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ONE DIMENSION HIGHER OF THE
WORD PROBLEM

A. SINAN ÇEVIK

Abstract

Just as a group presentation P can be regarded as a 2-complex with a single 0-cell, so we can
consider a 3-complex with a single 0-cell, known as a 3-presentaton. In this paper, by using a
geometric way, called spherical pictures, we show that there exist a finite 3-presentation which
has unsolvable generalised identity problem which can be thought as one-dimension higher of the
word problem.

1. Introduction

Let G be a group defined by a presentation

(1) P = 〈x ; r〉.
Therefore we have a free group F(x) on x, a normal closure setN of r in F(x)
and a quotient group, that is the group defined by P , G(P) = F(x)/N such
that G = G(P) for finite presentation P . We recall that a typical element of
G(P) is represented by W = [W ]N where W is a word on x and [W ] is the
free equivalence class of W .

The word problem is the question of asking for the existence of an algorithm
to determine of an arbitrary word W on x whether or not W = 1 in G.

Let H be a finitely generated subgroup of G. Then the subgroup word
problem for H in G is the problem of deciding for an arbitrary word W on x,
whether or not W defines an element of H . It is clear that if H is trivial then
the subgroup word problem is just simply the word problem.

If we think P as a finite connected 2-complex then the word problem for
P is the problem of determining the existence of algorithm to decide whether
for any arbitrary element of the first homotopy group π1(〈x〉), its image under
the inclusion induced homomorphism

ψ∗ : π1(〈x〉) −→ π1(〈x ; r〉)
Received June 5, 2002; in revised form June 23, 2003.



162 a. sinan çevik

is trivial. The main unsolvabilty result belong to Boone [4] and Novikov [12]
which states that there exists a finitely presented group with unsolvable word
problem.

As a natural extension of the above formulation of the word problem, for a
finite connected 3-complex K , one can ask whether for any arbitrary element
of the second homotopy group π2(P), its image under the inclusion induced
homomorphism

θ∗ : π2(P) −→ π2(K )

is trivial.
Since a 2-complex with a single 0-cell can be regarded just as a presentation,

we can consider a 3-complex with a single 0-cell, which is known as a 3-
presentation. A 3-presentation K is a triple

〈x ; r ; Y〉
where Y is a set of spherical pictures over P . We say that K is finite if x, r and
Y are all finite. In fact this definition comes from the definition of an extension
group presentation, defined by Fenn [9].

By using [3, Theorem 1.6] and [14, Theorem 2.6], we can formulate the
generalised identity problem as “is there an algorithm to decide for any spher-
ical picture P over P = 〈x ; r〉 whether P is equivalent (relative to Y) to the
empty picture, for a given finite 3-presentation K = 〈x ; r ; Y〉?”

In this paper we work on the generalised identity problem which is the
analogue of the one dimension higher of the word problem, by using the above
contruction on 3-complexes.

Thus the main result of this paper is the following.

Theorem 1.1. There is a finite 3-presentation K with unsolvable general-
ised identity problem. Furthermore, since K can be chosen, the word problem
for the presentation P is solvable.

Remark 1.2. It is well known that the word problem plays a central role
in decision problems. Thus one can generate the above theorem to the global
properties such as the p-Cockcroft properties or the efficiency. The reader can
find the details and some applications of the p-Cockcroft property and the
efficiency, for instance, in [6], [7].

By the paper written by Otto ([13]) it has been stated that the word problem
for groups is reducible to the conjugacy problem, and so the decidability of
the conjugacy problem implies the decidability of the word problem but the
situation is different for monoids. As a result of this, he showed that the word
problem and the conjugacy problem are independent of one another for mon-
oids. Therefore, for a future project, by using the same technique and similar
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construction as in our this paper, the same result (Theorem 1.1 above) has been
obtained seperately for monoids in the joint paper [8] written by Cevik and
Ates.

2. Preliminaries

In this section we recover some basic concepts briefly which are needed in the
next section. We refer to the reader [14] for the details.

2.1. Spherical pictures

Let G be a finitely presented group with the presentaton P , as in (1). If we
regard P as a 2-complex with single 0-cell whose 1-cells are in bijective
correspondence with the elements of x, and whose 2-cells are attached by the
boundary path determined by the spelling of the correponding element of r in
the standard way, thenG is just the fundamental group of P . Thus there is also,
of course, the second homotopy group π2(P) of P , which is a left ZG-module.
The elements of π2(P) can be represented by geometric configurations called
spherical pictures. These are described in detail in [3] and [14]. In this paper
we need only one basepoint on each disc of our pictures (so we will actually
use ∗-pictures, as described in Section 2.4 of [14]). Also, as described in [14],
there are certain operations on spherical pictures.

For a non-spherical picture Q over P , we have the term boundary label
which is the word read off by travelling around boundary of Q once in the
clockwise direction starting from the basepoint of the Q. If a word W in
x ∪ x−1 represents an element in the normal closure N of r in F(x), then it is
easy to construct a based picture over P with boundary label W . So there is
the following pictorial version of the “van Kampen lemma” [5], [10].

