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PRESTABLE IDEALS AND SAGBI BASES

HIDEFUMI OHSUGI and TAKAYUKI HIBI

Abstract

In order to find a reasonable class of squarefree monomial ideals / for which the toric ideal of the
Rees algebra of I has a quadratic Grobner basis, the concept of prestable ideals will be introduced.
Prestable ideals arising from finite pure posets together with their application to Sagbi bases will
be discussed.

Introduction

Let R = K[xy, ..., x,] denote the polynomial ring in n variables over a field
K with each degx; = 1 and let / C R be an ideal which is generated by
monomials uy, ..., u, with degu; = --- = degu,. The Rees algebra of
I is the subalgebra Z(I) = K[x1,...,Xu, uit, ..., u,t] of R[t]. Let A =
Klxi, ..., X0, Y15 -+ +» Yml = R[Y1, - .., Y] denote the polynomial ring over

K and define the surjective homomorphism z : A — % (I) by setting 7 (x;) =
x; and 7w (y;) = u;t. The toric ideal Jg ;) of Z(I) is the kernel of 7. Blum
[1] proved that if (1) is Koszul, then all powers of 7 have linear resolutions.
Thus in particular if Jg(;) has a quadratic Grobner basis, then all powers of 1
have linear resolutions. However, the existence of a quadratic Grobner basis
of Jg(ry is a rather strong condition which guarantees that all powers of / have
linear resolutions. In [8] a much weaker condition, called the x-condition, for
Ja ) 1s introduced and it is proved that if Jg(;) satisfies the x-condition, then
all powers of I have linear resolutions.

In the present paper, a new class of monomial ideals, the class of prestable
ideals, which contains the stable ideals [4] is introduced. If I is prestable, then
Ja ) satisfies the x-condition and all powers of I have linear resolutions. See
Corollary 1.5. We then discuss a class of prestable squarefree monomial ideals
I arising from finite pure posets (partially ordered sets) such that Jg ;) has a
quadratic Grobner basis. See Theorem 2.1 and Corollary 2.2. Finally, as one of
the applications of such prestable ideals coming from finite pure posets, Sagbi
bases of the algebras studied in [5] will be determined. See Theorem 3.2.
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1. Prestable sets

Let R = K[xy, ..., x,] denote the polynomial ring in n variables over a field
K with each deg x; = 1, and write Vn(") for the set of all monomials of R of
degree d.

A nonempty subset N = {uy, uy, ..., u,} C V@ is said to be a prestable
set if A" possesses the exchange property () as follows:

(x) Forall N =1,2,...and for any two monomials ]_[JI.V:1 w;, and [T, ug,
with ]_[jvzl u;, = xy'x5? - x@ and [}, ug, = x'x5> - - x2 such that
ay=by,...,a,_1 =by_1and a, < b, for some 1 < g < n, there exist
1 <j=<Nandqg < p < nsuchthat x,(u;, /x,) € N

One of the most fundamental classes of prestable sets is

ExaMPLE 1.1. Recall that a set of monomials 4" C V@ is stable if, for
all u € A and for all i < m(u), one has x;(u/x,u)) € N Here m(u) is
the largest i for which x; divides u. A stable set A" is prestable. In fact, if

N L a1 @ a N _ b b b . .
[[=iui = xi"xy" - xp and [T,y ug, = x7'%5° - x,n, with each u;,, uy, €
N suchthata; = by, ...,a,-1 = by and a; < by, then there is p > ¢ with

a, > b,. In particular x, divides some u;,. Since m(u;;) > p > g and since
A is stable, one has x, (u;, /xm(u[f)) € N'. We will give a prestable set which
is not stable. See Example 2.3.

Let I C R be an ideal generated by monomials of degree d and G(I) the
minimal system of monomial generators of I, i.e., G(I) = I N V®. We say
that / is prestable if G(I) C V@ is a prestable set. The Rees algebra of I is
the semigroup ring

R(I) = KI[x1,...,x,, {uthyecmn] (CR[t]=K][x1,...,x,,1]).

