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ON THE DIOPHANTINE SYSTEM
x2 − Dy2 = 1 − D AND x = 2z2 − 1

MAOHUA LE∗

Abstract

Let D be a positive integer such that D − 1 is an odd prime power. In this paper we give an
elementary method to find all positive integer solutions (x, y, z) of the system of equations x2 −
Dy2 = 1 − D and x = 2z2 − 1. As a consequence, we determine all solutions of the equations
for D = 6 and 8.

1. Introduction

Let Z,N be the sets of all integers and positive integers respectively. Let D be
a positive integer with D > 1. The determination of all solutions (x, y, z) of
the system of equations

(1) x2 − Dy2 = 1 − D, x = 2z2 − 1, x, y, z ∈ N, gcd(x, y) = 1

is an interesting problem concerning the arithmetic properties of recurrence se-
quences and the solution of exponential-polynomial equations over real quad-
ratic fields. In 1995 Mignotte and Pethö [9] determined all solution (x, y, z) for
D = 6. Their proof relied upon deep tools related to linear form in logarithms
and reduction technigues. In 1998, Cohn [4] gave an elementary proof of the
above mentioned result.

In this paper we give an elementary method to find all solutions of (1) for
the general case that D − 1 is an odd prime power. We now introduce some
needful notations and known results given by Petr [10].

Lemma 1. Let D be a nonsquare positive integer, and let u1 + v1

√
D be the

fundamental solution of Pell equation

(2) u2 − Dv2 = 1, u, v ∈ Z.

Then we have
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(i) All solutions (u, v) of (2) can be expressed as

(3) u + v
√
D = (

u1 + v1

√
D

)t
, t ∈ Z.

(ii) For any positive integer n, let

(4) un + vn
√
D = (

u1 + v1

√
D

)n
.

Then (u, v) = (un, vn) (n ∈ N) are all positive integer solutions of (2).

Lemma 2. Let D be an even nonsquare positive integer, and let

(5) D′ =
{
D,

D

4
,

ε =
{

1, if v1 is even,

2, if v1 is odd.

For a fixed D, there exists a unique positive integers pair (D1,D2) such that
D1 > 1, D1D2 = D′ and the equation

(6) D1U
2 − D2V

2 = 1, U, V ∈ N

has solution (U, V ).

Lemma 3. Let D1,D2 be positive integers with D1 > 1. If (6) has solutions
(U, V ), then it has a unique solution (U1, V1) satisfying V1 ≤ V , where V

runs through all solutions (U, V ) of (6). The solution (U1, V1) is called the
least solution of (6). Then we have:

(i)
(
U1

√
D1 + V1

√
D2

)2 = u1 + v1

√
D.

(ii) For any odd positive integer m, let

(7) Um

√
D1 + Vm

√
D2 = (

U1

√
D1 + V1

√
D2

)m
.

Then (U, V ) = (Um, Vm) for m = 1, 3, . . . are all solutions of (6).

Under the mentioned notations, using a result of [5], we prove a general
result as follows.

Theorem. LetD be a positive integer such thatD−1 is an odd prime power.
If D is a square, then D = 4 and (1) has only the solution (x, y, z) = (1, 1, 1).
IfD is not a square, then all solutions of (1) can be classified into the following
five shapes.

(i) (x, y, z) = (1, 1, 1).

(ii) (x, y, z) = (
u2n + Dv2n, u2n + v2n,

√
un(un + Dvn)

)
.

(iii) (x, y, z) = (−u2n + Dv2n, u2n − v2n,
√
Dvn(un − vn)

)
.
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(iv) (x, y, z) = (
um + Dvm, um + vm,

√
D1Um(Um + εD2Vm)

)
.

(v) (x, y, z) = (−um + Dvm, um − vm,
√
D2Vm(εD1Um − Vm)

)
.

Under the assumption that D−1 is an odd prime power, using our theorem
and some known results of quartic diophantine equations (see [1], [2], [3], [6],
[7], [8], [11]), we can find all solutions of (1) with ease. As an example, we
prove the following corollary.

Corollary. IfD = 6, then (1) has only the solutions (x, y, z) = (1, 1, 1),
(7, 3, 2), (17, 7, 3), (71, 29, 6), (16561, 6761, 91). IfD = 8, then (1) has only
the solution (x, y, z) = (1, 1, 1), (31, 11, 4).

2. Proof of the Theorem

Lemma 4. For any positive integer n, we have u2n+1 = 2u2
n, u2n−1 = 2Dv2

n,
v2n = 2unvn.

