
MATH. SCAND. 95 (2004), 245–264

ON THE AUTOMORPHISM GROUP OF CERTAIN
SIMPLE C∗-ALGEBRAS

JESPER MYGIND

Abstract

We show that the information contained in KL(A,B) is determined by other invariants when A
and B are certain simple unital projectionless C∗-algebras. This allows us to compute the group
of automorphisms modulo the group of approximately inner automorphisms in terms of the Elliott
invariant.

1. Introduction

For a unitalC∗-algebraA the Elliott invariant EA consists of the ordered group
K0(A) with order unit, the group K1(A), the compact convex set T (A) of
tracial states, and the restriction map rA : T (A) → SK0(A), where SK0(A)

denotes the state space ofK0(A). In [3] it was proved that the Elliott invariant
is a classifying invariant for the class of unital simple infinite dimensional
inductive limits of sequences of finite direct sums of building blocks. A building
block is a C∗-algebra of the form

A(n, d1, d2, . . . , dN) = {f ∈ C(T)⊗Mn : f (xi) ∈ Mdi , i = 1, 2, . . . , N},
where x1, x2, . . . , xN are (different) points in T, and d1, d2, . . . , dN are integers
dividing n. The points x1, x2, . . . , xN will be called the exceptional points of
A. By allowing di = n we may always assume that N ≥ 2.

The following calculation of the group of automorphisms modulo the group
of approximately inner automorphisms is the main result of this paper.

Theorem 1.1. Let A be a simple unital inductive limit of a sequence of
finite direct sums of building blocks.

(i) If K0(A) is non-cyclic then Aut(A)/Inn(A) is isomorphic to the semi-
direct product(
Hom(K1(A),Aff T (A)/ρA(K0(A)))×ext(K1(A),K0(A))

)
�Aut(EA),
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where the action of (ϕ0, ϕ1, ϕT ) ∈ Aut(EA) is given by

(η, e) 
→ (
ϕ̃T

−1 ◦ η ◦ ϕ−1
1 , ϕ0∗ ◦ ϕ−1∗

1 (e)
)

for η ∈ Hom
(
K1(A),Aff T (A)/ρA(K0(A))

)
, e ∈ ext(K1(A),K0(A)).

(ii) If K0(A) ∼= Z then Aut(A)/Inn(A) is isomorphic to the semi-direct
product

Hom
(
K1(A),Aff T (A)/ρA(K0(A))

)
� Aut(EA),

where the action of (ϕ0, ϕ1, ϕT ) ∈ Aut(EA) is given by

η 
→ ϕ̃T
−1 ◦ η ◦ ϕ−1

1 , η ∈ Hom
(
K1(A),Aff T (A)/ρA(K0(A))

)
.

Here Aut(EA) denotes the group of automorphisms of EA, i.e. the group
of triples (ϕ0, ϕ1, ϕT ) where ϕ0 is an automorphism of the ordered group
K0(A) with order unit, ϕ1 is an automorphism of K1(A), and ϕT is an affine
homeomorphism of T (A) such that

rA ◦ ϕ−1
T (ω) = rA(ω) ◦ ϕ0 on K0(A)

for every ω ∈ T (A). Aff T (A) denotes the continuous real-valued affine func-
tions on T (A) and ρA : K0(A) → Aff T (A) is the group homomorphism
ρA(x)(ω) = rA(ω)(x), x ∈ K0(A), ω ∈ T (A).

It follows from [3, Theorem 12.2] that the algebras considered under (i) are
exactly the class considered by Thomsen in [9]. Therefore part (i) of the above
theorem follows from Thomsen’s calculation, [9, Theorem 8.4]. Note that the
term ext(K1(A),K0(A)) is not present in case (ii). This is not because it is
zero. As we shall demonstrate, it is the existence of a natural map

KL(A,B)e → Hom
(
Tor(U(A)/DU(A)),Tor(U(B)/DU(B))

)
,

whenA andB are simple unital inductive limits of finite direct sums of building
blocks with K0(A) ∼= K0(B) ∼= Z, which is responsible for this. KL(A,B)e
denotes the subset of elements κ in the groupKL(A,B) defined by Rørdam in
[5] for which the induced map κ∗ : K0(A)→ K0(B) preserves the order unit,
and U(A)/DU(A) is the group of unitaries U(A) in A modulo the closure
of the commutator subgroup DU(A). The map above was also crucial in the
proof of the classification result in [3].

It is an interesting question whether a similar map exists in greater generality
– including the case where A and B are arbitrary inductive limits of sub-
homogeneousC∗-algebras. Such a map would probably be useful in all efforts
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of classifying larger classes of simpleC∗-algebras, and our main result suggests
that it could influence the structure of the automorphism group as well.

It should be noted that the class of C∗-algebras considered under (ii) is
quite large. It consists of matrix algebras over simple unital projectionless
C∗-algebras, see [3, Corollary 12.5].

2. Preliminaries

The purpose of this section is to introduce the notation used in this paper and
to list some results on building blocks from [3] that we will need.

Let A be a unital C∗-algebra. Let s(A) be the smallest positive integer n
for which there exists a unital *-homomorphism A→ Mn (we set s(A) = ∞
if A has no non-trivial finite dimensional representations). Note that if there
exists a unital *-homomorphism A→ B then s(A) ≤ s(B).

LetA = A(n, d1, d2, . . . , dN) be a building block and let x1, x2, . . . , xN be
the exceptional points. Evaluation at xi gives rise to a unital *-homomorphism
�i : A → Mdi . This map will sometimes be denoted �Ai . For every integer
k ≥ 0 we let �ki be the direct sum of k copies of the representation �i .

Let A = A(n, d1, d2, . . . , dN) and B = A(m, e1, e2, . . . , eM) be building
blocks. Let ϕ : A→ B be a unital *-homomorphism. As in [9, Chapter 1] we
define sϕ(j, i) to be the multiplicity of the representation �Ai in the represen-
tation �Bj ◦ ϕ for i = 1, 2, . . . , N , j = 1, 2, . . . ,M .

Let us start with the K-theory of a building block.

Proposition 2.1. Let A = A(n, d1, d2, . . . , dN) be a building block and
let d = gcd(d1, d2, . . . , dN). We have an isomorphism of ordered groups with
order units (

K0(A),K0(A)
+, [1]

) ∼= (
Z,Z+, d

)
.

