ON THE AUTOMORPHISM GROUP OF CERTAIN
SIMPLE C*-ALGEBRAS

JESPER MYGIND

Abstract

We show that the information contained in \(KL(A, B) \) is determined by other invariants when \(A \) and \(B \) are certain simple unital projectionless \(C^* \)-algebras. This allows us to compute the group of automorphisms modulo the group of approximately inner automorphisms in terms of the Elliott invariant.

1. Introduction

For a unital \(C^* \)-algebra \(A \) the Elliott invariant \(E_A \) consists of the ordered group \(K_0(A) \) with order unit, the group \(K_1(A) \), the compact convex set \(T(A) \) of tracial states, and the restriction map \(r_A : T(A) \to SK_0(A) \), where \(SK_0(A) \) denotes the state space of \(K_0(A) \). In [3] it was proved that the Elliott invariant is a classifying invariant for the class of unital simple infinite dimensional inductive limits of sequences of finite direct sums of building blocks. A building block is a \(C^* \)-algebra of the form

\[
A(n, d_1, d_2, \ldots, d_N) = \{ f \in C(T) \otimes M_n : f(x_i) \in M_{d_i}, \ i = 1, 2, \ldots, N \},
\]

where \(x_1, x_2, \ldots, x_N \) are (different) points in \(T \), and \(d_1, d_2, \ldots, d_N \) are integers dividing \(n \). The points \(x_1, x_2, \ldots, x_N \) will be called the exceptional points of \(A \). By allowing \(d_i = n \) we may always assume that \(N \geq 2 \).

The following calculation of the group of automorphisms modulo the group of approximately inner automorphisms is the main result of this paper.

Theorem 1.1. Let \(A \) be a simple unital inductive limit of a sequence of finite direct sums of building blocks.

(i) If \(K_0(A) \) is non-cyclic then \(\text{Aut}(A)/\text{Inn}(A) \) is isomorphic to the semidirect product

\[
\{ \text{Hom}(K_1(A), \text{Aff} T(A)/\rho_A(K_0(A))) \times \text{ext}(K_1(A), K_0(A)) \} \rtimes \text{Aut}(E_A),
\]

Received March 7, 2003.
where the action of \((\varphi_0, \varphi_1, \varphi_T) \in \text{Aut}(\mathcal{E}_A)\) is given by
\[(\eta, e) \mapsto (\tilde{\varphi}_T^{-1} \circ \eta \circ \varphi_1^{-1}, \varphi_0 \circ \varphi_1^{-1}(e))\]
for \(\eta \in \text{Hom}(K_1(A), \text{Aff}(T(A)/\rho_A(K_0(A)))), e \in \text{ext}(K_1(A), K_0(A)).\)

(ii) If \(K_0(A) \cong \mathbb{Z}\) then \(\text{Aut}(A)/\text{Inn}(A)\) is isomorphic to the semi-direct product
\[
\text{Hom}(K_1(A), \text{Aff}(T(A)/\rho_A(K_0(A)))) \rtimes \text{Aut}(\mathcal{E}_A),
\]
where the action of \((\varphi_0, \varphi_1, \varphi_T) \in \text{Aut}(\mathcal{E}_A)\) is given by
\[
\eta \mapsto \tilde{\varphi}_T^{-1} \circ \eta \circ \varphi_1^{-1}, \quad \eta \in \text{Hom}(K_1(A), \text{Aff}(T(A)/\rho_A(K_0(A)))),
\]

Here \(\text{Aut}(\mathcal{E}_A)\) denotes the group of automorphisms of \(\mathcal{E}_A\), i.e. the group of triples \((\varphi_0, \varphi_1, \varphi_T)\) where \(\varphi_0\) is an automorphism of the ordered group \(K_0(A)\) with order unit, \(\varphi_1\) is an automorphism of \(K_1(A)\), and \(\varphi_T\) is an affine homeomorphism of \(T(A)\) such that
\[
r_A \circ \varphi_T^{-1}(\omega) = r_A(\omega) \circ \varphi_0 \quad \text{on} \quad K_0(A)
\]
for every \(\omega \in T(A)\). \(\text{Aff}(T(A)/\rho_A(K_0(A)))\) denotes the continuous real-valued affine functions on \(T(A)\) and \(\rho_A : K_0(A) \to \text{Aff}(T(A))\) is the group homomorphism
\[
\rho_A(x)(\omega) = r_A(\omega)(x), \quad x \in K_0(A), \omega \in T(A).
\]

It follows from [3, Theorem 12.2] that the algebras considered under (i) are exactly the class considered by Thomsen in [9]. Therefore part (i) of the above theorem follows from Thomsen’s calculation, [9, Theorem 8.4]. Note that the term \(\text{ext}(K_1(A), K_0(A))\) is not present in case (ii). This is not because it is zero. As we shall demonstrate, it is the existence of a natural map
\[
KL(A, B)_\kappa \to \text{Hom}(\text{Tor}(U(A)/DU(A)), \text{Tor}(U(B)/DU(B))),
\]
when \(A\) and \(B\) are simple unital inductive limits of finite direct sums of building blocks with \(K_0(A) \cong K_0(B) \cong \mathbb{Z}\), which is responsible for this. \(KL(A, B)_\kappa\) denotes the subset of elements \(\kappa\) in the group \(KL(A, B)\) defined by Rørdam in [5] for which the induced map \(\kappa_\kappa : K_0(A) \to K_0(B)\) preserves the order unit, and \(U(A)/DU(A)\) is the group of unitaries \(U(A)\) in \(A\) modulo the closure of the commutator subgroup \(DU(A)\). The map above was also crucial in the proof of the classification result in [3].

It is an interesting question whether a similar map exists in greater generality – including the case where \(A\) and \(B\) are arbitrary inductive limits of subhomogeneous \(C^*\)-algebras. Such a map would probably be useful in all efforts
of classifying larger classes of simple C^*-algebras, and our main result suggests that it could influence the structure of the automorphism group as well.

It should be noted that the class of C^*-algebras considered under (ii) is quite large. It consists of matrix algebras over simple unital projectionless C^*-algebras, see [3, Corollary 12.5].

2. Preliminaries

The purpose of this section is to introduce the notation used in this paper and to list some results on building blocks from [3] that we will need.

Let A be a unital C^*-algebra. Let $s(A)$ be the smallest positive integer n for which there exists a unital *-homomorphism $A \to M_n$ (we set $s(A) = \infty$ if A has no non-trivial finite dimensional representations). Note that if there exists a unital *-homomorphism $A \to B$ then $s(A) \leq s(B)$.

Let $A = A(n, d_1, d_2, \ldots, d_N)$ be a building block and let x_1, x_2, \ldots, x_N be the exceptional points. Evaluation at x_i gives rise to a unital *-homomorphism $\nu_{\Lambda_i} : A \to M_{d_i}$. This map will sometimes be denoted $\nu_{\Lambda_i \psi_i}$. For every integer $k \geq 0$ we let $\nu_{\Lambda_i \psi_k}$ be the direct sum of k copies of the representation $\nu_{\Lambda_i \psi_i}$.

Let $A = A(n, d_1, d_2, \ldots, d_N)$ and $B = A(m, e_1, e_2, \ldots, e_M)$ be building blocks. Let $\varphi : A \to B$ be a unital *-homomorphism. As in [9, Chapter 1] we define $s^\varphi(j, i)$ to be the multiplicity of the representation $\nu_{\Lambda_i \psi_j}$ in the representation $\nu_{\Lambda_i \psi_j} \circ \varphi$ for $i = 1, 2, \ldots, N$, $j = 1, 2, \ldots, M$.

Let us start with the K-theory of a building block.

Proposition 2.1. Let $A = A(n, d_1, d_2, \ldots, d_N)$ be a building block and let $d = \gcd(d_1, d_2, \ldots, d_N)$. We have an isomorphism of ordered groups with order units

\[
(K_0(A), K_0(A)^+, [1]) \cong (\mathbb{Z}, \mathbb{Z}^+, d).
\]

Proof. This is [3, Corollary 3.6].

