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ON A FAMILY OF (1, 7)-POLARISED
ABELIAN SURFACES

ALFIO MARINI∗

Abstract

We study the geometry of the moduli space of (1, 7)-polarised abelian surfaces with canonical
level structure in detail. In particular we describe the locus where the syzygies of the embedded
Heisenberg-invariant abelian surface degenerate, and relate this to the other known descriptions
of the moduli space in question.

1. Introduction

The starting point for this article is the paper by Manolache and Schreyer [16],
where the authors find a birational model of the moduli space of (1, 7)-polarised
abelian surfaces with canonical level structure, namely a Fano 3-fold of genus
12 called V22. They study the locally free resolution of a (1, 7)-polarised abelian
surface A ⊂ P6(V ), where V ∼= H 0(A, O (1))′. As we shall see, SL2(Z7) acts
on V , and therefore on these surfaces and on their resolutions. Every such
resolution determines a twisted cubic curve in P3(U), where U is a certain
4-dimensional irreducible SL2(Z7)-module. The set of such curves consists of
those annihilated by the unique SL2(Z7)-invariant net of quadrics � ⊂ S2U

and the moduli space H(�) of such curves is isomorphic to V22.
The other fundamental paper on which this article is based is [8] by Gross

and Popescu, where the authors also show that the moduli space of (1, 7)-
polarised abelian surfaces with canonical level structure is birational to V22,
but using a different approach and consequently a different model. Their model
is the variety of sum of powers VSP(Q, 6) that parametrises polar hexagons
to the Klein quartic Q ⊂ P2(W), where W is a 3-dimensional irreducible
SL2(Z7)-module and Q is the unique invariant curve of minimal degree 4 (see
Appendix B). Such a polar hexagon is a configuration of six points in P2(W ′),
where W ′ is the dual of W , and P2(W ′) is naturally contained in P6(V ) as
the projectivisation of the +1-eigenspace of a certain involution ι : V → V .
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What Gross and Popescu show in [8] is that, for a general A, these six points
are precisely the odd 2-torsion points of A, and that each point determines a
Calabi-Yau 3-fold containing A. More precisely A is defined as the intersection
of those six 3-folds. Notice that Q is a model of X(7), the modular curve of
level 7, and that in [8] the latter notation is used in place of Q. However the
curve Q′ ⊂ P2(W ′) (also the unique invariant quartic and also isomorphic to
X(7)) will also play a role in this article and we will be careful to distinguish
the two.

For the case of (1, 5)-polarised abelian surfaces, Horrocks and Mumford
[10] showed that a birational model of the moduli space is P3. In a more
detailed analysis, Barth, Hulek and Moore [1] showed that in fact every point
of P3 determines a surface and they also described the subvariety of P3 that
parametrises degenerate abelian surfaces, that is the boundary of the moduli
space. Furthermore they gave a precise description of all the degenerations.
A natural question raised by [16] and [8] is, can a similar analysis be made
for V22? This question is approached by Melliez and Ranestad [18], who find
degenerations similar to those occurring in [1].

While bearing this in mind, we take a slightly different point of view and
examine the cases where the construction of [16] degenerates, studying the
subvariety B ⊂ H(�) which parametrises degenerate twisted cubic curves.
We show that all points in B determine surfaces in P6(V ) and we find the
corresponding elements of VSP(Q, 6). Our original expectation was that B

would also be the subvariety which parametrises degenerate abelian surfaces,
and indeed B is birational to the Kummer modular surface that parametrises
translation scrolls (the most general degenerations arising in [18] and [1]).
Nevertheless, B does not in fact parametrise the translation scrolls and so
cannot be the whole boundary of the moduli space of (1, 7)-polarised abelian
surfaces with canonical level structure. In fact, it follows from our description
and the results of [18] that the surface parametrised by a general point of B is
smooth. However, in this article we will still speak of B as the “boundary” in the
sense that it parametrises degenerate twisted cubic curves and will consider
that the corresponding abelian surfaces are still, in some sense, degenerate.
Indeed they are not general in the sense of [8]. The more special degenerations
occur both in our locus and the locus considered by Melliez and Ranestad,
who found them independently of this work.

1.1. The structure of this article

Our article is divided into five sections. In Section 1 we introduce the subject
of abelian varieties, then the crucial action of the Heisenberg group, which is
the key to handling these varieties. Finally we report all the key results we need
from [16] and [8] that are going to define the starting point of the following sec-
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tions. Most of the notations are thereafter consistent with those papers. Among
others, especially important are the 4-dimensional −1-eigenspace U ′ := V−
of the involution ι, which is dual to U . Notice that S2U ′ = L ⊕ W ′ where
L = �⊥. But also S3W ′ = L ⊕ W and hence we have an incomplete linear
system of cubics on P2(W ′) which gives an embedding P2(W ′) ↪→ P6(L).

In Section 2 we view H(�) as an orbit space, specifically the space M�

of 3 × 2 matrices with entries in the 4-dimensional space U ′ and with the
condition � on the minors (that is, the minors are in L), and obvious actions
of GL(3, C) and GL(2, C). The description of the semi-stable points of this
space leads to Proposition 3.4, which says that the quotient space Ms

�/ ∼ and
H(�) are isomorphic. Furthermore we show that B may be also described
as the locus of orbits which contain a representative matrix with at least one
zero entry. This leads to Proposition 3.8, which says that the locus B in H(�)

is birational to � × P1 ∼= Q × P1, where � ⊂ P3(U ′) is a curve naturally
isomorphic to Q.

Note that the modular curve of level 7 has 24 cusps corresponding to the
24 flexes in the models Q and Q′. Throughout this article we are going to use
the word “cusp” also for the images of the cusps of X(7) in Q, Q′ and �.

At the end of Section 2 we also report several results from [21], describing
in more detail three different models of the Fano 3-fold V22, two of which
(H(�) and VSP(Q, 6)) we have introduced already.

We start Section 3 by presenting several results from [10] that are going
to be used for comparisons in the sequel. In this way we can recover more
information about the features of surfaces parametrised by boundary points of
H(�). To present an example of this sort of study, we also describe the work
in [1] on the (1, 5) case (Section 4).

Section 5 is divided into four subsections. In the first one we prove several
results, among them Proposition 5.4: that to every point of the locus B in H(�)

it is possible to associate a surface.
The second subsection, devoted to general degenerations, contains sev-

eral side results and culminates in Proposition 5.12, which relates degener-
ate twisted cubic curves and the first degeneration of a set of six points in
VSP(Q, 6): where three of the six points lie on the Hessian of the Klein quartic
Hess(Q′) ⊂ P2(W ′). Furthermore, the images of these three points under the
embedding P2(W ′) ↪→ P6(L) are collinear and the intersection of the three
associated Calabi-Yaus is a 3-fold Ua of degree 7. Thus the configuration of
six points is not general in the sense of [8] (see Proposition 2.9 below). The
most general surface related to such a degeneration is then Ua intersected with
any Calabi-Yau defined by any of the other three points.

The surfaces in the third subsection (parametrised by a subvariety B ′ ⊂ B)
are relatively simple to describe, because they are defined by the intersection
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Table 1. Hierarchy of the degenerations

1
conic in a general plane of  P3(U) + line

six points of P2(W�),
three on Hess Q�,

collinear images in P6(L)

intersection of 3-fold Ua of degree 7
and Calabi-Yau 3-fold

2
connected union

of three lines in P3(U)

{p1, p2, p3} � {p1, p4, p5}
lying on Hess Q�,

collinear images in P6(L)

intersection of two 3-folds
of degree 7: Ua, Ue

3
conic in special plane

of  P3(U) + a line 

double point + two points
on line in P2(W�),

+ double point

union of 7
quadric surfaces 

5
three lines through
a point in P3(U)

three double points in P2(W�)

14 planes in P6(V)

4
special conic union a line

quadruple point +
double point in P2(W�),

7 double planes in P6(V)

of two 3-folds Ua and Ue of degree 7 as above. There are two sets of three
points as above with one point in common, and the degenerate twisted cubic
curve associated is the connected union of three lines. This is summarised in
Proposition 5.14.

Further degenerations of (1, 7)-polarised abelian surfaces arise over the
cusps of �, and are studied in the fourth subsection. Proposition 5.16 tells that
one gets three types of reducible surfaces: 7 quadric surfaces, each contained
in some P3 ⊂ P6(V ), or 7 double planes in P6(V ), or 14 planes in P6(V ). We
work out the related degenerations of H(�) and VSP(Q, 6) as well. Notice
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that in the (1, 5) case there is no configuration analogous to the 14 planes (see
Remark 5.19).

All the results proved in this article are presented in the following com-
prehensive main theorem which lists and classifies the surfaces (possibly
degenerations of smooth (1, 7)-polarised abelian surfaces) parametrised by
B ⊂ H(�):

Theorem A. Let [α] ∈ B ⊂ H(�) ∼= VSP(Q, 6). Then [α] determines:

i. a singular twisted cubic curve Cα in P3(U),

ii. six points in P2(W ′) (more precisely, a 0-dimensional subscheme � ⊂
P2(W ′) of length 6), and

iii. a surface Aα ⊂ P6(V ),

as follows.

1. If [α] ∈ B \ B ′ and [α] is not over a cusp of �, then
i. Cα is a smooth conic in a general plane of P3(U) union a line;

ii. � is six points of P2(W ′), three of which lie on Hess(Q′), whose
images in P6(L) are collinear;

iii. Aα is the intersection of a 3-fold Ua of degree 7 determined by the
collinear points, and any Calabi-Yau 3-fold determined by any of the
remaining ones.

2. If [α] ∈ B ′ and [α] is not over a cusp of �, then
i. Cα is the connected union of three lines in P3(U);

ii. � is six points of P2(W ′) with {p1, p2, p3} and {p1, p4, p5} lying on
Hess(Q′), whose images in P6(L) form two sets of three collinear
points of P6(L);

iii. Aα is the intersection of two 3-folds of degree 7: Ua determined by
the first set of collinear points, and Ue determined by the second set
of collinear points.

3. If [α] is general over a cusp of �, then
i. Cα is a smooth conic in a special plane (defined by the cusp) of P3(U)

union a line,
ii. � is a double point and two single points on a line in P2(W ′), plus

a second double point: both the double points are in Q ∩ Hess(Q′),
i.e. at cusps;

iii. Aα is the union of 7 quadric surfaces, each contained in some P3 ⊂
P6(V ).

4. If [α] is special over a cusp of � as in Proposition 5.16, part (2a), then

i. Cα is a smooth special conic union a line;
ii. � is a quadruple point plus a double point in P2(W ′), both at cusps;
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iii. Aα is the union of 7 double planes in P6(V ).

5. If [α] ∈ B ′ is over a cusp of �, then
i. Cα is three lines through a point in P3(U);

ii. � is three double points in P2(W ′), all at cusps;
iii. Aα is the union of 14 planes in P6(V ).

Proof. See Proposition 2.6, Proposition 2.9, Proposition 5.12, Proposi-
tion 5.14 and Proposition 5.16.

We illustrate the results of the main theorem and the degenerations that
occur among the cases in Table 1.

2. Moduli spaces

2.1. Moduli spaces of abelian varieties

For general background on moduli of abelian varieties and level structures we
refer to [12, Section I.1].

Recall that a polarisation on an abelian variety A is the class in NS(A) of an
ample line bundle L . If A = Cg/L, where L ⊂ Cg is a cocompact lattice, then
we may regard a polarisation as a Riemann form, that is, a positive definite
hermitian form H on Cg whose imaginary part H ′ = Im(H) is integer-valued
on L.

A line bundle L representing a polarisation defines a map λ : A → Â =
Pic0 A by λ(x) = t∗x L ⊗ L −1, where tx is translation by x. The map λ

depends only on the polarisation, not on the choice of the line bundle L : we
define K(L ) = ker λ. A canonical level structure is a symplectic isomorphism
K(L )

∼→ (Ze1 ×· · ·×Zeg
)2, where (e1, . . . , eg) is the type of the polarisation

(the elementary divisors of H ′). In our case g = 2 and (e1, e2) = (1, 7). If x,
y ∈ K(L ), then the skew-symmetric (Weil) pairing induced on K(L ) by H ′
is given by eL (x, y) = exp(2πiH ′(x, y)).

2.2. The Heisenberg group

For general facts about Heisenberg groups see [14]: for details of our case, see
[7] and [8].

