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ON THE AUTOMORPHISM GROUP OF CERTAIN
SIMPLE C*-ALGEBRAS

JESPER MYGIND

Abstract

We show that the information contained in K L(A, B) is determined by other invariants when A
and B are certain simple unital projectionless C*-algebras. This allows us to compute the group
of automorphisms modulo the group of approximately inner automorphisms in terms of the Elliott
invariant.

1. Introduction

For a unital C*-algebra A the Elliott invariant &4 consists of the ordered group
Ko(A) with order unit, the group K;(A), the compact convex set T (A) of
tracial states, and the restriction map 4 : T(A) — SKo(A), where SK((A)
denotes the state space of Ky(A). In [3] it was proved that the Elliott invariant
is a classifying invariant for the class of unital simple infinite dimensional
inductive limits of sequences of finite direct sums of building blocks. A building
block is a C*-algebra of the form

An,dy,dy,....dy) ={f € COHQM,: f(x;) € My, i =1,2,..., N},

where x1, xp, . .., xy are (different) pointsin T, and d;, @5, . . . , dy are integers
dividing n. The points xy, x3, ..., xy will be called the exceptional points of
A. By allowing d; = n we may always assume that N > 2.

The following calculation of the group of automorphisms modulo the group
of approximately inner automorphisms is the main result of this paper.

THEOREM 1.1. Let A be a simple unital inductive limit of a sequence of
finite direct sums of building blocks.

(1) If Ko(A) is non-cyclic then Aut(A)/Inn(A) is isomorphic to the semi-
direct product

(Hom(K(A), Aff T(A)/pa(Ko(A))) xext(K1(A), Ko(A))) x Aut(&y),
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where the action of (po, ¢1, 1) € Aut(&,) is given by
(&) > (or " onoe, g, 09 ()

for n € Hom(K{(A), Aff T (A)/pa(Ko(A)) ), e € ext(Ki(A), Ko(A)).

(i) If Ko(A) = Z then Aut(A)/Inn(A) is isomorphic to the semi-direct
product

Hom (K (A), Aff T (A)/pa(Ko(A)) ) x Aut(&y),
where the action of (¢g, @1, 1) € Aut(&,) is given by

n—>@r tonogr!,  neHom(K (A), Aff T(A)/pa(Ko(A))).

Here Aut(&,) denotes the group of automorphisms of &4, i.e. the group
of triples (¢o, @1, ¢r) Where ¢y is an automorphism of the ordered group
Ky(A) with order unit, ¢; is an automorphism of K;(A), and ¢7 is an affine
homeomorphism of 7' (A) such that

raogr (@) =ra(wogy on Ky(A)

forevery w € T (A). Aff T (A) denotes the continuous real-valued affine func-
tions on T(A) and ps : Ko(A) — Aff T(A) is the group homomorphism
pa(xX) (@) =ra(w)(x), x € Ko(A), w € T(A).

It follows from [3, Theorem 12.2] that the algebras considered under (i) are
exactly the class considered by Thomsen in [9]. Therefore part (i) of the above
theorem follows from Thomsen’s calculation, [9, Theorem 8.4]. Note that the
term ext(K;(A), Ko(A)) is not present in case (ii). This is not because it is
zero. As we shall demonstrate, it is the existence of a natural map

KL(A, B), — Hom(Tor(U(A)/DU (A)), Tor(U(B)/DU(B))),

when A and B are simple unital inductive limits of finite direct sums of building
blocks with K¢(A) = Ky(B) = Z, which is responsible for this. K L(A, B),
denotes the subset of elements « in the group K L(A, B) defined by Rgrdam in
[5] for which the induced map «, : Ko(A) — Ko(B) preserves the order unit,
and U(A)/DU(A) is the group of unitaries U(A) in A modulo the closure
of the commutator subgroup DU (A). The map above was also crucial in the
proof of the classification result in [3].

Itis aninteresting question whether a similar map exists in greater generality
— including the case where A and B are arbitrary inductive limits of sub-
homogeneous C*-algebras. Such a map would probably be useful in all efforts
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of classifying larger classes of simple C*-algebras, and our main result suggests
that it could influence the structure of the automorphism group as well.

It should be noted that the class of C*-algebras considered under (ii) is
quite large. It consists of matrix algebras over simple unital projectionless
C*-algebras, see [3, Corollary 12.5].

2. Preliminaries

The purpose of this section is to introduce the notation used in this paper and
to list some results on building blocks from [3] that we will need.

Let A be a unital C*-algebra. Let s(A) be the smallest positive integer n
for which there exists a unital *-homomorphism A — M,, (we set s(A) = 00
if A has no non-trivial finite dimensional representations). Note that if there
exists a unital *-homomorphism A — B then s(A) < s(B).

LetA = A(n,d,, dy,...,dy)beabuilding block and let x1, x5, ..., xy be
the exceptional points. Evaluation at x; gives rise to a unital *-homomorphism
A; : A — M, This map will sometimes be denoted A#. For every integer
k > 0 we let Af‘ be the direct sum of k copies of the representation A;.

Let A = A(n,dy,d>,...,dy) and B = A(m, ey, ez, ..., ey) be building
blocks. Let ¢ : A — B be a unital *-homomorphism. As in [9, Chapter 1] we
define s¥(j, i) to be the multiplicity of the representation A in the represen-
tationAfO(pfori =1,2,...,N,j=1,2,..., M.