Proof. This is [3, Corollary 3.6].

Let A = A(n, d1, d2, . . . , dN) be a building block with exceptional points
e2πitk , k = 1, 2, . . . , N , where 0 < t1 < t2 < . . . < tN < 1. Set tN+1 = t1 + 1
and t0 = tN . Define continuous functions ωk : T → T for k = 1, 2, . . . , N , by

ωk(e
2πit ) =


 exp

(
2πi

t − tk
tk+1 − tk

)
tk ≤ t ≤ tk+1,

1 tk+1 ≤ t ≤ tk + 1.

Let UAk be the unitary in A defined by

UAk (z) = diag(ωk(z), 1, 1, . . . , 1), z ∈ T.
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Set UA0 = UAN .

Theorem 2.2. Let A = A(n, d1, d2, . . . , dN) be a building block. Set for
k = 1, 2, . . . , N − 1,

sk = lcm

(
n

d1
,
n

d2
, . . . ,

n

dk

)
,

and

rk = gcd

(
sk,

n

dk+1

)
= gcd

(
lcm

(
n

d1
,
n

d2
, . . . ,

n

dk

)
,
n

dk+1

)
.

Choose integers αk and βk such that

rk = αksk + βk n

dk+1
, k = 1, 2, . . . , N − 1.

Then
K1(A) ∼= Z ⊕ Zr1 ⊕ Zr2 ⊕ · · · ⊕ ZrN−1 .

This isomorphism can be chosen such that for k = 1, 2, . . . , N−1, a generator
of the direct summand Zrk is mapped to

[UAk ] − βkn

rkdk+1
[UAk+1] − αksk

rk
[UAN ],

and such that a generator of the direct summand Z is mapped to [UAN ].

Proof. See [3, Theorem 3.2].

Let A and B be unital C∗-algebras. A unital *-homomorphism ϕ : A→ B

induces morphisms ϕ∗ : K0(A) → K0(B), ϕ∗ : K1(A) → K1(B), ϕ∗ :
T (B) → T (A), ϕ̂ : Aff T (A) → Aff T (B), ϕ̃ : Aff T (A)/ρA(K0(A)) →
Aff T (B)/ρB(K0(B)), and ϕ# : U(A)/DU(A) → U(B)/DU(B). Let q ′

A :
U(A) → U(A)/DU(A) and qA : Aff T (A) → Aff T (A)/ρA(K0(A)) be the
canonical maps.

Proposition 2.3. Let A be a unital inductive limit of a sequence of finite
direct sums of building blocks. There exists a group homomorphism

λA : Aff T (A)/ρA(K0(A))→ U(A)/DU(A),

λA(qA(̂a)) = q ′
A(e

2πia), a ∈ Asa.
Let πA : U(A)/DU(A) → K1(A) be the map induced by the canonical map
U(A)→ K1(A). We have a short exact sequence of abelian groups

0 −−→ Aff T (A)/ρA(K0(A))
λA−−→ U(A)/DU(A)

πA−−→ K1(A) −−→ 0.
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This sequence is natural in A and splits unnaturally.

Proof. See [3, Proposition 5.2].

Proposition 2.4. Let A = A(n, d1, d2, . . . , dN) be a building block. Let
u ∈ A be a unitary. Assume that

Det(u(z)) = 1, z ∈ T,

Det(�i(u)) = 1, i = 1, 2, . . . , N.

Then u ∈ DU(A).
Proof. See [3, Propostion 5.3].

Lemma 2.5. Let A = A(n, d1, d2, . . . , dN) and adopt the notation of The-
orem 2.2. For k = 1, 2, . . . , N − 1, there exists a unitary vAk ∈ A such that
Det(vAk (z)) = 1, z ∈ T, and

Det(�j (v
A
k )) =




exp

(
2πi

αksk

rk

dj

n

)
j = 1, 2, . . . , k,

exp

(
−2πi

βk

rk

)
j = k + 1,

1 j = k + 2, k + 3, . . . , N .

Furthermore, [vAk ] has order rk in K1(A), and [vA1 ], [vA2 ], . . . , [vAN−1] gener-
ate the torsion subgroup of K1(A). There is a group homomorphism σA :
Tor(K1(A)) → Tor(U(A)/DU(A)) given by σA([vAk ]) = q ′

A(v
A
k ), k =

1, 2, . . . , N − 1.

Proof. The existence of vAk follows from [3, Lemma 5.4].
Fix k = 1, 2, . . . , N . By [3, Lemma 5.4] there is a unitary u ∈ A with

Det(u(z)) = 1, z ∈ T, and

Det(�j (u)) =




1 j �= k,

exp

(
2πi

dk

n

)
j = k.

Set w = uUAk−1U
A∗
k . By Proposition 2.4 we have that w modulo DU(A)
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equals the unitary z 
→ e2πiλ(z), where λ : T → R is the continuous function

λ(e2πit ) =




1

n

t − tk−1

tk − tk−1
tk−1 ≤ t ≤ tk ,

1

n

tk+1 − t
tk+1 − tk tk ≤ t ≤ tk+1,

0 otherwise.

In particular, w is trivial in K1(A), i.e. [u] = [UAk ] − [UAk−1] in K1(A).
As a consequence of this observation,

[vAk ] =
k∑
j=1

αksk

rk
([UAj ] − [UAj−1])− βkn

rkdk+1
([UAk+1] − [UAk ])

= [UAk ] − βkn

rkdk+1
[UAk+1] − αksk

rk
[UAN ]

inK1(A). Hence by Theorem 2.2 we see that [vAk ] has order rk inK1(A) and that
the elements [vA1 ], [vA2 ], . . . , [vAN−1] generate Tor(K1(A)). Since rkq ′

A(v
A
k ) =

0 andπA(q ′
A(v

A
k )) = [vAk ] it follows that q ′

A(v
A
k ) has order rk inU(A)/DU(A).

The existence of σA follows.

We remark that the map σA is neither natural nor unique, and that πA ◦ σA
is the identity map on Tor(K1(A)).