The Heisenberg group H7 is generated by two elements σ and τ : via the
Schrödinger representation they act on a basis of P(H 0(L )′) (given by canon-
ical theta functions, see [14]) by

σ(xi) = xi−1, τ (xi) = ξ−i (xi),

where ξ = e2πi/7. Thus the image of A in P(H 0(L )′) is invariant under the ac-
tion of the Heisenberg group via the Schrödinger representation. In particular,
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if A is embedded this way in P(H 0(L )′), then H 0(IA(n)) is also a repres-
entation of the Heisenberg group. Since [σ, τ ] = ξ , the Heisenberg group is a
central extension

1 −→ µ7 −→ H7 −→ Z7 × Z7 −→ 0.

K(L ) can be viewed as a subgroup of the automorphism group of A via trans-
lations, and the order 2 subgroup ±1A acts on K(L ) by inner automorphisms.
The Schrödinger representation of the extended Heisenberg group G7 is defined
by G7 = H7 � 〈ι〉, where ι acts on H7 via ι(ξ, x1, x2) = (ξ,−x1,−x2), and ι

acts on V by ι(xi) = −x−i . Note that our ι here is −ι in [7] and [8].
ι, acting as an involution on V , has two eigenspaces V±, with eigenvalues

±1. We will write P+ = P(V+) ⊆ P(V ) and similarly P− = P(V−). In the
(1, 7) case, P− is given by the equations xi = x−i for i ∈ Z7 and P+ is given
by the equations xi = −x−i for i ∈ Z7.

Let N(H7) be the normaliser of the Heisenberg group H7 inside SL(V ),
where the inclusion H7 ↪→ SL(V ) is via the Schrödinger representation. We
have a sequence of inclusions

Z(H7) = µ7 ⊆ H7 ⊆ N(H7),

and it is easy to see that N(H7)/H7 = SL2(Z7), in fact N(H7) is a semi-
direct product H7 � SL2(Z7). Therefore the Schrödinger representation of H7

induces a 7-dimensional representation ρ7 : SL2(Z7) → SL(V ). The spaces
V+ and V− are both invariant under ρ7, and ρ7 splits as ρ+ ⊕ ρ−, where ρ±
is the representation of SL2(Z7) acting on V±. Note that ρ+ is trivial on the
centre of SL2(Z7), so in fact it descends to give an irreducible representation
ρ+ : PGL2(Z7) → GL(V+). In the beautiful treatise [13] by Felix Klein, the
polynomial invariants of this representation are computed and the quartic1

f ′
Klein = y3

1y2 + y3
2y3 + y3

3y1

is the unique invariant of minimal degree 4. The smooth quartic curve defined
by this invariant

Q′ = {f ′
Klein = 0} ⊂ P2

+

is an isomorphic image of the modular curve of level 7, and has PGL2(Z7) as
its full automorphism group.

Throughout we use the notation W ′ := V+ and U ′ := V−, and we are going
to work with their dual spaces as well, which as SL2(Z7)-modules are not

1 The notation f ′
Klein is chosen because in Appendix B we work with a quartic given by the same

equation, but embedded in the dual space P2′+ , which is not isomorphic to P2+ as a SL2(Z7)-module.
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isomorphic to them. More information about the representations of SL2(Z7)

and these spaces can be found in subsection A.3 in Appendix A.

2.3. The moduli space of (1, 7)-polarised abelian surfaces

In this subsection we briefly recall the main results by Manolache and Schreyer
[16] about the moduli space of (1, 7)-polarised abelian surfaces with canonical
level structure. A central result is the following

Theorem 2.1 ([16], Theorem 3.2). An abelian surface A, G7-invariantly
embedded in P6(V ), has a G7-invariant resolution of the form

0 ←− OA ←− O
β←− 3V4O (−3)

α←− 2S/3

α′←− 3V1O (−4)
β ′←− O (−7) ←− 0

with α′ =
(

0 1
−1 0

)
tα and β ′ = tβ.

Note that all the modules in the above sequence are G7-modules, and S is
the non-trivial character of 〈ι〉. See Appendix A for the table of characters of
G7.

Proposition 2.2 ([16], Proposition 3.3). α has entries in a 4-dimensional
vector space (see Appendix A): more precisely

HomG7 (S/3, V4O (−3)) = 4I.

A key observation is the following.

Remark 2.3 ([16], Remark 3.4). Let F1 and F2 be two G7-sheaves. Then
HomG7 (F1, F2) is a N -module, because G7 = H7 � Z2 is a normal subgroup
of N ∼= H7 � SL2(Z7), ι being central in SL2(Z7).

Using the character table of SL2(Z7) and with the notation fromAppendixA,
we see that

Hom(/3, O (−3)) ∼= Hom(O (−4), /3)= ∧3 V =V1 ⊕ 4V #
1 , and

HomG7 (S/3, V4O (−3)) ∼= HomG7 (V1O (−4), S/3)=U ′ :=〈u0, u1, u2, u3〉.
If we equip V with the canonical basis 〈e0 . . . e6〉, then we get that the elements
of HomG7 (V1O (−4), S/3) are given by the following 1 × 7 matrices with
entries in ∧3V :

u0 = (ek+1 ∧ ek+4 ∧ ek+2 − ek+6 ∧ ek+3 ∧ ek+5)k∈Z7 ,

u1 = (ek ∧ ek+1 ∧ ek+6)k∈Z7 ,

u2 = (ek ∧ ek+2 ∧ ek+5)k∈Z7 ,

u3 = (ek ∧ ek+4 ∧ ek+3)k∈Z7 .
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Finally HomG7 (V
#

1 O (−4), S/3) = 〈u#
0〉, where

u#
0 = (ek+1 ∧ ek+4 ∧ ek+2 + ek+6 ∧ ek+3 ∧ ek+5)k∈Z7 .

Furthermore, the elements of HomG7 (S/3, V4O (−3)) are given by the trans-
poses of the above matrices. Notice also that the composition of Hom(O (−4),

/3) and Hom(/3, O (−3)) is given by the wedge product, if we identify ca-
nonically ∧6V with V ∗ = V3 = H 0(O (1)). A direct computation gives us the
non-zero compositions:

λ := ut
0u2 = ut

2u0 = −ut
3u3 =



0 0 x1 0 0 −x6 0
0 0 0 x2 0 0 −x0

−x1 0 0 0 x3 0 0
0 −x2 0 0 0 x4 0
0 0 −x3 0 0 0 x5

x6 0 0 −x4 0 0 0
0 x0 0 0 −x5 0 0



µ := ut
0u3 = ut

3u0 = −ut
1u1 =



0 0 0 −x5 x2 0 0
0 0 0 0 −x6 x3 0
0 0 0 0 0 −x0 x4

x5 0 0 0 0 0 −x1

−x2 x6 0 0 0 0 0
0 −x3 x0 0 0 0 0
0 0 −x4 x1 0 0 0



ν := ut
0u1 = ut

1u0 = −ut
2u2 =



0 x4 0 0 0 0 −x3

−x4 0 x5 0 0 0 0
0 −x5 0 x6 0 0 0
0 0 −x6 0 x0 0 0
0 0 0 −x0 0 x1 0
0 0 0 0 −x1 0 x2

x3 0 0 0 0 −x2 0


Furthermore ut

0u#
0 = 2 · diag(x0, . . . , x6) and ut

1u#
0 = ν∗, where ν∗ is like

ν, but with all signs positive. Likewise ut
2u#

0 = λ∗, ut
3u#

0 = µ∗. In the se-
quel we will omit to write (·)t , and we will identify loosely the elements of
Hom(/3, O (−3)) and Hom(O (−4), /3).

In other words, once we choose a basis u0, . . . , u3 of HomG7 (S/3, V4

O (−3)), we can view the matrix α associated to A as an element of M :=
M(3× 2, U ′). That is, the entries of this matrix are linear forms over C in four
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variables. We are going to give more information about this fact in the next
sections.

Proposition 2.4 ([16], Proposition 3.5). A matrix α as in Theorem 2.1
satisfies αα′ = 0 if and only if the three quadrics in P3(U) given by its 2 × 2
minors (in S2U ′) are annihilated by each of the three operators

�1 = 2a0a1 − a2
2, �2 = 2a0a2 − a2

3, �3 = 2a0a3 − a2
1 .

We denote by � the linear span of the operators �1, �2, �3, which is also the
unique SL2(Z7)-invariant 3-dimensional subspace of S2U . From Appendix A
we see that W ∼= � ⊂ S2U , so this property simply tells us that the minors of
the matrix α lie in the irreducible G7-module L, where S2U ′ = L ⊕ W ′ (see
Appendix A).

Remark 2.5. A resolution as in Theorem 2.1 is determined up to action
from the left and right respectively of GL3(C) and GL2(C).

Let Cα ⊂ P3(U) be the curve defined by the 2 × 2 minors of a matrix α as
in the resolution of Theorem 2.1.

Proposition 2.6 ([16], Proposition 4.1). The curve Cα is a projectively
Cohen-Macaulay curve of degree 3 and arithmetic genus 0.

This means that the minors of α determine a twisted cubic curve Cα . In par-
ticular these minors are independent, so define a 3-dimensional linear subspace
of S2U ′ = H 0(P3(U), O (2)). Furthermore it is shown in [16, Corollary 4.2]
that if A is smooth, then it is uniquely determined by the curve Cα associated
to its resolution.

The Hilbert scheme Hilb3t+1(P3(U)) has two components of dimensions
12 and 15, Hilb3t+1(P3(U)) = H1 ∪ H2, with general points of H1, H2 and
H1 ∩ H2 corresponding respectively to a twisted cubic, a plane cubic union a
point and a plane nodal cubic with an embedded point at the node. If C ∈ H1

then dim H 0(P3(U), IC(2)) = 3. The morphism

f : H1 −→ G
(
3, H 0(P3(U), O (2))

)
C �−→ H 0(P3(U), IC(2))

is birational onto its image H , and is an isomorphism precisely on H1 \ (H1 ∩
H2), cf. [5].

Consider

H(�) := H ∩ G(3, L) ⊂ G
(
3, H 0(P3(U), O (2))

)
,
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where G(3, L) is the Grassmannian of 3-dimensional vector subspaces of L.
Since it does not intersect f (H1 ∩ H2), we can regard H(�) as a subvariety
of H1 as well (cf. [16]).

Theorem 2.7 ([16], Proposition 4.4). H(�) is a smooth prime Fano 3-fold
of genus three.

By the results of [16] the moduli space of (1, 7)-polarised abelian surfaces
with canonical level structure is birational to H(�). For more information
about Fano 3-folds, see [19], and about Fano 3-folds of genus 12, see [21].

2.4. A different model of the moduli space

We report a few crucial facts from [7] and [8]. The 7 × 7 matrix

M ′
7(x, y) =

(
x i+j

2
y i−j

2

)
i,j∈Z7

has rank at most 4 on an embedded H7-invariant (1, 7)-polarised abelian sur-
face in P6(V ): that is, if(

(x0 : . . . : x7), (y0 : . . . : y7)
) ∈ A × A ⊂ P6(V ) × P6(V )

then rank M ≤ 4 ([7, Corollary 2.8]).
On the other hand, for any parameter point y = (0 : y1 : y2 : y3 : −y3 :

−y2 : −y1) ∈ P2(W ′), the matrix M ′
7 is alternating. We will denote in the

sequel by I3(y) ⊂ C[x0, . . . , x6] the homogeneous ideal generated by the
6 × 6 Pfaffians of the alternating matrix M ′

7(x, y) and by V7,y ⊂ P6(V ) the
closed subscheme defined by this ideal. Notice that, in our notation, M ′

7(x, (1 :
0 : 0)) = λ, M ′

7(x, (0 : 1 : 0)) = µ and M ′
7(x, (0 : 0 : 1)) = ν.

Now we quote two propositions of Gross and Popescu that we are going to
need.

Proposition 2.8 ([7], Proposition 5.2). Let y ∈ P2(W ′).
(1) For y ∈ Q′ = {y3

1y2 + y3
2y3 + y3

3y1 = 0} ⊂ P2(W ′), the scheme V7,y

is the secant variety of an elliptic normal curve in P6(V ) (the level 7
elliptic curve corresponding to the point y on the modular curve Q′).

(2) For a general y ∈ P2(W ′), the scheme V7,y is a projectively Gorenstein
irreducible threefold of degree 14 and sectional genus 15.

Proposition 2.9 ([7], Proposition 5.4). Let A ∈ P6(V ) be a general
Heisenberg-invariant (1, 7)-polarised abelian surface, and let A ∩ P2(W ′) =
{p1, . . . , p6} be the odd 2-torsion points of A. Then:

(1) The points pi form a polar hexagon to the Klein quartic curve Q ⊂
P2(W).
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(2) The surface A is contained in V7,pi
, for all i = 1, . . . , 6. Moreover, 21

cubic Pfaffians defining any three of the six V7,pi
generate the homogen-

eous ideal IA of A.

