
linear resolutions.

Proof. If I ⊂ R is a prestable ideal, then the toric ideal JR(I ) satisfies
the x-condition. Thus [8, Corollary 1.2] says that all powers of I have linear
resolutions.

2. Prestable ideals arising from pure posets

In the present section we are interested in finding a reasonable class of prestable
ideals I ⊂ R for which JR(I ) ∩ K[{yu}u∈G(I)] has a quadratic Gröbner basis.

Let % = %1 ∪%2 ∪ · · ·∪%d be a finite pure poset [11, p. 99] of rank d − 1,
where each %i is the set of rank i−1 elements of %. Recall that a poset of rank
d − 1 is called pure if the length of every maximal chain is equal to d − 1. Let
%i = {x(i)

1 , x
(i)
2 , · · · , x(i)

pi
}, and let R = K[{x(i)

j } 1≤i≤d

1≤j≤pi

] denote the polynomial

ring over a field K with each deg x
(i)
j = 1. We will associate each maximal

chain
C : x(1)

q1
< x(2)

q2
< · · · < x(d)

qd

of % with the squarefree monomial

xC = x(1)
q1

x(2)
q2

· · · x(d)
qd

of R of degree d. Let M(%) denote the set of maximal chains of %.

Theorem 2.1. Work with the same notation as above. Suppose that %

satisfies the condition that if x(i)
j > x

(i−1)
k , then x

(i)
j ′ > x

(i−1)
k for all j ′ with

j ′ < j and x
(i)
j > x

(i−1)
k′ for all k′ with k < k′. Then {xC;C ∈ M(%)} is a

prestable set.

Proof. We work with the ordering

x
(d)
1 , x

(d)
2 , · · · , x(d)

pd
, x

(d−1)
1 , · · · , x(d−1)

pd−1
, x

(d−2)
1 , · · · , x(2)

p2
, x

(1)
1 , · · · , x(1)

p1
.
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Let
∏N

λ=1 xCpλ
= ∏

i,j x
(i)
j

a
(i)
j and

∏N
µ=1 xCqµ

= ∏
i,j x

(i)
j

b
(i)
j . Suppose that

a
(i0)
j0

< b
(i0)
j0

and a
(i)
j = b

(i)
j for all i and j with either (i) i > i0 or (ii) i = i0

and j < j0. Let Aj = {pλ; x(i0)
j ∈ Cpλ

} and Bj = {qµ; x(i0)
j ∈ Cqµ}. Then∑j0

j=1 |Aj | <
∑j0

j=1 |Bj |, where |Aj | stands for the cardinality of the finite
set Aj . It then follows that there exist Cpλ

and Cqµ such that Cpλ
∩ %i0+1 =

Cqµ ∩%i0+1, Cpλ
∩%i0 ⊂ {x(i0)

j0+1, . . . , x
(i0)
pi0

} and Cqµ ∩%i0 ⊂ {x(i0)
1 , . . . , x

(i0)
j0

}.
Let Cpλ

∩ %i0+1 = {x(i0+1)
r }, Cpλ

∩ %i0 = {x(i0)
j ′ } and Cqµ ∩ %i0 = {x(i0)

j ′′ }.
Then j ′′ ≤ j0 < j ′. Since x

(i0)
j ′′ < x(i0+1)

r in %, one has x
(i0)
j0

< x(i0+1)
r . Let

Cpλ
∩ %i0−1 = {x(i0−1)

k }. Since x
(i0−1)
k < x

(i0)
j ′ in %, one has x

(i0−1)
k < x

(i0)
j0

.

Hence x
(i0−1)
k < x

(i0)
j0

< x(i0+1)
r . Thus (Cpλ

\ {x(i0)
j ′ }) ∪ {x(i0)

j0
} ∈ M(%), as

required.

Corollary 2.2. Suppose that % satisfies the same condition as in The-
orem 2.1 and let I ⊂ R denote the prestable ideal with G(I) = {xC;C ∈
M(%)}. Then all powers of I have linear resolutions. Moreover, the toric
ideal JR(I ) of the Rees algebra R(I ) possesses a squarefree and quadratic
Gröbner basis. (A Gröbner basis is called squarefree if the initial monomial
of each polynomial belonging to the Gröbner basis is squarefree.)

Proof. By virtue of Theorem 2.1 together with Corollary 1.5 it follows
that all powers of I have linear resolutions. By using Corollary 1.4, in order to
show that JR(I ) has a squarefree and quadratic Gröbner basis, our work is to
prove that JR(I ) ∩K[{yu}u∈G(I)] has a squarefree and quadratic Gröbner basis.

Let <rev denote the reverse lexicographic order on R = K[{x(i)
j } 1≤i≤d

1≤j≤pi

]

induced by the same ordering as in the proof of Theorem 2.1. Thus u
x
(d)
1

is
the biggest variable and u

x
(1)
p1

is the smallest variable with respect to <rev. We

then introduce the reverse lexicographic order <( ) on K[{yu}u∈G(I)] such that
yu <( ) yv if u <rev v.

