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A REMARK ON POINCARÉ INEQUALITIES
ON METRIC MEASURE SPACES

STEPHEN KEITH and KAI RAJALA

Abstract

We show that, in a complete metric measure space equipped with a doubling Borel regular measure,
the Poincaré inequality with upper gradients introduced by Heinonen and Koskela [3] is equivalent
to the Poincaré inequality with “approximate Lipschitz constants” used by Semmes in [9].

1. Introduction

In this note we prove the following result which seems to have been informally
conjectured by Semmes [9, p. 17].

Theorem 1. Let p ≥ 1. Then every complete metric measure space equip-
ped with a Borel doubling measure admits a weak (1, p)-Poincaré inequality
with upper gradients if and only if it admits a weak (1, p)-Poincaré inequality
with the “approximate Lipschitz constant operator” Dε , quantitatively.

The terminology of the above theorem is explained in Section 2, the proof
given in Section 3, and the necessity of the hypotheses on the given metric
measure space discussed in Remark 2. For now we note that, roughly speaking,
the above theorem claims that a Poincaré inequality holds for all functions
on a metric measure space, with the gradient replaced by an infinitesimal
measurement of oscillation, if a discretized version of the Poincaré inequality
holds for all functions and at all scales, with bounds independent of the scale
of the discretization. The former condition has been widely studied and is rich
in application; see [1], [2], [3], [4], [8]. The latter condition is often easier
to verify, especially when the metric measure space is studied using discrete
approximations. For example, the weak p-Poincaré inequality with Dε , p ≥
1, is easily seen to persist under measured Gromov-Hausdorff convergence.
Consequently, Theorem 1 provides another proof of the fact that the (1, p)-
Poincaré inequality on complete metric measure spaces equipped with Borel
doubling measures persists under measured Gromov-Hausdorff convergence,
as long as all relevant constants are uniformly controlled; see [5].
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2. Terminology

Throughout this paper (X, d, µ) denotes a metric measure space where µ is
Borel regular. We denote the ball with center x ∈ X and radius r > 0 by

B(x, r) = {y ∈ X : d(x, y) < r},
and use the notation

uA = 1

µ(A)

∫
A

u dµ = −
∫

A

u dµ,

for every A ⊂ X and measurable function u : X −→ [−∞, ∞]. The measure
µ is said to be doubling if there is a constant C > 0 such that

µ(B(x, 2r)) ≤ Cµ(B(x, r)),

for every x ∈ X and r > 0. A function u : X −→ R is Lipschitz if there exists
a constant L > 0 such that

|u(x) − u(y)| ≤ Ld(x, y),

for every x, y ∈ X.
We now recall the definitions of upper gradients and Poincaré inequalities

on metric measure spaces as given by Heinonen and Koskela [3]. A Borel
function g : X −→ [0, ∞] is said to be an upper gradient of some measurable
function u : X −→ [−∞, ∞] if

|u(x) − u(y)| ≤
∫

γ

g ds,

for every x, y ∈ X and every locally rectifiable curve γ joining x and y.
A metric measure space (X, d, µ) is said to admit a weak (1, p)-Poincaré
inequality with upper gradients, p ≥ 1, if there exist constants C > 0 and
λ ≥ 1 so that for every measurable u : X −→ [−∞, ∞] and every upper
gradient g of u, we have

(1) −
∫

B(a,r)

|u − uB(a,r)| dµ ≤ Cr

(
−
∫

B(a,λr)

gp dµ

) 1
p

,
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for every a ∈ X and r > 0. The (1, p)-Poincaré inequality is sometimes called
strong if λ = 1.

We now summarize a definition for a Poincaré inequality on metric measure
spaces introduced by Semmes [9, Section 2.3]. For every ε > 0 we define an
operator Dε so that for every measurable function u : X −→ [−∞, ∞], we
have

Dεu(x) = sup
y∈B(x,ε)

|u(x) − u(y)|
ε

,

for every x ∈ X. Then (X, d, µ) is said to admit a weak (1, p)-Poincaré
inequality with Dε , p ≥ 1, if there exist constants C > 0 and λ ≥ 1 so that
for every measurable function u : X −→ [−∞, ∞] we have

(2) −
∫

B(a,r)

|u − uB(a,r)| dµ ≤ Cr

(
−
∫

B(a,λr)

(Dεu)p dµ

) 1
p

,

whenever a ∈ X and 0 < ε < r . Note that the constants are required to be
independent of ε.

3. Proof of Theorem 1

Let us first show that (2) implies (1). For this we define the pointwise Lipschitz
constant Lip so that for a real-valued Lipschitz function u,

Lip u(x) = lim sup
y→x

|u(x) − u(y)|
d(x, y)

,

for every x ∈ X. Now by [5, Theorem 1.3.4], inequality (1) follows (for all
measurable functions) as soon as we have

(3) −
∫

B(a,r)

|u − uB(a,r)| dµ ≤ Cr

(
−
∫

B(a,λr)

(Lip u)p dµ

) 1
p

,

for all real-valued Lipschitz functions u and all a ∈ X and r > 0. So it suffices
to show that (2) implies (3). For this we take a real-valued Lipschitz function
u and a ball B(a, r), and let ε → 0 in (2). Since u is Lipschitz, the functions
Dεu are bounded by some constant L > 0 not depending on ε, and thus we
can use the Lebesgue Dominated Convergence Theorem to replace the right
hand side of (2) by the right hand side of (3).