It follows that the moduli space of (1, 7)-polarised abelian surfaces with
canonical level structure is birational to the space VSP(Q, 6) of polar hexagons
to the Klein quartic curve Q ⊂ P2(W).

Remark 2.10. By direct computation we see that the seven Pfaffians of a
matrix M ′

7(x, y) associated to an element y = (0 : y1 : y2 : y3 : −y3 : −y2 :
−y1) ∈ P2(W ′) are given by y3|L ⊗ V4, where from the appendix we have
S3W ′ = L ⊕ W and S3V3 = (I ⊕ U ′ ⊕ L) ⊗ V4: i.e. the i-th Pfaffian is
(1)

Pfaff i (y1λ + y2µ + y3ν)

= (y2
2 y3 − y3

1)xixi+3xi+4 + (y2
3 y1 − y3

2)xixi+1xi+6 + (y2
1 y2 − y3

3)xixi+2xi+5

+ y1y2y3(xi+1xi+2xi+4 + xi+3xi+5xi+6 − x3
i ) + y2

1 y3(x2
i+2xi+3 + x2

i+5xi+4)

+ y2
2 y1(x2

i+3xi+1 + x2
i+4xi+6) + y2

3 y2(x2
i+1xi+5 + x2

i+6xi+1).

Then Proposition 2.9(ii) simply says that the linear space spanned by any three
of the six p3

i |L ∈ L is 3-dimensional.

3. The geometry of H(�) and its boundary

3.1. The moduli space as an orbit space

In what follows we regard the moduli space of (1, 7)-polarised abelian varieties
as an orbit space: in fact, by Remark 2.5, GL3(C) and GL2(C) act on the variety
M := M(3 × 2, U ′). In order to apply the theory of orbit spaces, see [20],
p. 73, we restrict our attention to P(M), SL3(C) and SL2(C). Doing so, no
harm has been done to the elements

H 0(P3(U), Iα(2)) ∈ G
(
3, H 0(P3(U), O (2))

)
,

where Iα is the ideal generated by the minors qi(α) of a matrix α arising from
a resolution as in Subsection 2.3, and to the effects of the actions.

Notice that the actions of SL3(C) and SL2(C) on P(M) induce actions
on the minors, given by linear combinations. In any case the vector space Wα

generated by the minors of α is fixed by this action. Notice that SL3(C)×SL2(C)

is reductive, and we consider its obvious linearisation.
The study of this problem has been done in [5] and gives the following

result:

Proposition 3.1. Let α ∈ M . The following are equivalent:
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(1) α is stable,

(2) α is semi-stable,

(3) the minors of α are linearly independent.

Now let P(M)s be the set of the stable points of P(M). P(M)s is open, so
quasi-projective (cf. [20]). Let P(M)s

� be the subvariety of P(M)s defined by
the nine quadratic conditions (three for each minor) �i(qj (α)) = 0.

Proposition 3.2. There is a projective variety Y and an affine surject-
ive morphism φ such that φ : P(M)s → Y is a geometric quotient and
φ(P(M)s

�) := Y is projective as well. Furthermore distinct orbits are mapped
to distinct elements of Y (and so of Y as well).

Proof. After noting that a stable orbit of P(M) is either entirely in P(M)s
�

or entirely outside, everything follows from [20], Theorem 3.14 and The-
orem 3.5(iv).

Lemma 3.3. Let α1, α2 ∈ M(3×2, U ′) be two matrices whose minors span
a 3-dimensional subspace. If 〈qi(α1)〉i=1,2,3 = 〈qi(α2)〉i=1,2,3, then α1 and α2

lie in a common orbit under the action of GL3(C) × GL2(C).

Proof. First of all, up to the action, we can rearrange the matrices in such a
way that qi(α1) = qi(α2) := qi , i = 1, 2, 3. Obviously the ideals these minors
generate define the same variety Z ∈ P3(U). The obvious resolution

(2) 0 −→ 2O (−3)
α1−→ 3O (−2)

(qi )−−→ O −→ OZ −→ 0

is unique up to action by GL2(C), and it still works if we replace α1 with
α2. The columns of α1 and α2 are just the syzygies of qi , i = 1, 2, 3 (see
Theorem 5.2), thus there is some x ∈ GL2(C) such that α1 = α2x.

This lemma allows us to prove the main result of this subsection:

Proposition 3.4. Y is isomorphic to H(�).

Proof. Consider the morphism ω : P(M)s
� → H(�) given by α �→

Wα . Obviously ω is constant on orbits, and since G(3, L) does not intersect
f (H1 ∩ H2), any of its elements is representable by some element of P(M)s

�,
and then ω is surjective as well. By [20, Corollary 3.5.1], we see that (Y , φ) is a
categorical quotient of P(M)s

�. By definition of categorical quotient (see [20],
definition after Proposition 2.9), there is a (unique) morphism ψ : Y → H(�)

such that ω = ψ ◦ φ.
By Lemma 3.3 and Proposition 3.2, ψ is a bijective morphism, and by [19]

H(�) is a smooth (normal) irreducible variety. Consider the normalisation
ν: Ỹ → Y . In particular ψ◦ν is a normalisation of H(�), so by [22] (corollary
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to Theorem 5 in Section 2) we can conclude that ψ ◦ ν is the identity and then
ψ is actually an isomorphism.

3.2. Geometry of the boundary B

In this subsection we study the geometry of the boundary B of the moduli
space of twisted cubic curves annihilated by �. The key observation is that by
[9], Proposition 9.4, if a matrix α ∈ M is not conjugate to a matrix α′ having
a 0-entry, then the minors of α determine a twisted cubic curve. Obviously, if
the minors of α ∈ M define a twisted cubic curve, it cannot be conjugate to
a matrix having a 0-entry. This means that in this subsection we are studying
the subset B of H(�) defined by the condition that its elements are the images
via φ of the set of all the matrices conjugate to some matrix having a 0-entry.

Lemma 3.5. B is a closed subvariety of H(�).

Proof. Consider the subvariety B̂ of P(M)s
�×G(1, 2)×G(2, 3) ∼= P(M)s

�

×P1 ×P2 defined by the condition that (α, a, b) ∈ B̂ if and only if αi(a) ⊂ b,
i = 0, . . . , 3, where αi is the matrix given by projecting the entries of α to 〈ui〉.
In other words, (α, a, b) ∈ B̂ if a is a 1-dimensional subspace of C2 whose
image is contained in the 2-dimensional subspace b of C3 for every αi ; and
this is the case if and only if α is conjugate to a matrix of M having a 0-entry.
Clearly B̂ is closed, and so is its projection π |Ms

�
(B̂) into P(M)s

�, see [9],
Theorem 3.12. Moreover it is invariant under the action of SL3(C) × SL2(C).
Finally, by [20, Theorem 3.5.iv], we get that φ(π |P(M)s

�
(B̂)) = B is closed in

H(�).

The next step is to find a suitable representative for each [α] ∈ B. In other
words, we want to parametrise the boundary B of H(�). We can suppose that
α12 = 0. For simplicity from now on we write

(3) α =
(

a 0
b d

c e

)
.

If we write a =
3∑

i=0
aiui , etc., then the minors ad and ae satisfy � if and only

if d and e satisfy the linear system

a∗ =
(

a1 a0 −a2 0
a2 0 a0 −a3

a3 −a1 0 a0

)
Remark 3.6. Let x and y be any two elements of U ′. Via the previous

matrix x∗ we get a multiplication U ′ × U ′ → W ′ ⊂ S2U ′ = L ⊕ W ′ given
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by (x, y) �→ x∗y. Notice that these are all SL2(Z7)-modules. This induces a
product ∗ : U ′ × U ′ → W ′. Obviously ∗ is symmetric, and the condition �

says that every minor of a matrix α is contained in L ⊂ S2U ′. This is a fact
we are going to use heavily in the next section.

The rank of a∗ must be at most 2, because otherwise d and e would be
dependent, and so a minor of α would be zero. Thus the minors of a∗ must
vanish, that is

a3
0 − a1a2a3 = 0(4)

a2
0a1 + a0a2

2 + a2a2
3 = 0(5)

a2
0a2 + a0a2

3 + a3a2
1 = 0(6)

a2
0a3 + a0a2

1 + a1a2
2 = 0(7)

Let us call � the curve in P3(U ′) defined by these equations. As shown in
Appendix B, � is isomorphic to the modular curve of level 7, whose standard
model is the Klein quartic Q given by the equation (21).

It is easy to check that the rank of a∗ cannot be 1. So the space of solutions
is 2-dimensional, and then we can fix a basis for it, namely (d, e). In other
words, as long as d and e are independent, any choice we make is good, and
does not affect the space spanned by the minors of the matrix.

Lemma 3.7. Let α ∈ Ms . Then none of its minors is of the form l2, where l

is a linear form.

Proof. Suppose l = l0u0 + l1u1 + l2u2 + l3u3 and l2 satisfies �. Then
we can certainly suppose that l0 = 1, and from α∗ (with l in place of a), we
get 2li = l2

i+1, i = 1, 2, 3. Thus, for example, l2 = 2ξ , where ξ 7 = 1, but
then l1l2l3 = 2ξ2ξ 22ξ 4 = 8  = 1, so the linear system a∗ would have rank 3,
contradicting the fact that α ∈ Ms .

This lemma implies that, because of the � condition, the variety defined by
the minors of α is a (possibly reducible) curve: contrast [5, Lemma 3].

Proposition 3.8. B is birational to � × P1 ∼= Q × P1.

Proof. If, as in (3), α is a matrix representing the point [α] ∈ B, then
a ∈ �, while d and e are determined up to choice of a basis. We call Cα the
variety defined by the minors of α.

For the minor q1(α) to satisfy �, the vector (b, c) must satisfy the linear
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system

> =
 e1 e0 −e2 0 −d1 −d0 d2 0

e2 0 e0 −e3 −d2 0 −d0 d3

e3 −e1 0 e0 −d3 d1 0 −d0

 .

If a0 = 0, by (4),. . . ,(7) two more coefficients among a1, a2 and a3 must be
zero. We can suppose a1 = 1, and so d, e ∈ 〈u2, u3〉. Let d = u2 and e = u3.
Then we can suppose b1 = b2 = c1 = 0, so b3 = −c0, b0 = c2 = 0 and c3 is
arbitrary. Therefore

α =
 u1 0

b3u3 u2

−b3u0 + c3u3 u3


These matrices are parametrised by (b3 : c3) ∈ P1. Unless b3 = 0, their minors
determine a line and a conic, non-coplanar and meeting at a point. If b3 = 0
the minors determine three non-coplanar lines meeting at a common point.

If a0  = 0 we can set a0 = 1, and (4) gives us a3 = 1/a1a2, while (5), (6)
and (7) become the non-homogeneous equation 1 + a2

1a3
2 + a3

1a2 = 0. It is
easy to see that either d0 or e0 is nonzero, so let e0 = 1, and d0 = 0, which
implies d1d2d3  = 0. We can assume that b0 = b1 = c0 = 0, so now the vector
(b2, b3, c1, c2, c3) must satisfy the linear system

>′ =
−e2 0 0 d2 0

1 −e3 0 0 d3

0 1 d1 0 0


The rank of >′ is 3, so we get a 2-dimensional space of solutions. Obviously
multiplication by a scalar on (b, c) does not affect Cα , and so we get a P1 of
solutions. Also in this case in general Cα is a conic and a line, non-coplanar
and meeting at a point. If this does not happen, then Cα can only be the union
of three non-coplanar lines, one of them meeting the other two, possibly at a
single point. If so, by Lemma 3.3 the minors of α can be arranged in such a
way that

(8) α =
 a 0

b d

0 e′

 .

So we are looking for a form e′ = xd+ye ∈ �. Actually e′ = xd+e, because
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d /∈ �. Consider the linear system(
e′1 1 −e′2 0
e′2 0 1 −e′3
e′3 −e′1 0 1

)

Obviously a satisfies it, and since we can assume that b0 = 0, the minor

(9) 1 − (e1 + xd1)(e2 + xd2)(e3 + xd3)

must be zero.

Remark 3.9. If e′ ∈ 〈d, e〉 satisfies (9), then as this implies e′ ∈ �, we get
that e′ satisfies (4),. . . ,(7).

From d1d2d3  = 0 we conclude that the degree of the previous polynomial
is 3, and so for any given a (with a0  = 0) we get in general three matrices (and
then elements of B) whose minors define three lines.

