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FUCHSIAN GROUPS GENERATED BY HALF-TURNS
AND GEOMETRICAL CHARACTERIZATION OF

HYPERELLIPTIC AND SYMMETRIC
RIEMANN SURFACES

J. J. ETAYO and E. MARTÍNEZ∗

Abstract

We construct a special type of fundamental regions for any Fuchsian group F generated by an
even number of half-turns, and for certain non-Euclidean crystallographic groups (NEC groups in
short). By comparing these regions we give geometrical conditions in order to F be the canonical
Fuchsian subgroup of one of those NEC groups. Precisely speaking, we deal with NEC groups of
algebraic genus 0 having all periods in the signature equal to 2. By means of these conditions we
give a characterization of hyperelliptic and symmetric Riemann surfaces.

1. Introduction

Hyperelliptic Riemann surfaces constitute a very important class of surfaces.
They are studied since XIX century [11]. There exist several geometrical char-
acterizations of these surfaces, for instance, [6], [8]. A different way to char-
acterize hyperelliptic Riemann surfaces is by means of Fuchsian groups. Let
S = D/F ∗ be a Riemann surface of genus p ≥ 2; S is hyperelliptic if and
only if there exists a Fuchsian group F containing F ∗ as a subgroup of index
2, with signature (0; +; [22p+2], {−}).

Analogously for a Klein surface we have a characterization of hyperellipt-
icity in terms of NEC groups. Let X = D/	∗ be a Klein surface where 	∗
has signature (g; ±; [−], {(−)k}). The surfaceX is hyperelliptic if and only if
there exists an NEC group 	 containing 	∗ as a subgroup of index 2, [2]. In
such a case 	 has algebraic genus 0 and each proper period and link-period in
its signature is 2.

A Riemann surface S is said to be symmetric if and only if S admits an
anticonformal automorphism ψ such that ψ2 is the identity. Let us observe
that the quotient X = S/〈ψ〉 is a Klein surface. If the Riemann surface S is
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both hyperelliptic and symmetric then X is a hyperelliptic Klein surface [4]
and in this case we have the following diagram relating the different groups.

	 −−−→ F

↓ ↓
	∗ −−−→ F ∗

Fuchsian groups with all periods equal to 2 are generated by half-turns, that
is elliptic elements with trace 0. We are interested in the following geometrical
problem that allows us to give a characterization of hyperelliptic and symmetric
Riemann surfaces. Given a Fuchsian group F generated by half-turns, what
conditions must F satisfy in order to be the canonical Fuchsian subgroup of an
NEC group 	, that is to say, in what conditions F = 	+? Obviously the group
	 has then each period equal to 2 in its signature. We will give the answer by
means of geometrical conditions which fundamental regions of the groups F
and 	+ must satisfy.

For it, we need to compare regions of both groups. Canonical regions are
not adequate because of the different number of sides of the regions of F
and 	+. Instead of them, we construct a special type of fundamental regions
(hyperbolic polygons whose angles satisfy some conditions) for these groups.
Given such a fundamental region of F we may say when F = 	+ and in this
case the class of NEC groups to which 	 belongs.

The work is organized as follows. In Section 2 we give the necessary prelim-
inaries about Fuchsian and NEC groups and canonical fundamental regions.
In Section 3 we construct a new fundamental region for concerned Fuchsian
group F and NEC group 	. Then, in Section 4, we compare the obtained
regions and give the geometrical conditions in order to F be the canonical
Fuchsian subgroup of 	. Finally, in Section 5, we rewrite the results in terms
of hyperelliptic Riemann surfaces.

2. Preliminaries

An NEC group 	 is a discrete subgroup of isometries of the hyperbolic plane
D (including orientation-reversing isometries) with compact quotient D/	

[10]. The signature of 	 is the following symbol:

(1) σ (	) : (g,±, [m1, . . . , mr ], {(ni,1, . . . , ni,si )i=1,...,k}),
where g, k ≥ 0, mi, ni,j ≥ 2 and every number is an integer. The signature
determines the algebraic structure of 	 [7]. The quotient X = D/	 has to-
pological genus g and k boundary components. X is orientable if the sign in
(1) is ‘+’ and nonorientable otherwise. The brackets (ni,1, . . . , ni,si ) are called
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cycle-periods and the numbers mi and ni,j are called proper periods and link
periods, respectively. If r = 0, k = 0 or si = 0, we write in each respective
case [−], {−}, (−). Also we writemti or nti,j when a period is repeated t times.