Let A = K[x1, ..., %, {(Vuluecy] = RU{Yuluec] denote the polynomial
ring over K with eachdeg x; = deg y, = 1. The roric ideal of R (I) is the ideal
Jay C A which s the kernel of the surjective homomorphismm : A — (1)
defined by setting w(x;) = x; foreach 1 < i < n and n(y,) = ut for each
ueGd).

Let <® be an arbitrary monomial order on the polynomial ring K [{y,}uec (1))
and <y, the lexicographic order on R induced by x; > x, > --- > x,,. We
then introduce the new monomial order <’ on A by setting x*y” <'¥ x'y»
if either (i) X <. X* or (i) x* = x* and y? <® y” . Here each of x® and x*
is a monomial belonging to R and each of y” and y is a monomial belonging
to K[{yu}uecnl-

We now state the reason why we are interested in prestable ideals. We refer
the reader to, e.g., [3] for fundamental materials on Grobner bases.
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Since a prestable set satisfies the £-exchange property [7] for all monomial
orders <® on K[{ Yuluecn], Theorem 1.2 below is a special case of [7, The-
orem 5.1]. However, for the sake of completeness, a proof of Theorem 1.2 will
be given.

THEOREM 1.2. Work with the same notation as above. Suppose that I C R
is a prestable ideal and G is a Grobner basis of Jpy N K [{yu}uecn] with
respect to <®. Then

G U Xy — xjyp;u, v € G(I), xju = x;jv}

®

is a Grobner basis of Jg ) with respect to <.

Prookr. It is known, e.g., [12] that the reduced Grobner basis of the toric

ideal Jg(1) consists of binomials. Let f' = x;; =+ Xi, Yu, *+* Yu, — Xj, =+ * Xj, Y,
-+ yy, be an irreducible binomial belonging to Jg ;) with p > 1, where i} <
ip < ---and j; < j, < --- withi; < jj. Thus the initial monomial of
fisin_o(f) = Xi, -+ xi,Yu, - Y, Write uquz -~ ug = x{'x3? - x% and
vy vy = xPxP o xb Thena; = by, ..., a;,_ = b and a;, < b;,.

Since I is prestable, it follows that there exist i and j with 1 < i < ¢
and iy < j < n such that x; (u;/x;) € G(I). Let w = x; (u;/x;). Then
& = Xy, Yu; — XjYuw € Jg(1). Since x;yy <l(f; Xi, Yu,» the initial monomial of g
is in<;2 (8) = xi, yy,- Thus in<§2 (g) divides in<;2(f).

The elimination property of the lexicographic order together with The-
orem 1.2 guarantees that

CoROLLARY 1.3. Suppose that I C R is a prestable ideal and G is a
Grobner basis of Japay N K[{yulueca] with respect to <®_ Then for each
1<¢é¢<n

GU{xiyu —xjyp;u,v € GU), L <1i,j<n,xju=2xv}
is a Grobner basis of

Joaay NV Kxe, Xe15 ooy Xns {Vuuec]

with respect to <l(2 on K[xe, xeq1, -« -5 Xns {Yubuean -

CoOROLLARY 1.4. Let I C R be a prestable ideal and suppose that Jgy N
K{yuluecn] possesses a quadratic Grobner basis. Then the toric ideal Jgp(r)
has a quadratic Grébner basis. Thus in particular the Rees algebra R (1) is
Koszul.
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A monomial ideal [ is called strongly stable if, for all u € G(I) and for
all x; that divies u, one has x;(u/x;) € G(I) for all i < j. Conca and De
Negri [2] discovered an example of a strongly stable ideal / C R for which
Jaay N K[{Yu}ueca)] possesses no quadratic Grobner basis.

If f € A is a homogeneous polynomial, then its x-degree is the degree
deg,(f) of f as a polynomial in the variables xi, ..., x, with coefficients in
K[{yu}uecn]- For example, if f = xlzxzylyz — x33y3y4, then its x-degree is
deg, (f) = 3. We say that Jg () satisfies the x-condition [8] if there exists a
Grobner basis ¢ of Jg (1) such that deg, (g) < 1 foreach g € 4.