Let Cα,Cβ ∈ M(%). We say that (Cα, Cβ) is a noncrossing pair if Cα ∩
%i = {x(i)

ji (α)
} and Cβ ∩ %i = {x(i)

ji (β)
}, then ji(α) ≤ ji(β) for all 1 ≤ i ≤ d.

Let Cλ,Cµ ∈ M(%) for which (Cλ, Cµ) is a crossing pair, i.e., there is
1 ≤ i0 < d such that if Cλ ∩ %i0+1 = {x(i0+1)

j }, Cµ ∩ %i0+1 = {x(i0+1)
j ′ },

Cλ ∩ %i0 = {x(i0)
k } and Cµ ∩ %i0 = {x(i0)

k′ }, then j ′ < j and k < k′. Since %

satisfies the same condition as in Theorem 2.1, it follows that x(i0)
k < x

(i0+1)
j ′

and x
(i0)
k′ < x

(i0+1)
j . Let Cλ′ = (Cλ ∩ (∪d

i=i0+1%i)) ∪ (Cµ ∩ (∪i0
i=1%i)) and

Cµ′ = (Cµ ∩ (∪d
i=i0+1%i)) ∪ (Cλ ∩ (∪i0

i=1%i)). Then Cλ′ , Cµ′ ∈ M(%) and
xCλ

xCµ
= xCλ′ xCµ′ . Repeated applications of such the technique guarantees

the existence of Cα,Cβ ∈ M(%) such that (Cα, Cβ) is a noncrossing pair
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with xCλ
xCµ

= xCα
xCβ

. The existence of a noncrossing pair (Cα, Cβ) with
xCλ

xCµ
= xCα

xCβ
is unique and uxCα

uxCβ
<( ) uxCλ

uxCµ
.

Hence by using the well-known technique, e.g., [10, Lemma 0.1], it turns
out that the set of all binomials uxCλ

uxCµ
− uxCα

uxCβ
, where (Cα, Cβ) is a

noncrossing pair, (Cλ, Cµ) is a crossing pair and xCλ
xCµ

= xCα
xCβ

is a Gröbner
basis of JR(I ) ∩ K[{yu}u∈G(I)] with respect to <( ).

Example 2.3. Let R = K[{x(i)
j } 1≤i≤n

1≤j≤m
], where n ≤ m, denote the poly-

nomial ring in nm variables and N the set of all (squarefree) monomials
x
(1)
j1

x
(2)
j2

. . . x
(n)
jn

with 1 ≤ j1 < j2 < · · · < jn ≤ m. Let I ⊂ R be
the ideal with G(I) = N . Then all powers of I have linear resolutions
and the toric ideal JR(I ) of the Rees algebra R(I ) possesses a squarefree
and quadratic Gröbner basis. It follows from Corollary 1.3 that, for each
1 ≤ � ≤ n, the ideal JR(I ) ∩ K[{x(i)

j } �≤i≤n

1≤j≤m
, {yu}u∈G(I)] (as well as the ideal

JR(I ) ∩K[{x(i)
j } 1≤i≤�

1≤j≤m
, {yu}u∈G(I)]) possesses a squarefree and quadratic Gröb-

ner basis.

3. Computations of Sagbi bases

Let K[t] = K[t1, . . . , td ] denote the polynomial ring in d variables over a
field K . Given a finite set F = {f1, . . . , fn} ⊂ K[t], we write K[F ] =
K[f1, . . . , fn] for the subalgebra of K[t] generated by f1, . . . , fn. The initial
algebra of K[F ] with respect to a monomial order < on K[t] is the subalgebra

in<(K[F ]) = K[{in<(f ); f ∈ K[F ]}]
of K[t]. A subset S of K[F ] is said to be a Sagbi basis of K[F ] with respect
to < if in<(K[F ]) is generated by {in<(s); s ∈ S }. A Sagbi basis always
exists. However, a finite Sagbi basis does not necessarily exist.

Let R = K[x1, . . . , xn] denote the polynomial ring in n variables over K
with each deg xi = 1 and IF (⊂ R) the defining ideal of K[F ]. Thus IF is
the kernel of the surjective ring homomorphism from R to K[F ] defined by
setting xi �→ fi .

Given a generic weight vector w ∈ Rd
≥0 on K[t], we introduce the new

weight vector w̃ = (w · a1, . . . , w · an) ∈ Rn
≥0 on R, where inw(fi) = tai =

t
a
(1)
i

1 · · · ta(d)
i

d with ai = (a
(1)
i , . . . , a

(d)
i ). The initial ideal inw̃(IF ) of IF with

respect to w̃ may not be a monomial ideal. Let Jinw(F ) (⊂ R) denote the
toric ideal of the semigroup ring K[inw(f1), . . . , inw(fn)]. It is known [12,
Lemma 11.3] that inw̃(IF ) ⊂ Jinw(F ). Moreover, [12, Theorem 11.4] says that

Lemma 3.1. A subset F ⊂ K[F ] is a Sagbi basis of K[F ] with respect
to a weight vector w if and only if Jinw(F ) ⊂ inw̃(IF ).
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Fix integers 1 ≤ � < n ≤ m. Let X =
(
x
(i)
j