Proof. Let

(8) α = u1 + v1

√
D, α = u1 − v1

√
D.

Since u2
1 − Dv2

1 = 1, we get from (8) that

(9) α + α = 2u1, α − α = 2v1

√
D, αα = 1.

By (4) and (8), we obtain

(10) un = 1

2
(αn + αn), vn = 1

2
√
D
(αn − αn), n ∈ N.

Therefore, by (9) and (10), we get

u2n + 1 = 1

2
(α2n + α2n) + 1 = 1

2
(α2n + 2(αα)n + α2n)

= 1

2

(
αn + αn

)2 = 2u2
n,

u2n − 1 = 1

2
(α2n + α2n) − 1 = 1

2
(α2n − 2(αα)n + α2n)

= 1

2

(
αn − αn

)2 = 2Dv2
n,

v2n = 1

2
√
D
(α2n − α2n) = 1

2
√
D
(αn + αn)(αn − αn) = 2unvn.

The lemma is proved.
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Lemma 5. For any odd positive integer m, we have um + 1 = 2D1U
2
m,

un − 1 = 2D2V
2
m, vm = 2UmVm/ε.

Proof. Let

(11) β = U1

√
D1 + V1

√
D2, β = U1

√
D1 − V1

√
D2.

Since D1U
2
1 − D2V

2
1 = 1, we get from (11) that

(12) β + β = 2U1

√
D1, β − β = 2V1

√
D2, ββ = 1.

By (7) and (11), we obtain

(13) Um = 1

2
√
D1

(βm + β
m
), Vm = 1

2
√
D2

(βm − β
m
).

By (i) of Lemma 3, we have α = β2 and α = β
2
. Hence, by (10), (12) and

(13), we get

um + 1 = 1

2
(β2m + β

2m
) + 1 = 1

2
(βm + β

m
)2 = 2D1U

2
m,

um − 1 = 1

2
(β2m + β

2m
) − 1 = 1

2
(βm − β

m
)2 = 2D2V

2
m,

vm = 1

2
√
D
(β2m − β

2m
) = 1

2
√
D
(βm + β

m
)(βm − β

m
)

= 2

√
D

′
√
D

UmVm = 2

ε
UmVm.

The lemma is proved.

Lemma 6. Let D be a nonsquare positive integer, and let k be an integer
with |k| > 1. If the equation

(14) X2 − DY 2 = k, X, Y ∈ Z, gcd(X, Y ) = 1

has solutions (X, Y ), then all solutions (X, Y ) of (14) can be classified into
2ω(k)−1 classes, where ω(k) is the number of distinct prime divisors of k.
Further, every class of solutions of (14) contain a unique solution (X1, Y1)

such that X1 > 0, Y1 > 0 and

(15) 1 <

∣∣∣∣X1 + Y1

√
D

X1 − Y1

√
D

∣∣∣∣ < (
u1 + v1

√
D

)2
,
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where u1 + v1

√
D is the fundamental solution of (2). Then, (X1, Y1) is called

the least solution of the class. Furthermore, if (X1, Y1) is the least solution of
a certain class, then every solution (X, Y ) of the class can be expressed as

(16) X + Y
√
D = (

X1 + λ1Y1

√
D

)(
u + v

√
D

)
, λ1 ∈ {1,−1},

where (u, v) is a solution of (2).

Proof. This lemma is the special case of Theorems 1 and 2 of [5] for
D1 = 1 and D2 > 0.

Lemma 7. Let D be a nonsquare positive integer. If D − 1 is an odd prime
power, then the equation

(17) X2 − DY 2 = 1 − D, X, Y ∈ Z, gcd(X, Y ) = 1

has solutions (X, Y ). Moreover, every solution (X, Y ) of (17) can be expressed
as

(18) X + Y
√
D = (

1 + λ1

√
D

)(
u + v

√
D

)
, λ1 ∈ {1,−1},

where (u, v) is a solution of (2).

Proof. SinceD−1 is an odd prime power and (X, Y ) = (1, 1) is a solution
of (17), by Lemma 6, all solutions of (17) belong to a unique class. Since D is
not a square, we have D ≥ 6 and

(19) 1 <

∣∣∣∣1 + √
D

1 − √
D

∣∣∣∣ = 1 + 2√
D − 1

< 1 + √
D <

(
u1 + v1

√
D

)2
.

It implies that (X1, Y1) = (1, 1) is the least solution of the class. Thus, by
Lemma 6, we obtain (18) immediately. The lemma is proved.