Let us start with the K -theory of a building block.

PropPOSITION 2.1. Let A = A(n,d;, ds, ..., dy) be a building block and
letd = ged(dy, da, . .., dyn). We have an isomorphism of ordered groups with

order units
(Ko(A), Ko(A)F, [11) = (2,27, d).

Prookr. This is [3, Corollary 3.6].

Let A = A(n,d, d,, ..., dy) be abuilding block with exceptional points

i k=1,2,...,N,where0 <t; <tp <...<ty <1.Settyp =t +1
and 7y = ty. Define continuous functionswy : T — T fork =1,2,..., N, by
<2 LTk ) f<t<t
i eXp\ 4Tl ———— k =1 = it
(1)k(€27”t) — tk+1 _ tk
1 ey St <+ 1

Let U be the unitary in A defined by

UkA(z):diag(a)k(z), 1,1,...,1), zeT.
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Set U = Uj.
THEOREM 2.2. Let A = A(n,d,ds, ...,dy) be a building block. Set for

k=1,2,...,N —1,
n n n
= lcm o=,
(dl dk)

(s gi) =l (5o 1) 25)
re =ged (s, — ) =ged(lem ( —, —, ..., — ), — ).
k=e © i ¢ di d, di)  din

Choose integers oy and By such that

and

re=asi + Bi—m—,  k=1,2,...,N—1.
dis1
Then
Ki(A=EZZ,802,D - DL, .
This isomorphism can be chosen such that fork = 1,2, ..., N—1, a generator

of the direct summand Z,, is mapped to

Bkn QS

(U4 — ——I[UL 1 — [U,C]

Fedit
and such that a generator of the direct summand Z is mapped to [U3}].
Proor. See [3, Theorem 3.2].

Let A and B be unital C*-algebras. A unital *-homomorphism ¢ : A — B
induces morphisms ¢, : Ko(A) — Ko(B), ¢. : K1(A) — Ki(B), ¢*
T(B) — T(A), ¢ : Aff T(A) — Aff T(B), ¢ : Aff T(A)/ps(Ko(A)) —
Aff T(B)/pp(Ko(B)), and ¢* : U(A)/DU(A) — U(B)/DU(B). Let ¢/, :
U(A) - U(A)/DU(A) and g4 : Aff T(A) — Aff T(A)/pa(Ko(A)) be the
canonical maps.

PrOPOSITION 2.3. Let A be a unital inductive limit of a sequence of finite
direct sums of building blocks. There exists a group homomorphism

Aa: Aff T(A)/pa(Ko(A)) — U(A)/DU(A),
Aalga@) = g4 (€™,  a€ Ay

Letmwy : ULA)/DU(A) — K (A) be the map induced by the canonical map
U(A) = K{(A). We have a short exact sequence of abelian groups

0 —> Aff T(A)/pa(Ko(A)) 22> U(A)/DU(A) > K{(A) —> 0.
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This sequence is natural in A and splits unnaturally.
ProOOF. See [3, Proposition 5.2].

PrROPOSITION 2.4. Let A = A(n,dy, dy, ...,dy) be a building block. Let
u € A be a unitary. Assume that

Det(u(z)) =1, zeT,

Det(A; (n)) =1, i=1,2,...,N.

Thenu € DU(A).
ProoF. See [3, Propostion 5.3].

LEMMA 2.5. Let A = A(n,d,, d,, ..., dy) and adopt the notation of The-
orem 2.2. Fork = 1,2,..., N — 1, there exists a unitary v,’? € A such that
Det(v,’?(z)) =1,z€T, and

d:
exp(Zniaﬁ—:k;J> j=1,2,...,k,

AV
Det(A; (vf)) = exp(—zﬂ'i&> J=k+1,

Tk

1 j=k+2,k+3,...,N.

Furthermore, [v,’f] has order ry in K1(A), and [Uf‘], [v?], e [Uf/fl] gener-
ate the torsion subgroup of K{(A). There is a group homomorphism o, :
Tor(K (A)) — Tor(U(A)/DU(A)) given by oa([v{]) = ¢, (v}), k =
1,2,...,N— 1.

Proor. The existence of v,f follows from [3, Lemma 5.4].
Fix k = 1,2,..., N. By [3, Lemma 5.4] there is a unitary u € A with
Det(u(z)) =1,z € T, and

1 J#k,

Det(A; =
etA; ) exp(Zm'd—k) j=k.
n

Set w = u U ,UA*. By Proposition 2.4 we have that w modulo DU (A)
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equals the unitary z > e?"*@ where A : T — R is the continuous function

1t—t_
——— L1 =1 =0,
ntp — -1

M) =31 g —1
——— L =1 = g4,
oty — Ik
0 otherwise.

In particular, w is trivial in K (A), i.e. [u] = [U,f] — [U,f_l] in K{(A).
As a consequence of this observation,

k
Ay _ OkSk Ay A PR A 7 rr7A
[vk]—;1 o WA= WD = 2 (U1 = [0
Ay P oA Sk oy
= W = U4 = = =107

in K (A). Hence by Theorem 2.2 we see that [v,’?] has order r; in K (A) and that
the elements [vf], [v?], e, [vj\‘,_l] generate Tor(K(A)). Since rkq;‘(v,f) =
Oand 74 (g, (v{)) = [vi]itfollows that ¢/, (v') has order r in U (A)/ DU (A).
The existence of o4 follows.