)
1≤i≤n

1≤j≤m

be the n × m matrix of

variables andK[X] = K[{x(i)
j } 1≤i≤n

1≤j≤m
] the polynomial ring overK . The notation

[j1, j2, . . . , jn], 1 ≤ j1 < j2 < · · · < jn ≤ m, stands for the n × n submatrix



x
(1)
j1

x
(1)
j2

. . . x
(1)
jn

x
(2)
j1

x
(2)
j2

. . . x
(2)
jn

...
...

x
(n)
j1

x
(n)
j2

. . . x
(n)
jn




of X. Let X� = {x(i)
j ; 1 ≤ i ≤ �, 1 ≤ j ≤ m} and

/(X) = { det([j1, j2, . . . , jn]); 1 ≤ j1 < j2 < · · · < jn ≤ m }.
In [5] the authors discuss the subalgebra R�(X) = K[/(X) ∪ X�] of K[X].
If � = 1, then a Sagbi basis of R1(X) is given in [9, Proposition 2.1] (when
n = 2) and [6] (when n ≥ 2). Using Example 2.3 we determine a Sagbi basis
of R�(X) for all � ≥ 1.

Recall that a diagonal order on K[X] is a monomial order < on K[X] such
that

in<(det([j1, j2, . . . , jn])) = x
(1)
j1

x
(2)
j2

· · · x(n)
jn

for all det([j1, j2, . . . , jn]) ∈ /(X). We work with the diagonal order <diag

on K[X] defined by the weight vector w = (
ij

)
1≤i≤n

1≤j≤m

.

Theorem 3.2. The finite set/(X)∪X� is a Sagbi basis ofR�(X)with respect
to the weight vector w = (

ij
)

1≤i≤n

1≤j≤m

. Moreover, the toric ideal Jinw(/(X)∪X�)

possesses a squarefree and quadratic initial ideal. In particular the initial
algebra inw(R�(X)) is normal and Koszul.

Proof. Example 2.3 says that the toric ideal Jinw(/(X)) possesses a square-
free quadratic Gröbner basis G and that

G ∪ {x(i)
j yu − x

(i)
j ′ yv; u, v ∈ N , x

(i)
j u = x

(i)
j ′ v, 1 ≤ i ≤ �}

is a squarefree quadratic Gröbner basis of Jinw(/(X)∪X�). Since /(X) is a Sagbi
basis of K[/(X)] with respect to the weight vector w = (

ij
)

1≤i≤n

1≤j≤m

([12, The-

orem 11.8]), it follows that G ⊂ inw̃(I/(X)) ⊂ inw̃(I/(X)∪X�
). By virtue

of Lemma 3.1, our work is to show that each binomial x
(i)
j yu − x

(i)
j ′ yv ∈

Jinw(/(X)∪X�) belongs to inw̃(I/(X)∪X�
).

Let x(i)
j yu − x

(i)
j ′ yv ∈ Jinw(/(X)∪X�). Then there exist

1 ≤ k1 < · · · < ki−1 < j < j ′ < ki+1 < · · · < kn ≤ m
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such that u (resp. v) is the main diagonal monomial of det(U) (resp. det(V )),
where U = [k1, . . . , ki−1, j

′, ki+1, . . . , kn] (resp. V = [k1, . . . , ki−1, j, ki+1,

. . . , kn]). Now, we introduce the (n + 1) × (n + 1) matrix

M =




x
(1)
k1

. . . x
(1)
j x

(1)
j ′ . . . x

(1)
kn

...
...

...
...

x
(i)
k1

. . . x
(i)
j x

(i)
j ′ . . . x

(i)
kn

x
(i)
k1

. . . x
(i)
j x

(i)
j ′ . . . x

(i)
kn

...
...

...
...

x
(n)
k1

. . . x
(n)
j x

(n)
j ′ . . . x

(n)
kn




with det(M) = 0. Since

det(M) =
i−1∑
p=1

(−1)px(i)
kp

det(k1, . . . , kp−1, kp+1, . . . , j, j
′, . . . , kn)

+ (−1)ix(i)
j det(U) + (−1)i+1x

(i)
j ′ det(V )

−
n∑

p=i+1

(−1)px(i)
kp

det(k1, . . . , j, j
′, . . . , kp−1, kp+1, . . . , kn),

the polynomial

f = (−1)i(x(i)
j yu − x

(i)
j ′ yv) +

i−1∑
p=1

(−1)px(i)
kp
yup

−
n∑

p=i+1

(−1)px(i)
kp
yup

,

where each of the up’s is equal to either det[k1, . . . , kp−1, kp+1, . . . , j, j
′, . . . ,

kn] or det[k1, . . . , j, j
′, . . . , kp−1, kp+1, . . . , kn], belongs to the defining ideal

I/(X)∪X�
. Since the main diagonal monomial of det(M) is inw(x

(i)
j det(U)) =

inw(x
(i)
j ′ det(V )), it follows that inw̃(f ) = x

(i)
j yu − x

(i)
j ′ yv , as desired.
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