In [5] Rørdam defined the bifunctor KL to be a certain quotient of KK .
Recall from [5] that the Kasparov product yields a product KL(B,C) ×
KL(A,B) → KL(A,C) which we will denote by ·. Furthermore, if K∗(A)
is finitely generated then KK(A, ·) ∼= KL(A, ·). If ϕ is a unital *-homomor-
phism, we let [ϕ] denote the induced element in KL(A,B). For unital C∗-
algebras A and B we let KL(A,B)e denote the elements of KL(A,B) for
which the induced map K0(A)→ K0(B) preserves the order unit.

Let A and B be building blocks. KL(A,B) is conveniently described in
terms of the K-homology groups K0(A) = KK(A,C) ∼= KL(A,C) and
K0(B). Recall that the Kasparov product gives rise to a group homomorphism
κ∗ : K0(B)→ K0(A) for every κ ∈ KL(A,B).

Theorem 2.6. LetA=A(n, d1, d2, . . . , dN) andB =A(m, e1, e2, . . . , eM)

be building blocks such that s(B) ≥ Nn.

(i) If ν ∈ KL(A,B)e then there exists a unital *-homomorphism ϕ : A →
B such that [ϕ] = ν in KL(A,B).
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(ii) Let ϕ : A → B be a unital *-homomorphism and let κ ∈ KL(A,B)e.
If ϕ∗ = κ∗ onK0(B) and ϕ∗([UAN ]) = κ∗([UAN ]) inK1(B) then [ϕ] = κ
in KL(A,B).

Proof. This follows from [3, Theorem 4.7].

The next result says thatK0(·) and the torsion subgroup ofU(·)/DU(·) are
related for building blocks.

Proposition 2.7. LetA = A(n, d1, d2, . . . , dN) be a building block. There
exists a finite set F ⊆ Tor(U(A)/DU(A)) such that if B is a building block
and ϕ,ψ : A→ B are unital *-homomorphisms with ϕ#(x) = ϕ#(x), x ∈ F ,
then ϕ∗ = ψ∗ on K0(B).

Proof. This is part of [3, Theorem 5.5].

We also need a description of the structure of the groupK0(·) for a building
block.

Proposition 2.8. Let A = A(n, d1, d2, . . . , dN) be a building block.
Then K0(A) is generated by [�1], [�2], . . . , [�N ]. Furthermore, for a1, a2,

. . . , aN ∈ Z we have that

a1[�1] + a2[�2] + · · · + aN [�N ] = 0

if and only if there exist b1, b2, . . . , bN ∈ Z such that
∑N
i=1 bi = 0 and

ai = bi n
di
, i = 1, 2, . . . , N.

Proof. This is [3, Proposition 4.2].

We conclude with a technical proposition which is needed in the next sec-
tion.

Proposition 2.9. Let A = A(n, d1, d2, . . . , dN) and B = A(m, e1, e2,

. . . , eM) be building blocks with s(B) ≥ Nn. Let χ ∈ K1(B) and let h :
K0(B)→ K0(A) be a homomorphism of the form


h([�B1 ])

h([�B2 ])
...

h([�BM ])


 =



h11 h12 . . . h1N

h21 h22 . . . h2N

...
...

...

hM1 hM2 . . . hMN







[�A1 ]

[�A2 ]
...

[�AN ]




with
∑N
i=1 hjidi = ej for j = 1, 2, . . . ,M . There exists a unital *-homomor-

phism ϕ : A→ B such that ϕ∗ = h on K0(B) and ϕ∗([UAN ]) = χ in K1(B).
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Proof. By Proposition 2.8 we have that n
di

[�Ai ] = n
dN

[�AN ] in K0(A).
Hence we may assume that 0 ≤ hji <

n
di

for i �= N and still have that∑N
i=1 hjidi = ej for j = 1, 2, . . . ,M . Note that for j = 1, 2, . . . ,M ,

Nn ≤
N∑
i=1

hjidi < (N − 1)n+ hjNdN

and hence hjN > n
dN

. The conclusion follows from [3, Proposition 4.4].

3. KL and other invariants

Let A and B be unital C∗-algebras and let ϕ0 : K0(A) → K0(B) be an
order unit preserving group homomorphism. Assume that K0(A) ∼= Z. Then
ρA(K0(A)) is closed in Aff T (A), and we have a well-defined map

ϕ̃0 : Tor
(
Aff T (A)/ρA(K0(A))

) → Tor
(
Aff T (B)/ρB(K0(B))

)
given by ϕ̃0

(
qA

(
1
k
ρA(x)

)) = qB
(

1
k
ρB(ϕ0(x))

)
for x ∈ K0(A) and every posi-

tive integer k.

Theorem 3.1. LetA=A(n, d1, d2, . . . , dN) andB =A(m, e1, e2, . . . , eM)

be building blocks with s(B) ≥ Nn. If ϕ0 : K0(A) → K0(B) is an or-
der unit preserving group homomorphism, if 6 : Tor

(
U(A)/DU(A)

) →
Tor

(
U(B)/DU(B)

)
is a group homomorphism such that the diagram

Tor
(
Aff T (A)/ρA(K0(A))

) λA−−−−−→ Tor
(
U(A)/DU(A)

)
↓ϕ̃0 ↓6

Tor
(
Aff T (B)/ρB(K0(B))

) λB−−−−−→ Tor
(
U(B)/DU(B)

)
commutes, and ifχ ∈ K1(B), then there is a unital *-homomorphismψ : A→
B such that ψ# = 6 on Tor

(
U(A)/DU(A)

)
and ψ∗[UAN ] = χ in K1(B).

Proof. We adopt the notation of Theorem 2.2. Set α0 = 1. If i and k are
integers, 1 ≤ i ≤ k ≤ N , we define an integer cki by

cki = αi−1βiβi+1 . . . βk−1.

We claim that

(1)
1

sk
=

k∑
i=1

cki
di

n
, k = 1, 2, . . . , N.
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As c1
1 = 1, this is clear for k = 1. Assume it is correct for k, 1 ≤ k ≤ N − 1.