Proof of the Theorem. Let (x, y, z)be a solution of (1). We first consider
the case thatD is a square. SinceD−1 is an odd prime power, we haveD = 4.
Then, by the first equation of (1), we get 2y+x = 3 and 2y−x = 1. It follows
that x = y = 1. Hence, by the second equation of (1), we get z = 1. Therefore,
(1) has only the solution (x, y, z) = (1, 1, 1) for D = 4.

We next consider the case that D is not a square. Then D is an even integer
with D ≥ 6. By Lemma 7, we get from the first equation of (1) that

(20) x + y
√
D = (

1 + λ1

√
D

)(
u + v

√
D

)
, λ1 ∈ {1,−1},

where (u, v) is a solution of (2).
If v = 0, then u = ±1 and x = y = 1 by (20). It implies that (x, y, z) =

(1, 1, 1) and the solution is of the shape (i).
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If v �= 0, then (|u|, |v|) is a positive integer solution of (2). Hence, by (ii)
of Lemma 1, we get from (20) that

(21) x+y
√
D = (

1+λ1

√
D

)(
λ2ur+λ3vr

√
D

)
, λ1, λ2, λ3 ∈ {1,−1}.

where r is a suitable positive integer. Since D ≥ 6, we have

(22) Dvr > vr
√
D + 1 > vr

√
D + 1

ur + vr
√
D

= ur > vr
√
D > vr.

Therefore, by (21) and (22), we obtain either

(23) x = ur + Dvr, y = ur + vr

or

(24) x = −ur + Dvr, y = ur − vr .

If (23) holds and r is even, then r = 2n, where n is a positive integer. By
Lemma 4, we get from (23) and the second equation of (1) that

(25) 2z2 = x + 1 = (u2n + 1)+Dv2n = 2u2
n + 2Dunvn = 2un(un +Dvn).

We see from (23) and (25) that the solution is of the shape (ii). By the same
argument, we can prove that if (24) holds and r is even, then the solution is of
the shape (iii).

If (23) holds and r is odd, let r = m, where m is an odd positive integer.
By Lemma 5, we get from (23) and the second equation of (1) that

(26)
2z2 = x + 1 = (um + 1) + Dvm = 2D1U

2
m + 2εD1D2UmVm

= 2D1Um(Um + εD2Vm).

We see from (23) and (26) that the solution is of the shape (iv). Similarly, if
(24) holds and r is odd, then the solution is of the shape (v). The theorem is
proved.

3. Proof of the Corollary

Lemma 8 ([3]). If D �= 22r · 1785, where r ∈ {0, 1, 2}, then the equation

(27) X4 − DY 2 = 1, X, Y ∈ N

has at most one solution. Further, if (X, Y ) is a solution of (27), then either
(X, Y ) = (√

u1, v1
)

or (X, Y ) = (√
u2, v2

)
.
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Lemma 9 ([11]). . Let D �= 24s · 1785, where s ∈ {0, 1}. If v1and 2u1 are
both squares, then the equation

(28) X2 − DY 4 = 1, X, Y ∈ N

has exactly two solutions (X, Y ) = (
u1,

√
v1

)
and

(
u2,

√
v2

)
. Otherwise, (28)

has at most one solution (X,Y ).

Lemma 10 ([6]). Let D1,D2 be positive integers with min(D1,D2) > 1.
The equation

(29) D1X
4 − D2Y

2 = 1, x, y ∈ N

has solutions (X, Y ) if and only if (6) has solutions (U, V ) and U1 is a square,
where (U1, V1) is the least solution of (6).

Lemma 11 ([2], [7]). Let D2 = 1. If D1 = 2, then (29) has exactly two
solutions (X, Y ) = (1, 1) and (239, 13). For D1 �= 2, (29) has at most one
solution (X, Y ).

Lemma 12 ([8]). Let D1,D2 be positive integers with D1 > 1. Then the
equation

(30) D1X
2 − D2Y

4 = 1, X, Y ∈ N

has at most one solution (X, Y ). Further, if (X, Y ) is a solution of (30), then
(6) has solutions (U, V ), V1 = ln2 and (X, Y ) = (

Ul,
√
Vl

)
, where (U1, V1)

is the least solution of (6), l and t are odd positive integers with l is square
free.

Proof of the Corollary. For D = 6, we have the parameters in Lem-
mas 1–3 as follows:

(31) (u1, v1) = (5, 2), D′ = D = 6, ε = 1,

(D1,D2) = (3, 2), (U1, V1) = (1, 1).

Let (x, y, z) be a solution of (1). If (x, y, z) has the shape (ii), then we have

(32) un(un + 6vn) = z2, z ∈ N.