Let $A = A(n, d_1, d_2, \ldots, d_N)$ be a building block with exceptional points $e^{2\pi int_k}, k = 1, 2, \ldots, N$, where $0 < t_1 < t_2 < \ldots < t_N < 1$. Set $t_{N+1} = t_1 + 1$ and $t_0 = t_N$. Define continuous functions $\omega_k : \mathbb{T} \to \mathbb{T}$ for $k = 1, 2, \ldots, N$, by

\[
\omega_k(e^{2\pi i t}) = \begin{cases}
\exp \left(2\pi i \frac{t - t_k}{t_{k+1} - t_k} \right) & t_k \leq t \leq t_{k+1}, \\
1 & t_{k+1} \leq t \leq t_k + 1.
\end{cases}
\]

Let U_k^A be the unitary in A defined by

\[
U_k^A(z) = \text{diag}(\omega_k(z), 1, 1, \ldots, 1), \quad z \in \mathbb{T}.
\]
Set $U_0^A = U_N^A$.

Theorem 2.2. Let $A = A(n, d_1, d_2, \ldots, d_N)$ be a building block. Set for $k = 1, 2, \ldots, N - 1$,

$$s_k = \text{lcm} \left(\frac{n}{d_1}, \frac{n}{d_2}, \ldots, \frac{n}{d_k} \right),$$

and

$$r_k = \text{gcd} \left(s_k, \frac{n}{d_{k+1}} \right) = \text{gcd} \left(\text{lcm} \left(\frac{n}{d_1}, \frac{n}{d_2}, \ldots, \frac{n}{d_k} \right), \frac{n}{d_{k+1}} \right).$$

Choose integers α_k and β_k such that

$$r_k = \alpha_k s_k + \beta_k \frac{n}{d_{k+1}}, \quad k = 1, 2, \ldots, N - 1.$$

Then

$$K_1(A) \cong \mathbb{Z} \oplus \mathbb{Z}_{r_1} \oplus \mathbb{Z}_{r_2} \oplus \cdots \oplus \mathbb{Z}_{r_{N-1}}.$$

This isomorphism can be chosen such that for $k = 1, 2, \ldots, N - 1$, a generator of the direct summand \mathbb{Z}_{r_k} is mapped to

$$[U_k^A] - \frac{\beta_k n}{r_k d_{k+1}} [U_{k+1}^A] - \frac{\alpha_k s_k}{r_k} [U_N^A],$$

and such that a generator of the direct summand \mathbb{Z} is mapped to $[U_N^A]$.

Proof. See [3, Theorem 3.2].

Let A and B be unital C^*-algebras. A unital $*$-homomorphism $\varphi : A \to B$ induces morphisms $\varphi_\ast : K_0(A) \to K_0(B)$, $\varphi_+ : K_1(A) \to K_1(B)$, $\varphi^* : \text{T}(B) \to \text{T}(A)$, $\tilde{\varphi} : \text{Aff} T(A) \to \text{Aff} T(B)$, $\tilde{\varphi^*} : \text{Aff} T(A)/\rho_A(K_0(A)) \to \text{Aff} T(B)/\rho_B(K_0(B))$, and $\varphi^w : U(A)/DU(A) \to U(B)/DU(B)$. Let $\lambda'_A : U(A) \to U(A)/DU(A)$ and $\varphi_A : \text{Aff} T(A) \to \text{Aff} T(A)/\rho_A(K_0(A))$ be the canonical maps.

Proposition 2.3. Let A be a unital inductive limit of a sequence of finite direct sums of building blocks. There exists a group homomorphism

$$\lambda_A : \text{Aff} T(A)/\rho_A(K_0(A)) \to U(A)/DU(A),$$

$$\lambda_A(q_A(\bar{a})) = q'_A(e^{2\pi i a}), \quad a \in A_{sa}.$$

Let $\pi_A : U(A)/DU(A) \to K_1(A)$ be the map induced by the canonical map $U(A) \to K_1(A)$. We have a short exact sequence of abelian groups

$$0 \to \text{Aff} T(A)/\rho_A(K_0(A)) \to \text{Aff} T(A)/DU(A) \to U(A)/DU(A) \to K_1(A) \to 0.$$
This sequence is natural in A and splits unnaturally.

Proof. See [3, Proposition 5.2].

Proposition 2.4. Let $A = A(n, d_1, d_2, \ldots, d_N)$ be a building block. Let $u \in A$ be a unitary. Assume that

$$\text{Det}(u(z)) = 1, \quad z \in T,$$

$$\text{Det}(\Lambda_i(u)) = 1, \quad i = 1, 2, \ldots, N.$$

Then $u \in DU(A)$.

Proof. See [3, Proposition 5.3].

Lemma 2.5. Let $A = A(n, d_1, d_2, \ldots, d_N)$ and adopt the notation of Theorem 2.2. For $k = 1, 2, \ldots, N - 1$, there exists a unitary $v_k^A \in A$ such that

$$\text{Det}(v_k^A(z)) = 1, \quad z \in T,$$

and

$$\text{Det}(\Lambda_j(v_k^A)) = \begin{cases}
\exp\left(2\pi i \frac{\alpha_j s_k}{r_k} \frac{d_j}{n}\right) & j = 1, 2, \ldots, k, \\
\exp\left(-2\pi i \frac{\beta_k}{r_k}\right) & j = k + 1, \\
1 & j = k + 2, k + 3, \ldots, N.
\end{cases}$$

Furthermore, $[v_k^A]$ has order r_k in $K_1(A)$, and $[v_1^A], [v_2^A], \ldots, [v_{N-1}^A]$ generate the torsion subgroup of $K_1(A)$. There is a group homomorphism $\sigma_A : \text{Tor}(K_1(A)) \to \text{Tor}((U(A)/DU(A))$ given by $\sigma_A([v_k^A]) = q_A'(v_k^A)$, $k = 1, 2, \ldots, N - 1$.

Proof. The existence of v_k^A follows from [3, Lemma 5.4].

Fix $k = 1, 2, \ldots, N$. By [3, Lemma 5.4] there is a unitary $u \in A$ with $\text{Det}(u(z)) = 1, z \in T$, and

$$\text{Det}(\Lambda_j(u)) = \begin{cases}
1 & j \neq k, \\
\exp\left(2\pi i \frac{d_k}{n}\right) & j = k.
\end{cases}$$

Set $w = u U_{k-1}^A U_k^{A*}$. By Proposition 2.4 we have that w modulo $DU(A)$
equals the unitary \(z \mapsto e^{2\pi i \lambda(z)} \), where \(\lambda : T \to \mathbb{R} \) is the continuous function

\[
\lambda(e^{2\pi i t}) = \begin{cases}
\frac{1}{n} \frac{t - t_{k-1}}{t_k - t_{k-1}} & t_{k-1} \leq t \leq t_k, \\
\frac{1}{n} \frac{t_{k+1} - t}{t_{k+1} - t_k} & t_k \leq t \leq t_{k+1}, \\
0 & \text{otherwise.}
\end{cases}
\]

In particular, \(w \) is trivial in \(K_1(A) \), i.e., \([u] = [U_k^A] - [U_{k-1}^A] \) in \(K_1(A) \).

As a consequence of this observation,

\[
[v_k^A] = \sum_{j=1}^{k} \frac{\alpha_k s_k}{r_k} ([U_j^A] - [U_{j-1}^A]) - \frac{\beta_k n}{r_k d_{k+1}} ([U_{k+1}^A] - [U_k^A])
\]

in \(K_1(A) \). Hence by Theorem 2.2 we see that \([v_k^A] \) has order \(r_k \) in \(K_1(A) \) and that the elements \([v_1^A], [v_2^A], \ldots, [v_{N-1}^A] \) generate \(\text{Tor}(K_1(A)) \). Since \(r_k q'_A(v_k^A) = 0 \) and \(\pi_A(q'_A(v_k^A)) = [v_k^A] \) it follows that \(q'_A(v_k^A) \) has order \(r_k \) in \(U(A)/DU(A) \). The existence of \(\sigma_A \) follows.

We remark that the map \(\sigma_A \) is neither natural nor unique, and that \(\pi_A \circ \sigma_A \) is the identity map on \(\text{Tor}(K_1(A)) \).

In [5] Rørdam defined the bifunctor \(KL \) to be a certain quotient of \(KK \).

Recall from [5] that the Kasparov product yields a product \(KL(A, B) \times KL(A, C) \to KL(A, C) \) which we will denote by \(\cdot \). Furthermore, if \(K_*(A) \) is finitely generated then \(KK(A, \cdot) \cong KL(A, \cdot) \). If \(\varphi \) is a unital \(*\)-homomorphism, we let \([\varphi]\) denote the induced element in \(KL(A, B) \). For unital \(C^*\) algebras \(A \) and \(B \) we let \(KL(A, B)_e \) denote the elements of \(KL(A, B) \) for which the induced map \(K_0(A) \to K_0(B) \) preserves the order unit.