So far we have proved that over every point a ∈ � there is a P1 of elements
of B. That is, the closures of the fibres of the rational map B ��� � ∼= Q given
by α �→ a are P1’s. The map is not well-defined if and only if an element of
B is represented by a matrix like (8). Indeed a determines the plane where the
conic lives, and so if the conic is smooth, a must be unique.

Therefore now we only need to show that the locus B ′ ⊂ B whose elements
are represented by matrices like (8) is closed. This is clear after noticing that

B∗ := {(a, b) ∈ � × � | a∗b = 0} ⊂ � × � ⊂ P3(U ′) × P3(U ′)

is a proper closed subset of � ×�, and that B ′ is isomorphic to B∗, in fact the
entries b (respectively d ′) of (8) can be chosen arbitrarily among the solutions of
e∗ (respectively a∗), and we are still in the same orbit of matrices representing
ξ ∈ B ′. Notice that the projections pi : B∗ → �, i = 1, 2 are generically
3 : 1.

From (9) we see that in general a fibre of B over a point a ∈ � meets three
other fibres, each one at a single point. In the next lemma we work out over
which fibres the intersection is non-smooth.

Lemma 3.10. Let α be a matrix whose image is in B, and let the top-left
entry be a ∈ �. If the rational fibre over a does not meet three distinct fibres,
then a is the image of a cusp of Q.

Proof. The first observation is that over the cusp a = u1, corresponding
to y2, where yi is the dual basis of vi , the space of solutions of a∗ is given
by the last two columns of (27) (see Appendix B), that is 〈u2, u3〉. Then after
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replacing the polynomial (9) with the polynomial given by (5), we get clearly
a double solution, namely e′2e′23 = 0.

Now notice that, by Remark 3.9, the condition that the polynomials like
(9) have a double solution is invariant under the action of SL2(Z7), whose
action on the entries (in U ′) of α descends to an action on the coefficients of
the polynomials. Therefore the set of points of � we are after is a union of
SL2(Z7)-orbits of �, and it contains the orbit of 24 images of cusps of Q.

Let us assume a0  = 0. Then we only need the polynomial (9) to have a
double solution. Using as d and e the first two columns of (27), the discriminant
D of (9), divided by a common monomial, has degree 11, and is not divisible
by fKlein. Then the zero locus of D intersects Q at at most 44 reduced points,
including the three cusps with zero entries. By [13], there is one orbit only
with at most 44 points, precisely the orbit of 24 cusps.

Remark 3.11. As mentioned in the summary, at first sight we have a good
candidate for a possible subspace of H(�) whose points could parametrise
translation scrolls. In fact we have just seen in Proposition 3.8 that B is bira-
tional to the Kummer modular surface that parametrises those surfaces. But
things will not be as straightforward as expected, as we will see in Section 5.
For a brief description of the translation scrolls, see Section 4, where everything
works for (1, p) in place of (1, 5).

3.3. More on the isomorphic models of the moduli space

We have seen that the moduli space we are interested in is birational to H(�),
the moduli space of twisted cubic curves annihilated by the net of quadrics �

and also to the variety of sum of powers VSP(Q, 6), where

VSP(Q, 6)

= {{l1 . . . l6} ∈ Hilb6(P2(W ′)) | l4
1 + . . . + l4

6 = v3
1v2 + v3

2v3 + v3
3v1}.

In fact H(�) and VSP(Q, 6) are isomorphic, and in this subsection we are
going to discuss the isomorphism in more detail and present more facts on
these spaces.

Theorem 3.12 ([21], Theorem 1.1). There are isomorphisms

(10) H(�)
∼−→ G(3, L, ηKlein)

∼−→ VSP(Q, 6).

As explained in [21], every Fano 3-fold of genus 12 has these descrip-
tions over an algebraically closed field of characteristic zero. G(3, L, ηKlein)
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is as follows (notice that the spaces here correspond to those in Appendix A):
consider on

L = (f ⊥
Klein)∗3 = 〈v1v2v3, v2v2

3, v3v2
1, v1v2

2, v2
3v1 −v3

2, v2
1v2 −v3

3, v2
2v3 −v3

1〉
the net ηKlein : ∧2L → W ∼= C3 of alternating forms defined by the matrix

ηKlein =



0 0 0 0 0 −y2 y1

0 0 0 0 −y3 0 y2

0 0 0 −y1 0 0 y3

0 0 y1 0 y2 −y3 0
0 y3 0 −y2 0 y1 0
y2 0 0 y3 −y1 0 0

−y1 −y2 −y3 0 0 0 0


.

Here (f ⊥
Klein)3 = {x ∈ S3W = C[y1, y2, y3]3 | xfKlein = 0}, the 7-dimensional

vector space of differentials of the third order that annihilates fKlein (see [21]).
We write yi in place of ∂vi for the dual generators of W with respect to the vi ,
the elements of the basis of W ′ in the appendix. Then

G(3, L, ηKlein) = {E ∈ G(3, L) | ∧2E ⊂ ker(ηKlein : ∧2L → W)}.
We follow [21, Theorem 2.6] to give a sketch of the proof of the second

isomorphism in (10).
The Pfaffians of ηKlein are (f ⊥

Klein)3, and if IPfaff is the ideal they generate,
then the dual socle generator (see [4]) of C[y1, y2, y3]/IPfaff is fKlein.

Given an element P ∈ G(3, L, ηKlein), choose a basis l for L with the last
three generators being taken from a basis p for P . Then, with respect to this
chosen basis, ηKlein gets a block decomposition form

(11). ηKlein ∼ η′
Klein =

( ∗ ψ

−ψt 0

)
Now ψ can be viewed as a 4 × 3 syzygy matrix for the exact complex

0 −→ 3OP2(W ′)(−4)
ψ−→ 4OP2(W ′)(−3)

minors−−−→ OP2(W ′) −→ O� −→ 0,

where � ⊂ P2(W ′) is six points, simply by computing the Hilbert series:
PHilb(�) = (1, 3, 6, 6, 6 . . .).

Notice that if we replace p with p′ = pa, a ∈ GL3, then we simply get
ψ ′ = ψa, and the above resolution is not affected. Similarly if we choose
differently the first four generators of l, then only the top-left block ∗ of η′

Klein
will be affected.
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Consider the first four Pfaffians of η′
Klein. They must be a linear combination

of the original ones, and are given by the minors of ψ , so we see that (I�)3 ⊂
(f ⊥

Klein)3. Thus

S3W → R� = C[y1, y2, y3]/I� → RKlein = C[y1, y2, y3]/(f ⊥
Klein)

and
Hom

(
(RKlein)4, C

) ⊂ Hom
(
(R�)4, C

)
.

Finally, fKlein is a generator for Hom((RKlein)4, C), being the dual socle gen-
erator, and the fourth power of the six points γi of � ⊂ W ′ impose independent
conditions on quartics. Then 〈γ 4

i 〉i=1,...,6 = Hom((R�)4, C), so

fKlein =
6∑

i=1

λiγ
4
i .

The first isomorphism in (10) comes from [21, Theorem 5.1], and in our
picture it is clear after we notice that, with the notation from the appendix, the
correspondence with the data in [21] is given by the net of quadrics q(W) =
� ⊂ S2U and by the 7-dimensional space annihilated by �,

(�⊥)2 = 〈u2
0, u2u3, u3u1, u1u2, u0u3 + u2

1, u0u1 + u2
2, u0u2 + u2

3〉
= L ⊂ S2U ′ = L ⊕ W ′.

Then (see [21, §5]) ηq = ηKlein, where ηq is a skew-symmetric matrix one
can recover from the resolution of the module SU ′/(�⊥). Let H(q) denote the
variety of twisted cubics C ⊂ P3(U) whose equations H 0(P3(U), IC(2)) ⊂
S2U ′ are annihilated by q. Since a twisted cubic is defined by the quadrics that
contain it and h0(P3(U), IC(2)) = 3, H(q) is a subset of G(3, Vq) in a natural
way. Then one can prove (see [21]) that ηq is a net of alternating forms on Vq

which defines H(q) ⊂ G(3, Vq), namely

H(�) ∼= G(3, Vq, ηq) = G(3, V�, ηKlein).

We make use of the fact that L is self dual: the copies of L we use are (f ⊥
Klein)∗3 ⊂

S3W ′ = L ⊕ W and V� ⊂ S2U ′ = L ⊕ W ′.
We can describe the SL2(Z7)-isomorphism S3W

∼→ L ⊕ W ′ = S2U ′ by
identifying

(12) y1y2y3 = u2
0, y2y2

3 = u2u3, y3y2
1 = u3u1, y1y2

2 = u1u2,

y2
3 y1 − y3

2 = u0u3 +u2
1, y2

1 y2 − y3
3 = u0u1 +u2

2, y2
2 y3 − y3

1 = u0u2 +u2
3.
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Similarly we can describe the dual isomorphism by

(13) a2a3 = v2v2
3, a1a2 = v1v2

2, a3a1 = v3v2
1, a2

0 = v1v2v3,

2a0a1+a2
2 = v2

1v2−v3
3, 2a0a2+a2

3 = v2
2v3−v3

1, 2a0a3+a2
1 = v2

3v1−v3
2,

where the ai’s are the duals of the ui’s.
The SL2(Z7)-isomorphism between the above copies of W ′ is given by

3y2
3 y1+y3

2 = u0u3−u2
1, 3y2

1 y2+y3
3 = u0u1−u2

2, 3y2
2 y3+y3

1 = u0u2−u2
3,

and this leads to two isomorphic representations of W given by
(14)

3v2
3v1+v3

2 = 2a0a3−a2
1, 3v2

1v2+v3
3 = 2a0a1−a2

2, 3v2
2v3+v3

1 = 2a0a2−a2
3 .

This allows us to map the generators of a twisted cubic curve, namely the
minors of a 3 × 2 matrix with linear entries in U ′, which are annihilated by
� ∼= W , to the generators of a 3-dimensional subspace of (f ⊥

Klein)∗3, as shown
in the next diagram:

G(3, L, ηKlein) ! E′ ⊂ (f ⊥
Klein)∗3 ∼= L ⊂ S3W ′ = L ⊕ W

↑ ↑#
H (f ⊥

Klein)3
∼= L ⊂ S3W = L ⊕ W ′

↓ ↓#
H(�) ! E ⊂ �⊥ ∼= L ⊂ S2U ′ = L ⊕ W ′

Remark 3.13. The SL(Z7)-isomorphism H can now be computed, because
by equations (20) (see Appendix A) and (1) we get

(v1v2v3 ↔ u2
0, v2

2v3 − v3
1 ↔ u1u2, . . . , v2

3v2 ↔ u0u2 + u2
3).

4. The six odd 2-torsion points in the (1, 5) case

In this brief section we recall some basic facts on the Horrocks-Mumford
bundle F for future comparisons with our results.

The moduli space of Horrocks-Mumford surfaces is given by P(H 0(F )),
where F is the Horrocks-Mumford bundle on P4(V ), cf. [10].

The normaliser of H5 is N = H5 � SL2(Z5), and H 0(F ) is irreducible and
isomorphic to χ4, the unique 4-dimensional representation of SL2(Z5) which
factors through PGL2(Z5) (for a list of all irreducible SL2(Z5)-modules see the
appendix of [10]).
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Under the involution ι(xi) = x−i we get two eigenspaces, and we are
interested in P1+ = P(V+). Via a suitable action of SL2(Z5) on P1+ compatible
with the action on P4(V ) one gets that the space H 0(OP1+(6)) is a SL2(Z5)-
module and as such it splits into two irreducible factors of dimension 4 and
3 respectively. More precisely H 0(OP1+(6)) ∼= χ4 ⊕ χ3, and χ4

∼= H 0(F ).
P
(
H 0(OP1+(6))

)
parametrises sets of six points in P1+, and a surface Xs defined

by a section s of the Horrocks-Mumford bundle is fully determined by the
(unordered) 6-tuple Xs ∩ P1+. The multiplicities of this 6-tuple also describe
the type of surface ([1]): these are listed in Table 2.

Table 2. Multiplicities of 2-torsion points in P1
+ ⊂ P4(V )

multiplicities type of Xs

111111 abelian surface
21111 translation scroll
3111 tangent scroll
222 double elliptic quintic scroll
2211 union of five quadrics
42 five planes with a double structure

We explain these types of surface. If E is a quintic elliptic normal curve H5-
equivariantly embedded, then for every point e ∈ E with 2e  = 0 we define a
translation scroll X to be the union of secants

X =
⋃
P∈E

P, P + e.

The surface X has degree 10 and its singular locus is the curve E, where X

has transversal A1-singularities.
If e = 0 in the above construction we obtain the tangent scroll of E. If e

is a non-zero 2-torsion point then the secants P, P + e and P, P − e coincide
and set-theoretically X is a elliptic quintic scroll. Since deg X = 10 the zero
locus of the surface supported on X has a double structure.