To show that (1) implies (2), we use the ε-partition of unity to approximate
a locally p-integrable function u (note that it suffices to prove (2) for loc-
ally p-integrable functions). A similar method is used in [6] by Koskela and
MacManus. Fix ε > 0 and cover X by balls Bi = B(xi, ε) so that the balls
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B(xi, ε/5) are disjoint. This can be done because of the existence of a doub-
ling measure in X. Note that it then follows that the balls in {Bi} have overlap
bounded by a number that depends only on the doubling constant associated
with µ, and therefore not ε. As in the standard construction of partition of
unity, one can now define Cε−1-Lipschitz functions 0 ≤ φi ≤ 1 so that the
support of φi lies inside Bi for all i and

∑
i φi(x) = 1 for all x ∈ X. Here and

below C > 0 is a varying constant whose value in any one usage is fixed and
depends only on the doubling constant of µ and the constants in (1). Having
the partition of unity for ε > 0, we approximate u by a function uε , where

uε(x) =
∑

i

Viφi(x), Vi = −
∫

Bi

u(y) dµ(y).

This approximation turns out to be useful for our purpose. Following [6], we
define a function DA

ε u, similar to Dεu, by

DA
ε u(x) = −

∫
B(x,ε)

|u(x) − u(y)|
ε

dµ(x).

This function can be used to find an upper gradient for uε ; define gε by

gε(a) = −
∫

B(a,2ε)

DA
5εu(x) dµ(x).

If d(a, b) < ε, then, by [6, Lemma 4.6], we have

|uε(a) − uε(b)| ≤ Cd(a, b)gε(a),

It further follows that Cgε is an upper gradient of uε .
Now we estimate the left hand side of the Poincaré inequality by using uε .

First, we have

−
∫

B(a,r)

|u(x) − uB | dµ(x)

≤ −
∫

B(a,r)

|uε(x) − u(x)| dµ(x) + −
∫

B(a,r)

|uε(x) − uε,B | dµ(x)

+ −
∫

B(a,r)

|uε,B − uB | dµ(x)

≤ 2 −
∫

B(a,r)

|uε(x) − u(x)| dµ(x) + −
∫

B(a,r)

|uε(x) − uε,B | dµ(x).
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The first term can be estimated by using the definition of uε as follows:

−
∫

B(a,r)

|uε(x) − u(x)| dµ(x)

= −
∫

B(a,r)

∣∣∣∣
∑

i

−
∫

Bi

u(y) dµ(y)φi(x) − u(x)

∣∣∣∣ dµ(x)

≤ −
∫

B(a,r)

∑
i

φi(x) −
∫

Bi

|u(y) − u(x)| dµ(y) dµ(x)

≤ 7Cε −
∫

B(a,r)

∑
i

φi(x)D7εu(x) dµ(x) = 7Cε −
∫

B(a,r)

D7εu(x) dµ(x)

≤ 7Cr

(
−
∫

B(a,λr)

D7εu(x)p dµ(x)

) 1
p

.

Here we used Hölder’s inequality, the doubling property of µ, and the assump-
tion ε ≤ r . The second term can now be estimated by the Poincaré inequality
(1), to get

−
∫

B(a,r)

|uε(x) − uε,B | dµ(x)

≤ Cr

(
−
∫

B(a,λr)

gε(x)p dµ(x)

) 1
p

= Cr

(
−
∫

B(a,λr)

(
−
∫

B(x,2ε)

DA
5εu(y) dµ(y)

)p

dµ(x)

) 1
p

= Cr

(
−
∫

B(a,λr)

(
−
∫

B(x,2ε)

−
∫

B(y,5ε)

|u(y) − u(z)|
5ε

dµ(z) dµ(y)

)p

dµ(x)

) 1
p

≤ 3Cr

(
−
∫

B(a,λr)

D7εu(x)p dµ(x)

) 1
p

.

Combining the estimates we have (2) with ε replaced by 7ε. This completes
the proof of Theorem 1.

Remark 2. The proof that the weak (1, p)-Poincaré inequality with upper
gradients, p ≥ 1, implies the weak (1, p)-Poincaré inequality with Dε did not
use the assumption that (X, d) is complete. However, the converse implication
requires this hypothesis. To see this, consider a non-complete metric measure
space (X, d, µ) equipped with a Borel doubling measure, that admits (1) for all
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Lipschitz functions u and their upper gradients g, but that does not admit (1) for
all measurable functions u and their upper gradients g. Such metric measure
spaces have been constructed by Koskela [7]. By the above argument that (1)
implies (2), it follows that (2) holds on (X, d, µ) for all Lipschitz functions
u. We can then use the density of Lipschitz functions amongst p-integrable
functions to conclude that (2) holds on (X, d, µ) for all p-integrable functions,
and therefore for all measurable functions. Thus (X, d, µ) is a (non-complete)
metric measure space equipped with a Borel doubling measure, that admits a
(1, p)-Poincaré inequality with Dε , but that does not admit a (1, p)-Poincaré
inequality with upper gradients.
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