Let \(A \) and \(B \) be building blocks. \(KL(A, B) \) is conveniently described in terms of the \(K \)-homology groups \(K^0(A) = KK(A, \mathbb{C}) \cong KL(A, C) \) and \(K^0(B) \). Recall that the Kasparov product gives rise to a group homomorphism \(\kappa^* : K^0(B) \to K^0(A) \) for every \(\kappa \in KL(A, B) \).

Theorem 2.6. Let \(A = A(n, d_1, d_2, \ldots, d_N) \) and \(B = A(m, e_1, e_2, \ldots, e_M) \) be building blocks such that \(s(B) \geq Nn \).

(i) If \(v \in KL(A, B)_e \) then there exists a unital \(*\)-homomorphism \(\varphi : A \to B \) such that \([\varphi] = v \) in \(KL(A, B) \).
(ii) Let \(\phi : A \to B \) be a unital \(*\)-homomorphism and let \(\kappa \in KL(A, B) \).
If \(\phi^* = \kappa^* \) on \(K^0(B) \) and \(\phi_*([U^A_N]) = \kappa_*([U^B_N]) \) in \(K_1(B) \) then \([\phi] = [\kappa] \) in \(KL(A, B) \).

Proof. This follows from [3, Theorem 4.7].

The next result says that \(K^0(\cdot) \) and the torsion subgroup of \(U(\cdot)/DU(\cdot) \) are related for building blocks.

Proposition 2.7. Let \(A = A(n, d_1, d_2, \ldots, d_N) \) be a building block. There exists a finite set \(F \subseteq Tor(U(A)/DU(A)) \) such that if \(B \) is a building block and \(\phi, \psi : A \to B \) are unital \(*\)-homomorphisms with \(\phi^*(x) = \psi^*(x) \), \(x \in F \), then \(\phi^* = \psi^* \) on \(K^0(B) \).

Proof. This is part of [3, Theorem 5.5].

We also need a description of the structure of the group \(K^0(\cdot) \) for a building block.

Proposition 2.8. Let \(A = A(n, d_1, d_2, \ldots, d_N) \) be a building block. Then \(K^0(A) \) is generated by \([\Lambda^A_1], [\Lambda^A_2], \ldots, [\Lambda^A_N] \). Furthermore, for \(a_1, a_2, \ldots, a_N \in \mathbb{Z} \) we have that
\[
a_1[\Lambda^A_1] + a_2[\Lambda^A_2] + \cdots + a_N[\Lambda^A_N] = 0
\]
if and only if there exist \(b_1, b_2, \ldots, b_N \in \mathbb{Z} \) such that \(\sum_{i=1}^N b_i = 0 \) and
\[
a_i = b_i \frac{n}{d_i}, \quad i = 1, 2, \ldots, N.
\]

Proof. This is [3, Proposition 4.2].

We conclude with a technical proposition which is needed in the next section.

Proposition 2.9. Let \(A = A(n, d_1, d_2, \ldots, d_N) \) and \(B = A(m, e_1, e_2, \ldots, e_M) \) be building blocks with \(s(B) \geq Nn \). Let \(\chi \in K_1(B) \) and let \(h : K^0(B) \to K^0(A) \) be a homomorphism of the form
\[
\begin{pmatrix}
 h([\Lambda^B_1]) \\
 h([\Lambda^B_2]) \\
 \vdots \\
 h([\Lambda^B_M])
\end{pmatrix} = \begin{pmatrix}
 h_{11} & h_{12} & \cdots & h_{1N} \\
 h_{21} & h_{22} & \cdots & h_{2N} \\
 \vdots & \vdots & \ddots & \vdots \\
 h_{M1} & h_{M2} & \cdots & h_{MN}
\end{pmatrix} \begin{pmatrix}
 [\Lambda^A_1] \\
 [\Lambda^A_2] \\
 \vdots \\
 [\Lambda^A_M]
\end{pmatrix}
\]
with \(\sum_{j=1}^M h_{ji}d_i = e_j \) for \(j = 1, 2, \ldots, M \). There exists a unital \(*\)-homomorphism \(\phi : A \to B \) such that \(\phi^* = h \) on \(K^0(B) \) and \(\phi_*([U^A_N]) = \chi \) in \(K_1(B) \).
Proof. By Proposition 2.8 we have that $\frac{n}{d}[\Lambda^L_i] = \frac{n}{d}[\Lambda^L_N]$ in $K^0(A)$. Hence we may assume that $0 \leq h_{ji} < \frac{n}{d}$ for $i \neq N$ and still have that $\sum_{i=1}^{N} h_{ji}d_i = e_j$ for $j = 1, 2, \ldots, M$. Note that for $j = 1, 2, \ldots, M$,

$$Nn \leq \sum_{i=1}^{N} h_{ji}d_i < (N - 1)n + h_{jN}d_N$$

and hence $h_{jN} > \frac{n}{d}$. The conclusion follows from [3, Proposition 4.4].

3. KL and other invariants

Let A and B be unital C*-algebras and let $\varphi_0 : K_0(A) \to K_0(B)$ be an order unit preserving group homomorphism. Assume that $K_0(A) \cong \mathbb{Z}$. Then $\rho_A(K_0(A))$ is closed in $\text{Aff } T(A)$, and we have a well-defined map

$$\tilde{\varphi}_0 : \text{Tor}(\text{Aff } T(A)/\rho_A(K_0(A))) \to \text{Tor}(\text{Aff } T(B)/\rho_B(K_0(B)))$$

given by $\tilde{\varphi}_0(q_A(\frac{1}{k}\rho_A(x))) = q_B(\frac{1}{k}\rho_B(\varphi_0(x)))$ for $x \in K_0(A)$ and every positive integer k.

Theorem 3.1. Let $A = A(n, d_1, d_2, \ldots, d_N)$ and $B = A(m, e_1, e_2, \ldots, e_M)$ be building blocks with $s(B) \geq Nn$. If $\varphi_0 : K_0(A) \to K_0(B)$ is an order unit preserving group homomorphism, if $\varphi : \text{Tor}(U(A)/DU(A)) \to \text{Tor}(U(B)/DU(B))$ is a group homomorphism such that the diagram

$$\begin{array}{ccc}
\text{Tor}(\text{Aff } T(A)/\rho_A(K_0(A))) & \xrightarrow{\lambda_A} & \text{Tor}(U(A)/DU(A)) \\
\downarrow{\varphi_0} & & \downarrow{\varphi} \\
\text{Tor}(\text{Aff } T(B)/\rho_B(K_0(B))) & \xrightarrow{\lambda_B} & \text{Tor}(U(B)/DU(B))
\end{array}$$

commutes, and if $\chi \in K_1(B)$, then there is a unital *-homomorphism $\psi : A \to B$ such that $\psi^* = \varphi$ on $\text{Tor}(U(A)/DU(A))$ and $\psi[A^L_N] = \chi$ in $K_1(B)$.

Proof. We adopt the notation of Theorem 2.2. Set $\alpha_0 = 1$. If $i = 1$ and k are integers, $1 \leq i \leq k \leq N$, we define an integer c_i^k by

$$c_i^k = \alpha_{i-1}\beta_i\beta_{i+1}\ldots\beta_{k-1}.$$

We claim that

$$\frac{1}{s_k} = \sum_{i=1}^{k} \frac{c_i^k d_i}{n}, \quad k = 1, 2, \ldots, N.$$
As \(c^1_i = 1 \), this is clear for \(k = 1 \). Assume it is correct for \(k, 1 \leq k \leq N - 1 \).

Then

\[
\sum_{i=1}^{k+1} c_i^{k+1} \frac{d_i}{n} = \frac{c_i^{k+1} d_{k+1}}{n} + \sum_{i=1}^{k} c_i^{k+1} \frac{d_i}{n} = \frac{c_i^{k+1} d_{k+1}}{n} + \beta_k \sum_{i=1}^{k} c_i^k \frac{d_i}{n}
\]

\[
= \alpha_k \frac{d_{k+1}}{n} + \frac{\beta_k \frac{1}{s_k}}{n} = \frac{d_{k+1}}{n} \left(\alpha_k \frac{1}{s_k} + \beta_k \frac{n}{d_{k+1}} \right)
\]

\[
= \frac{r_k}{s_k} \frac{n}{d_{k+1}} = \frac{1}{s_{k+1}},
\]

proving (1).