The algebraic genus of 	 is p = ηg + k − 1 where η = 2 or 1 according
to the sign in σ be ‘+’ or ‘−’. The area of 	 is the area of any fundamental
region of 	. It is denoted by |	| and it satisfies

|	| = 2π

(
ηg + k − 2 +

r∑
i=1

(
1 − 1

mi

)
+ 1

2

k∑
i=1

si∑
j=1

(
1 − 1

ni,j

))
.

An NEC group 	 with signature as (1) exists if and only if |	| > 0.
Let 	 be an NEC group with signature as (1). 	 is generated by xi , (i =

1, . . . , r) elliptic transformations, ei , (i = 1, . . . , k) hyperbolic transform-
ations, ci,j , (i = 1, . . . , k; j = 0, 1, . . . , si) reflections and ai, bi , (i =
1, . . . , g) hyperbolic transformations (if sign is ‘+’) or di , (i = 1, . . . , g)
glide reflections (if sign is ‘−’). The generators satisfy the following relations:

x
mi
i = 1

c2
i,j−1 = c2

i,j = (ci,j−1 · ci,j )ni,j = 1

e−1
i · ci,0 · ei · ci,si = 1

i = 1, . . . , r,

i = 1, . . . , k, j = 1, . . . , si ,

i = 1, . . . , k,

and
r∏
i=1

xi ·
k∏
i=1

ei ·
g∏
i=1

[ai, bi] = 1

r∏
i=1

xi ·
k∏
i=1

ei ·
g∏
i=1

d2
i = 1

if sign ‘+’,

if sign ‘−’

where [ai, bi] denotes the commutator aibia
−1
i b

−1
i .

An NEC group 	 with sign ‘+’ in the signature and k = 0, (hence g ≥ 2)
is a surface Fuchsian group and in this case X = D/	 is a Riemann surface.
An NEC group which is not a Fuchsian group is called a proper NEC group.

The subgroup of orientation preserving elements of a proper NEC group 	
is called the canonical Fuchsian subgroup and it is denoted by 	+. If 	 has a
signature as (1) then 	+ has the following signature σ(	+), [9]:

(p,+, [m1,m1,m2,m2, . . . , mr,mr, n1,1,

. . . , n1,s1 , . . . , nk,1, . . . , nk,sk ], {−}).
As an immediate consequence we have the following Proposition for later

convenience,
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Proposition 2.1. Let F be a Fuchsian group with signature

(0,+, [22r ], {−}),
and let us suppose that F = 	+ for an NEC group 	. Then the signature of
	 is one of the following signatures:

1) σ(	1) : (0,+, [−], ({(22r )}).
2) σ(	2) : (0,+, [2q], ({(2s)}), where 2q + s = 2r .

3) σ(	3) : (0,+, [2r ], ({(−)}).
4) σ(	4) : (1,−, [2r ], ({−}).
Although 1) and 3) can be considered as particular cases of 2) for technical

reasons it is better to study them as separated cases.
Wilkie in [10] found a class of fundamental regionW from what he obtained

the algebraic structure of NEC groups. These regions are called canonical
regions and also Wilkie regions.

For an NEC group 	 with signature as (1) the region W is a hyperbolic
polygon with sides labelled in anticlockwise order as follows

. . . ξi, ξ
′
i , . . .︸ ︷︷ ︸

i=1,...,r

; . . . εi, γi,0, γi,1, . . . , γi,si , ε′i , . . .︸ ︷︷ ︸
i=1,...,k

; . . . αi, β ′
i , α

′
i , βi, . . .︸ ︷︷ ︸

i=1,...,g

,

if the sign is ‘+’ or

. . . ξi, ξ
′
i , . . .︸ ︷︷ ︸

i=1,...r

; . . . εi, γi,0, γi,1, . . . , γi,si , ε′i , . . .︸ ︷︷ ︸
i=1,...,k

; . . . δi, δ∗i , . . .︸ ︷︷ ︸
i=1,...,g

,

if the sign is ‘−’, where

xi(ξ
′
i ) = ξi,

ai(α
′
i ) = αi,

ei(ε
′
i ) = εi,

bi(β
′
i ) = βi,

ci,j (γi,j ) = γi,j ,
di(δ

∗
i ) = δi .

Let us denote by 〈s1, s2〉 the angle between two consecutive sides. In the
regionW we have 〈εi, γi,0〉 + 〈γi,si , ε′i〉 = π,
and the sum of the remaining angles (accidental cycle) is 2π . Without loss of
generality we may suppose thatW is a convex polygon and

〈εi, γi,0〉 = 〈γi,si , ε′i〉 = π/2.
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3. Regions

Through this section we deal with fundamental regions of groupsF,	1, 	2, 	3

and 	4, as in Proposition 2.1. For F,	2, 	3 and 	4 (the canonical region of
	1 is different) we start with a canonical fundamental regionW1 and we shall
obtain a new fundamental region by means of a cutting and pasting procedure.
This procedure is common for the four groups except the last steps.