Proposition 2.1 ([3, Theorem 1.4]). A word W in x ∪ x−1 represents an
element of N , that is W = 1 in G(P), if and only if there is a based picture
over P with boundary label W .

Suppose Y is a collection of spherical pictures over P. Then, by [14], one can
define the additional operation on spherical pictures. Allowing this additional
operation leads to the notion of equivalence (rel Y) of spherical pictures. We
note that an example of using pictures can be found in [6].

In [14], Pride also proved the following important result about the equival-
ence of spherical pictures.

Theorem 2.2. The elements 〈P〉 (P ∈ Y) generate π2(P) as a module if
and only if every spherical picture is equivalent (rel Y) to the empty picture.

Therefore it is easy to see that if the elements 〈P〉 (P ∈ Y) generate π2(P)

then we say that Y generates π2(P).
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2.2. Projective resolutions

Let
−→ Pn −→ · · · −→ P2 −→ P1 −→ P0 −→ Z −→ 0

be any arbitrary projective resolution of the trivialG-module Z. This resolution
is called n-finite if P0, P1, . . . , Pn are finitely generated. We say that G is of
type FPn (0 ≤ n < ∞) if G has an n-finite projective resolution. If the group
G is given by a presentation P , as in (1), then we have the Lyndon resolution

(2) 0 −→ π2(P)
µ−→ P2 −→ P1 −→ ZG −→ Z −→ 0

where P1 and P2 are the free left ZG-modules with basis {ex : x ∈ x} and
{eR : R ∈ r}, respectively. By [14], the embedding µ is given as follows. Let
〈P〉 ∈ π2(P) and suppose P has discs�1,�2, . . . , �n, which each of them has
single basepoint, with clockwise label Rε1

1 , R
ε2
2 , . . . , R

εn
n respectively (Ri ∈ r,

ε= ± 1 and i = 1, 2, . . . , n). Let γi be a transverse path from the basepoint of
P to the basepoint of each �i . Let Wi be the label on γi . Then

µ(〈P〉) =
n∑

i=1

εigieRi

where gi is the element of G represented by Wi .

3. Proof of the main theorem

To construct this section we will pick a special groupM (see below) and then
we will use it to obtain a finite 3-presentation K . By taking an arbitrary word
W on the generating set of M , we will consider the set of PW (where each
PW is a spherical picture over the presentation of M) and show that PW is
equivalent to the empty picture if and only ifW defines an element of a special
normal subgroup of M , say L (see below). Thus we can conclude that K has
unsolvable generalised identity problem since, by the assumption on L, the
subgroup word problem for L in M is unsolvable.

Let M be finitely presented group defined by PM = 〈x ; r〉 such that

1) the word problem for the group M is solvable,

2) π2(PM) is finitely generated,

3) there exists a finitely generated normal subgroup L of M such that the
subgroup word problem for L in M is unsolvable.

We should note that the above analogue is a direct combination of the
Novikov-Boone Theorem ([4], [12]) and the so-called Rips construction [15].
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We could take the group of Miller [2, Corollary 1] for a specific example
of a such group. One of the fact for this choise is the Miller group has an
aspherical presentation and so π2(PM) = 0. Therefore the second condition
holds.

Let Z2 be cyclic group of order 2 with a presentation PZ2 = 〈s ; s2〉 and let
T be a group M × Z2 given by the presentation

(3) PT = 〈x, s ; r, s2, [x, s] (x ∈ x)〉.
We note that T has solvable word problem sinceM and Z2 have both solvable
word problem.

We need the following definition for the proof.

Definition 3.1. Let xε1
1 . . . x

εj
j x

εj+1

j+1 . . . x
εn
n be a word on x. Then a com-

mutator picture D
x
ε1
1 ...x

εj

j x
εj+1
j+1 ...x

εn
n

is a picture over 〈x, s ; [x, s] (x ∈ x)〉 of

the form as depicted in Figure 1(a). Moreover, if D
x
ε1
1 ...x

εj

j x
εj+1
j+1 ...x

εn
n

is a picture

over 〈x, s ; s2, [x, s] (x ∈ x)〉, then it is equivalent to a picture as shown in
Figure 1(b).

s

s

s

s

s

ss ss

x1
e1 xj xn

ej xj�1
ej�1 xnxj�1

ej�1x1
e1 xj

ej

(a) (b)

Figure 1

Suppose that w = {w1, w2, . . . , wn} is a set of words on x which represents a
finite set of generators of L. Let Y1 be a finite set of spherical pictures which
generates π2(PM), and for each R ∈ r, let Y2 be the finite set of spherical
pictures (see Figure 2(a)) over the presentation PT , as given in (3).

Also let Y3 consists of the single picture as drawn in Figure 2(b). Finally,
for eachwi ∈ w, let Y4 be a finite set of spherical pictures over PT of the form
as shown in Figure 3(a).