We remark that the map o4 is neither natural nor unique, and that 74 o o4
is the identity map on Tor(K(A)).

In [5] Rgrdam defined the bifunctor K L to be a certain quotient of K K.
Recall from [5] that the Kasparov product yields a product KL (B, C) x
KL(A, B) - KL(A, C) which we will denote by -. Furthermore, if K,(A)
is finitely generated then K K (A, ) = KL(A, -). If ¢ is a unital *-homomor-
phism, we let [¢] denote the induced element in K L(A, B). For unital C*-
algebras A and B we let KL(A, B), denote the elements of KL(A, B) for
which the induced map Ko(A) — Ko(B) preserves the order unit.

Let A and B be building blocks. K L(A, B) is conveniently described in
terms of the K-homology groups K°(4) = KK(A,C) = KL(A,C) and
K°(B). Recall that the Kasparov product gives rise to a group homomorphism
k*: K9%(B) — K°A) forevery x € KL(A, B).

THEOREM2.6. Let A= A(n,dy,d>, ..., dy)and B=A(m, e, es,...,ey)
be building blocks such that s(B) > Nn.

(1) Ifv € KL(A, B), then there exists a unital *-homomorphism ¢ : A —
B such that [¢] = vin KL(A, B).
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(i) Let ¢ : A — B be a unital *-homomorphism and let k € KL(A, B),.
Ifo* = k* on K%(B) and ¢.([U]) = k«([Ux]) in K1(B) then [¢] =
in KL(A, B).
Proor. This follows from [3, Theorem 4.7].

The next result says that K°(-) and the torsion subgroup of U (-)/DU (-) are
related for building blocks.

PrOPOSITION 2.7. Let A = A(n, dy, ds, ..., dy) be a building block. There
exists a finite set F C Tor(U(A)/DU (A)) such that if B is a building block
and ¢, : A — B are unital *-homomorphisms with ¢* (x) = ¢*(x), x € F,
then ¢* = ¥* on K°(B).

Proor. This is part of [3, Theorem 5.5].

We also need a description of the structure of the group K°(-) for a building
block.

ProrosiTION 2.8. Let A = A(n,d\,d>,...,dy) be a building block.
Then K°(A) is generated by [A1], [A2], ..., [An]. Furthermore, for ay, as,
...,ay € Zwe have that

allA] + ax[Az] 4+ - +an[AN] =0
if and only if there exist by, by, ..., by € Z such that ZIN=1 b; =0and

i=1,2,...,N.

Proor. This is [3, Proposition 4.2].

We conclude with a technical proposition which is needed in the next sec-
tion.

PROPOSITION 2.9. Let A = A(n,di,d>,...,dy) and B = A(m, ey, e;,
..., ey) be building blocks with s(B) > Nn. Let x € K,(B) and let h :
K°(B) — K°(A) be a homomorphism of the form

h((AT]) hi hi ... hiy [A{]
h(AST) hot hyno oo hoy || [A2]
h([AE]) hut hua .. hun /) \[AN]
with ZlNzl hjid; = ej for j =1,2,..., M. There exists a unital *-homomor-

phism ¢ : A — B such that ¢* = h on K°(B) and <p*([U;\‘}]) = x in K{(B).
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PROOF. By Proposition 2.8 we have that Z[A]'] = [AQ] in K°(A).
Hence we may assume that 0 < h;; < - for i #N and still have that

Zi:l hjid; = ej for j = 1,2,...,M.Notethatf0rJ =1,2,..., M,
N
<Y hjidi < (N = Dn + hjydy
i=1

and hence hjy > %. The conclusion follows from [3, Proposition 4.4].

3. KL and other invariants

Let A and B be unital C*-algebras and let ¢g : Ko(A) — Ko(B) be an
order unit preserving group homomorphism. Assume that Ko(A) = Z. Then
pa(Ko(A)) is closed in Aff T (A), and we have a well-defined map

@o : Tor(Aff T(A)/pa(Ko(A))) — Tor(Aff T(B)/pp(Ko(B)))
given by Go(qa (34 (x))) = g5 (g pp(90(x))) for x € Ko(A) and every posi-
tive integer k.

THEOREM3.1. Let A= A(n,dy,d>, ..., dy)and B=A(m, e, es, ..., ey)
be building blocks with s(B) > Nn. If 99 : Ko(A) — Ko(B) is an or-
der unit preserving group homomorphism, if ® : Tor(U(A)/DU(A)) —
Tor(U (B)/DU(B) ) is a group homomorphism such that the diagram

Tor (Aff T(A)/pa(Ko(A))) S SN Tor(U(A)/DU(A))
o J
Tor (Aff T(B)/p5(Ko(B)) ) ——> Tor(U(B)/DU(B))

commutes, and if x € K{(B), then there is a unital *-homomorphismyr : A —
B such that y* = ® on Tor(U(A)/DU(A) ) and ¥, [U] = x in K,(B).