Choose a unitary \(u_k \in B \) such that \(\Phi(q_k^j(u_k^A)) = q_k^j(u_k^B), k = 1, 2, \ldots, N - 1 \). Let \(q_k^j \in \mathbb{R} \) be numbers such that

\[
\det(\Lambda_j(u_k)) = e^{2\pi i q_k^j}, \quad k = 1, 2, \ldots, N - 1, \quad j = 1, 2, \ldots, M.
\]

Set \(q_0^j = 0 \) and set \(d = \gcd(d_1, d_2, \ldots, d_N) \). By Proposition 2.1 \(d \) divides \(e_j \), \(j = 1, 2, \ldots, M \). Define for \(i = 1, 2, \ldots, N \), \(j = 1, 2, \ldots, M \),

\[
h_{ji} = c_i^N \frac{e_j}{d} - \frac{n}{d_i} q_{i-1}^j + \sum_{l=1}^{N-i} c_i^{N-l} s_{N-l}^i q_{N-l}^j.
\]

Since \(r_k q_k^j(u_k^A) = 0 \) in \(U(A)/DU(A) \) by Lemma 2.5, we see that \(u_k^A \in DU(B) \) and hence \(r_k q_k^j \in \mathbb{Z} \), \(k = 1, 2, \ldots, N - 1 \). It follows that \(h_{ji} \in \mathbb{Z} \) for every \(i \) and \(j \). Since \(q_k^j(u_k) \) has finite order, \(\det(u_k(\cdot)) \) is constantly equal to \(e^{2\pi i a_k} \) for some \(a_k \in \mathbb{R} \). Note that

\[
e^{2\pi i a_k} = e^{2\pi i q_k^j \frac{n}{d_i}}, \quad j = 1, 2, \ldots, M, \quad k = 1, 2, \ldots, N - 1.
\]

Thus if we set \(a_0 = 0 \) we find that

\[
\frac{m}{e_j} h_{ji} = c_i^N \frac{m}{d} - \frac{n}{d_i} q_{i-1}^j \frac{m}{e_j} + \sum_{l=1}^{N-i} c_i^{N-l} s_{N-l}^i q_{N-l}^j \frac{m}{e_j}
\]

\[
\equiv c_i^N \frac{m}{d} - \frac{n}{d_i} a_{i-1} + \sum_{l=1}^{N-i} c_i^{N-l} s_{N-l}^i a_{N-l} \mod \frac{n}{d_i}
\]

for \(i = 1, 2, \ldots, N \), \(j = 1, 2, \ldots, M \). Hence

(2) \[\frac{m}{e_j} h_{ji} \equiv \frac{m}{e_M} h_{M_i} \mod \frac{n}{d_i}. \]
For $k = 1, 2, \ldots, N$,

$$
\sum_{i=1}^{k} c_{i}^{N-l} s_{N-l}^{-1} q_{N-l}^{i} \frac{d_{i}}{n} = \sum_{l=1}^{N-1 \min(k, N-l)} c_{i}^{N-l} s_{N-l}^{-1} q_{N-l}^{i} \frac{d_{i}}{n}
$$

$$
= \sum_{l=1}^{N-1} c_{i}^{N-l} s_{N-l}^{-1} q_{N-l}^{i} \frac{d_{i}}{n} + \sum_{l=N-k+1}^{N-1} c_{i}^{N-l} s_{N-l}^{-1} q_{N-l}^{i} \frac{d_{i}}{n}
$$

$$
= \sum_{l=1}^{N-k} \beta_{k}^{\beta_{k+1}} \cdots \beta_{N-1}^{\beta_{l}} \sum_{i=1}^{k} c_{i}^{l} s_{N-l}^{-1} q_{N-l}^{i} + \sum_{l=N-k+1}^{N-1} q_{N-l}^{i}
$$

Hence

$$
\sum_{i=1}^{k} h_{ji} \frac{d_{i}}{n} = \sum_{i=1}^{k} c_{i}^{N-l} \frac{d_{i}}{n} - \sum_{i=1}^{k} q_{N-l}^{i} + \sum_{l=1}^{N-1} c_{i}^{N-l} s_{N-l}^{-1} q_{N-l}^{i} \frac{d_{i}}{n}
$$

$$
= \frac{e_{j}}{d} \beta_{k}^{\beta_{k+1}} \cdots \beta_{N-1}^{\beta_{l}} \sum_{i=1}^{k} c_{i}^{l} \frac{d_{i}}{n} + \sum_{l=1}^{N-k} \beta_{k}^{\beta_{k+1}} \cdots \beta_{N-1}^{\beta_{l}} \frac{1}{s_{k}} s_{N-l}^{-1} q_{N-l}^{i}
$$

$$
= \frac{e_{j}}{d} \beta_{k}^{\beta_{k+1}} \cdots \beta_{N-1}^{\beta_{l}} \frac{1}{s_{k}} + \sum_{l=1}^{N-k} \beta_{k}^{\beta_{k+1}} \cdots \beta_{N-1}^{\beta_{l}} \frac{1}{s_{k}} s_{N-l}^{-1} q_{N-l}^{i}
$$

By setting $k = N$ we see that

$$
\sum_{i=1}^{N} h_{ji} d_{i} = \frac{e_{j}}{d} n \frac{1}{s_{N}} = e_{j}.
$$

Combining this equation with (2) and Proposition 2.8 it is an elementary exercise to prove that we can define a homomorphism $h : K^{0}(B) \to K^{0}(A)$ by

$$
\begin{pmatrix}
 h((\Lambda_{1}^{B})) \\
 h((\Lambda_{2}^{B})) \\
 \vdots \\
 h((\Lambda_{M}^{B}))
\end{pmatrix} =
\begin{pmatrix}
 h_{11} & h_{12} & \cdots & h_{1N} \\
 h_{21} & h_{22} & \cdots & h_{2N} \\
 \vdots & \vdots & \ddots & \vdots \\
 h_{M1} & h_{M2} & \cdots & h_{MN}
\end{pmatrix}
\begin{pmatrix}
 [\Lambda_{1}^{A}] \\
 [\Lambda_{2}^{A}] \\
 \vdots \\
 [\Lambda_{M}^{A}]
\end{pmatrix}.
$$
By Proposition 2.9 there exists a unital *-homomorphism \(\psi : A \to B \) such that \(\psi^* = h \) on \(K^0(B) \) and \(\psi_*([U_N^A]) = \chi \) on \(K_1(B) \). Fix \(j = 1, 2, \ldots, M \). Let \(t_i = s^\psi(j, i) \). By [3, Lemma 2.1] there exist a unitary \(w \in M_e \) and \(z_1, z_2, \ldots, z_L \in T \) such that

\[
\Lambda^B_j \circ \psi(f) = w \text{diag}(\Lambda^A_1(f), \Lambda^A_2(f), \ldots, \Lambda^A_N(f), f(z_1), f(z_2), \ldots, f(z_L))w^* \]

for \(f \in A \). Since point-evaluations are homotopic *-homomorphisms \(A \to M_n \), we see that

\[
\psi^*[\Lambda^B_j] = [\Lambda^B_j \circ \psi] = \sum_{i=1}^N t_i [\Lambda^A_i] + L \frac{n}{d_N} [\Lambda^A_N].
\]

in \(K^0(A) \). On the other hand, \(\psi^*[\Lambda^B_j] = \sum_{i=1}^N h_{ji} [\Lambda^A_i] \). It follows from Proposition 2.8 that

\[
s^\psi(j, i) \equiv h_{ji} \mod \frac{n}{d_i}, \quad i = 1, 2, \ldots, N, \quad j = 1, 2, \ldots, M.
\]

Note that for \(k = 1, 2, \ldots, N-1, j = 1, 2, \ldots, M \),

\[
\frac{\alpha_k s_k}{r_k} \sum_{i=1}^k h_{ji} \frac{d_i}{n} = \frac{e_j}{d} \frac{\alpha_k}{r_k} \beta_k \beta_{k+1} \ldots \beta_{N-1} + \sum_{i=1}^{N-k} \frac{\alpha_k}{r_k} \beta_k \beta_{k+1} \ldots \beta_{N-i-1} s_{N-i-l} q_{N-i}^j
\]

\[
= \frac{e_j}{d} \frac{\beta_k}{r_k} c_{k+1}^N + \sum_{i=1}^{N-k-1} \frac{\beta_k}{r_k} c_{k+1}^{N-i} q_{N-i}^j + \frac{\alpha_k}{r_k} s_k q_k^j
\]

\[
= \frac{\beta_k}{r_k} (h_{j(k+1)} + \frac{n}{d_k} q_k^j) + \frac{\alpha_k}{r_k} s_k q_k^j
\]

\[
= \frac{\beta_k}{r_k} h_{j(k+1)} + q_k^j.
\]

