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SOME REMARKS ON THE C∗-ALGEBRAS
ASSOCIATED WITH SUBSHIFTS

TOKE MEIER CARLSEN and KENGO MATSUMOTO

Abstract

We point out incorrect lemmas in some papers regarding theC∗-algebras associated with subshifts
written by the second named author. To recover the incorrect lemmas and the affected main
results, we will describe an alternative construction of C∗-algebras associated with subshifts.
The resulting C∗-algebras are generally different from the originally constructed C∗-algebras
associated with subshifts and they fit the mentioned papers including the incorrect results. The
simplicity conditions and the K-theory formulae for the originally constructed C∗-algebras are
described. We also introduce a condition called (∗) for subshifts such that under this condition
the new C∗-algebras and the original C∗-algebras are canonically isomorphic to each other. We
finally present a subshift for which the two kinds of algebras have different K-theory groups.

1. Introduction

Throughout this paper a finite set � = {1, 2, . . . , n}, n ≥ 2 is fixed. Let
�Z, �N be the infinite product spaces

∏∞
i=−∞�i ,

∏∞
i=1�i where �i = �,

endowed with the product topology respectively. The transformation σ on �Z

given by (σ (x)i)i∈Z = (xi+1)i∈Z for x = (xi)i∈Z ∈ �Z is called the (full) shift.
Let� be a shift invariant closed subset of �Z i.e. σ(�) = �. The topological
dynamical system (�, σ) is called a subshift. Let X� = {(x1, x2, . . .) ∈ �N |
(xi)i∈Z ∈ �}: the set of all right-infinite sequences that appear in �.

In [17], the second named author has introduced a class of C∗-algebras
associated with subshifts. The class of the C∗-algebras is wider than the class
of the Cuntz-Krieger algebras that are associated with topological Markov
shifts. The K-groups for the C∗-algebras have been computed in [18]. In the
subsequent papers [19], [20], [23], [24], some results on theC∗-algebras asso-
ciated with subshifts have been published. They are the results on dimension
groups, ideal structure of the algebras ([19]), operator relations among the
canonical generating partial isometries of the algebras ([20]), automorphisms
of the algebras ([23]) and algebraic invariance of the stabilized C∗-algebras
under topological conjugacy ([24]).
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However, there are some lemmas in these four papers which are not correct.
They are: [19, Lemma 4.6, Corollary 4.7, Proposition 4.12, Lemma 5.3], [20,
Lemma 3.1], [23, Lemma 4.1] and [24, Lemma 2.1 (i)].

All of them arise from the inaccurate statement (
) below. For a subshift
(�, σ) and k ∈ N, let �k be the set of all words with length k occurring in
some x ∈ �.We put �l = ∪lk=0�

k where �0 denotes the empty word ∅. Let
S1, . . . , Sn be the canonical generating partial isometries of the C∗-algebra
associated with � as in [17]. For an admissible word µ = µ1 · · ·µl of �, we
write Sµ1 · · · Sµl as Sµ. For l ∈ N, let �l = X�/ ∼l be the l-past equivalence
classes of the right one-sided subshift X� (see [19, Introduction]).

(
): The C∗-algebra Al generated by the projections S∗
µSµ, µ ∈ �l is iso-

morphic to the the commutative C∗-algebra C(�l) of all continuous functions
on �l .

There is a subshift for which the above statement (
) does not hold (see
Section 4). The arguments to deduce the main results [19, Theorem 4.1, Co-
rollary 6.11], [20, Theorem 3.5], [23, Theorem 5.12], [24, Theorem 6.1] of the
above mentioned four papers depend upon the lemmas in the above list. We
shall consider the following two ways to establish the main results in the four
papers without any inaccuracy:

(1) Describe an alternative construction ofC∗-algebras associated with sub-
shifts such that the statement (
) for these C∗-algebras hold.

(2) Restrict the results to the class of subshifts for which the statement (
)
holds.

Consequently, we know that for the C∗-algebras given by the above men-
tioned alternative construction (1), all of the results in the previously mentioned
four papers are valid to subshifts satisfying the condition (I) (cf. page 149, and
[19, Section 5]). And also, if we consider the subshifts with a certain condition,
that will be written as (∗) in Section 3, the discussions in the four papers for
the C∗-algebras originally defined in [17] are valid.

There are three purposes of this paper.
The first one is to recover the main results of the four papers by going

through the above two ways. We will construct C∗-algebras associated with
subshifts by a slightly different way from the original construction in [17]
(Definition 2.1), and we will describe a condition, which will be called (∗),
such that for subshifts satisfying this condition, the statement (
) holds. In
[19, Corollary 6.11], a simplicity condition for the algebra defined originally
in [17] is described in terms of the underlying symbolic dynamics. Since the
simplicity condition is deduced by going through (
), it only holds for subshifts
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which satisfy the condition (∗). On the other hand the simplicity condition fits
the C∗-algebras given by the alternative construction.

The second purpose of this paper is to describe a precise simplicty condition
for the originally constructed C∗-algebra associated with subshifts without
going through the condition (∗). This criterion for theC∗-algebras to be simple
is a new result.

The third purpose of this paper is to clarify the relationship between the
C∗-algebras given by the alternative construction and the C∗-algebras given
by the original construction, and to present an example of a subshift for which
the two kinds of C∗-algebras are not isomorphic.