Then

k+1∑
i=1

ck+1
i

di

n
= ck+1

k+1

dk+1

n
+

k∑
i=1

ck+1
i

di

n
= ck+1

k+1

dk+1

n
+ βk

k∑
i=1

cki
di

n

= αk dk+1

n
+ βk 1

sk
= dk+1

n

1

sk

(
αksk + βk n

dk+1

)

= rk

sk
n
dk+1

= 1

sk+1
,

proving (1).
Choose a unitaryuk ∈ B such that6(q ′

A(v
A
k )) = q ′

B(uk), k = 1, 2, . . . , N−
1. Let qjk ∈ R be numbers such that

Det(�j (uk)) = e2πiqjk , k = 1, 2, . . . , N − 1, j = 1, 2, . . . ,M.

Set qj0 = 0 and set d = gcd(d1, d2, . . . , dN). By Proposition 2.1 d divides ej ,
j = 1, 2, . . . ,M . Define for i = 1, 2, . . . , N , j = 1, 2, . . . ,M ,

hji = cNi
ej

d
− n

di
q
j

i−1 +
N−i∑
l=1

cN−l
i sN−lq

j

N−l .

Since rkq ′
A(v

A
k ) = 0 in U(A)/DU(A) by Lemma 2.5, we see that urkk ∈

DU(B) and hence rkq
j

k ∈ Z, k = 1, 2, . . . , N − 1. It follows that hji ∈ Z for
every i and j . Since q ′

B(uk) has finite order, Det(uk(·)) is constantly equal to
e2πiak for some ak ∈ R. Note that

e2πiak = e2πiqjk
m
ej , j = 1, 2, . . . ,M, k = 1, 2, . . . , N − 1.

Thus if we set a0 = 0 we find that

m

ej
hji = cNi

m

d
− n

di
q
j

i−1

m

ej
+
N−i∑
l=1

cN−l
i sN−lq

j

N−l
m

ej

≡ cNi
m

d
− n

di
ai−1 +

N−i∑
l=1

cN−l
i sN−laN−l mod

n

di

for i = 1, 2, . . . , N , j = 1, 2, . . . ,M . Hence

(2)
m

ej
hji ≡ m

eM
hMi mod

n

di
.
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For k = 1, 2, . . . , N ,

k∑
i=1

N−i∑
l=1

cN−l
i sN−lq

j

N−l
di

n

=
N−1∑
l=1

min(k,N−l)∑
i=1

cN−l
i sN−lq

j

N−l
di

n

=
N−k∑
l=1

k∑
i=1

cN−l
i sN−lq

j

N−l
di

n
+

N−1∑
l=N−k+1

N−l∑
i=1

cN−l
i sN−lq

j

N−l
di

n

=
N−k∑
l=1

βkβk+1 . . . βN−l−1

k∑
i=1

cki
di

n
sN−lq

j

N−l +
N−1∑

l=N−k+1

q
j

N−l

=
N−k∑
l=1

βkβk+1 . . . βN−l−1
1

sk
sN−lq

j

N−l +
k−1∑
l=1

q
j

l .

Hence

k∑
i=1

hji
di

n
=

k∑
i=1

cNi
ej

d

di

n
−

k∑
i=1

q
j

i−1 +
k∑
i=1

N−i∑
l=1

cN−l
i sN−lq

j

N−l
di

n

=ej
d
βkβk+1 . . . βN−1

k∑
i=1

cki
di

n
+
N−k∑
l=1

βkβk+1 . . . βN−l−1
1

sk
sN−lq

j

N−l

=ej
d
βkβk+1 . . . βN−1

1

sk
+
N−k∑
l=1

βkβk+1 . . . βN−l−1
1

sk
sN−lq

j

N−l .

By setting k = N we see that

N∑
i=1

hjidi = ej n
d

1

sN
= ej .

Combining this equation with (2) and Proposition 2.8 it is an elementary ex-
ercise to prove that we can define a homomorphism h : K0(B) → K0(A)

by 

h([�B1 ])

h([�B2 ])
...

h([�BM ])


 =



h11 h12 . . . h1N

h21 h22 . . . h2N

...
...

...

hM1 hM2 . . . hMN







[�A1 ]

[�A2 ]
...

[�AN ]


 .
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By Proposition 2.9 there exists a unital *-homomorphismψ : A→ B such
that ψ∗ = h on K0(B) and ψ∗([UAN ]) = χ on K1(B). Fix j = 1, 2, . . . ,M .
Let ti = sψ(j, i). By [3, Lemma 2.1] there exist a unitary w ∈ Mej and
z1, z2, . . . , zL ∈ T such that

�Bj ◦ ψ(f )
= w diag

(
�
t1
1 (f ),�

t2
2 (f ), . . . , �

tN
N (f ), f (z1), f (z2), . . . , f (zL)

)
w∗

for f ∈ A. Since point-evaluations are homotopic *-homomorphisms A →
Mn, we see that

ψ∗[�Bj ] = [�Bj ◦ ψ] =
N∑
i=1

ti[�
A
i ] + L n

dN
[�AN ].

in K0(A). On the other hand, ψ∗[�Bj ] = ∑N
i=1 hji[�

A
i ]. It follows from Pro-

position 2.8 that

sψ(j, i) ≡ hji mod
n

di
, i = 1, 2, . . . , N, j = 1, 2, . . . ,M.

Note that for k = 1, 2, . . . , N − 1, j = 1, 2, . . . ,M ,

αksk

rk

k∑
i=1

hji
di

n
= ej

d

αk

rk
βkβk+1 . . . βN−1 +

N−k∑
l=1

αk

rk
βkβk+1 . . . βN−l−1sN−lq

j

N−l

= ej

d

βk

rk
cNk+1 +

N−k−1∑
l=1

βk

rk
cN−l
k+1 sN−lq

j

N−l +
αk

rk
skq

j

k

= βk

rk

(
hj(k+1) + n

dk+1
q
j

k

)
+ αk

rk
skq

j

k

= βk

rk
hj (k+1) + qjk .

Since Det(vAk (z)) = 1, z ∈ T, we see that

Det
(
�j(ψ(v

A
k ))

) =
N∏
i=1

Det
(
�i(v

A
k )

)sψ (j,i) =
N∏
i=1

Det
(
�i(v

A
k )

)h(j,i)

= exp

(
2πi

( k∑
i=1

αksk

rk
hji
di

n
− βk

rk
hj (k+1)

))

= exp
(
2πiqjk

) = Det
(
�j(uk)

)
.