LetW1 be the following canonical region for the groupG = F,	2, 	3, 	4,
with vertices labelled by capital letters and described in an anticlockwise order.

ξ1, X1, ξ
′
1, P1, . . . , ξτ , Xτ , ξ

′
τ , Pτ ,L ,Q,

where L is

• = ∅, if G = F .

• = ε, γ0, γ1, . . . , γs, ε
′, if G = 	2, and thenQ = Pτ+1.

• = ε, γ, ε′, if G = 	3, and thenQ = Pτ+1.

• = δ, Pτ+1, δ
∗, if G = 	4, andQ = Pτ+2.

In the second and third cases it is not necessary to write explicitly the
intermediate vertices because the angles at these vertices are π2 .

In the above description, pointsXi are the fixed points of elliptic transform-
ations, xi , of order 2. The angles at vertices Pi are θi and

∑
i θi = 2π .

Let us observe that τ = 2r, q, r, r in the four respective cases.
Let ηi be the hyperbolic segment betweenXi andXi+1. In the step i we cut

by ηi the regionWi , which becomes divided in two subpolygons: one of them,
say Ri , must contain the side ξi+1. LetWi+1 be the new region

Wi+1 = (Wi − Ri) ∪ xi+1(Ri)

obtained identifying ξi+1 → ξ ′
i+1 by means of x−1

i+1 = xi+1.
In the first step we obtain

W2 := ξ1, X1, η1, X2, x2(η1), x2(X1), x2(ξ
′
1), P2, Z

where Z denotes the remaining sides. Let us observe that the angle π in X1

becomes divided in two angles: the interior angle α1 between ξ1 and η1, and
the angle π − α1. Furthermore, the angle in the vertex P2 is now θ1 + θ2. The
next step produces

W3 := ξ1, X1, η1, X2, η2, X3, x3(η2), x3(X2),

x3 · x2(η1), x3 · x2(X1), x3 · x2(ξ
′
1), P3, Z
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Now we denote the interior angle between η1 and η2 by α2. The angle in P3 is
now θ1 + θ2 + θ3.

Repeating the procedure we arrive to the following polygon:

ξ1, X1, η1, X2, η2, X3, η3, . . . , ητ−1, Xτ , xτ (ητ−1), xτ (Xτ−1), xτ ·xτ−1(ητ−2),

xτ · xτ−1(Xτ−2), . . . , xτ · xτ−1 · . . . · x2(η1), xτ · xτ−1 · . . . · x2(X1), Pτ , Z

where the angles at the vertices Xi are αi and in the respective images are
π − αi .

In this point we must split our study in four cases according toGbeF,	2, 	3

or 	4.

• Case G = F .
The angle in Pτ = θ1 + θ2 + · · · + θn = 2π , and Pτ becomes an

interior point. Moreover

xτ · xτ−1 · . . . · x2(X1) = x1(X1) = X1,

xτ · xτ−1 · . . . · x2(ξ
′
1) = x1(ξ

′
1) = ξ1,

and the angle inX1 is π . We have the following polygonWF , drawn for
τ = 6.

X1

X2

X3

X4

X5
X6

h2

h3

h4

h5

h1

p - a3

p - a4

p - a5

p - a2
a2

a3

a4

a5

Figure 1. RegionWF for τ = 6

• Case G = 	2.
Let λ be the perpendicular segment from Xτ to γ0, dividing γ0 in γ̂0

and γ 0. Cut by λ the subpolygon that contains the side ε and glue ε → ε′
by means of e−1. The angle in Pτ+1 is now 2π and

e−1 · xτ · xτ−1 · · · · · x2(X1) = x1(X1) = X1,

e−1 · xτ · xτ−1 · · · · · x2(ξ
′
1) = x1(ξ

′
1) = ξ1.
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• Case G = 	3.
The procedure is similar to the previous case, λ being now the per-

pendicular segment from Xτ to γ dividing it in γ̂ and γ .

We obtain the respective polygonsW	2 andW	3 . They are shown for values
τ = 4, s = 2 in Figure 2(a) and (b).