If finally the elliptic curve E degenerates to a pentagon of lines, the transla-
tion scroll degenerates to a union of five quadrics. These can degenerate further
to a union of five planes again with double structure.

The multiplicities listed in Table 2 before are just the multiplicities with
which the elliptic curve E (as a singular locus in the scrolls) intersects P1+.

Remark 4.1. It seems reasonable to bear in mind this strategy in our case
p = 7. Indeed we have just seen that H(�) ∼= VSP(Q, 6). In what follows
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we will comment our results with several remarks in order to compare them
with the features of this nice case.

5. Degenerations

In this section we are going to work out the surface associated to a given
boundary point [α] ∈ B of the moduli space H(�), where α is a matrix
in M . Furthermore we will relate degenerations of twisted cubic curves (i.e.
elements of H(�)) with degenerations of six general points in the variety of
sum of powers of Q.

5.1. Existence of surfaces related to degenerations

Here we are going to prove that given any element [α] ∈ B we can find a
resolution as in Theorem 2.1.

Proposition 5.1. For any α with [α] ∈ B we can construct a complex

(15) 0 ←− OA ←− O
β←− 3V4O (−3)

α←− 2S/3 α′←− 3V1O (−4)
β ′←− O (−7) ←− 0.

Proof. In the light of Remark 2.3, we get from appendix A that

HomG7 (V4O (−3), O ) = I ⊕ U ′ ⊕ L,

so the map β is naturally given by the three minors (q1(α), q2(α), q3(α)) of
α, because by Proposition 2.4 the condition � implies

{q1(α), q2(α), q3(α)} ⊂ L ⊂ S2U ′.

We can then write a sequence exactly like (15), and the N -homomorphism
in (20) between the copy of the SL2(Z7)-module L ⊂ S2U ′ and L ⊗ V4 ⊂
S3V3 = (I ⊕ U ′ ⊕ L) ⊗ V4 yields the 21 cubic generators of a variety Aα

associated to a given [α] ∈ H(�), when we view H(�) as the space of twisted
cubic curves in P3(U).

The sequence (15) is indeed a complex: βα = 0 can be computed (carefully

and patiently) using the exactness of (2), the fact that ∧3V ⊗ O (−4)
σ−� /3

is surjective and so implies

α(2S/3) = α(2σ(∧3V ⊗ O (−4))),

and the computations of the compositions of these maps, namely λ, µ and ν (see
Section 2.3). An example: consider the first syzygy α1, that is, the first column
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of (au#
0, bu#

0, cu#
0)t = (2a0x0, a1x4, a2x1, a3x5, . . .)t from the composition

ασ ; for generality assume a0  = 0. The composition βα1 is a polynomial of
degree 4. Then the coefficient of, e.g., x0x2

1 x5 in βα1 is given by

2a0(b0e2+b2e0−c0d2−c2d0)+a2(b0e0−c0d0)+a3(b0e3+b3e0−c0d3−c3d0)

− 2b0(a0e2 + a2e0) − b2(a0e0) − b3(a0e3 + a3e0)

+ 2c0(a0d2 + a2d0) + c2(a0d0) + c3(a0d3 + a3d0).

By the condition � the coefficient of u0u2 equals that of u2
3, so this equals

a0(b0e2 + b2e0 − c0d2 − c2d0) + a0(b3e3 − c3d3)

+ a2(b0e0 − c0d0) + a3(b0e3 + b3e0 − c0d3 − c3d0)

− b0(a0e2 + a2e0) − b0(a3e3) − b2(a0e0) − b3(a0e3 + a3e0)

+ c0(a0d2 + a2d0) + c0(a3d3) + c2(a0d0) + c3(a0d3 + a3d0)

which is zero.
Clearly βα = 0 implies α′β ′ = 0, and finally the � condition on α guaran-

tees that the composition αα′ equals zero (on this last fact, see [16], Proposi-
tion 3.5).

For the next proofs we are going to use the following criterion for exactness.

Theorem 5.2 ([4] Theorem 20.9). Let R be a ring. A complex

0 −→ Fn

φn−→ Fn−1 −→ · · · −→ F1
φ1−→ F0

of free R-modules is exact if and only if

(1) rank Fk = rank φk + rank φk+1, and

(2) depth I (φk) ≥ k

for k = 1, . . . , n.

The notation I (φk) stands for the ideal generated by the minors of φk , of
dimension equal to rank φk . By [4], Theorem 18.7, we can use the codimension
of the variety determined by I (φk) in place of its depth.

In order to prove the exactness of the complex (15) we need to prove first
another interesting result. We want to exploit the fact that the matrix (3) de-
termines a sub-morphism

2V4O (−3)
(d

e)←− S/3.
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More precisely this comes from the complex (15) determined by a boundary
point [α] ∈ H(�):

0 0
↑ ↑

V4O (−3) a←−−− S/3

↑ ↑

0 ←−−− OA ←−−− O
β←−−− 3V4O (−3) α←−−− 2S/3 ←−−− · · ·

↑ ↑

2V4O (−3)
(d

e)←−−− S/3

↑ ↑
0 0

Notice that all the boundary points which are images of orbits with a matrix
with a top-left entry like a will admit the sub-morphism as above. More pre-
cisely, starting off with the ideal Ia generated by the 14 cubics defined by the
minors q2(α) and q3(α), we can extract from the complex (15) the following
one:

(16) 0 ←− Ia ←− 2V4O (−3)
(d

e)←− S/3 a←− V1O (−4) ←− 0.

Proposition 5.3. Let a ∈ �. Then the complex (16) defined by the ideal Ia

is exact, and therefore defines a variety Ua of dimension 3 and degree 7.

Proof. Since Ia is not contained in any hyperplane we can localise at
xi  = 0, where /3 is free. To test condition (1) of Theorem 5.2, we first notice
that rank 2V4O (−3) = 14 and rank S/3 = 20. Since α ∈ P(M)s , all the
cubics are non-zero, and then the leftmost map has rank 1, and trivially the
variety the 14 cubics determine is of non-zero codimension. Now we need
rank

(
d

e

) = 13 and rank a = 7.
There is an injective map ι : /3 ↪→ ∧3V ∗ ⊗ O (−3) (the quotient is /2),

and hence rank a(V1O (−4)) = rank ι(a(V1O (−4))). From this it follows that(
d

e

)
(/3) =

(
d

e

)
(σ (∧3V ⊗ O (−4))).

Now let a  = d ∈ � ⊂ P3(U ′) (see Proposition 3.8), and let wd ∈ U ′
be such that the composition dwd = 0. Then we can find a submatrix η of
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d

e

)
(σ (∧3V ⊗ O (−4))) of the form

η :=
(

du#
0 0

∗ ewd

)
.

From the computations of λ, µ and ν, we get that du#
0 = 2a0 diag(x0, . . . , x6)+

a1ν∗ +a2λ∗ +a3µ∗ has maximal rank, and since the Pfaffians of ewd are non-
zero, we conclude that rank

(
d

e

) = 13.
The variety determined by the 13 × 13 minors is contained in the union

of the variety cut out by the Pfaffians of ewd , which is a 3-fold, and the one
cut out by the determinants of all the top left blocks of rank 7. The proof that
the latter is of dimension at most 3 is precisely as in the following test for the
exactness at the map a, after replacing d with a.

We have
ι(a(V1O (−4))) = (u#

0a|u0a|u1a|u2a|u3a)

and the block u#
0a has maximal rank as before. As for the second condition

in Theorem 5.2, notice that the Pfaffian varieties Vuia determined by uia,
i = 0, . . . , 3, are 3-dimensional. Now let x ∈ P6(V ) be such that x /∈ Vuia

for some i, but x belongs to the variety Z determined by the 7 × 7 minors of
ι(a(V1O (−4))), which is clearly symmetric with respect to G7. This means
that there is a j ∈ {1, . . . , 7} such that Pfaffj (uia)(x)  = 0. By G7-symmetry
we can assume that j = 1, so there is a linear combination of columns of
uia(x) such that it is equivalent to

g(x) :=
(

0 ∗
0 T

)
where T is an invertible matrix. If a is one of the three elements with 0-entries,
we can compute by hand that after rearranging the columns of ι(a(V1O (−4)))

we get upper triangular matrices with the seven xi’s as entries. Taking suitable
columns we see that the intersection of these determinants is contained in
projective subspaces of codimension 3.

So let a have all the entries non-zero, and take a column k of u#
0a such

that the top entry k1(x)  = 0. Substituting k(x) in place of the first column
of g(x) we get that the rank is maximal, a contradiction. Therefore Z ⊂
Vu0a ∪ Vu1a ∪ Vu0a ∪ Vu1a , so dim(Z) ≤ 3 and the complex is exact.

Finally, the Hilbert polynomial of Ia: let K be the kernel of Ia ← 2V4O (−3)

as a map of direct sums of line bundles. Then, exactly as in [16], Theorem 2.5,
by “kind of adding” a piece of the Koszul complex to the resolution (16), we
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obtain the following commutative exact diagram.

0

↓
7O (−4)

�↙a ↓
0 ←− /3 ←−− 35O (−4) ←− 21O (−5) ←− 7O (−6) ←− O (−7) ←− 0

↓(d

e) �↙ ↓ ↓# ↓# ↓#
0 ←− K ←−− 28O (−4) ←− 21O (−5) ←− 7O (−6) ←− O (−7) ←− 0

↓
0

The bottom row leads to a resolution of Ua involving only direct sums of
line bundles, namely

0 ←− IUa
←− 14O (−3) ←− 28O (−4)

←− 21O (−5) ←− 7O (−6) ←− O (−7) ←− 0

Now we can compute the Hilbert polynomial of Ua , from which the result
follows: PUa

= 7
6 n3 + 7

2 n2 + 7
3 n.

Thanks to this intermediate result we can prove now the main proposition
of this subsection:

Proposition 5.4. The complex (15) is exact. Therefore any α with [α] ∈ B

defines a variety Aα of dimension 2 and degree 14.

Remark 5.5. We are not claiming that the statement of Proposition 5.4
holds for every [α] ∈ H(�), although we know by [16] that for a general
point of H(�) the complex is exact.

Proof. We have restricted our attention to the case when α represents an
element of B ⊂ H(�), which we write as in (3). As before, Aα is not contained
in any hyperplane, so we can localise at xi  = 0, where /3 is free.

To test the first condition from Theorem 5.2, notice that rank 3V4O (−3) =
21 and rank 2S/3 = 40. Since α ∈ P(M)s , β  = 0, so rank β = 1, and thus
the only thing we need is rank α = 20. Observe that rank α = rank α′, in fact

from the injective map /3 ι
↪−→ ∧3V ∗ ⊗O (−3), using the definition of α′ and
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the fact that the entries of α′ are just transposes of the entries of α, we get

rank α′(3V1O (−4)) = rank 2ι(α′(3V1O (−4)))

= rank(α(2σ(∧3V ⊗ O (−4))))t .

So once we show rank α = 20 we shall have proved the first condition for the
rest of the sequence as well.

Let α22 = d ∈ � ⊂ P3(U ′) (see Proposition 3.8), and let a  = wd ∈ U ′
be such that the composition dwd = 0. Then we can find a submatrix α̃ of
α(2σ(∧3V ⊗ O (−4))) of the form

α̃ :=
(

au#
0 0 0

∗ du#
0 0

∗ ∗ ewd

)
.

From the computations of λ, µ and ν, we get that a(u#
0) and d(u#

0) have
maximal rank, and since the Pfaffians of ewd are non-zero, we conclude that
rank α = 20.

To test the second condition, first notice that any product of two Pfaffians
of an antisymmetric matrix like ewd can be computed as the determinant of a
suitable 6×6 minor. We need to prove two things: that depth Iβ ′(= depth Iβ) ≥
4 and depth Iα′(= depth Iα) ≥ 3. For the latter part, observe that we can extract
matrices like α̃ from α, but with the top and middle diagonal blocks being
given by columns as in the proof of Proposition 5.3 about the codimension of
Z determined by a. Therefore the variety Z′ determined by the maximal rank
minors of α is contained in the union of the varieties determined by the three
blocks (which we can vary), whose codimension is at least 3.