ProOF. We adopt the notation of Theorem 2.2. Set oy = 1. If i and k are
integers, | <i < k < N, we define an integer cf.‘ by

k
¢ =ai—1BiBit1 - Br-1.

We claim that

L
ey Zj‘;, k=1,2,...,N.
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As cll = 1, this is clear for k = 1. Assume it is correct fork, 1 <k < N — 1.
Then

k+1 k

k+1 okl dit1 + k+1 e dk+1 _l
= Cr11 Ci = Cy1
n — n

di+1 1 digr 1 n
—Olk—+ ,Bk— = _n+ 5 aksk+,3k—dk 1
+
147 1

n
Sk g Sk+1

’

proving (1).
Choose aunitary uy € Bsuchthat ®(q), (vi)) = qpup),k =1,2,..., N—
1. Let gj € R be numbers such that

Det(A; () = ™%, k=1,2,....N—1, j=12,....M

Set q({ =0andsetd = gcd(d,, dy, .. dN) By Proposition 2.1 d divides e;,
j=1,2,...,M.Definefori =1,2,...,N,j=1,2,..., M,

hjz_C:N___qz 1+ZC Lo qul

Since rkq;‘(v,?) = 0in U(A)/DU(A) by Lemma 2.5, we see that u;* €
DU (B) and hence rkq,f €Z,k=1,2,...,N— 1.Itfollows that hj; € Z for
every i and j. Since ¢j (uy) has finite order, Det(u(-)) is constantly equal to
e?™% for some a; € R. Note that

ezﬂiukz 27qu]m’ j=1,2,--'7M’ k=1’2’,N_1

Thus if we set ag = 0 we find that

N—i

m ym n N—t jom
—hji = a4 dqz 1 +§ :Cz SN—1G— Iy
¢j LA ¢j

Nm _n + Z N-I q
=C — — —daj—1 C: SN—1AN—] mod —
"d 4 ! d;

fori =1,2,...,N,j=1,2,..., M. Hence

m m n
(2) —hji = —hy; mod =

€;j eym i
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, 4
N—I i G
= E i SN—I9N_1
X n
=1 i=1
N—k k N-1 N-—
_ N—I di
= c; U SN— qu 1 SN l‘]zv 1,
=1 i=1 —k+1 i=1
N—k koo N—-1
_ ki J J
= BiBr+1---Bn-i—1 ) ¢ N1 + In_
=1 i=1 I=N—k+1
N—k k—1

1
= BB+t - Bn-i- 1SN- qu ,+Zq1
Sk

=1 =1

Hence
k k k k N—i
dl e dl i
E hjj— = cN—j——qu + E N lsnlig
' Jt n : i d n i—1 ' i N-I
i=1 i=1 i=1 i=1 I=1
k N—k 1
k J
:_,Bkﬂk—i-l .Bn- 1ZC,~— + ,Bk,Bk+l---,3N—l—ls_sN—qu_1
- k

_ej 1 J
—gﬁkﬂk—i-l .Bn- 1_+Z,Bk,3k+l ﬁN—l—l;sN—qu_l-

=1

By setting k = N we see that

N n 1
Zhjidi = ej—— = ej.
i=1 d

SN

Combining this equation with (2) and Proposition 2.8 it is an elementary ex-
ercise to prove that we can define a homomorphism # : K°(B) — K°(A)

by
h([AE]) hiv hip ... hiy [Af]

h([AZ]) hyy  hyp ... hay [A5]

h([AE]) hui hwa ... hun ) \[A4]
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By Proposition 2.9 there exists a unital *-homomorphism ¢ : A — B such
that * = h on K°(B) and ¥.([U4]) = x on K1(B). Fix j = 1,2,..., M
Let t; = sY(j,i). By [3, Lemma 2.1] there exist a unitary w € M., and
21,22, ...,2L € T such that

AP oy (f)
= wdiag(A} (f), AZ(f), ..., AN (), f@D), f(z2), ..., fzn))w*

for f € A. Since point-evaluations are homotopic *-homomorphisms A —
M,,, we see that

YrAFl=[AP oy] = Ztl[A ]+L—[A 1.

i=1

in K°(A). On the other hand, 1//*[Af] = ZlNzl hji [AlA]. It follows from Pro-
position 2.8 that

sV (i, i) = hyi modg, i=1,2,....N, j=1,2,..., M.

Note thatfork=1,2,...,. N—-1,j=1,2,..., M,

k N—k
oSk d; ej ay ol j
Z — = __,Bk,Bk+l .Bn-1 +Z r_,Bkﬂk—H e BNoi—1SN—1Gy
%
P =1

n

N—k—1
e; B Bk
_ &Pk v
= I Ch1 T E —=cisn- qu z+ Squ
Tk — I

Br ar
==(n Lseq!
Py k1) Ao + P Skqj

B j
= —hjwsn + 4
Ik

Since Det(v,f (2)) =1,z €T, we see that

N N
Det(A; (¥ (vf))) = nDet(Ai(U?))w(j,i) _ l_[Det(A,-(v;? )h(j,i)

i=1 i=1
k
. sk, di P
= exp<27u (Z r_hji; - Zhj(k+l)>>
i=l

= exp(Zniq,{) = Det(A;(uy)).
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Thus Det(w(v,?)(-)) and Det(u; (-)) agree at the exceptional points of B, and
hence they agree everywhere. It follows from Proposition 2.4 that

gy (M) = gyu) = (g, (v, k=12,...,N—1

As J = @y on Tor(Aff T(A)/pa(Kp(A)) ), we conclude from Lemma 2.5 and
Proposition 2.3 that * and ® agree on all of Tor(U(A)/DU(A) )

Our next result says that the information contained in K L(A, B) can be
detected by other invariants when A and B are building blocks.