X1 X1
X2 X2

X3

X4

h2 h2

h3 h3

h1 h1

g1

g
g 0 g 2

l ll� l�

p - a3 p - a3

p - a4
p - a4

p - a2 p - a2
a2 a2

a3 a3

a4 a4

(a)  Region WG2
 for t � 4 and s � 2 (b)  Region WG3

 for t � 4

Figure 2

X1

X2

X3

X4

h2

h3

h1

m m*

p - a3

p - a4 - b4

p - a2
a2

a3

a4
b4

Figure 3. RegionW	4 for τ = 4

• Case G = 	4.
We need two steps in this case. First, let λ be the segment from Xτ+1

to Pτ+1. Cut by λ the subpolygon which contains the side δ and glue
δ → δ∗ by means of d−1. We obtain a new region.
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Now let µ be the segment between Xτ and d−1(Xτ ) and cut by µ the
subpolygon that contains the side λ. Glue λ→ d−1(λ) by means of d−1.
We finally obtain the regionW	4 , shown in Figure 3 for τ = 4.

We have proved the following result:

Proposition 3.1. The above regionsWF ,W	2 ,W	3 and W	4 are, respect-
ively, fundamental regions of groups F , 	2, 	3 and 	4.

Let PF , P2, P3, P4, be the classes of marked polygons:

• PF :

X2, η2, . . . , Xτ−1, ητ−1, Xτ , η
′
τ−1, X

′
τ−1, . . . , η

′
2, X

′
2, η

′
1, X1, η1,

where X̂1 = X̂τ = π , X̂i + X̂′
i = π , i = 2, . . . , τ − 1.

• P2:

X2, η2, . . . , Xτ−1, ητ−1, Xτ , λ, γ0, γ1, . . . , γs,

λ′, X′
τ , . . . , η

′
2, X

′
2, η

′
1, X1, η1,

where X̂1 = π , X̂i + X̂′
i = π , i = 2, . . . , τ , 〈λ, γ0〉 = 〈γ0, γ1〉 = · · · =

〈γs−1, γs〉 = 〈γs, λ′〉 = π
2 .

• P3:

X2, η2, . . . , Xτ−1, ητ−1, Xτ , λ, γ, λ
′, X′

τ , . . . , η
′
2, X

′
2, η

′
1, X1, η1,

where X̂1 = π , X̂i + X̂′
i = π , i = 2, . . . , τ , 〈λ, γ 〉 = 〈γ, λ′〉 = π

2 .

• P4:

X2, η2, . . . , Xτ−1, ητ−1, Xτ , µ,X
′′
τ , µ

∗, X′
τ , . . . , η

′
2, X

′
2, η

′
1, X1, η1,

where X̂1 = π , X̂i + X̂′
i = π , i = 2, . . . , τ − 1, X̂τ + X̂′

τ + X̂′′
τ = π .

The next result is the converse of Proposition 3.1.

Proposition 3.2. Every polygon W ∈ PF ,P2,P3,P4 is a fundamental
region of a Fuchsian group F or NEC group 	2, 	3, 	4, respectively, where
the signatures of these groups are as in Proposition 2.1.

Proof. We must distinguish according to whether W belongs to PF , P2,
P3, P4.

• W ∈ PF .
Let us observe that the geodesics containing the sides ηi, η′

i , i = 2, . . . , τ−
1, do not intersect. Thus there exist hyperbolic transformations fi which map
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η′
i on ηi such that fi(X′

i−1) = Xi−1 and fi(X′
i ) = Xi . Let x1 and xτ be the

elliptic transformations of order two and fixed pointsX1 andXτ , respectively.
The segment between X1 and Xτ divides W in two parts. Let P be an

interior point of the right part. We draw the segments l1, l2, l3, . . . , lτ−1, lτ ,

from P to X1, X
′
2, X

′
3, . . . , X

′
τ−1, Xτ .

We cut the triangle T1 = PX1X
′
2 and take x1(T1). We have obtained a

new region W1 = (W − T1) ∪ x1(T1). Let us now consider the triangle T2 =
PX′

2X
′
3. Cut T2 and take f2(T2). We have a new regionW2 = (W − (T1 ∪ T2))

∪ x1(T1) ∪ f2(T2). Repeating the process for the triangles Ti = PX′
iX

′
i+1,

i = 3, . . . , τ − 2, we obtain a region

Wτ−1 =
(
W −

⋃
i

Ti

)
∪ x1(T1) ∪

⋃
i

fi(Ti).

For the last step we cut the triangle Tτ−1 = PX′
τ−1Xτ and take xτ (Tτ−1). We

form the regionWτ , whose perimeter is

P, l1, X1, x1(l1), x1(P ) ≡ f2(X
′
2), f2(l2), . . . , xτ (lτ ), Xτ , lτ .

Let us observe that X̂i = π , i = 2, . . . , τ−2. Moreover, fτ−1 ·xτ (xτ (lτ−1)) =
fτ−1(lτ−1) andfτ−1·xτ (Xτ−1) = Xτ−1. Hencefτ−1·xτ is an elliptic transform-
ation of order two with fixed point Xτ−1. Call xτ−1 = fτ−1 · xτ . Analogously,
xi = fi · f −1

i+1, i = 2, . . . , τ − 2, are elliptic transformations of order two with
fixed point Xi . Furthermore, the sum of the angles at the images of the point
P is 2π .