Since \(\text{Det}(v_k^A(z)) = 1, z \in T \), we see that

\[
\text{Det}(\Lambda_j(v_k^A)) = \prod_{i=1}^N \text{Det}(\Lambda_i(v_k^A))^{s^\psi(j, i)} = \prod_{i=1}^N \text{Det}(\Lambda_i(v_k^A))^{h(j, i)}
\]

\[
= \exp \left(2\pi i \left(\sum_{i=1}^k \frac{\alpha_k s_k}{r_k} h_{ji} \frac{d_i}{n} - \frac{\beta_k}{r_k} h_{j(k+1)} \right) \right)
\]

\[
= \exp(2\pi i q_k^j) = \text{Det}(\Lambda_j(u_k)).
\]
Thus \(\text{Det}(\psi(v^A_k)) \) and \(\text{Det}(u_k(\cdot)) \) agree at the exceptional points of \(B \), and hence they agree everywhere. It follows from Proposition 2.4 that

\[
q'_B(\psi(v^A_k)) = q'_B(u_k) = \Phi(q'_A(v^A_k)), \quad k = 1, 2, \ldots, N - 1.
\]

As \(\tilde{\psi} = \tilde{\varphi}_0 \) on \(\text{Tor}\left(\text{Aff} T(A)/\rho_A(K_0(A))\right) \), we conclude from Lemma 2.5 and Proposition 2.3 that \(\psi^\# \) and \(\Phi \) agree on all of \(\text{Tor}(U(A)/DU(A)) \).

Our next result says that the information contained in \(KL(A, B) \) can be detected by other invariants when \(A \) and \(B \) are building blocks.

Proposition 3.2. Let \(A = A(n, d_1, d_2, \ldots, d_N) \) and \(B \) be building blocks with \(s(B) \geq Nn \). Let \(\varphi_0 : K_0(A) \to K_0(B) \) be an order unit preserving group homomorphism, and let \(\Phi : \text{Tor}(U(A)/DU(A)) \to \text{Tor}(U(B)/DU(B)) \) and \(\varphi_1 : K_1(A) \to K_1(B) \) be group homomorphisms such that the diagram

\[
\begin{array}{ccc}
\text{Tor}(\text{Aff} T(A)/\rho_A(K_0(A))) & \xrightarrow{\lambda_A} & \text{Tor}(U(A)/DU(A)) \\
\downarrow \tilde{\varphi}_0 & & \downarrow \Phi \\
\text{Tor}(\text{Aff} T(B)/\rho_B(K_0(B))) & \xrightarrow{\lambda_B} & \text{Tor}(U(B)/DU(B))
\end{array}
\]

commutes.

(i) There exists a unital *-homomorphism \(\varphi : A \to B \) such that \(\varphi^\# = \varphi_0 \) on \(K_0(A) \), \(\varphi^* = \varphi_1 \) on \(K_1(A) \) and \(\varphi^\# = \Phi \) on \(\text{Tor}(U(A)/DU(A)) \).

(ii) If \(\psi : A \to B \) is another unital *-homomorphism such that \(\psi^\# = \varphi_0 \) on \(K_0(A) \), \(\psi^* = \varphi_1 \) on \(K_1(A) \) and \(\psi^\# = \Phi \) on \(\text{Tor}(U(A)/DU(A)) \), then \([\varphi] = [\psi] \) in \(KL(A, B) \).

Proof. Choose by Theorem 3.1 a unital *-homomorphism \(\varphi : A \to B \) such that \(\varphi^\# = \Phi \) on \(\text{Tor}(U(A)/DU(A)) \) and \(\varphi^* = \varphi_1 \) on \(K_1(A) \). Then \(\varphi^\# = \varphi_1 \) on \(K_1(A) \), and thus \(\varphi^\# = \varphi_1 \) on all of \(K_1(A) \) by Theorem 2.2. Obviously \(\varphi^* = \varphi_0 \) since \(\varphi \) is unital. This proves (i).

To prove (ii), note that since \(\varphi^\# = \Phi \) on \(\text{Tor}(U(A)/DU(A)) \) we have that \(\varphi^* = \psi^* \) on \(K^0(B) \) by Proposition 2.7. Hence \([\varphi] = [\psi] \) by Theorem 2.6.

Let \(A \) and \(B \) be simple unital infinite dimensional inductive limits of sequences of finite direct sums of building blocks. In [3, Chapter 10] a group homomorphism

\[
s_\kappa : \text{Tor}(U(A)/DU(A)) \to \text{Tor}(U(B)/DU(B)),
\]

was constructed for every \(\kappa \in KL(A, B)_T \) (the map was constructed for slightly different \(B \) but can be applied in our case by [3, Lemma 10.3], [3, Lemma 9.6] and [3, Theorem 9.9]). Recall from [3] that \(KL(A, B)_T \) is the
set of elements $\kappa \in KL(A,B)$, for which there exists an affine continuous map $\varphi_T : T(B) \to T(A)$ such that $r_B(\omega)(\kappa_\omega(x)) = r_A(\varphi_T(\omega))(x)$ for $x \in K_0(A), \omega \in T(B)$. Note that if $K_0(A) \cong \mathbb{Z}$ and $K_0(B) \cong \mathbb{Z}$ then $KL(A,B)_T = KL(A,B)_e$.

Recall furthermore from [3, Chapter 10] that $s_{[\mu]} = \mu^#$ on $\text{Tor}(U(A)/DU(A))$ for every unital \ast-homomorphism $\mu : A \to B$, and that if C is a finite direct sum of building blocks, and $\varphi : C \to A$, $\psi : C \to B$ are unital \ast-homomorphisms such that $[\psi] = \kappa \cdot [\varphi]$ in $KL(C, B)$, then $\psi^# = s_{\kappa} \circ \varphi^#$ on $\text{Tor}(U(C)/DU(C))$.

We can now generalize Theorem 3.2 to simple inductive limits for which $K_0(A)$ and $K_0(B)$ are cyclic:

Theorem 3.3. Let A and B be unital simple infinite dimensional inductive limits of sequences of finite direct sums of building blocks. Assume that $K_0(A)$ and $K_0(B)$ are cyclic groups. Let $\varphi_0 : K_0(A) \to K_0(B)$ be an order unit preserving group homomorphism, and let $\varphi_1 : K_1(A) \to K_1(B)$ and $\Phi : U(A)/DU(A) \to U(B)/DU(B)$ be group homomorphisms such that the diagram

\[
\begin{array}{ccc}
\text{Tor}(\text{Aff} T(A)/\rho_A(K_0(A))) & \xrightarrow{\lambda_A} & \text{Tor}(U(A)/DU(A)) \\
\downarrow \varphi_0 & & \downarrow \Phi \\
\text{Tor}(\text{Aff} T(B)/\rho_B(K_0(B))) & \xrightarrow{\lambda_B} & \text{Tor}(U(B)/DU(B)) \\
& \downarrow \Phi & \downarrow \varphi_1 \\
& \text{Tor}(K_1(A)) & \text{Tor}(K_1(B))
\end{array}
\]

commutes. There exists a unique element $\kappa \in KL(A,B)$ such that $\kappa_\omega = \varphi_0$ on $K_0(A)$, $\kappa = \varphi_1$ on $K_1(A)$ and $s_{\kappa} = \Phi$ on $\text{Tor}(U(A)/DU(A))$.

Proof. We may by [3, Theorem 9.9] assume that A is the inductive limit of a sequence

\[
A_1 \xrightarrow{\alpha_1} A_2 \xrightarrow{\alpha_2} A_3 \xrightarrow{\alpha_3} \ldots
\]

of finite direct sums of building blocks with unital and injective connecting maps. Similarly we may assume that B is the inductive limit of a sequence

\[
B_1 \xrightarrow{\beta_1} B_2 \xrightarrow{\beta_2} B_3 \xrightarrow{\beta_3} \ldots
\]

of finite direct sums of building blocks with unital and injective connecting maps. Since $K_0(A) \cong \mathbb{Z}$ it is easy to see that we may furthermore assume that each A_k is a building block, rather than a finite direct sum of building blocks. Similarly we may assume that each B_k is a building block. Let $\alpha_{k,\infty} : A_k \to A$ and $\beta_{k,\infty} : B_k \to B$ denote the canonical \ast-homomorphisms.