256 jesper mygind

Thus Det(ψ(vAk )(·)) and Det(uk(·)) agree at the exceptional points of B, and
hence they agree everywhere. It follows from Proposition 2.4 that

q ′
B(ψ(v

A
k )) = q ′

B(uk) = 6(q ′
A(v

A
k )), k = 1, 2, . . . , N − 1.

As ψ̃ = ϕ̃0 on Tor
(
Aff T (A)/ρA(K0(A))

)
, we conclude from Lemma 2.5 and

Proposition 2.3 that ψ# and 6 agree on all of Tor
(
U(A)/DU(A)

)
.

Our next result says that the information contained in KL(A,B) can be
detected by other invariants when A and B are building blocks.

Proposition 3.2. Let A = A(n, d1, d2, . . . , dN) and B be building blocks
with s(B) ≥ Nn. Let ϕ0 : K0(A)→ K0(B) be an order unit preserving group
homomorphism, and let 6 : Tor(U(A)/DU(A))→ Tor(U(B)/DU(B)) and
ϕ1 : K1(A)→ K1(B) be group homomorphisms such that the diagram

Tor
(
Aff T (A)/ρA(K0(A))

) λA−−−→ Tor
(
U(A)/DU(A)

) πA−−−→ Tor
(
K1(A)

)
↓ϕ̃0 ↓6 ↓ϕ1

Tor
(
Aff T (B)/ρB(K0(B))

) −−−→
λB

Tor
(
U(B)/DU(B)

) −−−→πB Tor
(
K1(B)

)
commutes.

(i) There exists a unital *-homomorphism ϕ : A → B such that ϕ∗ = ϕ0

on K0(A), ϕ∗ = ϕ1 on K1(A) and ϕ# = 6 on Tor
(
U(A)/DU(A)

)
.

(ii) If ψ : A→ B is another unital *-homomorphism such that ψ∗ = ϕ0 on
K0(A), ψ∗ = ϕ1 on K1(A) and ψ# = 6 on Tor

(
U(A)/DU(A)

)
, then

[ϕ] = [ψ] in KL(A,B).

Proof. Choose by Theorem 3.1 a unital *-homomorphismϕ : A→ B such
that ϕ# = 6 on Tor

(
U(A)/DU(A)

)
and ϕ∗[UAN ] = ϕ1[UAN ] in K1(B). Then

ϕ∗ = ϕ1 on Tor(K1(A)), and thus ϕ∗ = ϕ1 on all of K1(A) by Theorem 2.2.
Obviously ϕ∗ = ϕ0 since ϕ is unital. This proves (i).

To prove (ii), note that since ϕ# = ψ# on Tor
(
U(A)/DU(A)

)
we have that

ϕ∗ = ψ∗ on K0(B) by Proposition 2.7. Hence [ϕ] = [ψ] by Theorem 2.6.

Let A and B be simple unital infinite dimensional inductive limits of se-
quences of finite direct sums of building blocks. In [3, Chapter 10] a group
homomorphism

sκ : Tor
(
U(A)/DU(A)

) → Tor
(
U(B)/DU(B)

)
,

was constructed for every κ ∈ KL(A,B)T (the map was constructed for
slightly different B but can be applied in our case by [3, Lemma 10.3], [3,
Lemma 9.6] and [3, Theorem 9.9]). Recall from [3] that KL(A,B)T is the
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set of elements κ ∈ KL(A,B)e for which there exists an affine continu-
ous map ϕT : T (B) → T (A) such that rB(ω)(κ∗(x)) = rA(ϕT (ω))(x) for
x ∈ K0(A), ω ∈ T (B). Note that if K0(A) ∼= Z and K0(B) ∼= Z then
KL(A,B)T = KL(A,B)e.

Recall furthermore from [3, Chapter 10] that s[µ] = µ# on Tor
(
U(A)/

DU(A)
)

for every unital *-homomorphism µ : A → B, and that if C is a
finite direct sum of building blocks, and ϕ : C → A, ψ : C → B are unital
*-homomorphisms such that [ψ] = κ · [ϕ] in KL(C,B), then ψ# = sκ ◦ ϕ#

on Tor
(
U(C)/DU(C)

)
.

We can now generalize Theorem 3.2 to simple inductive limits for which
K0(A) and K0(B) are cyclic:

Theorem 3.3. Let A and B be unital simple infinite dimensional inductive
limits of sequences of finite direct sums of building blocks. Assume thatK0(A)

and K0(B) are cyclic groups. Let ϕ0 : K0(A) → K0(B) be an order unit
preserving group homomorphism, and let ϕ1 : K1(A) → K1(B) and 6 :
U(A)/DU(A) → U(B)/DU(B) be group homomorphisms such that the
diagram

Tor
(
Aff T (A)/ρA(K0(A))

) λA−−−→ Tor
(
U(A)/DU(A)

) πA−−−→ Tor
(
K1(A)

)
↓ϕ̃0 ↓6 ↓ϕ1

Tor
(
Aff T (B)/ρB(K0(B))

) −−−→
λB

Tor
(
U(B)/DU(B)

) −−−→πB Tor
(
K1(B)

)
commutes. There exists a unique element κ ∈ KL(A,B) such that κ∗ = ϕ0 on
K0(A), κ∗ = ϕ1 on K1(A) and sκ = 6 on Tor

(
U(A)/DU(A)

)
.

Proof. We may by [3, Theorem 9.9] assume that A is the inductive limit
of a sequence

A1
α1−−−−→ A2

α2−−−−→ A3
α3−−−−→ . . .

of finite direct sums of building blocks with unital and injective connecting
maps. Similarly we may assume that B is the inductive limit of a sequence

B1
β1−−−−→ B2

β2−−−−→ B3
β3−−−−→ . . .

of finite direct sums of building blocks with unital and injective connecting
maps. SinceK0(A) ∼= Z it is easy to see that we may furthermore assume that
each Ak is a building block, rather than a finite direct sum of building blocks.
Similarly we may assume that eachBk is a building block. Let αk,∞ : Ak → A

and βk,∞ : Bk → B denote the canonical *-homomorphisms.
By passing to subsequences we may assume that for every positive integer

k there exist an order unit preserving group homomorphism µk : K0(Ak) →
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K0(Bk) and a group homomorphism ηk : K1(Ak)→ K1(Bk) such that

βk,∞∗ ◦ µk = ϕ0 ◦ αk,∞∗ on K0(Ak),

βk,∞∗ ◦ ηk = ϕ1 ◦ αk,∞∗ on K1(Ak).