We have obtained a canonical fundamental region of a Fuchsian group F ,
with signature (0,+, [2τ ], {−}).

• W ∈ P2 (respectively P3).
As in previous case there exist hyperbolic transformations fi mapping η′

i →
ηi , i = 2, . . . , τ − 1, and an elliptic transformation x1 with fixed point X1.
Besides we have another hyperbolic transformation fτ mapping λ′ → λ.

Let l1, . . . , lτ be as above and lτ+1 the perpendicular from P to γs (resp. γ )
dividing it in γ̂s and γ s (resp. in γ̂ and γ ).

Repeat the cutting and pasting procedure of the former case for i = 1, . . . ,
τ − 1, in the last step, cut the quadrilateral lτ , λ′, γ s, lτ+1 (resp. lτ , λ′, γ , lτ+1)
and glue λ′ → λ by means of fτ .

We obtain a canonical fundamental region of an NEC group 	2 (resp. 	3)
with signature (0,+, [2τ ], {(2s)}), or respectively (0,+, [2τ ], {(−)}).

• W ∈ P4.
Let now l1, . . . , lτ , be as in previous cases and let lτ+1 be the segment from

P to X′′
τ . There exist an elliptic transformation x1, hyperbolic transformations

f2, . . . , fτ−1, and a glide-reflection d which maps µ∗ → µ.
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Repeating the same procedure we arrive to the last step which consists of
cutting the triangle PX′

τX
′′
τ and gluing µ∗ → µ by means of d. We need an

extra cut. Let lτ+2 be the segment from P to d(P ). Now we cut the triangle
PX′′

τ d(P ) and glue lτ+1 with d(lτ+1) by means of d. So that we obtain a canon-
ical fundamental region of an NEC group 	4 with signature (1,−, [2τ ], {−}).

Up to now we have studied the groups F,	2, 	3, 	4. Now we deal with the
case of the group 	1. Let P1 be the class of hyperbolic polygons

γ1, γ2, . . . , γ2r ,

where every angle is π
2 . It is well known that every NEC group 	1 has a

canonical fundamental region W ∈ P1 and, conversely, every W ∈ P1 is the
fundamental region of an NEC group with signature (0,+, [−], {(22r )}).

Now we are going to study a parametrization of Pi . In order to construct a
hyperbolic polygon with n sides and angles we need 2n−3 parameters. When
several lengths of sides or some angles are given we must discount them. If
the polygon is to be a fundamental region of a Fuchsian or NEC group several
cycles of angles may appear, and in these cases we usually know the sum of the
angles in each cycle, and then we must discount the number of those cycles.

For our polygonsW ∈ Pi we have,

• W ∈ P0 (= PF ):
The number of free lengths is τ − 4, two angles (= π ) are given, and

we have τ − 2 cycles with two angles in each one. The number of free
parameters is then 2τ − 6.

• W ∈ P1:
The angles are given. So we have 2r − 3 free parameters.

• W ∈ P2:
The number of free lengths is τ + s + 1 − 3. The polygon has s + 2

right angles and another one equal to π . The remaining angles appear in
τ − 1 two-cycles. The total number of free parameters is 2τ + s − 3.

• W ∈ P3:
It is a particular case of the previous one when s = 0. So the number

is 2τ − 3.

• W ∈ P4:
The number of free lengths is now τ−3. An angle equal to π is given.

The remaining angles appear in τ −2 two-cycles and in one three-cycle.
Then the total number is 2τ − 3.

We call dimension of a polygonW the number of free parameters appearing
in its construction and denote this number by d(W).
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Proposition 3.3. The dimension of each polygonWi ∈ Pi , i = 0, 1, . . . , 4,
equals the dimension of the Teichmüller space of the groups F,	1, . . . , 	4.

Proof. According to the different values of τ (see the signatures of Pro-
position 2.1), we have

d(W 0) = 2τ − 6 = 4r − 6,

d(W 1) = 2r − 3,

d(W 2) = 2τ + s − 3 = 2q + s − 3,

d(W 3) = 2τ − 3 = 2r − 3,

d(W 4) = 2τ − 3 = 2r − 3.

And these numbers coincide with the dimension of the Teichmüller spaces
of the respective groups.

4. Comparison of regions

In this section we study the geometrical conditions thatWF must satisfy in order
to the group F be the canonical Fuchsian group of an NEC group 	i having
a fundamental region of type W	i . For this purpose we must firstly study the
regions W	+

i
, obtained by doubling the region W	i . We shall distinguish the

four cases.