ProPOSITION 3.2. Let A = A(n,d;, ds, ..., dy) and B be building blocks
with s(B) > Nn. Let ¢ : Ko(A) — Ko(B) be an order unit preserving group
homomorphism, and let ® : Tor(U(A)/DU(A)) — Tor(U(B)/DU (B)) and
¢1 1 K1(A) — K (B) be group homomorphisms such that the diagram

Tor (Aff T'(A)/pa(Ko(A)) ) —2— Tor(U(A)/DU(A) ) —=— Tor(K,(A))

ﬁol <I>l lwn
Tor(Aff T(B)/ps(Ko(B)) ) —-— Tor(U(B)/DU(B)) —,— Tor(Ki(B))

commutes.

(1) There exists a unital *-homomorphism ¢ : A — B such that ¢, = ¢
on Ko(A), ¢, = ¢y on K{(A) and ¢* = @ on Tor(U(A)/DU (A)).

(i) Ify : A — B is another unital *-homomorphism such that W, = ¢o on
Ko(A), Y. = @1 on K{(A) and y* = ® on Tor(U(A)/DU(A) ), then
¢l = [¥]in KL(A, B).

ProoF. Choose by Theorem 3.1 a unital *-homomorphism¢ : A — B such
that ¢* = ® on Tor(U(A)/DU(A) ) and ¢,[Us] = ¢1[Uf] in K;(B). Then
¢« = @1 on Tor(K;(A)), and thus ¢, = ¢; on all of K;(A) by Theorem 2.2.
Obviously ¢, = ¢q since ¢ is unital. This proves (i).

To prove (ii), note that since ¢* = y* on Tor(U (A)/DU (A) ) we have that
¢* = ¥* on K°(B) by Proposition 2.7. Hence [¢] = [] by Theorem 2.6.

Let A and B be simple unital infinite dimensional inductive limits of se-
quences of finite direct sums of building blocks. In [3, Chapter 10] a group
homomorphism

sc : Tor(U(A)/DU(A)) — Tor(U(B)/DU(B)),

was constructed for every «k € KL(A, B)r (the map was constructed for
slightly different B but can be applied in our case by [3, Lemma 10.3], [3,
Lemma 9.6] and [3, Theorem 9.9]). Recall from [3] that KL(A, B)7 is the
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set of elements x € KL(A, B), for which there exists an affine continu-
ous map ¢7 : T(B) — T(A) such that rg(w)(k.(x)) = ra(er(w))(x) for
x € Ko(A),w € T(B). Note that if Ko(A) = Z and Ky(B) = Z then
KL(A, By = KL(A, B),.

Recall furthermore from [3, Chapter 10] that sp,) = w* on Tor(U (A)/
DU (A)) for every unital *-homomorphism © : A — B, and thatif C is a
finite direct sum of building blocks, and ¢ : C — A, ¥ : C — B are unital
*-homomorphisms such that [{/] = « - [¢] in KL(C, B), then y* = 5, 0 ¢*
on Tor(U(C)/DU(C)).

We can now generalize Theorem 3.2 to simple inductive limits for which
Ko(A) and K((B) are cyclic:

THEOREM 3.3. Let A and B be unital simple infinite dimensional inductive
limits of sequences of finite direct sums of building blocks. Assume that Ky(A)
and Ko(B) are cyclic groups. Let ¢y : Ko(A) — Ko(B) be an order unit
preserving group homomorphism, and let ¢, : K;(A) — K{(B) and ® :
U(A)/DU(A) — U(B)/DU(B) be group homomorphisms such that the
diagram

Tor (Aff T(A)/pa(Ko(A))) L7 NN Tor(U(A)/DU(A)) —— Tor(K(A))

%l ol lq)l

Tor(Aff T(B)/pp(Ko(B))) — Tor(U(B)/DU(B)) — Tor(K1(B))

commutes. There exists a unique element k € K L(A, B) such that k, = ¢y on
Ko(A), k. = ¢y on K1(A) and s, = ® on Tor(U(A)/DU(A)).

PrOOF. We may by [3, Theorem 9.9] assume that A is the inductive limit

of a sequence o N "
Ay L A, 2> Az 2

of finite direct sums of building blocks with unital and injective connecting
maps. Similarly we may assume that B is the inductive limit of a sequence

B1 Igl B2 /32 B3 ﬂS

of finite direct sums of building blocks with unital and injective connecting
maps. Since Ko(A) = Z it is easy to see that we may furthermore assume that
each Ay is a building block, rather than a finite direct sum of building blocks.
Similarly we may assume that each By is a building block. Let g o : A — A
and By o : Bx — B denote the canonical *-homomorphisms.

By passing to subsequences we may assume that for every positive integer
k there exist an order unit preserving group homomorphism w : Ko(Ax) —
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Ko(By) and a group homomorphism 7y, : K{(Ax) — K (By) such that
Br.coy © Ik = %0 © U 0o, on Ko(Ap),
:Bk,oo* O Nk = P1 O Uk ooy on Kj(Ap).