COROLLARY 1.5. Let I C R be a prestable ideal. Then all powers of I have
linear resolutions.

Proor. If I C R is a prestable ideal, then the toric ideal Jg(;y satisfies
the x-condition. Thus [8, Corollary 1.2] says that all powers of I have linear
resolutions.

2. Prestable ideals arising from pure posets

In the present section we are interested in finding a reasonable class of prestable
ideals I C R for which Jg) N K [{yu}uec )] has a quadratic Grobner basis.

LetQ =QUQ,U---UQ, be a finite pure poset [11, p. 99] of rank d — 1,
where each €2; is the set of rank i — 1 elements of 2. Recall that a poset of rank
d — 1is called pure if the length of every maximal chain is equal tod — 1. Let

Q; = {xl(i), xéi), cee xl(,"_)}, and let R = K[{x}i)} 1=iza | denote the polynomial
! 1<j=p;

ring over a field K with each deg x;l) = 1. We will associate each maximal
chain 1) @ (d)
Cixy’ <xg) <. <xg

of Q with the squarefree monomial

@ @

XC = Xg Xy, 4u

of R of degree d. Let .4 (£2) denote the set of maximal chains of €.

THEOREM 2.1. Work with the same notation as above. Suppose that
satisfies the condition that if x;') > x,i’fl) , then x;f V> X7 for all ' with

j < jand x;i) > x,g_l)for all k' with k < k'. Then {xc; C € M(Q)} is a
prestable set.

ProoOF. We work with the ordering

@ () ) ,d-1 d-1) _(d-2) 2 M 1
'xl ’x2 ’.“"xpd’xl ""’xpd71 7'xl ,...,xpz’xl """xl)l'
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a® p@
Let [T\ xc, = [T, x j(’) " and [T 1xe, = Ili;x j(') ’ . Suppose that

a;;") < bj(.(')O) and a(’) = b(’) for all i and j with either (i) i > ig or (ii) i = ig

andj < Jjo. Let AJ = {px,x;iO) € Cp}and B; = {q,; x; X e Cy,}- Then
YL 1Ajl < -/ IBjl, where |A;]| stands for the cardmahty of the finite
set A;. It then follows that there exist C,, and C,, such that Cp, N Q1 =

Cg N Qi1 Cp, Ny C Y, x} and Cg, N, C (™, x)).

Let Cp, N Qps1 = {x("’“)} Cp, NQy = {x(m)} and Cg, N, = {x\).

Then j” < jo < j'. Since xj(,,“) < x{*D in Q, one has x;'b) < xlotD Let
Cp, N2y = {x (i(’*])} Since x(irl) < x("’) in ©, one has xk"*l) < x(m).

Hence x;" ™" < x{® < x{*D Thus (C,, \ {x/”}) U {x{”} € #(Q), as
required.

COROLLARY 2.2. Suppose that Q2 satisfies the same condition as in The-
orem 2.1 and let I C R denote the prestable ideal with G(I) = {x¢; C €
M(2)}. Then all powers of I have linear resolutions. Moreover, the toric
ideal Jg 1) of the Rees algebra R (1) possesses a squarefree and quadratic
Grobner basis. (A Grobner basis is called squarefree if the initial monomial
of each polynomial belonging to the Grobner basis is squarefree.)

ProoFr. By virtue of Theorem 2.1 together with Corollary 1.5 it follows
that all powers of I have linear resolutions. By using Corollary 1.4, in order to
show that Jg(;) has a squarefree and quadratic Grobner basis, our work is to
prove that Jg ) N K [{yu}uec] has a squarefree and quadratic Grobner basis.