• W	1

In this caseW	1 ∈ P1. Let us reflect the region by means of cr , the reflection
on the side γr . We obtain a right-angled regionW	+

1
= W	1 ∪ cr(W	1).

•W	2

We describe the procedure to be followed in case 	2 for a particular simple
case, namely q = 2 and s = 2. LetW	2 be the polygon as Figure 4(a).

If we reflect the region by means of ci , the reflection on the side γi , we
do not obtain a region of the type WF . Instead of we must reflect different
parts of the region by means of different reflections. In a precise way, let us
denote by ν0 and ν1 the segments from the pointX2 to the vertices in the angles
〈γ0, γ1〉, 〈γ1, γ2〉, respectively. The triangles λ, γ0, ν0; ν0, γ1, ν1; are reflected
by means of c0 and c1, respectively. The remaining part of W	2 is reflected
by means of c2, (Figure 4(b)). Let us observe that the angle between ci(νi)
and ci+1(νi) is always π . Let us denote c1 · c0 as x3 and c2 · c1 as x4; and
the angles 〈λ, ν0〉, 〈ν0, ν1〉, 〈ν1, η1〉 as φ0, φ1, and φ2, respectively. Obviously
φ0 + φ1 + φ2 = α2.
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X1

X2 h1

g1 g1

g 0
g 0

g 2 g 2

n1

n0

l
X1

X2 h1l

l* l*

(a) (b)

Figure 4

In the obtained region we perform the following procedure: cut by ν0 and glue
c0(ν0) → c1(ν0) by means of x−1

3 = x3. From the point X2 the perimeter of
the region runs now:

X2, ν0, X3, x3(ν0), x3(X2), x3(λ ∪ c0(λ)), x3(c0(X2)), c1(ν1),X4, . . .

where the angles at the vertices x3(X2) and x3(c0(X2)) are φ0 and φ0 + φ1,

respectively.
Let us cut by γ1 and glue c1(ν1) → c2(ν1) by means of x4. The perimeter

from X3 is

X3, γ1, X4, x4(γ1), x4(X3), x4 · x3(ν0), x4 · x3(X2),

x4 · x3(λ ∪ c0(λ)), c2(X2), c2(ν2),X5, . . .

where the angle in the vertex c2(X2) is φ0 + φ1 + φ2.
In this point we change the procedure. Instead of cutting by γ2 we cut by the

line ρ1 that joinsX4 with the point c2(X1) = X5 and we glue c2(η1)→ c2(η
′
1)

by means of x5 = c2·x1·c2. In the next step cut byρ2 joiningX5 to c2(X
′
2) = X6

and glue (λ ∪ c0(λ))→ λ′ by means of x5 · x4 · x3.
We have obtained the following polygon (Figure 5):

X2, ν0, X3, γ1, X4, ρ1, X5, ρ2, X6, x6(ρ2), x6(X5), x6 · x5(ρ1), x6 · x5(X4),

x6 · x5 · x4(γ1), x6 · x5 · x4(X3), x6 · x5 · x4 · x3(ν0),X
′
2, η

′
1, X1, η1.

The angles in the polygon are the following, calling for brevity x6(X5) =
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X′
5, x6 · x5(X4) = X′

4 and so on:

X̂1 = X̂6 = π
X̂2 = φ1 + φ2 X̂′

2 = π − (φ1 + φ2)

X̂3 = α3 <
π

2
X̂′

3 = π − α3

X̂4 = α4 >
π

2
X̂′

4 = π − α4

X̂5 = α5 X̂′
5 = π − α5

g1

n0

r1

r2

X1
X2�

X3�

X4�

X5�

X2

X3

X4

X5 X6

h1

Figure 5

For arbitraryq and swe follow the same procedure until arriving toγs . Note that
the angle in the vertex cs(Xq) is φ0 +φ1 +. . .+φs = αq . In this point we cut by
the line ρ1 that joinsXq+s with the point cs(X1) and we glue cs(η1)→ cs(η

′
1)

by means of xq+s+1 = cs · x1 · cs . In the next step cut by ρ2 joining cs(X1) to
cs(X

′
2) and repeat the process. In each new step ρj joins cs(X′

j−1) to cs(X′
j ).