By passing to a subsequence again, we may assume that

i1 © Oy = Bry 0 tk on Ko(Ap),

Nk+1 © Ay = Biy © Nk on Ki(Ap).

Let Ay = A(ny, d{‘, df, el d,’i,k). By Proposition 2.3, Lemma 2.5, and [3,
Lemma 10.8], we may also assume that for every positive integer k, there exists
a group homomorphism ®;: Tor(U (Ax)/DU (Ax) ) — Tor (U (Byx)/DU (By) )
such that "

Ap, o g = Py o Ay,

on Tor(Aff T(Ap)/pa,(Ko(Ar)) ) and

Bloo 0 Pulah, ") = ® o e (g}, (0]")

for j =1,2,..., Ny — 1. Since for every positive integer &,

ﬁ}joooq)koAAk :ﬁ,f’oooABk oty = Ap oﬂ;;ooﬁz
=AB 0@y O0lro =PoAy 0o = @oaf’ooo)mk
on Tor(Aff T(Ax)/pa, (Ko(Ax)) ), we conclude from Proposition 2.3 and
Lemma 2.5 that " 4
ﬂk,OO (o) q>k = q) O()lk’oo

on Tor (U (Ay)/DU (Ay) ).
It follows from the above equation and [3, Lemma 10.4] that by passing to
subsequences we may assume that for every positive integer k,

Bl o di(q), W) = Brir 0 af (g, W)
for j =1,2,..., Ny — 1. Since for every positive integer k,

,B,?oq)ko)mk:,Bfo)\gko[l;:)ngmoﬂkoﬁz

= A, © His1 0@k = Pps 0 Aay,, 0k = Pppr o) ohy,
on Tor (Aff T (Ax)/pa, (Ko(Ay)) ), we see that

# #
Bi o P = ryr o)
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on Tor(U(Ax)/DU (Ay)).
Note that for every positive integer k,

#
Bk.ooy © Mk © TTa, = P1 O Uk 00, OTTA, = Y1 O T4 O O 0o

# #
=npoPow  =mpopf 0P =Pro,omn oD

on Tor(U(Ak)/DU(Ak) ) By passing to subsequences again we may assume

that
ne o 7, (g, W) = 75, 0 Di(gly, (v]1))

in K{(B)for j =1,2,..., Ny — 1. Since wp, o & o L4, = 0 on the torsion
subgroup of Aff T'(Ax)/pa, (Ko(Ag)), it follows that n; o w4, = mp, o P on
Tor(U (Ax)/DU (Ay) ). Thus the diagram

Tor(Aff T (A1) /pa, (Ko(Ar)) ~2%> Tor(U(Ax)/DU(A) ~% Tor(K 1 (Ar)

| N 8

Tor (Aff T'(Bi)/ pp, (Ko(By))) Evg Tor(U(Byx)/ DU (By)) > Tor(Ki(By))

commutes. Finally we may by [3, Lemma 9.6] assume that s(By) > Niny.

It follows from Proposition 3.2 that for every positive integer k, there exists a
unital *-homomorphism v : Ay — By suchthat iy, = pron Ko(Ag), Y, =
i on K(Ay), and ¥} = ®; on Tor(U(Ax)/DU (Ax) ). By the uniqueness
part of the same proposition, [B;] - [Vx] = [V¥ra1] - lox] in K L(Ag, Bry1). By
[6, Theorem 1.12] and [7, Theorem 7.1] there exists anelementx € KL(A, B)
such that k - [0tk 00] = [Br.col - [¥i] in K L(Ag, B) for every positive integer
k. Then ., = ¢o on Ky(A), ks = ¢ on K{(A), and

se0t) oo = (Brooo¥i)’ = B joo®i = Poaf . on Tor(U(Ar)/DU (Ay)).

By [3, Lemma 10.8] we see that s, = ® on Tor(U(A)/DU (A)).

To prove uniqueness, let v € KL(A, B) be another element such that
Ve = @o on Kg(A), v, = ¢; on K;(A) and 5, = ® on Tor(U(A)/DU(A) )
By passing to a subsequence, we may assume that there is an element v; in
K L(Ayg, By) such that [Br o] - Vi = v - [0k.00]- By passing to a subsequence
again we may assume that Y, = v, on Ko(A) as well as on K;(A). By
Theorem 2.6 there exists a unital *-homomorphism & : Ay — By such that
[ék] = Vi, in KL(Ak, Bk). Then

# # # # # #
Broo © 8k = 8000 oo =Sk 00 oo = B oo © Vi

on Tor(U(Ak)/DU(Ak) ) By passing to subsequences again, we may by [3,
Lemma 10.4] assume that & = v on any given finite subset of Tor(U (Ax)/
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DU (Ay) ) Hence, we can arrange that &* = y* on K°(By) by Proposi-
tion 2.7. It follows from Theorem 2.6 that [&;] = [¥] in K L(Ag, By). Thus,
K - [0k 00] =V - [ak 0] for all k. It follows that ¥k = v by [5, Lemma 5.8].