By passing to subsequences we may assume that for every positive integer k there exist an order unit preserving group homomorphism $\mu_k : K_0(A_k) \to$
$K_0(B_k)$ and a group homomorphism $\eta_k : K_1(A_k) \to K_1(B_k)$ such that

$$\beta_{k,\infty} \circ \mu_k = \varphi_0 \circ \alpha_{k,\infty} \quad \text{on} \quad K_0(A_k),$$

$$\beta_{k,\infty} \circ \eta_k = \varphi_1 \circ \alpha_{k,\infty} \quad \text{on} \quad K_1(A_k).$$

By passing to a subsequence again, we may assume that

$$\mu_{k+1} \circ \alpha_{k,*} = \beta_{k,*} \circ \mu_k \quad \text{on} \quad K_0(A_k),$$

$$\eta_{k+1} \circ \alpha_{k,*} = \beta_{k,*} \circ \eta_k \quad \text{on} \quad K_1(A_k).$$

Let $A_k = A(n_k, d_1^k, d_2^k, \ldots, d_{N_k}^k)$. By Proposition 2.3, Lemma 2.5, and [3, Lemma 10.8], we may also assume that for every positive integer k, there exists a group homomorphism $\Phi_k : \text{Tor}(U(A_k)/DU(A_k)) \to \text{Tor}(U(B_k)/DU(B_k))$ such that

$$\lambda_{B_k} \circ \widetilde{\mu}_k = \Phi_k \circ \lambda_{A_k}$$

on $\text{Tor}(\text{Aff} T(A_k)/\rho_{A_k}(K_0(A_k)))$ and

$$\beta_{k,\infty} \circ \Phi_k(q'_{A_k}(v_{A_k}^j)) = \Phi \circ \alpha_{k,\infty}(q'_{A_k}(v_{A_k}^j))$$

for $j = 1, 2, \ldots, N_k - 1$. Since for every positive integer k,

$$\beta_{k,\infty} \circ \Phi_k \circ \lambda_{A_k} = \beta_{k,\infty} \circ \lambda_{B_k} \circ \widetilde{\mu}_k = \lambda_B \circ \beta_{k,\infty} \circ \widetilde{\mu}_k$$

$$= \lambda_B \circ \widetilde{\psi}_0 \circ \alpha_{k,\infty} = \Phi \circ \lambda_{A_k} \circ \alpha_{k,\infty} = \Phi \circ \alpha_{k,\infty} \circ \lambda_{A_k},$$

on $\text{Tor}(\text{Aff} T(A_k)/\rho_{A_k}(K_0(A_k)))$, we conclude from Proposition 2.3 and Lemma 2.5 that

$$\beta_{k,\infty} \circ \Phi_k = \Phi \circ \alpha_{k,\infty}$$

on $\text{Tor}(U(A_k)/DU(A_k))$.

It follows from the above equation and [3, Lemma 10.4] that by passing to subsequences we may assume that for every positive integer k,

$$\beta_{k}^\# \circ \Phi_k(q'_{A_k}(v_{A_k}^j)) = \Phi_{k+1} \circ \alpha_{k}^\#(q'_{A_k}(v_{A_k}^j))$$

for $j = 1, 2, \ldots, N_k - 1$. Since for every positive integer k,

$$\beta_{k}^\# \circ \Phi_k \circ \lambda_{A_k} = \beta_{k}^\# \circ \lambda_{B_k} \circ \widetilde{\mu}_k = \lambda_{B_{k+1}} \circ \widetilde{\beta}_k \circ \widetilde{\mu}_k$$

$$= \lambda_{B_{k+1}} \circ \mu_{k+1} \circ \alpha_{k+1} = \Phi_{k+1} \circ \lambda_{A_{k+1}} \circ \alpha_{k+1} = \Phi_{k+1} \circ \alpha_{k}^\# \circ \lambda_{A_k},$$

on $\text{Tor}(\text{Aff} T(A_k)/\rho_{A_k}(K_0(A_k)))$, we see that

$$\beta_{k}^\# \circ \Phi_k = \Phi_{k+1} \circ \alpha_{k}^\#$$
on Tor\left(U(A_k)/DU(A_k)\right).

Note that for every positive integer \(k\),
\[
\beta_{k,\infty} \circ \eta_k \circ \pi_{Ak} = \psi_1 \circ \alpha_{k,\infty} \circ \pi_{Ak} = \varphi_1 \circ \pi_A \circ \alpha_{k,\infty}^*
\]
\[
= \pi_B \circ \Phi \circ \alpha_{k,\infty}^* = \pi_B \circ \beta_{k,\infty}^* \circ \Phi_k = \beta_{k,\infty} \circ \pi_{B_k} \circ \Phi_k
\]
on Tor\left(U(A_k)/DU(A_k)\right). By passing to subsequences again we may assume that
\[
\eta_k \circ \pi_{Ak} \left(\gamma_{Ak}(v_{Ak})\right) = \pi_{B_k} \circ \Phi_k \left(\gamma_{Ak}(v_{Ak})\right)
\]
in \(K_1(B)\) for \(j = 1, 2, \ldots, N_k - 1\). Since \(\pi_{B_k} \circ \Phi_k \circ \lambda_{Ak} = 0\) on the torsion subgroup of \(\text{Aff}(T(A_k)/\rho_{Ak}(K_0(A_k)))\), it follows that \(\eta_k \circ \pi_{Ak} = \pi_{B_k} \circ \Phi_k\) on Tor\left(U(A_k)/DU(A_k)\right). Thus the diagram
\[
\begin{array}{ccc}
\text{Tor(\text{Aff}(T(A_k)/\rho_{Ak}(K_0(A_k))))} & \longrightarrow & \text{Tor(U(A_k)/DU(A_k))} \\
\mu \downarrow & & \phi \downarrow \\
\text{Tor(\text{Aff}(T(B_k)/\rho_{B_k}(K_0(B_k))))} & \longrightarrow & \text{Tor(U(B_k)/DU(B_k))}
\end{array}
\]
commutes. Finally we may by [3, Lemma 9.6] assume that \(s(B_k) \geq N_k n_k\).

It follows from Proposition 3.2 that for every positive integer \(k\), there exists a unital *-homomorphism \(\psi_k : A_k \to B_k\) such that \(\psi_{k,n} = \mu_k\) on \(K_0(A_k)\), \(\psi_{k,n} = \eta_k\) on \(K_1(A_k)\), and \(\psi_k^* = \Phi_k\) on Tor\left(U(A_k)/DU(A_k)\right). By the uniqueness part of the same proposition, \([\beta_k] \cdot [\psi_k] = [\psi_{k+1}] \cdot [\alpha_k]\) in \(KL(A_k, B_{k+1})\). By [6, Theorem 1.12] and [7, Theorem 7.1] there exists an element \(\kappa \in KL(A, B)\) such that \(\kappa \cdot [\alpha_{k,\infty}] = [\beta_{k,\infty}] \cdot [\psi_k]\) in \(KL(A_k, B_k)\) for every positive integer \(k\). Then \(\kappa_n = \varphi_0\) on \(K_0(A)\), \(\kappa_n = \varphi_1\) on \(K_1(A)\), and
\[
s_n \circ \alpha_{k,\infty}^* = (\beta_{k,\infty} \circ \psi_k)^* = \beta_{k,\infty}^* \circ \Phi_k = \Phi \circ \alpha_{k,\infty}^*
\]
on Tor\left(U(A_k)/DU(A_k)\right).

By [3, Lemma 10.8] we see that \(s_n = \Phi\) on Tor\left(U(A)/DU(A)\right).

To prove uniqueness, let \(v \in KL(A, B)\) be another element such that \(\nu_n = \varphi_0\) on \(K_0(A)\), \(\nu_n = \varphi_1\) on \(K_1(A)\) and \(\nu = \Phi\) on Tor\left(U(A)/DU(A)\right).