Finally the perimeter of the region arrives to be

X2, η2, X3, . . . , Xq, ν0, Xq+1, γ1, . . . , Xq+s ,
ρ1, Xq+s+1, ρ2, . . . , X

′
2, η

′
1, X1, η1,

where the angles are

X̂1 = X̂2q+s = π,
X̂i = αi, i = 2, . . . , q − 1,

X̂q =
s∑
i=1

φi,
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X̂q+1 = αq+1 <
π

2
,

X̂q+i = αq+i = π

2
, i = 2, . . . , s − 1,

X̂q+s = αq+s > π
2
,

X̂′
i = π − αi, i = 2, . . . , q − 1, q + 1, . . . , 2q + s − 1,

X̂′
q = π − αq + φ0 = π −

s∑
i=1

φi.

• W	3

Let nowW	3 be as in Figure 2(b) for an arbitrary τ . Let us reflect the region
by means of c, the reflection on the side γ and thenW	+

3
= W	3 ∪ c(W	3).

• W	4

Let nowW	4 be as in Figure 3 for an arbitrary τ . LetW	+
4

= W	4 ∪d(W	4),
d being the glide-reflection mapping µ∗ → µ.

We are ready to establish the following results, for which we remember the
above notations: αi and α′

i are the angles at the vertices X̂i and X̂′
i respectively,

and the sides ηi and η′
i are those between Xi and Xi+1, or X′

i and X′
i+1,

respectively.

Theorem 4.1. A Fuchsian group F with signature (0,+, [22r ], {−}) is the
canonical Fuchsian subgroup of an NEC group 	1 with signature (0,+, [−],
{(2r )}) if F admits a right-angled fundamental regionWF .

Proof. It is obvious comparingWF withW	+
1

. In such a case we have:

x1 = cr · c1, x2 = c1 · c2, . . . , xr = cr−1 · cr .

Theorem 4.2. A Fuchsian group F with signature (0,+, [22r ], {−}) is the
canonical Fuchsian subgroup of an NEC group 	2 with signature (0,+, [2q],
{(2s)}), where 2q + s = 2r and q, s �= 0, if F admits a fundamental region
WF satisfying the following conditions:

α1 = α2r = π,
α′
i = π − αi,
η′
i = ηi,

i = 2, . . . , 2r − 1,

i = 1, . . . , 2r − 1,
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where besides
αq+1 <

π

2
,

αq+i = π

2
,

αq+s >
π

2
,

αq+s+i = αi,
ηq+s+i = ηi,

i = 2, . . . , s − 1,

i = 2, . . . , q − 1,

i = 1, . . . , q − 1.

Proof. We compare W	+
2

with WF , and we see that WF must satisfy the
above conditions.

Let us call

xi = xi, i = 1, . . . , q,

xq+i = ci−1 · ci, i = 1, . . . , s,

xq+s+1 = cs · x1 · cs
xq+s+2 = cs · e−1 · xq · xq−1 · . . . · x3 · x2 · x3 · . . . · xq−1 · xq · e · cs
xq+s+3 = cs · e−1 · xq · xq−1 · . . . · x4 · x3 · x4 · . . . · xq−1 · xq · e · cs

...

xq+s+q−1 = cs · e−1 · xq · xq−1 · xq · e · cs
xq+s+q = cs · e−1 · xq · e · cs

Now we check the product of these elliptic elements:

2q+s∏
i=1

xi =
q∏
i=1

xi ·
q+s∏
i=q+1

xi ·
2q+s∏

i=q+s+1

xi

=
q∏
i=1

xi ·
s∏
i=1

(ci−1 · ci) ·
(
(cs · x1 · cs) · . . . · (cs · e−1 · xq · e · cs)

)

=
q∏
i=1

xi · c0 · x1 · e−1 · xq · . . . · x3 · x2 · e · cs

= x1 · . . . · xq · c0 · e · cs
= x1 · . . . · xq · e
= 1.

Theorem 4.3. A Fuchsian group F with signature (0,+, [22r ], {−}) is the
canonical Fuchsian subgroup of an NEC group 	3 with signature (0,+, [2r ],
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{(−)}), if F admits a fundamental region WF satisfying the following condi-
tions:

α1 = α2r = π,
α′
i = π − αi, i = 2, . . . , 2r − 1,

αi = α2r−i+1, i = 2, . . . , r,

ηi = η′
i , i = 1, . . . , r − 1,

ηi = η2r−i , i = 2, . . . , r − 1.

Proof. In this case we compare WF with W	+
3

and we see that WF must
satisfy the above conditions. In this situation we call

xi = xi, i = 1, . . . ,
r

2
,

xi = c · xr−i+1 · c, i = r

2
+ 1, . . . , r.

Finally we need only to realize that

r∏
i=1

xi =
r
2∏
i=1

xi ·
r
2∏
i=1

c · xr−i+1 · c

= (x1 · x2 · . . . · x r
2
) · c · (x r

2
· . . . · x2 · x1) · c

= (x1 · x2 · . . . · x r
2
) · c · e · c

= 1.