For β ′, with the usual matrix, notice that by Proposition 5.3 the middle and
bottom V4’s determine a threefold of degree 7. Because α is stable, the 21
cubics are independent, and symmetric with respect to G7. Therefore all the
syzygies of a resolution of Aα are G7-modules, namely 7-dimensional vector
spaces in general, except when the syzygies have degree a multiple of 7. But
in that case dim S7nV ∗ ≡ 1 modulo 7, and because the sum (with suitable
sign) of those syzygies has to be precisely −1, the Hilbert polynomial of Aα

is divisible by 7. Now consider the variety determined by all the 21 cubics.
Because the resolution of Ua has length precisely three, it does not contain
a lower dimensional (possibly embedded) component. In fact, if there was
one, call it Z0 and let IZ0 and IẐ0

be the ideals of Z0 and of the union of the
rest of the components. Then Ia = IZ0 · IẐ0

, and therefore a resolution of Ia

would be at least as long as the resolution of Z0, namely at least 4. This leads
to the fact that when we add the top 7 cubics to the 14 generating Ua , the
new variety we get, that is Aα , has to drop dimension, otherwise the degree
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would drop to some number not a multiple of 7. Hence we have proved that
depth Iβ ′ = depth Iβ ≥ 4.

The part on the degree and the dimension is straightforward once we notice
that it holds for general (1, 7)-polarised abelian surfaces, and that the shape
of the resolution determines the Hilbert polynomial of the variety, which is a
constant feature on the varieties parametrised by H(�).

Remark 5.6. By equation (10) we know that for a general (1, 7)-polarised
abelian variety the six points in W ′ in Proposition 2.9 must be the preimages
of

〈q1(α), q2(α), q3(α)〉 ∩ (W ′)3|L ⊂ L.

But 〈q1(α), q2(α), q3(α)〉 determines the 4-dimensional subspace of L ⊂ S3W

given by the minors of ψ (see equation (11)), and clearly we get that the space
spanned by the third powers of the (possibly degenerate) six points restricted
to L must be contained in, and generally equal to, 〈q1(α), q2(α), q3(α)〉.

5.2. General degenerations

So far we have proved that for all the varieties Aα parameterised over the
same a ∈ � ⊂ P3(U) (see Proposition 3.8) we get Aα ⊂ Ua . Again by
Proposition 3.8 we also know that this occurs when the twisted cubic curve in
P3(U) defined by α is degenerate. Now we want to find out what this result
means in terms of the other descriptions of H(�), and specifically VSP(Q, 6).
As usual we work with (3).

Proposition 5.7. Let Aα be the variety associated to an element [α] ∈ B ⊂
H(�), and let Aα ∩ P2(W ′) = {p1, . . . , p6}. Then three of the six p3

i |L ∈ L,
say p1, p2, p3, lie on a line and therefore, in contrast to Proposition 2.9, the
ideal of Aα is not generated by the Pfaffians defining V7,p1 , V7,p2 and V7,p3 .

Proof. Let w /∈ 〈a〉 be an element of HomG7 (V1O (−4), S/3) = U ′, that
is, a linear combination of 〈u0, u1, u2, u3〉, such that e∗w = 0 (see Remark 3.6).
This requirement is non-trivial, because in general rank(e∗) = 3, therefore
such a w does not exist. Nevertheless in the proof of Proposition 3.8 we saw
that for a given a we can find in general three e’s such that a∗e = 0 and
rank(e∗) = 2 (precisely when e ∈ �).

From the Koszul complex of /3 we get that 35O (−4) maps surjectively to
S/3, and we can consider the syzygies generated by the composition of w and(

d

e

)
. In other words we get that

(
d

e

)
(S/3) contains a column like

(17)

(
d

e

)
(w) =

(
d∗w
e∗w

)
=
(

d∗w
0

)
.
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If Aα is the degenerate (1, 7)-polarised abelian surface associated to α, then
the above column is nothing but 7 of the first 49 linear syzygies of the 21 cubics
that define it. Bearing in mind Proposition 2.8 and the fact that α12 = 0, we
get that the middle V4 that generates the ideal of Aα must be given by the 7
principal Pfaffians of

M ′
7(x, d∗w) = (w0d3 + w3d0 − d1w1)µ

+ (w0d1 + w1d0 − d2w2)ν + (w0d2 + w2d0 − d3w3)λ.

Notice that this does not depend on w; in fact {x ∈ P3(U ′) | e∗x = 0} =
〈a, w〉, thus d∗(ξa + ψw) = ξd∗a + ψd∗w = 0 + ψd∗w. Furthermore
d∗w  = (0 : 0 : 0), because even if rank(d∗) = 2, {x ∈ P3(U ′) | d∗x = 0} =
〈a, w′〉  ! w, otherwise e = d. Observe that, by Proposition 5.4, (d∗w)3|L =
ae.

The crucial observation is that because in general there are three such points
e ∈ �, call them e, e′, e′′, it is possible to find three corresponding sets of seven
cubic (Pfaffian) generators of Aα as above. Therefore, for a map like

O ←−− 2V4O (−3)
(d

e)←−− S/3

to exist, one d∗wi , i ∈ {e, e′, e′′} has to be a linear combination of the others.
But this is obvious by Remark 5.6, because

dim
〈
(d∗we)

3|L, (d∗we′)
3|L, (d∗we′′)

3|L
〉 = dim〈ae, ae′, ae′′〉 = 2.

Remark 5.8. After tensoring with V4, the three collinear elements
(d∗we)

3|L, (d∗we′)
3|L and (d∗we′′)

3|L of L clearly generate the ideal of the
variety Ua of Proposition 5.3.

Remark 5.9. By Proposition 5.3 and the previous Remark 5.8, we see that
Ua must be contained in V7,d∗we

∩V7,d∗we′ ∩V7,d∗we′′ ⊂ P6(V ). Because Ua and
the V7,d∗wi

are all 3-dimensional, we conclude that the V7,d∗wi
are either non-

reduced, or reducible. In the former case, by Proposition 2.8(ii) the preimages
of the d∗wi are not general points of P2(W ′).

Clearly at this stage information about the nature of the three points d∗we,
d∗we′ , d∗we′′ ∈ W ′ must be supplied. Therefore in the next proposition we are
going to give a (slightly) computational analysis of the general picture we are
dealing with.

Proposition 5.10. Let Ua be as in Proposition 5.3. Then the three points
d∗we, d∗we′ and d∗we′′ ∈ W ′ lie on the curve y5

1y3+y5
2y1+y5

3y2−5y2
1 y2

2 y2
3 =

Hess(y3
1y2+y3

2y3+y3
3y1) = 0, the Hessian of the Klein quartic f ′

Klein in P2(W ′).
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Proof. What follows is restricted to the open part P2(W)0 := {(v1 : v2 :
v3) ∈ P2(W) | v1v2v3  = 0}. In this way we lose three points of Q which,
however, will be completely treated in the next subsection.

Q and � are isomorphic, so let (v1 : v2 : v3) ∈ Q ⊂ P2(W)0; then we get

a =
(

1 :
v1

v3
:

v2

v1
:

v3

v2

)
= (v1v2v3 : v2

1v2 : v2
2v3 : v2

3v1) ∈ �,

namely a top-left entry of a matrix α ∈ φ−1(B).
Let {x ∈ P3(U ′) | a∗x = 0} = 〈e, d〉. To simplify the computations we

assume d0 = 0; then we get

d =
(

0 :
1

v1
:

1

v2
:

1

v3

)
= (0 : v2v3 : v1v3 : v2v1)

and we may put e = (1 : e1 : e2 : e3). As in the proof of Proposition 3.8,
assume e ∈ �. We saw in Lemma 3.10 that in general there are three such
es. Notice that this means that 〈e, d〉 is a trisecant of � in P3(U ′). Let {x ∈
P3(U ′) | e∗x = 0} = 〈a, w〉 with w0 = 0. Then the point of P2(W ′)0 which
yields ea ⊗ V4 up to scalar, as in Proposition 2.8, is given by d∗w = (d3w3 :
d1w1 : d2w2) := (y1 : y2 : y3). We are abusing the notation, because actually
we should be working with elements of W ′, not its projectivisation. In other
words

ea ⊗ V4 = I3(d3w3 : d1w1 : d2w2).

Hence e =
(

1 : y1v3

y2v1
: y2v1

y3v2
: y3v2

y1v3

)
.

If e is a solution of a∗, then

0 = a∗e =
 y2y3v2

1 + y3y1v2
3 − y2

2 v3v1

y3y1v2
2 + y1y2v2

1 − y2
3 v1v2

y1y2v2
3 + y2y3v2

2 − y2
1 v2v3.

 =
 σ1

σ2

σ3

 .

Let S be the variety in P2(W)×P2(W ′) defined by σ1, σ2 and σ3, and consider
the projections

P2(W) × P2(W ′) ⊃ S

�↙pr1 ❅↘pr2

P2(W) P2(W ′).

It is easy to see that v1v3y3σ1 +v1v2y1σ2 +v2v3y2σ3 = y1y2y3(v3
1v2 +v3

2v3 +
v3

3v1), and therefore pr1(S ∩P2(W)0 ×P2(W ′)0) = Q∩P2(W)0. Furthermore
pr1 is generically 3 : 1.
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In the same way, but through a computation with Maple, we see that

v2
1v2

2v2
3y3

3y2(y5
1y3 + y5

2y1 + y5
3y2 − 5y2

1 y2
2 y2

3 )2 ∈ I (σ1, σ2, σ3) :

thus pr2(S ∩ P2(W)0 × P2(W ′)0) = {y5
1y3 + y5

2y1 + y5
3y2 − 5y2

1 y2
2 y2

3 = 0} ∩
P2(W ′)0.

Observe that the initial restriction to P2(W)0 does not change the result:
in fact starting with (1 : 0 : 0) ∈ W we get the elements (0 : 1 : 0),
(0 : 0 : 1) ∈ Hess(Q′), and by the usual action of PGL2(Z7) on Q this is
enough.

Remark 5.11. The construction of the last proof associates to every point
of Q ⊂ P2(W) three points of Hess(Q′) which we know are determined by a

and the trisecant of � ⊂ P3(U ′) via the product ∗. Then, by Proposition 5.7,
the projective classes of their third power restricted to L lie on a trisecant of
P2(W ′)3|L ⊂ P6(L).

Moreover observe that pr2(S) is, by construction, a PGL2(Z7)-invariant
curve.

The Hessian of Q′ seemingly carries special information about V7,y ⊂
P6(V ), for y ∈ P2(W ′). And in fact for every y ∈ Hess(Q′) there is some
v = pr1(pr−1

2 (y)) ∈ Q that, by the results of this subsection and the previous
construction, determines a variety V7,y ⊂ P6(V ) which is either non-reduced,
or reducible.

All this can be summarised in the next proposition.

Proposition 5.12. Let [α] ∈ B be a general boundary point of H(�), i.e.
[α] ∈ B\B ′ ⊂ H(�) and a is not a cusp. Then the degenerate (1, 7)-polarised
abelian variety Aα associated to α is the intersection of a 3-fold Ua of degree 7
and a Calabi-Yau 3-fold. Moreover Ua is generated by three distinct collinear
points of P6(L) tensored by V4, images of three points of Hess(Q′) ⊂ P2(W ′)
uniquely determined by the top-left entry a ∈ � of α.

Proof. By Remark 5.6 we know that the ideal generated by the minors of α

is also generated by the image of six points {p1, . . . , p6} ∈ W ′ as in (2.9). By
Proposition 5.7 we know that the images in P6(L) of three of these six points,
say {p1, p2, p3} are collinear, and by Remark 5.8 we know that (once tensored
by V4) they generate the ideal of a 3-fold Ua of degree 7 and are determined
by a. Clearly we have that Aα = Ua ∩ V7,pi

for any i ∈ {4, 5, 6}. Finally, by
Proposition 5.10 we know that {p1, p2, p3} ⊂ Hess(Q′) ⊂ P2(W ′).

Remark 5.13. We contrast Proposition 5.12 with the projective degener-
ations found in the (1, 5) case in [1] and in the (1, 7) case in [18]. There the
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general degeneration is a translation scroll over an elliptic curve embedded in
a certain P4 (respectively P6).

Because our boundary B is birational to the universal Kummer surface that
parametrises translation scrolls it is tempting to expect a similar picture here.
But an elliptic curve in P6(V ) cannot be determined by a ∈ � ∼= Q ⊂ P2(W),
as � is not isomorphic to the Klein curve in P2(W ′) ⊂ P6(V ) as a curve with
PGL2(Z7)-action. Therefore if the degeneration Aα were a translation scroll it
would be contained in some V7,a′ , where a′ ∈ W ′ defines a secant variety over
the above elliptic curve, see Proposition 2.8 part (1).