By passing to a subsequence, we may assume that there is an element \(v_k\) in \(KL(A_k, B_k)\) such that \([\beta_{k,\infty}] \cdot v_k = v \cdot [\alpha_{k,\infty}]\). By passing to a subsequence again we may assume that \(\psi_{k,n} = v_{k,n}\) on \(K_0(A)\) as well as on \(K_1(A)\). By Theorem 2.6 there exists a unital *-homomorphism \(\xi_k : A_k \to B_k\) such that \([\xi_k] = v_k\) in \(KL(A_k, B_k)\). Then
\[
\beta_{k,\infty}^* \circ \xi_k^* = s_n \circ \alpha_{k,\infty}^* = s_n \circ \alpha_{k,\infty}^* = \beta_{k,\infty}^* \circ \psi_k^*
\]
on Tor\left(U(A_k)/DU(A_k)\right). By passing to subsequences again, we may by [3, Lemma 10.4] assume that \(\xi_k^* = \psi_k^*\) on any given finite subset of Tor\left(U(A_k)/
Hence, we can arrange that $\xi_k^* = \psi_k^*$ on $K^0(B_k)$ by Proposition 2.7. It follows from Theorem 2.6 that $[\xi_k] = [\psi_k]$ in $KL(A_k, B_k)$. Thus, $\kappa \cdot [\alpha_k, \infty] = \nu \cdot [\alpha_k, \infty]$ for all k. It follows that $\kappa = \nu$ by [5, Lemma 5.8].

4. Main results

In [3] the existence result [3, Theorem 11.2] was subsequently simplified in the case where $K_0(A)$ is non-cyclic. The following theorem shows that a similar simplification is possible when $K_0(A)$ and $K_0(B)$ are cyclic, but this time without KL.

Theorem 4.1. Let A and B be unital simple inductive limits of sequences of finite direct sums of building blocks and assume that $K_0(A) \cong \mathbb{Z}$, $K_0(B) \cong \mathbb{Z}$ and that B is infinite dimensional. Let $\varphi_T : T(B) \to T(A)$ be an affine continuous map, let $\varphi_0 : K_0(A) \to K_0(B)$ be an order unit preserving group homomorphism, let $\varphi_1 : K_1(A) \to K_1(B)$ be a group homomorphism, and let $\Phi : U(A)/DU(A) \to U(B)/DU(B)$ be a homomorphism such that the diagram

$$
\begin{array}{ccc}
\text{Aff} T(A)/\rho_A(K_0(A)) & \xrightarrow{\lambda_A} & U(A)/DU(A) \\
\varphi_T \downarrow & & \downarrow \Phi \\
\text{Aff} T(B)/\rho_B(K_0(B)) & \xrightarrow{\lambda_B} & U(B)/DU(B)
\end{array}
$$

commutes. There exists a unital *-homomorphism $\psi : A \to B$ such that $\psi^* = \varphi_T$ on $T(B)$, $\psi^\# = \Phi$ on $U(A)/DU(A)$, and $\psi^\# = \varphi_0$ on $K_0(A)$.

Proof. We may assume that A is infinite dimensional. As in the proof of Theorem 3.3 there exists an element $\kappa \in KL(A, B)$ such that $\kappa_s = \varphi_0$ on $K_0(A)$, $\kappa_s = \varphi_1$ on $K_1(A)$, and $s_s = \Phi$ on $\text{Tor}(U(A)/DU(A))$. By [3, Theorem 11.2] there exists a unital *-homomorphism $\psi : A \to B$ such that $[\psi] = \kappa$ in $KL(A, B)$, $\psi^* = \varphi_T$ on $T(B)$, and $\psi^\# = \Phi$ on $U(A)/DU(A)$.

The next result says that KL can also be removed from the uniqueness theorem, [3, Theorem 11.5], when $K_0(B)$ is cyclic.

Theorem 4.2. Let A and B be simple unital inductive limit of sequences of finite direct sums of building blocks such that $K_0(A) \cong \mathbb{Z}$ and $K_0(B) \cong \mathbb{Z}$. Let $\varphi, \psi : A \to B$ be unital *-homomorphisms with $\varphi^\# = \psi^\#$ on $U(A)/DU(A)$. Then φ and ψ are approximately unitarily equivalent.

Proof. We may assume that A is infinite dimensional. As in the proof of Theorem 3.3 we see that A is the inductive limit of a sequence

$$
A_1 \xrightarrow{\alpha_1} A_2 \xrightarrow{\alpha_2} A_3 \xrightarrow{\alpha_3} \ldots
$$
of building blocks with unital and injective connecting maps. Similarly B is the inductive limit of a sequence

$$B_1 \overset{\beta_1}{\to} B_2 \overset{\beta_1}{\to} B_3 \overset{\beta_3}{\to} \ldots$$

of building blocks with unital and injective connecting maps. By [3, Lemma 8.5] we have that $s(B_k) \to \infty$. Obviously $\varphi_\ast = \psi_\ast$ on $K_0(A)$ and $\varphi_\ast = \psi_\ast$ on $K_1(A)$, such that $[\varphi] = [\psi]$ in $KL(A, B)$ by Theorem 3.3. Finally note that $\varphi^\# = \psi^\#$ implies $\tilde{\varphi} = \tilde{\psi}$. Thus the linear map $\tilde{\varphi} - \tilde{\psi}$ takes values in $\rho_B(K_0(B))$, and hence it must be 0. Therefore $\varphi^* = \psi^*$ on $T(B)$. It follows from [3, Theorem 11.5] that φ and ψ are approximately unitarily equivalent.

We need the following isomorphism version of Theorem 4.1.

Theorem 4.3. Let A and B be simple unital infinite dimensional inductive limits of sequences of finite direct sums of building blocks with $K_0(A) \cong \mathbb{Z}$. Let $\varphi_0 : K_0(A) \to K_0(B)$ be an isomorphism of ordered groups with order units, let $\varphi_1 : K_1(A) \to K_1(B)$ be an isomorphism of groups, let $\varphi_T : T(B) \to T(A)$ be an affine homeomorphism, and let $\Phi : U(A)/DU(A) \to U(B)/DU(B)$ be an isomorphism of groups, such that the diagram

$$\begin{array}{ccc}
\text{Aff } T(A)/\rho_A(K_0(A)) & \overset{\lambda_A}{\to} & U(A)/DU(A) \overset{\pi_A}{\to} K_1(A) \\
\tilde{\varphi} \downarrow & & \downarrow \varphi \\
\text{Aff } T(B)/\rho_B(K_0(B)) & \overset{\lambda_B}{\to} & U(B)/DU(B) \overset{\pi_B}{\to} K_1(B)
\end{array}$$

commutes. Then there exists an isomorphism $\psi : A \to B$ such that $\psi_\ast = \varphi_1$ on $K_1(A)$, $\varphi^* = \varphi_T$ on $T(B)$, and $\psi^* = \Phi$ on $U(A)/DU(A)$.

Proof. By Theorem 4.1 there exists a unital *-homomorphism $\mu : A \to B$ such that $\mu^* = \Phi$ on $U(A)/DU(A)$, $\mu^* = \varphi_T$ on $T(B)$, and $\mu_\ast = \varphi_1$ on $K_1(A)$. Similarly, there exists a unital *-homomorphism $\xi : B \to A$ such that $\xi^* = \Phi^{-1}$ on $U(B)/DU(B)$, $\xi^* = \varphi_T^{-1}$ on $T(A)$, and $\xi_\ast = \varphi_1^{-1}$ on $K_1(B)$. By Theorem 4.2 we see that $\mu \circ \xi$ and $\xi \circ \mu$ are approximately inner. Hence by [4, Proposition A] μ is approximately unitarily equivalent to an isomorphism $\psi : A \to B$.

We are now in a position to prove part (ii) of Theorem 1.1.

Theorem 4.4. Let A be a simple unital inductive limit of a sequence of finite direct sums of building blocks with $K_0(A) \cong \mathbb{Z}$. Then

$$\text{Aut}(A)/\text{Inn}(A) \cong \text{Hom}\left(K_1(A), \text{Aff } T(A)/\rho_A(K_0(A))\right) \rtimes \text{Aut}(\overline{K}_A),$$
where the action of \((\varphi_0, \varphi_1, \varphi_T) \in \mathrm{Aut}(\mathcal{E}_A)\) is given by
\[
\eta \mapsto \widetilde{\varphi_T}^{-1} \circ \eta \circ \varphi_1^{-1}, \quad \eta \in \hom(K_1(A), \aff T(A)/\rho_A(K_0(A))).
\]

Proof. We may assume that \(A\) is infinite dimensional. By Proposition 2.3 we may identify \(U(A)/DU(A)\) with \(G_1 \oplus G_2\), where \(G_1 = \aff T(A)/\rho_A(K_0(A))\) and \(G_2 = K_1(A)\). Thus an endomorphism \(\psi\) of the group \(U(A)/DU(A)\) can be identified with a \(2 \times 2\) matrix
\[
\begin{pmatrix}
\psi_{11} & \psi_{12} \\
\psi_{21} & \psi_{22}
\end{pmatrix}
\]
where \(\psi_{ij} : G_j \to G_i\) is a homomorphism, \(i, j = 1, 2\). Note that if \(\psi\) is induced by an automorphism of \(A\) then \(\psi_{21} = 0\) since the short exact sequence of Proposition 2.3 is natural.