Let <, denote the reverse lexicographic order on R = K [{x(l)} Isisd ]
induced by the same ordering as in the proof of Theorem 2.1. Thus u ](j,nplls
the biggest variable and U o is the smallest variable with respect to <,.,. We

then introduce the reverse lexicographic order < on K [{y,}ucc(1)] such that
Y <P yyifu <y v.
Let C,, Cg € M(S2). We say that (Cy, Cp) is a noncrossing pair if Co, N
Qi = {x],,} and Cp N Q; = {x] 4}, then ji (@) < j;(B) forall 1 <i <d.
Let Cy, C, € M(2) for Wthh (Cx, C,) is a crossing pair, i.e., there is
I < iy < d such that if C, N Qi1 = {x*™V}, Cu N Qi = (),
C, Ny = (x™}and C, N Ry, = {x?), then j' < j and k < K. Since

satisfies the same condition as in Theorem 2.1, it follows that x( i0) o yliotD

J
and x(” < x"*V Let Cyy = (€ N (UL, ,1920)) U (Cu N (UL, €)) and

C, = (Cy N (UL i0r182)) U (G N (Uile,)). Then Cy/, Cy € M(2) and
Xc¢,Xc, = Xc,*c, - Repeated applications of such the technique guarantees

the existence of C,, Cg € M (2) such that (C,, Cg) is a noncrossing pair
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with x¢, xc, = xc,xc,- The existence of a noncrossing pair (C,, Cg) with
Xc,Xe, = Xc,Xc, is unique and uyg, e, < uy ty, -

Hence by using the well-known technique, e.g., [10, Lemma 0.1], it turns
out that the set of all binomials Uxe, Uxe, — Uxg, U, where (Cy, Cp) is a
noncrossing pair, (C;, C,,) is a crossing pair and xc, xc, = xc,Xc, is a Grobner
basis of Jory N K[{Yu}uec)] with respect to <@,

ExaMpLE 2.3. Let R = K [{x } lsz ], where n < m, denote the poly-

nomial ring in nm variables and A the set of all (squarefree) monomials
x(l)x(z) ..xg") withl < j; < jo < -+ < ju < m.Letl C R be
the 1dea1 with G(I) = N. Then all powers of I have linear resolutions
and the toric ideal Jg () of the Rees algebra Z(I) possesses a squarefree
and quadratic Grobner basis. It follows from Corollary 1.3 that, for each

1 < £ < n, the ideal Jgpqy N K[{x}i)} iz {Yu}uecn] (as well as the ideal

Jamy N K[{x;i)} =izt {yuluecn]) possesses a squarefree and quadratic Grob-
<j=m
ner basis.

3. Computations of Sagbi bases

Let K[t] = K[t, ..., t;] denote the polynomial ring in d variables over a
field K. Given a finite set & = {fi,..., fu} C K[t], we write K[F] =
K[ fi, ..., fu] for the subalgebra of K[t] generated by f1, ..., f,. The initial
algebra of K[&] with respect to a monomial order < on K [t] is the subalgebra

in (K[F]) = K[{in<(f); f € KIF]}]

of K[t]. A subset & of K[%]is said to be a Sagbi basis of K[% ] with respect
to < if in_(K[%]) is generated by {in_(s); s € &}. A Sagbi basis always
exists. However, a finite Sagbi basis does not necessarily exist.

Let R = K[xy, ..., x,] denote the polynomial ring in n variables over K
with each degx; = 1 and Iz (C R) the defining ideal of K[%]. Thus Iz is
the kernel of the surjective ring homomorphism from R to K[%] defined by
setting x; — f;.

Given a generic weight vector w € R‘io on K[t], we introduce the new

weight vector w = (w - ay, ..., w - ay,) 67R20 on R, where in,,(f;) = t* =
a® @ -
0t 1y witha; = (@, ..., a). The initial ideal in;(I7) of Iz with

respect to w may not be a monomial ideal. Let J;,,(#) (C R) denote the
toric ideal of the semigroup ring K[in,(f1), ..., iny(fy)]. It is known [12,
Lemma 11.3] thating(I#) C Jin,(#). Moreover, [12, Theorem 11.4] says that