We note that the subpicture Di is a commutator picture and fixed over the
presentation 〈x, s ; [x, s] (x ∈ x)〉.

Let Y = Y1 ∪Y2 ∪Y3 ∪Y4. Since each Yj (1 ≤ j ≤ 4) is finite, Y is finite.
Therefore we have a finite 3-presentation

K = 〈x, s ; r, s2, [x, s] (x ∈ x) ; Y〉
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Figure 3

such that the underlying presentation PT has solvable word problem.
Now suppose that M is finitely presented group defined by PM as above.

For any word W on x, let PW be a spherical picture of the form as shown in
Figure 3(b). As in Di , we again note that the commutator subpicture DW is
fixed over the presentation 〈x, s ; [x, s] (x ∈ x)〉.

Now, we will show that PW is equivalent to the empty picture (relative to
Y) if and only if W defines an element of L, and hence K has unsolvable
generalised identity problem since the subgroup word problem for L in M is
unsolvable. Let us start to show this with the sufficiency part. So let us assume
thatW defines an element of L. ThenW = w

ε1
1 w

ε2
2 . . . w

εn
n inM for somewi’s

which belong to w and εi = ±1. Thus, by Proposition 2.1, there is a picture
Q over PM = 〈x ; r〉 with boundary label wε1

1 w
ε2
2 . . . w

εn
n W

−1. Now let us
consider the picture P1

Q as shown in Figure 4(a). We note that, by cancelling
pair operation (see [14]), P1

Q is equivalent to the picture P2
Q, as depicted in

Figure 4(b). By [1], the set Y1 ∪ Y2 generates π2(〈x, s ; r, [x, s] (x ∈ x)〉).
Then, by Theorem 14, P2

Q is equivalent (relative to Y1 ∪ Y2) to the empty
picture and so is P1

Q.
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Now, by inserting P1
Q to the left side of PW and performing some bridge

move operations (see [14]), we have the picture P1
W , as in Figure 5, which

contains two subpictures PD and Qid.
Since the subpicture Qid is equivalent to the empty picture (we can think it

as a cancelling pair), we delete it. Moreover, by Definition 3.1, the subpicture
PD becomes the picture P′

D as in Figure 6. In this picture we can delete the
subpicture SW, depicted in Figure 7, since it is equivalent to the empty picture
(by applying some bridge move and cancelling pair operations on it).

Furthermore, by applying a sequence of Definition 3.1, we obtain the picture
P2
W (see Figure 8) which is equivalent (relative to Y3) to the empty picture.

These all above processes give us that the picture PW is equivalent (relative
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to Y) to the empty picture, as required.
For the necessity part of the above process, we will show that if W does

not define any element of L, then PW is not equivalent to the empty picture
(relative to Y) over PT .

Suppose that PW can be obtained from Y. Let P2 be the free ZT -module
with basis {eR : R ∈ r} ∪ {es2} ∪ {e[x,s] : x ∈ x}. By considering the exact
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sequence, as given in (2), we will determine the image of PW in P2. We recall
that each γ (as used in below) defines a transverse path from the basepoint of
the concerned picture to the basepoint of each discs of this picture.

Let us take P2 = ZT es2 ⊕ P ′
2, where P ′

2 is the free ZT -module with the
above basis excluding {es2}. Then the image of PW in P2 is

γW = (W − 1)es2 + λW ,

for some λW ∈ P ′
2, and the image of Pwi (Pwi ∈ Y4) is

γi = (wi − 1)es2 + λi,

for some λi ∈ P ′
2. Also let the image of each PR (R ∈ r) be γR and the image

of B (B ∈ Y1) be γB. We should note that γR and γB contained in P ′
2.

By the assumption, since PW is obtainable from Y, we then have

γW = β1γ1 + β2γ2 + · · · + βnγn + α0γs2 +
∑

R∈r

αRγR +
∑

B∈Y1

αBγB,

where each of the α and β belongs to ZT . Let us equate the coefficients of es2 .
Then we get

W − 1 = β1(w1 − 1)+ β2(w2 − 1)+ · · · + βn(wn − 1)+ α0(s − 1).

After all, if we consider the induced ring homomorphism

ZT −→ ZM −→ Z(M/L), x �−→ x �−→ xL (x ∈ x), s �−→ 1 �−→ 1L

arising from the group homomorphism, then we have WL − 1L = 0. In
other words W defines the element W of L which makes contradiction to our
assumption.

Hence the result.

Final Remark 3.2. The finite 3-presentation that we produce in our main
result (Theorem 1.1) can be taken to have as two-skeleton a presentation P

for a group G that not only has solvable word problem, but which is also of
homological finiteness type F∞: the group G admits a K(G, 1) with finitely
many cells in each dimension. To identify a finite three-skeleton, we need
only replace the set Y4 of spherical pictures Pwi (wi ∈ w) with the analogous
pictures Px (x ∈ x).
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