Let \(H = \hom(K_1(A), \aff T(A)/\rho_A(K_0(A)))\). Let \(\eta \in H\). Choose by Theorem 4.3 an element \(\psi \in \mathrm{Aut}(A)\) such that \(\psi^* = \mathrm{id}\) on \(T(A)\), \(\psi_\ast = \mathrm{id}\) on \(K_1(A)\), and
\[
\psi^\# = \begin{pmatrix}
\mathrm{id} & \eta \\
0 & \mathrm{id}
\end{pmatrix}
\]
on \(U(A)/DU(A)\). By Theorem 4.2 we obtain a well-defined group homomorphism
\[
\iota : H \to \mathrm{Aut}(A)/\mathrm{Inn}(A)
\]
by setting \(\iota(\eta) = p(\psi)\), where \(p : \mathrm{Aut}(A) \to \mathrm{Aut}(A)/\mathrm{Inn}(A)\) denotes the canonical map. Let \(\pi : \mathrm{Aut}(A)/\mathrm{Inn}(A) \to \mathrm{Aut}(\mathcal{E}_A)\) be the homomorphism
\[
\pi(p(\psi)) = (\psi_\ast, \psi_\ast, (\psi^\ast)^{-1}).
\]
We have a short exact sequence
\[
0 \to H \to \mathrm{Aut}(A)/\mathrm{Inn}(A) \to \pi \to \mathrm{Aut}(\mathcal{E}_A) \to 0
\]
of groups. Let \((\varphi_0, \varphi_1, \varphi_T) \in \mathrm{Aut}(\mathcal{E}_A)\). Choose by Theorem 4.1 an element \(\psi\) in \(\mathrm{Aut}(A)\) such that \(\psi_\ast = \varphi_1\), \(\psi^* = \varphi_T^{-1}\), and
\[
\psi^\# = \begin{pmatrix}
\widetilde{\varphi_T}^{-1} & 0 \\
0 & \varphi_1
\end{pmatrix}.
\]
By Theorem 4.2 we obtain a well-defined map \(\sigma : \mathrm{Aut}(\mathcal{E}_A) \to \mathrm{Aut}(A)/\mathrm{Inn}(A)\) by setting \(\sigma(\varphi_0, \varphi_1, \varphi_T) = p(\psi)\). Note that \(\sigma\) splits the sequence above. Hence \(\mathrm{Aut}(A)/\mathrm{Inn}(A)\) is isomorphic to a semi-direct product \(H \rtimes \mathrm{Aut}(\mathcal{E}_A)\). Since
\[
\iota(\widetilde{\varphi_T}^{-1} \eta \varphi_1^{-1}) = \sigma(\varphi_0, \varphi_1, \varphi_T) \iota(\eta) \sigma(\varphi_0, \varphi_1, \varphi_T)^{-1},
\]
it follows that the action of Aut(\(E_A\)) on \(H\) is the desired one.

Let us finally show that our main result can be simplified when \(K_1(A)\) is a torsion group. Recall that ext(\(G, H\)) is defined as Ext(\(G, H\))/Pext(\(G, H\)) for abelian groups \(G\) and \(H\), where Pext(\(G, H\)) is the subgroup of pure (i.e. locally trivial) extensions in Ext(\(G, H\)), see [5, Chapter 5].

Corollary 4.5. Let \(A\) be a simple unital inductive limit of a sequence of finite direct sums of building blocks such that \(K_1(A)\) is a torsion group. Then

\[
\text{Aut}(A)/\text{Inn}(A) \cong \text{ext}(K_1(A), K_0(A)) \rtimes \text{Aut}(E_A),
\]

where the action of \((\varphi_0, \varphi_1, \varphi_T) \in \text{Aut}(E_A)\) is given by \(e \mapsto \varphi_0 \circ \varphi_1^{-1}(e)\) for \(e \in \text{ext}(K_1(A), K_0(A))\).

Proof. If \(K_0(A)\) is non-cyclic, then Aff(\(T(A)/\rho_A(K_0(A))\)) is torsion-free by [3, Lemma 10.3], and hence the result follows in this case from (i) in Theorem 1.1. Therefore we may assume that \(K_0(A) \cong \mathbb{Z}\). Then \(\rho_A\) is injective and has closed range. Hence we have a short exact sequence

\[
0 \longrightarrow K_0(A) \xrightarrow{\rho_A} \text{Aff}(T(A)) \xrightarrow{q_A} \text{Aff}(T(A)/\rho_A(K_0(A)) \longrightarrow 0.
\]

Let \(E\) denote the corresponding class in Ext(\(\text{Aff}(T(A)/\rho_A(K_0(A))), K_0(A))\). Note that Aff(\(T(A)\)) is divisible, and therefore Ext(\(K_1(A), \text{Aff}(T(A))\)) = 0. Hence by applying [2, Theorem III.3.4] we get an isomorphism

\[
E_* : \text{Hom}(K_1(A), \text{Aff}(T(A)/\rho_A(K_0(A)))) \rightarrow \text{Ext}(K_1(A), K_0(A)),
\]

where \(E_*(\eta) = \eta^*(E)\). By a result of C. U. Jensen, see e.g. [8, Theorem 6.1], we have that Pext(\(K_1(A), K_0(A))\)=0. Thus Ext(\(K_1(A), K_0(A)) = \text{ext}(K_1(A), K_0(A))\). To see that the two actions of Aut(\(E_A\)) can be identified as well, note that the diagram

\[
0 \longrightarrow K_0(A) \xrightarrow{\rho_A} \text{Aff}(T(A)) \xrightarrow{q_A} \text{Aff}(T(A)/\rho_A(K_0(A)) \longrightarrow 0
\]

\[
\varphi_0 \downarrow \quad \varphi^{-1}_T \downarrow
\]

\[
0 \longrightarrow K_0(A) \xrightarrow{\rho_A} \text{Aff}(T(A)) \xrightarrow{q_A} \text{Aff}(T(A)/\rho_A(K_0(A)) \longrightarrow 0
\]

commutes, such that \(\varphi_T^{-1} = \varphi_0(E)\) by [2, Proposition III.1.8]. The corollary follows.

We mention without proof that the \(C^*\)-algebras considered in the above corollary are exactly the simple unital inductive limits of sequences of finite direct sums of building blocks of the form

\[
\{ f \in C[0, 1] \otimes M_n : f(x_i) \in M_{d_i}, i = 1, 2, \ldots, N\}.
\]
Corollary 4.5 suggests that only KL, and not $U(\cdot)/DU(\cdot)$, is needed in an approximate intertwining argument to show that the Elliott invariant is a classifying invariant for these C^*-algebras. This was demonstrated by Jiang and Su [1] for a large subclass of this class of C^*-algebras.

Let us finally emphasize the following surprising consequence of the corollary above. Let A be a simple unital inductive limit of a sequence of finite direct sums of building blocks. If $K_0(A)$ is non-cyclic then $\operatorname{Aut}(A)/\operatorname{Inn}(A)$ is isomorphic to a semi-direct product

$$\left(\operatorname{Hom}(K_1(A), \operatorname{Aff} T(A)/\rho_A(K_0(A))) \times \operatorname{ext}(K_1(A), K_0(A))\right) \rtimes \operatorname{Aut}(E_A).$$

The term $\operatorname{Hom}(K_1(A), \operatorname{Aff} T(A)/\rho_A(K_0(A)))$ vanishes e.g. if A has real rank zero, whereas the term $\operatorname{ext}(K_1(A), K_0(A))$ vanishes e.g. if A is an inductive limit of a sequence of finite direct sums of circle algebras. When $K_0(A) \cong \mathbb{Z}$ and $K_1(A)$ is a torsion group, however, these two terms agree, but only one of them appear in the expression for $\operatorname{Aut}(A)/\operatorname{Inn}(A)$.

REFERENCES