4. Main results

In [3] the existence result [3, Theorem 11.2] was subsequently simplified in the
case where K((A) is non-cyclic. The following theorem shows that a similar
simplification is possible when K((A) and Ky(B) are cyclic, but this time
without K L.

THEOREM 4.1. Let A and B be unital simple inductive limits of sequences of
finite direct sums of building blocks and assume that Ko(A) = Z, Ko(B) = Z
and that B is infinite dimensional. Let oy : T(B) — T(A) be an affine
continuous map, let ¢o : Ko(A) — Ko(B) be an order unit preserving group
homomorphism, let ¢; : K{(A) — K{(B) be a group homomorphism, and
let ® : U(A)/DU(A) — U(B)/DU(B) be a homomorphism such that the
diagram

Aff T(A)/pa(Ko(A)) —2— U(A)/DU(A) —— K/(A)

@Vrl q>l lwl

Aff T(B)/pp(Ko(B)) ——> U(B)/DU(B) —— Ki(B)

commutes. There exists a unital *-homomorphism ¥ : A — B such that
V* = @r on T(B), ¥* = ® on U(A)/DU(A), and {r, = @y on Ko(A).

PrOOF. We may assume that A is infinite dimensional. By Theorem 3.3
there exists an element k € K L(A, B) such that k, = ¢y on Ky(A), kx = @1
on K(A), and s, = ® on Tor(U(A)/DU(A)). By [3, Theorem 11.2] there
exists a unital *-homomorphism ¢ : A — B suchthat[y] =« in KL(A, B),
Y* = @r on T(B), and ¥ = ® on U(A)/DU(A).

The next result says that K L can also be removed from the uniqueness
theorem, [3, Theorem 11.5], when Ky(B) is cyclic.

THEOREM 4.2. Let A and B be simple unital inductive limit of sequences of
finite direct sums of building blocks such that Ky(A) = Z and Ko(B) = Z. Let
@, ¥ : A — B be unital *-homomorphisms with ¢* = y* on U(A)/DU (A).
Then ¢ and r are approximately unitarily equivalent.

PrOOF. We may assume that A is infinite dimensional. As in the proof of
Theorem 3.3 we see that A is the inductive limit of a sequence

Al o] A2 o A3 o3



ON THE AUTOMORPHISM GROUP OF CERTAIN SIMPLE C*-ALGEBRAS 261

of building blocks with unital and injective connecting maps. Similarly B is
the inductive limit of a sequence

B, B B, B2 B; B3

of building blocks with unital and injective connecting maps. By [3, Lem-
ma 8.5] we have that s (By) — 00. Obviously ¢, = ¥, on Ko(A) and ¢, = 1,
on K{(A), such that [¢] = [¢] in KL(A, B) by Theorem 3.3. Finally note
that ¢* = y* implies § = 1; . Thus the linear map ¢ — ;p\ takes values in
pg(Ko(B)), and hence it must be 0. Therefore ¢* = ¢* on T (B). It follows
from [3, Theorem 11.5] that ¢ and ¥ are approximately unitarily equivalent.

We need the following isomorphism version of Theorem 4.1.

THEOREM 4.3. Let A and B be simple unital infinite dimensional inductive
limits of sequences of finite direct sums of building blocks with Ko(A) =
Z Let ¢y : Ko(A) — Ko(B) be an isomorphism of ordered groups with
order units, let ¢; : K1(A) — K{(B) be an isomorphism of groups, let o7 :
T(B) — T(A) be an affine homeomorphism, and let ® : U(A)/DU(A) —
U(B)/DU (B) be an isomorphism of groups, such that the diagram

Aff T (A)/pa(Ko(A)) —— U(A)/DU(A) —— K;(A)

@l q>l lq)l

At T(B)/pp(Ko(B)) —— U(B)/DU(B) —— Ki(B)

commutes. Then there exists an isomorphism  : A — B such that ¥, = ¢,
on Ki(A), ¥* = @1 on T(B), and y* = ® on U(A)/DU (A).

Proor. By Theorem 4.1 there exists a unital *-homomorphism y : A — B
such that u* = ® on U(A)/DU(A), u* = ¢r on T(B), and u, = ¢; on
K1 (A). Similarly, there exists a unital *~homomorphism & : B — A such that
£* = @' on U(B)/DU(B), £* = ¢;' on T(A), and & = ¢, ' on K,(B).
By Theorem 4.2 we see that u o & and & o u are approximately inner. Hence by
[4, Proposition A] p is approximately unitarily equivalent to an isomorphism
v :A— B.

We are now in a position to prove part (ii) of Theorem 1.1.

THEOREM 4.4. Let A be a simple unital inductive limit of a sequence of finite
direct sums of building blocks with Ky(A) = Z. Then

Aut(A)/Inn(A) = Hom(K (A), Aff T(A)/pa(Ko(A)) ) x Aut(Zy),



262 JESPER MYGIND

where the action of (¢g, @1, ¢1) € Aut(€,) is given by
N> @ onogr',  neHom(Ki(A), Aff T(A)/pa(Ko(A))).

PrOOF. We may assume that A is infinite dimensional. By Proposition 2.3
we may identify U(A)/DU(A) with G| & G,, where G; = AffT(A)/
pa(Ko(A)) and G, = K (A). Thus an endomorphism  of the group U(A)/
DU (A) can be identified with a 2 x 2 matrix

( Vi Y )

Yor Y

where v;; : G; — G; is a homomorphism, i, j = 1, 2. Note that if  is
induced by an automorphism of A then y,; = 0 since the short exact sequence
of Proposition 2.3 is natural.