By passing to a subsequence again, we may assume that

µk+1 ◦ αk∗ = βk∗ ◦ µk on K0(Ak),

ηk+1 ◦ αk∗ = βk∗ ◦ ηk on K1(Ak).

Let Ak = A(nk, d
k
1 , d

k
2 , . . . , d

k
Nk
). By Proposition 2.3, Lemma 2.5, and [3,

Lemma 10.8], we may also assume that for every positive integer k, there exists
a group homomorphism6k: Tor

(
U(Ak)/DU(Ak)

) → Tor
(
U(Bk)/DU(Bk)

)
such that

λBk ◦ µ̃k = 6k ◦ λAk
on Tor

(
Aff T (Ak)/ρAk (K0(Ak))

)
and

β#
k,∞ ◦6k

(
q ′
Ak
(v
Ak
j )

) = 6 ◦ α#
k,∞

(
q ′
Ak
(v
Ak
j )

)
for j = 1, 2, . . . , Nk − 1. Since for every positive integer k,

β#
k,∞ ◦6k ◦ λAk = β#

k,∞ ◦ λBk ◦ µ̃k = λB ◦ β̃k,∞ ◦ µ̃k
= λB ◦ ϕ̃0 ◦ α̃k,∞ = 6 ◦ λA ◦ α̃k,∞ = 6 ◦ α#

k,∞ ◦ λAk
on Tor

(
Aff T (Ak)/ρAk (K0(Ak))

)
, we conclude from Proposition 2.3 and

Lemma 2.5 that
β#
k,∞ ◦6k = 6 ◦ α#

k,∞

on Tor
(
U(Ak)/DU(Ak)

)
.

It follows from the above equation and [3, Lemma 10.4] that by passing to
subsequences we may assume that for every positive integer k,

β#
k ◦6k

(
q ′
Ak
(v
Ak
j )

) = 6k+1 ◦ α#
k

(
q ′
Ak
(v
Ak
j )

)
for j = 1, 2, . . . , Nk − 1. Since for every positive integer k,

β#
k ◦6k ◦ λAk = β#

k ◦ λBk ◦ µ̃k = λBk+1 ◦ β̃k ◦ µ̃k
= λBk+1 ◦ µ̃k+1 ◦ α̃k = 6k+1 ◦ λAk+1 ◦ α̃k = 6k+1 ◦ α#

k ◦ λAk
on Tor

(
Aff T (Ak)/ρAk (K0(Ak))

)
, we see that

β#
k ◦6k = 6k+1 ◦ α#

k
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on Tor
(
U(Ak)/DU(Ak)

)
.

Note that for every positive integer k,

βk,∞∗ ◦ ηk ◦ πAk = ϕ1 ◦ αk,∞∗ ◦ πAk = ϕ1 ◦ πA ◦ α#
k,∞

= πB ◦6 ◦ α#
k,∞ = πB ◦ β#

k,∞ ◦6k = βk,∞∗ ◦ πBk ◦6k
on Tor

(
U(Ak)/DU(Ak)

)
. By passing to subsequences again we may assume

that
ηk ◦ πAk

(
q ′
Ak
(v
Ak
j )

) = πBk ◦6k
(
q ′
Ak
(v
Ak
j )

)
in K1(B) for j = 1, 2, . . . , Nk − 1. Since πBk ◦6k ◦ λAk = 0 on the torsion
subgroup of Aff T (Ak)/ρAk (K0(Ak)), it follows that ηk ◦ πAk = πBk ◦6k on
Tor

(
U(Ak)/DU(Ak)

)
. Thus the diagram

Tor(Aff T (Ak)/ρAk (K0(Ak)))
λAk−−→ Tor(U(Ak)/DU(Ak))

πAk−−→ Tor(K1(Ak))

↓µ̃k ↓6k ↓ηk
Tor(Aff T (Bk)/ρBk (K0(Bk))) −−→

λBk
Tor(U(Bk)/DU(Bk)) −−→πBk Tor(K1(Bk))

commutes. Finally we may by [3, Lemma 9.6] assume that s(Bk) ≥ Nknk .
It follows from Proposition 3.2 that for every positive integer k, there exists a

unital *-homomorphismψk : Ak → Bk such thatψk∗ = µk onK0(Ak),ψk∗ =
ηk on K1(Ak), and ψ#

k = 6k on Tor
(
U(Ak)/DU(Ak)

)
. By the uniqueness

part of the same proposition, [βk] · [ψk] = [ψk+1] · [αk] inKL(Ak, Bk+1). By
[6, Theorem 1.12] and [7, Theorem 7.1] there exists an element κ ∈ KL(A,B)
such that κ · [αk,∞] = [βk,∞] · [ψk] in KL(Ak, B) for every positive integer
k. Then κ∗ = ϕ0 on K0(A), κ∗ = ϕ1 on K1(A), and

sκ◦α#
k,∞ = (βk,∞◦ψk)# = β#

k,∞◦6k = 6◦α#
k,∞ on Tor(U(Ak)/DU(Ak)).

By [3, Lemma 10.8] we see that sκ = 6 on Tor
(
U(A)/DU(A)

)
.

To prove uniqueness, let ν ∈ KL(A,B) be another element such that
ν∗ = ϕ0 on K0(A), ν∗ = ϕ1 on K1(A) and sν = 6 on Tor

(
U(A)/DU(A)

)
.

By passing to a subsequence, we may assume that there is an element νk in
KL(Ak, Bk) such that [βk,∞] · νk = ν · [αk,∞]. By passing to a subsequence
again we may assume that ψk∗ = νk∗ on K0(A) as well as on K1(A). By
Theorem 2.6 there exists a unital *-homomorphism ξk : Ak → Bk such that
[ξk] = νk in KL(Ak, Bk). Then

β#
k,∞ ◦ ξ #

k = sν ◦ α#
k,∞ = sκ ◦ α#

k,∞ = β#
k,∞ ◦ ψ#

k

on Tor
(
U(Ak)/DU(Ak)

)
. By passing to subsequences again, we may by [3,

Lemma 10.4] assume that ξ #
k = ψ#

k on any given finite subset of Tor
(
U(Ak)/
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DU(Ak)
)
. Hence, we can arrange that ξk∗ = ψk

∗ on K0(Bk) by Proposi-
tion 2.7. It follows from Theorem 2.6 that [ξk] = [ψk] in KL(Ak, Bk). Thus,
κ · [αk,∞] = ν · [αk,∞] for all k. It follows that κ = ν by [5, Lemma 5.8].