Certainly this does not occur for the general degeneration of our case
because, as we saw, the points {p1, p2, p3} as before do not lie in general
on the Klein quartic. The only possibility is that such an a′ can be found
among {p4, p5, p6}, but not defined by a, otherwise the degeneration would
be uniquely defined by a and we would end up with the same degeneration for
every point of the fibre in B over a, which is certainly not the case, because
the minors of matrices of distinct orbits in P(M)s span different 3-spaces of
L, and therefore once tensored with V4 they determine different surfaces in
P6(V ). But this would give a second rational map B ��� Q given by α �→ a′,
nonconstant on the fibres of α �→ a. But this is impossible, as the general fibre
is rational and Q has genus 3.

From our point of view, the first degeneration of six points in P2(W ′) is not
given by the multiplicity, but by the failure of Proposition 2.9 part (2), namely
by the fact that the images of three of the six points in P6(L) do not span a
plane, but a line only.

5.3. Degenerations arising from B ′ ⊂ B

At this stage degenerations of this sort are relatively simple to describe. First
of all we assume that we are working with an element [α] ∈ B ′, therefore we
can assume that

α =
(

a 0
b d

0 e

)
.

Furthermore we assume that a is not the image of a cusp of Q; that case will
be treated in the next subsection.

Proposition 5.14. Let α be as above. Then the degenerate (1, 7)-polarised
abelian variety Aα it determines is the intersection of two 3-folds Ua and Ue

of degree 7. Moreover Ua (resp. Ue) is generated by three distinct collinear
points of P6(L) tensored by V4. These are images of three points {p1, p2, p3}
(resp. {p1, p4, p5}) of Hess(Q′) ⊂ P2(W ′) uniquely determined by the top-left
entry a ∈ � (resp. bottom-right entry e ∈ �) of α.
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Proof. Everything works as in the proof of Proposition 5.12, moreover
the same argument holds for the sub-matrix

(
a

b

)
of α and for the 3-fold Ue it

determines (see Proposition 5.3).
Notice that Ue is generated by ea ⊗ V4 and eb ⊗ V4, whereas ea ⊗ V4

and ad ⊗ V4 generate Ua . Therefore p1 is the preimage in W ′ of ae ∈ L. Or,
if we set b and d to be in �, exactly as in equation (17) we get p1 given by
d∗b = b∗d ∈ W ′.

Finally notice that in place of V7,p4 and V7,p5 of Proposition 5.12 we have
used Ue, which is clearly contained in both.

Remark 5.15. In the notation of this subsection we see that if a and e are
general, namely are not cusps of �, then by Lemma 3.10 the five points of
Proposition 5.14 are distinct, and so we are left again with the interpretation of
the varieties parametrised by B ′. If those were elliptic or tangent scrolls over
an elliptic curve E, then by Table 2 any of them would intersect P2(W ′) with
multiplicity respectively (2, 2, 2) and (3, 1, 1, 1), which is not the case here.

Moreover, by Proposition 1.1 in [2], we see that an elliptic scroll in P6(V )

contains three elliptic curves, and so if B ′ was the space parameterising elliptic
scrolls, a fibre over an element like a ∈ � should intersect three suitable distinct
fibres at each of the three points of intersection with B ′. This means that the
degenerate twisted cubic curve defined by [α] ∈ B ′ should be the union of
three straight lines all meeting at a point. But with a simple argument about a
P1 of conics (like those in {a = 0} ⊂ P3(U) defined by the fibre over a), we
get that a case like that cannot occur.

5.4. Degenerations over cusps

In this subsection we study the boundary points of H(�) over cusps. As we
will see, this can be done by hand, and it will be a good example of how we
recover the 21 cubic generators, or more precisely the 3 G7-modules V4, from
the syzygies that define a degeneration.

Here we are going to study the fibre of H(�) over (the image in � of) a
specific cusp of Q. This is enough because the action of PGL2(Z7) permutes
the cusps of Q. Notice that the action of PGL2(Z7) on L induces an action on
H(�) as well, if we view an element of H(�) as a 3-dimensional subspace of
L. Alternatively we can take the action of PGL2(Z7) on the entries (in U ′) of
a matrix α representing a point in H(�).

As usual let [α] ∈ B ⊂ H(�), and α be as in (3). We assume that α11 = u1.
Then as before 〈d, e〉 = 〈u2, u3〉, and after setting d = u2 and e = u3, we get

(18) α =
(

u1 0
ξu3 u2

−ξu0 + τu3 u3

)
.



on a family of (1, 7)-polarised abelian surfaces 215

Notice that if (ξ : τ) = (0 : 1), the corresponding matrix, and therefore
element of B, lies on the intersection of the three P1’s over the cusps u1, u2

and u3.

Proposition 5.16. Let α be as in (18). Then the 21 cubics it determines
define a variety Aα as follows.

(1) If ξ  = 0  = τ then Aα is 7 quadric surfaces, each contained in some
P3 ⊂ P6(V ). As a configuration in VSP(Q, 6) this corresponds to a
double point and two single points on a line in P2(W ′), plus a second
double point.

(2)(a) if τ = 0 then Aα is 7 double planes in P6(V ). Then we get that the
related configuration in VSP(Q, 6) is a quadruple point plus a double
point in P2(W ′).

(b) if ξ = 0 then Aα is 14 planes in P6(V ). The related configuration in
VSP(Q, 6) is given by three double points in P2(W ′).

These degenerations were also found by Melliez and Ranestad by a different
method: see [18].

Proof. We first compute the 3-dimensional linear subspace E of L spanned
by the minors of α

E = 〈ξ(u0u2 + u2
3) − τ(u2u3), u1u3, u1u2〉,

or via the SL2(Z7)-isomorphism as in Remark 3.13

E = 〈ξ(v2v2
3) − τ(v2

3v1 − v3
2), v2

1v2 − v3
3, v2

2v3 − v3
1〉.

This amounts to saying that, as shown in the proof of Proposition 5.4, the 21
generators of Aα , and more precisely the top, middle and bottom V4’s are

V t
4 = −τ {xixi+1xi+6}i∈Z7 + ξ{xix

2
i−1xi+2 + x2

i+1xi−2}i∈Z7 ,

V m
4 = {xixi+2xi+5}i∈Z7 ,

V b
4 = {xixi+3xi+4}i∈Z7 .

By (1) we get the following facts:

Pfaff(M ′
7(x, (1 : 0 : 0))) = Pfaff(λ) = {xixi+3xi+4}i∈Z7 ,

Pfaff(M ′
7(x, (0 : 1 : 0))) = Pfaff(µ) = {xixi+1xi+6}i∈Z7 ,

Pfaff(M ′
7(x, (0 : 0 : 1))) = Pfaff(ν) = {xixi+2xi+5}i∈Z7 .
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and

V (Pfaff(λ)) =
⋃
i∈Z7

{xi = xi+2 = xi+5 = 0} ∪
⋃
i∈Z7

{xi = xi+1 = xi+6 = 0},

V (Pfaff(µ)) =
⋃
i∈Z7

{xi = xi+2 = xi+5 = 0} ∪
⋃
i∈Z7

{xi = xi+3 = xi+4 = 0},

V (Pfaff(ν)) =
⋃
i∈Z7

{xi = xi+3 = xi+4 = 0} ∪
⋃
i∈Z7

{xi = xi+1 = xi+6 = 0}.

Thus the middle and bottom V4’s are, respectively, Pfaff(ν) and Pfaff(λ).
Therefore, the P1 of degenerations over the cusp u1 = (0 : 1 : 0 : 0) ∈
� ⊂ P3(U ′), corresponding to (0 : 1 : 0) ∈ Q ⊂ P2(W), takes place set-
theoretically in the following seven projective subspaces

V (Pfaff(ν)) ∩ V (Pfaff(λ)) =
⋃
i∈Z7

{xi = xi+1 = xi+6 = 0} ⊂ P6(V ).

The variety Aα defined by the above 21 cubics is:

(1) if ξ  = 0  = τ ,

Aα = {xi = xi−1 = xi+1 = ξxi+2xi+5 − τxi+3xi+4 = 0}i∈Z7;

(2)(a) if τ = 0,

Aα =
⋃
i∈Z7

{xi = xi+1 = xi+2 = xi+3 = 0}

with a double structure;
(b) if ξ = 0,

Aα =
⋃
i∈Z7

{xi = xi+1 = xi+2 = xi+4 = 0}
∪ {xi = xi+1 = xi+2 = xi+5 = 0}.

In terms of the configurations in VSP(Q, 6) related to these degenerations,
and then related to configurations in H(�), we see that E, viewed as a subset
of L ⊂ S3W ′, determines via (12) a 4-dimensional vector space of L∗ = L ⊂
S3W , namely

{E = 0} = 〈y1y2y3, y1y2
2 , y3y2

1 , τ (y2y2
3 ) + ξ(y2

3 y1 − y3
2)〉,
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and this allows us to recover the matrix ψ in (11):

ψ =


−y1 0 0
−ξy2 y3 0
ξy3 0 y2

τy3 −y2 −y1


whose minors are precisely the elements in {E = 0}. Furthermore these minors
are the generators of the ideal of the six points defining the (degenerate) element
we still call ζ of VSP(Q, 6), which is

ζ =
{
(0 : 0 : 1) × 2, (1 : 0 : 0) × 2, (0 : 1 : +√ξ/τ), (0 : 1 : −√ξ/τ)

}
.

Finally we study the three possible cases:

(1) If ξ  = 0  = τ , the embedded point at (0 : 0 : 1) is a tangent vector along
{τy2 + ξy1 = 0}, whereas (1 : 0 : 0) points along {y3 = 0}. Observe
that ζ viewed in H(�) determines a smooth conic in {u1 = 0} union the
line {u2 = u3 = 0}.

(2)(a) If τ = 0, then ζ degenerates to two points: the quadruple point
(0 : 0 : 1), whose ring of regular functions is

C[y1, y2]/(y2
1 , y1y2, y1 − y3

2) ∼= C ⊕ Cy2 ⊕ Cy2
2 ⊕ Cy3

2 ,

which therefore points along {y1 = 0} with multiplicity 4, and the
double point (1 : 0 : 0), which points along {y3 = 0}. ζ viewed in
H(�) determines the special smooth conic {u0u2+u2

3 = 0} ⊂ {u1 =
0} union the line {u2 = u3 = 0}.

(b) If ξ = 0, then (1 : 0 : 0) points along {y3 = 0}, (0 : 1 : 0) points
along {y1 = 0} and (0 : 0 : 1) points along {y2 = 0}. ζ viewed in
H(�) determines the union of {u1 = u2 = 0}, {u1 = u3 = 0} and
{u3 = u2 = 0} in P3(U).

Remark 5.17. Case (2a) is the only one where the surface Aα is not gen-
erated by V7,(0:0:1) and V7,(1:0:0), in other words by V7,y , where y ∈ ζ ∈
VSP(Q, 6). Notice that Remark 5.6 holds.

Remark 5.18. The three degenerate elliptic curves corresponding to the
cusps u1, u2 and u3 are the three possible chains of seven projective lines
joining two elements of the canonical basis of P6(V ) and invariant under the
cyclic action of Z7 on the indexes. By the same action we can focus our attention
on the projective 3-spaces {x0 = x1 = x6 = 0} where one of the irreducible
components lives.
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(1) The general degenerate (1, 7)-abelian surface over a cusp is given by the
union of seven quadric surfaces. The surface on {x0 = x1 = x6 = 0}
is given by the product of the projective lines through e2, e3 and e4, e5

shifted by (ξ : τ), namely ξx2x5 − τx3x4 = 0.

(2) When (ξ : τ) → (1 : 0) the quadric surface splits into two projective
planes, namely {x0 = x1 = x2 = x6 = 0} and {x0 = x1 = x5 = x6 = 0}.
The total of 14 projective planes are divided into 7 pairs of coinciding
planes by the cyclic action of Z7, hence we get the double structure.

(3) Finally, when (ξ : τ) → (0 : 1), the quadric surface again splits into two
projective planes, namely {x0 = x1 = x3 = x6 = 0} and {x0 = x1 =
x4 = x6 = 0}. This time the 14 projective planes are all different under
the cyclic action of Z7. This is the most special degeneration, because
it lies on the only point where the fibres over the cusps u1, u2 and u3

intersect.

Remark 5.19. The result of Proposition 5.16 highlights a difference with
the results of [1] on the (1, 5) case. The combinatorics in that case tell us that
when the quadric surfaces in P4 split up – exactly as in Remark 5.18 – into 10
planes, in both the splits one gets 5 pairs of coinciding planes. This can be seen
easily with the corresponding picture and an argument as above. And in fact
in the (1, 5) case, the multiplicity of the six points over cusps is (2, 2, 1, 1) or
(4, 2), but not (2, 2, 2).