Let H = Hom(K{(A), Aff T(A)/pa(Ko(A))). Let n € H. Choose by
Theorem 4.3 an element i € Aut(A) such that ¥* = id on T(A), ¥, = id

on K;(A), and .
]//# _ <ld n )
0 id

on U(A)/DU (A). By Theorem 4.2 we obtain a well-defined group homo-
morphism

t: H— Aut(A)/Inn(A)

by setting ¢(n) = p(y¥), where p : Aut(A) — Aut(A)/Inn(A) denotes the
canonical map. Let 7 : Aut(A)/Inn(A) — Aut(&4) be the homomorphism

T (pW)) = W, Y (7).

We have a short exact sequence

0—— H —— Aut(A)/Inn(A) —Z— Aut(é4) — 0

of groups. Let (¢g, ¢1, ¢1) € Aut(&,). Choose by Theorem 4.1 an element
in Aut(A) such that ¥, = ¢, ¥* = ¢; ', and

o-(50)
0 ®1 '

By Theorem 4.2 we obtain a well-defined map o : Aut(€4) — Aut(A)/Inn(A)
by setting o (¢g, @1, ¢r) = p(¥). Note that o splits the sequence above. Hence
Aut(A)/Inn(A) is isomorphic to a semi-direct product H x Aut(Z,). Since

W@ ner ) = o (@0, @1, o) L) o (9o, 01, o1) 7,
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it follows that the action of Aut(Z4) on H is the desired one.

Let us finally show that our main result can be simplified when K;(A) is
a torsion group. Recall that ext(G, H) is defined as Ext(G, H)/ Pext(G, H)
for abelian groups G and H, where Pext(G, H) is the subgroup of pure (i.e.
locally trivial) extensions in Ext(G, H), see [5, Chapter 5].

COROLLARY 4.5. Let A be a simple unital inductive limit of a sequence of
finite direct sums of building blocks such that K,(A) is a torsion group. Then

Aut(A)/Inn(A) = ext(K;(A), KO(A))) X Aut(&y),

where the action of (o, @1, 1) € Aut(&y) is given by e — ¢, o wfl*(e)for
e € ext(K(A), Ko(A)).

ProOOF. If K((A) is non-cyclic, then Aff T(A)/pa(Ko(A)) is torsion-free
by [3, Lemma 10.3], and hence the result follows in this case from (i) in
Theorem 1.1. Therefore we may assume that Ko(A) = Z. Then p4 is injective
and has closed range, and hence we have a short exact sequence

0 — Ko(A) 22— Aff T(A) —— Aff T(A)/pa(Ko(A)) — 0.

Let E denote the corresponding class in Ext(Aff T (A)/pa(Ko(A)), Ko(A)).
Note that Aff T(A) is divisible, and therefore Ext(K;(A), Aff T(A)) = 0.
Hence by applying [2, Theorem II1.3.4] we get an isomorphism

E, : Hom(K(A), Aff T(A)/pa(Ko(A))) — Ext(Ki(A), Ko(A)),

where E.(n) = n*(E). By aresult of C. U. Jensen, see e.g. [8, Theorem 6.1],
we have that Pext(K(A), Ky(A))=0. Thus Ext(K;(A), Ko(A))=ext(K;(A),
Ky (A)). To see that the two actions of Aut(&,) can be identified as well, note
that the diagram

0 —> Ko(A) —2— Aff T(A) —— Aff T (A)/pa(Ko(A)) —> 0
wol w;‘*i l@r'
0 —> Ko(A) —2— Aff T(A) —— Aff T (A)/pa(Ko(A)) —> 0

commutes, such that g7 '*(E) = ¢o,(E) by [2, Proposition II1.1.8]. The
corollary follows.

We mention without proof that the C*-algebras considered in the above
corollary are exactly the simple unital inductive limits of sequences of finite
direct sums of building blocks of the form

{feCl0,11®M,: f(x))eM,, i=1,2,...,N.
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Corollary 4.5 suggests that only KL, and not U(-)/DU(-), is needed in an
approximate intertwining argument to show that the Elliott invariant is a clas-
sifying invariant for these C*-algebras. This was demonstrated by Jiang and
Su [1] for a large subclass of this class of C*-algebras.

Let us finally emphasize the following surprising consequence of the co-
rollary above. Let A be a simple unital inductive limit of a sequence of finite
direct sums of building blocks. If Ky(A) is non-cyclic then Aut(A)/Inn(A) is
isomorphic to a semi-direct product

(Hom(K(A), Aff T(A)/pa(Ko(A))) x ext(K{(A), Ko(A))) 3 Aut(&,).

The term Hom(Kl (A), Aff T(A)/pa(Ko(A)) ) vanishes e.g. if A has real rank
zero, whereas the term ext(K(A), Ko(A)) vanishes e.g. if A is an inductive
limit of a sequence of finite direct sums of circle algebras. When Ky(A) = Z
and K (A) is a torsion group, however, these two terms agree, but only one of
them appear in the expression for Aut(A)/Inn(A).
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