4. Main results

In [3] the existence result [3, Theorem 11.2] was subsequently simplified in the
case where K0(A) is non-cyclic. The following theorem shows that a similar
simplification is possible when K0(A) and K0(B) are cyclic, but this time
without KL.

Theorem 4.1. LetA andB be unital simple inductive limits of sequences of
finite direct sums of building blocks and assume that K0(A) ∼= Z, K0(B) ∼= Z
and that B is infinite dimensional. Let ϕT : T (B) → T (A) be an affine
continuous map, let ϕ0 : K0(A) → K0(B) be an order unit preserving group
homomorphism, let ϕ1 : K1(A) → K1(B) be a group homomorphism, and
let 6 : U(A)/DU(A) → U(B)/DU(B) be a homomorphism such that the
diagram

Aff T (A)/ρA(K0(A))
λA−−−−→ U(A)/DU(A)

πA−−−−→ K1(A)

↓ϕ̃T ↓6 ↓ϕ1

Aff T (B)/ρB(K0(B)) −−−−→
λB

U(B)/DU(B) −−−−→πB
K1(B)

commutes. There exists a unital *-homomorphism ψ : A → B such that
ψ∗ = ϕT on T (B), ψ# = 6 on U(A)/DU(A), and ψ∗ = ϕ0 on K0(A).

Proof. We may assume that A is infinite dimensional. By Theorem 3.3
there exists an element κ ∈ KL(A,B) such that κ∗ = ϕ0 on K0(A), κ∗ = ϕ1

on K1(A), and sκ = 6 on Tor
(
U(A)/DU(A)

)
. By [3, Theorem 11.2] there

exists a unital *-homomorphism ψ : A→ B such that [ψ] = κ inKL(A,B),
ψ∗ = ϕT on T (B), and ψ# = 6 on U(A)/DU(A).

The next result says that KL can also be removed from the uniqueness
theorem, [3, Theorem 11.5], when K0(B) is cyclic.

Theorem 4.2. LetA and B be simple unital inductive limit of sequences of
finite direct sums of building blocks such thatK0(A) ∼= Z andK0(B) ∼= Z. Let
ϕ,ψ : A → B be unital *-homomorphisms with ϕ# = ψ# on U(A)/DU(A).
Then ϕ and ψ are approximately unitarily equivalent.

Proof. We may assume that A is infinite dimensional. As in the proof of
Theorem 3.3 we see that A is the inductive limit of a sequence

A1
α1−−−−→ A2

α2−−−−→ A3
α3−−−−→ . . .
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of building blocks with unital and injective connecting maps. Similarly B is
the inductive limit of a sequence

B1
β1−−−−→ B2

β2−−−−→ B3
β3−−−−→ . . .

of building blocks with unital and injective connecting maps. By [3, Lem-
ma 8.5] we have that s(Bk)→ ∞. Obviously ϕ∗ = ψ∗ onK0(A) and ϕ∗ = ψ∗
on K1(A), such that [ϕ] = [ψ] in KL(A,B) by Theorem 3.3. Finally note
that ϕ# = ψ# implies ϕ̃ = ψ̃ . Thus the linear map ϕ̂ − ψ̂ takes values in
ρB(K0(B)), and hence it must be 0. Therefore ϕ∗ = ψ∗ on T (B). It follows
from [3, Theorem 11.5] that ϕ and ψ are approximately unitarily equivalent.

We need the following isomorphism version of Theorem 4.1.

Theorem 4.3. Let A and B be simple unital infinite dimensional inductive
limits of sequences of finite direct sums of building blocks with K0(A) ∼=
Z. Let ϕ0 : K0(A) → K0(B) be an isomorphism of ordered groups with
order units, let ϕ1 : K1(A) → K1(B) be an isomorphism of groups, let ϕT :
T (B) → T (A) be an affine homeomorphism, and let 6 : U(A)/DU(A) →
U(B)/DU(B) be an isomorphism of groups, such that the diagram

Aff T (A)/ρA(K0(A))
λA−−−−→ U(A)/DU(A)

πA−−−−→ K1(A)

↓ϕ̃T ↓6 ↓ϕ1

Aff T (B)/ρB(K0(B)) −−−−→
λB

U(B)/DU(B) −−−−→πB
K1(B)

commutes. Then there exists an isomorphism ψ : A → B such that ψ∗ = ϕ1

on K1(A), ψ∗ = ϕT on T (B), and ψ# = 6 on U(A)/DU(A).

Proof. By Theorem 4.1 there exists a unital *-homomorphismµ : A→ B

such that µ# = 6 on U(A)/DU(A), µ∗ = ϕT on T (B), and µ∗ = ϕ1 on
K1(A). Similarly, there exists a unital *-homomorphism ξ : B → A such that
ξ # = 6−1 on U(B)/DU(B), ξ ∗ = ϕ−1

T on T (A), and ξ∗ = ϕ−1
1 on K1(B).

By Theorem 4.2 we see thatµ◦ ξ and ξ ◦µ are approximately inner. Hence by
[4, Proposition A] µ is approximately unitarily equivalent to an isomorphism
ψ : A→ B.

We are now in a position to prove part (ii) of Theorem 1.1.

Theorem 4.4. LetA be a simple unital inductive limit of a sequence of finite
direct sums of building blocks with K0(A) ∼= Z. Then

Aut(A)/Inn(A) ∼= Hom
(
K1(A),Aff T (A)/ρA(K0(A))

)
� Aut(EA),



262 jesper mygind

where the action of (ϕ0, ϕ1, ϕT ) ∈ Aut(EA) is given by

η 
→ ϕ̃T
−1 ◦ η ◦ ϕ−1

1 , η ∈ Hom
(
K1(A),Aff T (A)/ρA(K0(A))

)
.