Since gcd(un, 6vn) = gcd(un, un + 6vn) = 1, we get from (32) that

(33) z = ab, un = a2, un + 6vn = b2, a, b ∈ N.

We see from the second equality of (33) that the equation

(34) X4 − 6Y 2 = 1, X, Y ∈ N
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has a solution (X, Y ) = (√
un, vn

)
. Since u1 = 5 and u2 = 49 = 72, by

Lemma 8, we get n = 2. Further, by (33), we get z = 91. Therefore, by
the Theorem, the only solution of the system (1) of shape (ii) is given by
(x, y, z) = (16561, 6761, 91).

If (x, y, z) has the shape (iii), then we have

(35) 6vn(un − vn) = z2, z ∈ N.

Since v1 = 2, vn is even, un and un − vn are both odd. Hence, we get from
(35) that

(36) z = 6ab, vn =
{

6a2,

2a2,
un − vn =

{
b2,

3b2,
a, b ∈ N.

When vn = 6a2 and n is even, we have n = 2t , v2t = 2utvt and

(37) a = cd, ut = c2, vt = 3d2, c, d, t ∈ N.

We see from the second equality of (37) that t = 2. But, since v2 = 20, the
third equality of (37) is false. When vn = 6a2 and n is odd, by Lemma 5, we
have vn = 2UnVn and

(38) UnVn = 3a2.

Since gcd(3Un, Vn) = 1, we get from (38) that

(39) a = cd, Un = 3c2, Vn = d2, c, d ∈ N.

We see from the third equality of (39) that the equation

(40) 3X2 − 2Y 4 = 1, X, Y ∈ N

has a solution (X, Y ) = (
Un,

√
Vn

)
. By Lemma 12, (40) has only the solution

(X, Y ) = (1, 1). So we have n = 1 and d = 1. But, then the second equality
of (39) is false.

When vn = 2a2, the equation

(41) X2 − 24Y 4 = 1, X, Y ∈ N

has a solution (X, Y ) = (un, a). By Lemma 9, (41) has only the solution
(X, Y )= (5, 1). Hence, by (36), (1) has only the solution (x, y, z)= (71, 29, 6)
which is of the shape (iii).

If (x, y, z) has the shape (iv), then we have

(42) 3Um(Um + 2Vm) = z2, z ∈ N.
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Since gcd(Um,Um + 2Vm) = 1, we get from (42) that

(43) z = 3ab, Um =
{

3a2,

a2,
Um + 2Vm =

{
b2,

3b2,
a, b ∈ N.

When Um = 3a2, the equation

(44) 27X4 − 2Y 2 = 1, X, Y ∈ N

has a solution (X, Y ) = (a, Vm). But, since the least solution of the equation

(45) 27A2 − 2B2 = 1, A, B ∈ N

is (A1, B1) = (3, 11), by Lemma 10, (44) has no solutions (X, Y ). When
Um = a2, the equation

(46) 3X4 − 2Y 2 = 1, X, Y ∈ N

has a solution (X, Y ) = (
√
Um, Vm). By [1], (46) has only two solutions

(X, Y ) = (1, 1) and (3, 11). Therefore, by (43), (1) has only the solution
(x, y, z) = (17, 7, 3) is the of shape (iv).

If (x, y, z) has the shape (v), then we have

(47) 2Vm(3Um − Vm) = z2, z ∈ N.

Since Um and Vm are odd integers with gcd(Vm, 3Um −Vm) = 1, we get from
(47) that

(48) z = 2ab, Vm = a2, 3Um − Vm = 2b2, a, b ∈ N.

We see from the second equality of (48) that the equation

(49) 3X2 − 2Y 4 = 1, X, Y ∈ N

has a solution (X, Y ) = (
Um,

√
Vm

)
. By Lemma 12, (49) has only the solution

(X, Y ) = (1, 1). Thus, by (48), (1) has only the solution (x, y, z) = (7, 3, 2)
is of the shape (v). To sum up, we determine all solutions of (1) for D = 6.

For D = 8, the parameters in Lemmas 1–3 are

(50) (u1, v1) = (3, 1), D′ = D

4
= 2, ε = 2,

(D1,D2) = (2, 1), (U1, V1) = (1, 1).

By the same argument as in the case D = 6, we can prove that if D = 8,
then (1) has only the solutions (x, y, z) = (1, 1, 1) and (31, 11, 4). The latter
solution is of shape (ii) and arises for the value n = 1. The Corollary is proved.
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