LEMMA 3.1. A subset # C K[F] is a Sagbi basis of K[ ] with respect
to a weight vector w if and only if J;,, (#) C ing(Ig).
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Fixintegers 1 < ¢ <n <m.Let X = (x;i)) i be the n x m matrix of

1<j<m

variablesand K[X] = K [{xj@} Lsizn ] the polynomial ring over K . The notation
<jsm

Ljts jos o oo jnl, 1 < j1 < jo < --- < J, < m, stands for the n x n submatrix
(D (1)
X, e X
2.2 (2)
jl x/2 e /n
(n) _ (n) (n)
X X, e X

of X.Let X, = {x{"11<i<¢1<j<m}and
LX) = {det(Lji, joo - i T =i <2 <-o- < ju=m}.

In [5] the authors discuss the subalgebra R,(X) = K[I'(X) U X,] of K[X].
If £ = 1, then a Sagbi basis of R{(X) is given in [9, Proposition 2.1] (when
n = 2) and [6] (when n > 2). Using Example 2.3 we determine a Sagbi basis
of Ry(X) forall £ > 1.

Recall that a diagonal order on K[X]is a monomial order < on K[X] such
that in_(det([jr. jo. - jul)) = x 22 xf”

n

for all det([ji1, j2, ..., jul) € I'(X). We work with the diagonal order <g;4,
on K[X] defined by the weight vector w = (i/) 1= .
I<j=m

THEOREM 3.2. The finite set I' (X)UX, is a Sagbi basis of Ry (X) with respect
to the weight vector w = (ij) 1<i=n . Moreover; the toric ideal Ji, rx)ux,)

I<j=m

possesses a squarefree and quadmnc initial ideal. In particular the initial
algebra in,, (R, (X)) is normal and Koszul.

Proor. Example 2.3 says that the toric ideal J;,, (r(x)) possesses a square-
free quadratic Grobner basis ¥ and that

G U {x(’)yu —x Dyeiu, v e N, x(’)u = x(’)v 1<i<{¥)

is a squarefree quadratic Grobner basis of J;,,, (rx)ux,)- Since I'(X) is a Sagbi
basis of K[I"(X)] with respect to the weight vector w = (ij ) 1sizn ([12, The-
orem 11.8]), it follows that ¢ C ingz(Irx)) C inw(lr(x)u;;;‘ By virtue
of Lemma 3.1, our work is to show that each binomial x y,, - x(l) Yy €
Jin, r(xyux,) belongs to ing (Irxyux,)-

Let x(l)yu — x(’)yv € Jin, r(x)ux,)- Then there exist

I<ki<--<ki_i<j<j<kipp<--<k,<m
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such that u (resp. v) is the main diagonal monomial of det(U) (resp. det(V)),
where U = [ky, ..., ki1, j' kiz1, ... ko] (resp. V = [ky, ..., ki—1, j, kit1,
..., k,]). Now, we introduce the (n 4+ 1) x (n 4+ 1) matrix

1 )] )] 1

xkl N Xj xj, an

@) @) @) @)

X XX X

mM=1" o A

@) @) @) @)

Xy e XXy X

(n) (n) (n) (n)

xkl )Cj )Cj/ xkn

with det(M) = 0. Since
i—1
det(M) = > (=D)Px) det(ky, ., kp1, Kpras ooy o 3o k)

p=1

+ (—1)ix;"> det(U) + (—1)"+‘x}f> det(V)

— Y 0P ety o Kt ks K,
p=i+1

the polynomial

i—1 n
F=E00y = x0y) + Y =Dy, = Y (=D,

p=1 p=i+l1

where each of the u,,’s is equal to either det[ky, ..., kp—1, kpg1, ..., Jo J's oo -,
kyJordetlky, ..., j, ..., kp—1,kps1, ..., ky], belongs to the defining ideal
Ir(xyux,- Since the main diagonal monomial of det(M) is inw(x;l) det(U)) =
inw(x}f) det(V)), it follows that ing(f) = x}i)yu — x;f)yv, as desired.
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