Proof. We may assume that A is infinite dimensional. By Proposition 2.3
we may identify U(A)/DU(A) with G1 ⊕ G2, where G1 = Aff T (A)/
ρA(K0(A)) and G2 = K1(A). Thus an endomorphism ψ of the group U(A)/
DU(A) can be identified with a 2 × 2 matrix(

ψ11 ψ12

ψ21 ψ22

)

where ψij : Gj → Gi is a homomorphism, i, j = 1, 2. Note that if ψ is
induced by an automorphism ofA thenψ21 = 0 since the short exact sequence
of Proposition 2.3 is natural.

Let H = Hom
(
K1(A),Aff T (A)/ρA(K0(A))

)
. Let η ∈ H . Choose by

Theorem 4.3 an element ψ ∈ Aut(A) such that ψ∗ = id on T (A), ψ∗ = id

on K1(A), and
ψ# =

(
id η

0 id

)

on U(A)/DU(A). By Theorem 4.2 we obtain a well-defined group homo-
morphism

ι : H → Aut(A)/Inn(A)

by setting ι(η) = p(ψ), where p : Aut(A) → Aut(A)/Inn(A) denotes the
canonical map. Let π : Aut(A)/Inn(A)→ Aut(EA) be the homomorphism

π(p(ψ)) = (ψ∗, ψ∗, (ψ∗)−1).

We have a short exact sequence

0 −−−→ H ι−−−→ Aut(A)/Inn(A) π−−−→ Aut(EA) −−−→ 0

of groups. Let (ϕ0, ϕ1, ϕT ) ∈ Aut(EA). Choose by Theorem 4.1 an element ψ
in Aut(A) such that ψ∗ = ϕ1, ψ∗ = ϕ−1

T , and

ψ# =
(
ϕ̃T

−1 0

0 ϕ1

)
.

By Theorem 4.2 we obtain a well-defined mapσ : Aut(EA)→ Aut(A)/Inn(A)
by settingσ(ϕ0, ϕ1, ϕT ) = p(ψ). Note thatσ splits the sequence above. Hence
Aut(A)/Inn(A) is isomorphic to a semi-direct product H � Aut(EA). Since

ι(ϕ̃T
−1ηϕ−1

1 ) = σ(ϕ0, ϕ1, ϕT ) ι(η) σ (ϕ0, ϕ1, ϕT )
−1,
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it follows that the action of Aut(EA) on H is the desired one.

Let us finally show that our main result can be simplified when K1(A) is
a torsion group. Recall that ext(G,H) is defined as Ext(G,H)/Pext(G,H)
for abelian groups G and H , where Pext(G,H) is the subgroup of pure (i.e.
locally trivial) extensions in Ext(G,H), see [5, Chapter 5].

Corollary 4.5. Let A be a simple unital inductive limit of a sequence of
finite direct sums of building blocks such that K1(A) is a torsion group. Then

Aut(A)/Inn(A) ∼= ext(K1(A),K0(A))
)

� Aut(EA),

where the action of (ϕ0, ϕ1, ϕT ) ∈ Aut(EA) is given by e 
→ ϕ0∗ ◦ ϕ−1∗
1 (e) for

e ∈ ext(K1(A),K0(A)).

Proof. If K0(A) is non-cyclic, then Aff T (A)/ρA(K0(A)) is torsion-free
by [3, Lemma 10.3], and hence the result follows in this case from (i) in
Theorem 1.1. Therefore we may assume thatK0(A) ∼= Z. Then ρA is injective
and has closed range, and hence we have a short exact sequence

0 −−−→ K0(A)
ρA−−−−→ Aff T (A) qA−−−−→ Aff T (A)/ρA(K0(A)) −−−→ 0.

Let E denote the corresponding class in Ext(Aff T (A)/ρA(K0(A)),K0(A)).
Note that Aff T (A) is divisible, and therefore Ext(K1(A),Aff T (A)) = 0.
Hence by applying [2, Theorem III.3.4] we get an isomorphism

E∗ : Hom(K1(A),Aff T (A)/ρA(K0(A))) → Ext(K1(A),K0(A)),

where E∗(η) = η∗(E). By a result of C. U. Jensen, see e.g. [8, Theorem 6.1],
we have that Pext(K1(A),K0(A))=0. Thus Ext(K1(A),K0(A))= ext(K1(A),

K0(A)). To see that the two actions of Aut(EA) can be identified as well, note
that the diagram

0 −−−→ K0(A)
ρA−−−−→ Aff T (A) qA−−−−→ Aff T (A)/ρA(K0(A)) −−−→ 0

↓ϕ0 ↓ϕ−1∗
T ↓ϕ̃T −1

0 −−−→ K0(A)
ρA−−−−→ Aff T (A) qA−−−−→ Aff T (A)/ρA(K0(A)) −−−→ 0

commutes, such that ϕ̃T −1∗(E) = ϕ0∗(E) by [2, Proposition III.1.8]. The
corollary follows.

We mention without proof that the C∗-algebras considered in the above
corollary are exactly the simple unital inductive limits of sequences of finite
direct sums of building blocks of the form

{f ∈ C[0, 1] ⊗Mn : f (xi) ∈ Mdi , i = 1, 2, . . . , N}.
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Corollary 4.5 suggests that only KL, and not U(·)/DU(·), is needed in an
approximate intertwining argument to show that the Elliott invariant is a clas-
sifying invariant for these C∗-algebras. This was demonstrated by Jiang and
Su [1] for a large subclass of this class of C∗-algebras.

Let us finally emphasize the following surprising consequence of the co-
rollary above. Let A be a simple unital inductive limit of a sequence of finite
direct sums of building blocks. If K0(A) is non-cyclic then Aut(A)/Inn(A) is
isomorphic to a semi-direct product(

Hom
(
K1(A),Aff T (A)/ρA(K0(A))

) × ext(K1(A),K0(A))
)

� Aut(EA).

The term Hom
(
K1(A),Aff T (A)/ρA(K0(A))

)
vanishes e.g. ifA has real rank

zero, whereas the term ext(K1(A),K0(A)) vanishes e.g. if A is an inductive
limit of a sequence of finite direct sums of circle algebras. When K0(A) ∼= Z
andK1(A) is a torsion group, however, these two terms agree, but only one of
them appear in the expression for Aut(A)/Inn(A).
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