Appendix A. Representation theory of G7 and SL2(Z7)

Here we follow [16]. As mentioned in Section 2.2, if V = C(Z7), then the
Heisenberg group H7 := H1,7 is generated by

σ(xi) = xi−1, τ (xi) = ξ i(xi),

where ξ := exp(2πi/7). The Galois group O of Q(ξ) over Q acts on H7: let
θ be the generator given by θ(ξ) = ξ 3. Then θ3= complex conjugation.

The irreducible H7-module V produces five more modules by the com-
position with the automorphisms θ i ∈ O. Denote by Vi the representation

H7
θ i→ H7 → Aut(V ). These six representations are inequivalent, as one sees

computing their characters, and together with the characters of Z7 × Z7 these
are all the irreducible characters of H7.

We equip V = C(Z7) with the canonical basis {ei}i∈Z7 , where ei(l) = δil .
If {xi}i∈Z7 is the dual basis of V ′ = V3, then the action of σ and τ on V and
on V ′ = V3 = H 0(O (1)) is given by

σ(ei) = ei−1; τ(ei) = ξ i(ei) : σ(xi) = xi−1; τ(xi) = ξ−i (xi).
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We recall that G7 := H7 � 〈ι〉, where ι ∈ SL(V ), x(i) = −x(−i).

A.1. Character table of G7

For each central element α ∈ µ7 ⊂ G7 we define the conjugacy classes

Cm,n = {(α, m, n), (α,−m,−n) | α ∈ µ7}, (m, n)  = (0, 0),

and
Cα = {(α, m, n)ι | m, n ∈ Z7}.

There are 7 classes {α}, 24 classes Cm,n, each containing 14 elements, and 7
classes Cα , each containing 49 elements. We denote by Z the sum of all 24
Zs,t .

With this notation we get the character table of G7 (Table 3), where the
column R gives the corresponding representation.

Table 3. Character table of G7

{α} Cm,n Cα R

1 1 1 I

7θ i(α) 0 θ i(α) Vi

1 1 −1 S

7θ i(α) 0 −θ i(α) V #
i

2 ξ sm+tn + ξ−sm−tn 0 Zs,t

A.2. The group SL2(Z7)

It is convenient to name some elements in N = H7 �SL2(Z7) and their images

in SL2(Z7): µ: ej �→ e4j , with µ̄ =
(

2 0
0 4

)
∈ SL2(Z7); ν: ej �→ ξ j 2

ej , with

ν̄ =
(

1 0
2 1

)
∈ SL2(Z7); δ: ej �→

√
−1
7

∑
k

ξ kj ek , with δ̄ =
(

0 −1
1 0

)
∈

SL2(Z7); and ε̄ =
(

2 2
−2 2

)
∈ SL2(Z7).

The conjugacy classes of δ̄ and of±ε̄ have 42 elements, those of±ν̄ and±ν̄3

have 24, those of ±µ̄ have 56, and those of ± id one element each. Observe
that δ2 = ι and that the elements in SL2(Z7) are given according to

µσµ−1 = σ 2

µτµ−1 = τ 4

ισ ι = σ−1

ιτ ι = τ−1

νσν−1 = ξστ 2

ντν−1 = τ

δσδ−1 = τ

δτδ−1 = σ−1
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In Table 4 we reproduce the character table of SL2(Z7), with the notation
η± = (1 ±√−7)/2.

Table 4. Character table of SL2(Z7)

id − id µ̄ −µ̄ ν̄ ν̄3 −ν̄3 −ν̄ δ̄ ε̄ −ε̄ R

1 1 1 1 1 1 1 1 1 1 1 I

8 −8 −1 1 1 1 −1 −1 0 0 0 M1

8 8 −1 −1 1 1 1 1 0 0 0 M2

7 7 1 1 0 0 0 0 −1 −1 −1 L

4 −4 1 −1 η− η+ −η+ −η− 0 0 0 U

4 −4 1 −1 η+ η− −η− −η+ 0 0 0 U ′ = U ∗

6 −6 0 0 −1 −1 1 1 0
√

2 −√
2 T1

6 −6 0 0 −1 −1 1 1 0 −√
2

√
2 T2

6 −6 0 0 −1 −1 −1 −1 2 0 0 T

3 3 0 0 −η+ −η− −η− −η+ −1 1 1 W

3 3 0 0 −η− −η+ −η+ −η− −1 1 1 W ′ = W ∗

A.3. Decompositions of SL2(Z7) representations

Consider now the decomposition of V into eigenspaces of ι as V = V+ ⊕ V−,
where

V+ = span{e1 − e6, e4 − e3, e2 − e5};
V− = span{2e0, e1 + e6, e4 + e3, e2 + e5}.

Restricting µ, ν and δ to V+ and V− respectively, one gets:

µ+ =
( 0 0 1

1 0 0
0 1 0

)
, µ− =


1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

 ,

ν+ = diag(ξ, ξ 4, ξ 2), ν− = diag(1, ξ, ξ 4, ξ 2),

δ+ =
√−1

7

(
ξ − ξ 6 ξ 2 − ξ 5 ξ 4 − ξ 3

ξ 2 − ξ 5 ξ 4 − ξ 3 ξ − ξ 6

ξ 4 − ξ 3 ξ − ξ 6 ξ 2 − ξ 5

)
,

δ− =
√−1

7


1 1 1 1
2 ξ + ξ 6 ξ 2 + ξ 5 ξ 4 + ξ 3

2 ξ 2 + ξ 5 ξ 4 + ξ 3 ξ + ξ 6

2 ξ 4 + ξ 3 ξ + ξ 6 ξ 2 + ξ 5

 .
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From the character table of SL2(Z7) one sees that, as a SL2(Z7)-module, V =
W ′ ⊕ U ′ and from the above computations one gets concrete realisations of
W ′ and U ′, namely W ′ = V+ and U ′ = V−. Furthermore the following
computations play a crucial role:

S2W = T

S3W = L ⊕ W ′

S4W = I ⊕ M2 ⊕ T

S2W ′ = T

S3W ′ = L ⊕ W

S4W ′ = I ⊕ M2 ⊕ T .

If we denote by v1 = e1−e6, v2 = e4−e3 and v3 = e2−e5 the chosen basis of
W ′, then the only SL2(Z7)-invariant quartic is the Klein quartic in (21). Notice
also that

S2U ′ = L ⊕ W ′.

We choose as basis for L ⊂ S2U ′ the following elements:

(19) f0 = u2
0, f1 = u2u3, f2 = u3u1, f3 = u1u2,

f4 = u0u3 + u2
1, f5 = u0u1 + u2

2, f6 = u0u2 + u2
3,

and as basis for W ′ the elements

v2 = u0u3 − u2
1, v3 = u0u1 − u2

2, v1 = u0u2 − u2
3.

Then in the decomposition S3V3 = (I ⊕ U ′ ⊕ L) ⊗ V4 the elements corres-
ponding to fj e0 are given by

(20)

f1e0 = x0x1x6 f4e0 = x2
2 x3 + x2

5 x4

f0e0 = x1x2x4 + x3x5x6 − x3
0 f2e0 = x0x2x5 f5e0 = x2

4 x6 + x2
3 x1

f3e0 = x0x3x4 f6e0 = x2
1 x5 + x2

6 x2.

From here one obtains all fj ek via cyclic permutation, in other words via the
action of σ .

Appendix B. The Klein quartic Q

We think this interesting curve deserves some space in this article, so we give
the following presentation that was suggested by Alastair King. We use the
notation (·)′ for the dual of a vector space. The interested reader can find a
beautiful and classic treatise on this topic in [13], where most of this material
can be found. Notice that all the notation is consistent with A.2 and A.3.

Let X(7) be the abstract modular curve of level 7. It is embedded in the
projective plane P2(W) by the canonical linear system W ′ = H 0(X(7), ω),
where ω is the canonical line bundle. There is a choice of basis v1, v2, v3 for
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W ′ so that the homogeneous coordinate vector (v1, v2, v3) of a point in the
concrete model X(7) ⊂ P2(W) of X(7) satisfies

(21) fKlein = v3
1v2 + v3

2v3 + v3
3v1

The simple group G = PGL2(Z7) of order 168 acts on the Klein quartic as its
full automorphism group.

The space W ′ is a 3-dimensional ‘fundamental’ representation of G: it is
faithful, of minimal dimension and all other irreducible representations are
contained in spaces of tensors over it.

Note that W ′ is unimodular but not self-dual, i.e. W ∼= ∧2W ′  ∼= W ′, and so
it is important to distinguish W and W ′, and consequently P2(W) and P2(W ′).
In particular, P2(W ′) also contains a unique G-invariant quartic X(7)′, which
is isomorphic to X(7) as an abstract curve, but not as a curve with G-action.

PGL2(Z7) has a 4-dimensional projective representation U = H 0(X(7),

ω3/2). In other words, U is a representation of the central extension Ĝ =
SL2(Z7) in which the centre ±1 acts non-trivially. It is necessary to pass to
this central extension to lift the G-action to the chosen square root ω1/2 of
the canonical bundle. In the case of X(7) there is a natural choice (see [13],
Section 9). The representation U is also unimodular and is also not self-dual.

We give some results we use in the article. Consider the kernel R of the
multiplication map

U ⊗ W ′ → H 0(X(7), ω5/2).

Taking a certain basis a0, a1, a2, a3 for U , the kernel R has a basis of ‘bilinear
relations’

(22)

v1a1 + v2a2 + v3a3 = 0

v1a0 − v3a1 = 0

v2a0 − v1a2 = 0

v3a0 − v2a3 = 0

which can be written either as

(23) ( a0 a1 a2 a3 )


0 v1 v2 v3

v1 −v3 0 0
v2 0 −v1 0
v3 0 0 −v2

 = 0,

or

(24) ( v1 v2 v3 )

(
a1 a0 −a2 0
a2 0 a0 −a3

a3 −a1 0 a0

)
= 0
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Thus the consistency conditions for the bilinear system (22) are

(25) det


0 v1 v2 v3

v1 −v3 0 0
v2 0 −v1 0
v3 0 0 −v2

 = − (v3
1v2 + v3

2v3 + v3
3v1
) = 0,

and

(26) rank

(
a1 a0 −a2 0
a2 0 a0 −a3

a3 −a1 0 a0

)
≤ 2

i.e. the system of cubics (4),. . . ,(7).
This latter system gives the equations satisfied by the embedding of X(7)

in the projective 3-space P3(U ′) by the linear system U . In this article we have
given this concrete curve in P3(U ′) the name �.

Note further that the bilinear system (22) also implies a further system of
equations

(27)

 a1 a0 −a2 0

a2 0 a0 −a3

a3 −a1 0 a0




0 −v2v3 −v3v1 −v1v2

v3v2 0 v2
1 −v2

3

v1v3 −v2
1 0 v2

2

v1v2 v2
3 −v2

2 0

 = 0

These 12 equations are a basis for the kernel of the multiplication map

U ⊗ S2W ′ → H 0(X(7), ω7/2).

The Pfaffian of the second matrix in (27) is simply the Klein quartic equation
(21) again. This matrix also reflects the isomorphism

S2W ∼= >2U ′ ⊂ Hom(U, U ′).

In [13] the system (26) and most of (22) are worked out via another rela-
tionship between U and W ′, namely the isomorphism

S2U ∼= H 0(X(7), ω3) ∼= S3W ′.

This is expressed explicitly by the system of equations in (13) which make up
the summand L, while the three others in (14) make up the summand W .

Note that the right hand sides in (14) are the derivatives of the Klein quartic.
Combinations of the last three equations in (13) together with those in (14)
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give expressions for the various other monomials:

(28)

a0a1 = v2
1v2

a2
2 = −(v2

1v2 + v3
3)

v3
3 = −(a0a1 + a2

2)

a0a2 = v2
2v3

a2
3 = −(v2

2v3 + v3
1)

v3
1 = −(a0a2 + a2

3)

a0a3 = v2
3v1

a2
1 = −(v2

3v1 + v3
2)

v3
2 = −(a0a3 + a2

1)

These equations easily imply three of the four equations in (22) in the following
form which Klein records in [13], Equation (43).

a1

a0
= v1

v3

a2

a0
= v2

v1

a3

a0
= v3

v2

The remaining equation is then effectively the equation of the quartic itself,
which follows by computing e.g. (a1a2)2 in two different ways. Note that the
system (28) cannot follow directly from (22) because the latter is unchanged
by independent rescaling of the variables, while the system above determines
(a0, a1, a2, a3) from (v1, v2, v3) up to a sign. However, (22) does imply (28)
up to a single overall constant of proportionality.
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