Theorem 4.4. A Fuchsian group F with signature (0,+, [22r ], {−}) is the
canonical Fuchsian subgroup of an NEC group 	4 with signature (1,−, [2r ],
{−}), ifF admits a fundamental regionWF satisfying the following conditions:

α1 = α2r = π,
α′
i = π − αi, i = 2, . . . , 2r − 1,

αi = α2r−i+1, i = 2, . . . , r − 1,

αr > αr+1,

η′
i = ηi, i = 1, . . . , 2r − 1,

ηi = η2r−i , i = 2, . . . , r − 1,

Proof. By comparingWF withW	+
4

we see thatWF must satisfy the above
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conditions. Call

xi = xi, i = 1, . . . ,
r

2
,

xi = d · xr−i+1 · d−1, i = 1, . . . ,
r

2
.

At last, we check that

r∏
i=1

xi =
r
2∏
i=1

xi ·
r
2∏
i=1

(d · xr−i+1 · d−1)

= (x1 · x2 · . . . · x r
2
) · d · (x r

2
· . . . · x2 · x1) · d−1

= (x1 · x2 · . . . · x r
2
) · d · d2 · d−1

= 1.

5. Hyperelliptic surfaces

In this section we characterize the hyperelliptic and symmetric Riemann sur-
faces by means of the results of Section 4 about fundamental regions. Previ-
ously we need the following results about hyperelliptic Klein surfaces.

Let X = D/	∗ be a Klein surface where 	∗ has a signature (g; ±; [−],
{(−)k}). The surface X is hyperelliptic if and only if there exists an NEC
group 	 containing 	∗ as a subgroup of index 2 having one of the following
signatures:

If k �= 0, [2, Theorem 4.5]:

i) (0,+, [−], {(22k)}) g = 0, k ≥ 3.

ii) (0,+, [2g+k], {(−)}) g > 0, “+”, k = 1, 2.

iii) (0,+, [2g], {(22k)}) g > 0, “−”, k > 0.

If k = 0, and in this case X must be a nonorientable unbordered surface
(see [5, Theorem 2.2] for the case q = 0):

iv) (0,+, [2g], {(−)}) g ≥ 3, “−”, k = 0.

v) (1,−, [2g], {−}) g > 3, “−”, k = 0, g even.

Let S = D/F ∗ be a hyperelliptic and symmetric Riemann surface of genus
p ≥ 2. Since S is hyperelliptic there exists a Fuchsian group F containing F ∗
as a subgroup of index 2, with signature (0,+, [22p+2], {−}), and because S
is symmetric, with a symmetry ψ , then S/〈ψ〉 = X = D/	∗, where X is a
hyperelliptic Klein surface and so there exists an NEC group 	 with one of the
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five above signatures. Moreover, the group F must be the Fuchsian canonical
subgroup of the NEC group 	 and we may apply the geometric results on the
respective fundamental regions of F and 	+. With the above notations, we
rewrite without proofs the Theorems 4.1–4.4 in terms of surfaces, where S =
D/F ∗ is a given hyperelliptic Riemann surface and F is the hyperellipticity
group, andW	+

i
denotes the corresponding regions in Theorems 4.1–4.4.

Theorem 5.1. If F admits a fundamental region WF = W	+
1

then S has
an automorphism ψ such that X = S/〈ψ〉 is a orientable hyperelliptic Klein
surface with topological genus g = 0, and k = p + 1 boundary components.

Theorem 5.2. If F admits a fundamental regionWF = W	+
2

then S has an
automorphismψ such thatX = S/〈ψ〉 is a non-orientable hyperelliptic Klein
surface with topological genus g, and k > 0 boundary components, where
g + k = p.

Theorem 5.3. If F admits a fundamental regionWF = W	+
3

then S has an
automorphism ψ such that X = S/〈ψ〉 is either

– an orientable hyperelliptic Klein surface with topological genus g, and
k = 1 or 2 boundary components, where g + k = p + 1; or

– a non-orientable hyperelliptic unbordered Klein surface with topological
genus g = p + 1.

Theorem 5.4. If F admits a fundamental region WF = W	+
4

then S has
an automorphism ψ such that X = S/〈ψ〉 is a non-orientable unbordered
hyperelliptic Klein surface with topological genus g = p + 1. In this case p
must be odd.

Let us note that q-hyperelliptic surfaces are too defined by groups whose
signatures have all periods equal to 2, [1] and [3]. We feel that similar proced-
ures to the above ones, applied to the fundamental regions of these groups also
should work. To do that, it shall be necessary to study the fundamental regions
of NEC groups with several empty cycle-periods.
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