In Section 2, we present the alternative construction of C∗-algebras asso-
ciated with subshifts. The resulting C∗-algebras have previously been seen
in [25, Section 3]. In this paper, we write these algebras as O� whereas the
originally defined C∗-algebras associated with subshifts are written as O�∗ .
In the second half of Section 2, we will study the algebras O�∗ and describe
their precise simplicity condition and their K-theory formula in terms of the
symbolic dynamical system.

There always exists a canonical unital surjective ∗-homomorphism from the
algebra O�∗ onto the algebra O�. In Section 3 we will introduce the condition
(∗) for subshifts. For the subshifts satisfying (∗), the two algebras O�∗ and O�
become canonically isomorphic under the condition (I ) so that the canonical
generating partial isometries of O�∗ satisfy (
) and all of the statements in
[19], [20], [23], [24] are valid for such subshifts. We also show that both of
the algebras O�∗ and O� are constructed as the C∗-algebras associated with
λ-graph systems discussed in [26]. In Section 4 we finally present an example
of an irreducible sofic shift � for which the algebras O�∗ and O� are not
isomorphic by computing their K-groups.

The authors would like to thank Wolfgang Krieger for his discussions on
the condition (∗) and the referee for his useful comments and suggestions for
the presentation of this paper.

2. The C∗-algebras associated with subshifts

Let (�, σ) be a subshift over �. We denote by �∗ the set of all admissible
words of �.

The first half of this section is devoted to presenting the alternative construc-
tion ofC∗-algebras assosiated with subshifts, so that the resultingC∗-algebras
with the canonical generating partial isometries S1, . . . , Sn satisfy (
). Hence
we will know that the main results of the above mentioned four papers hold
for these C∗-algebras under the assumption that the subshifts satisfy condi-
tion (I). This construction has first appeared in [23, Lemma 4.1] and also
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in [25, Section 3]. A generalization of this construction has been studied in
[26]. We denote by H� the Hilbert space with its complete orthonormal basis
{ex | x ∈ X�}. Let S1, . . . , Sn be the operators on H� defined by

Sjex =
{
ejx if jx ∈ X�,

0 otherwise.

Then S1, . . . , Sn are partial isometries satisfying the relation:
∑n
j=1 SjS

∗
j = 1.

Definition 2.1 (cf. [23, Lemma 4.1], [25, Section 3], [26]). The C∗-
algebra O� associated with a subshift� is defined as theC∗-algebra generated
by the partial isometries S1, . . . , Sn.

In [23, Lemma 4.1], the C∗-algebra O� = C∗(S1, . . . , Sn) has first ap-
peared. But Lemma 4.1 in [23] and also Lemma 4.6 in [19] do not hold in
general unless the subshift � satisfies condition (∗) stated in Section 3 and
condition (I) stated in [19, p. 691]. There is a subshift � such that the algebra
O� is not isomorphic to the C∗-algebra associated with the subshift defined in
[17] (cf. Theorem 4.1).

As in the introduction, we denote by �l = X�/∼l the l-past equivalence
classes of X�. Let F li , i = 1, 2, . . . , m(l) be the set of the l-past equivalence
classes of X�. Hence X� is a disjoint union of the set F li , i = 1, 2, . . . , m(l).
The projections S∗

µSµ, µ ∈ �∗ are mutually commutative so that the C∗-
algebra Al is commutative. It is direct to see that the set of all minimal projec-
tions of Al exactly corresponds to the set F li , i = 1, 2, . . . , m(l) of �l . Thus
we have the following lemma (cf. [19, Section 4]).

Lemma 2.2. The C∗-algebra Al generated by the projections S∗
µSµ, µ ∈

�l is isomorphic to the C∗-algebra C(�l) of all complex valued continuous
functions on �l . That is, for the generators S1, . . . , Sn of the algebra O�, the
statement (
) holds.

We put aµ = S∗
µSµ for µ ∈ �∗. We define the algebra F� as the C∗-

subalgebra of O� generated by elements of the form Sµaγ1 . . . aγmS
∗
ν with

|µ| = |ν| for µ, ν, γ1, . . . , γm ∈ �∗, where |µ|, |ν| denote the lengths of µ, ν
respectively. Then by the same argument as in [17] we see that the algebra F� is
an AF-algebra (this also follows from [26, Proposition 3.4]). Since the algebra
O� is not constructed by creation operators on sub Fock space as in [17], it is
not clear if the correspondence: Si → zSi , i = 1, . . . , n for z ∈ C, |z| = 1
gives rise to an automorphism on O�. Hence it is not clear that a projection
of norm one from O� to the AF-algebra F�, that would be realized as the
fixed point algebra of O� under the above action, exists. Existence of such a
projection of norm one plays a key rôle in the simplicity argument discussed in
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[17]. To guarantee existence of such a projection of norm one, we assume the
condition (I) for subshift defined in [19, Section 5]. By [19, Lemma 5.3], the
condition (I) is equivalent to the condition (I�) in [17, Section 5] for the algebra
O�. We will in Theorem 3.6 see that under the condition (I) theC∗-algebra O�
is canonically isomorphic to a C∗-algebra associated with a λ-graph system
([26]). This C∗-algebra associated with a λ-graph system always (even when
the the subshift � does not satisfy the condition (I)) satisfies (
) and has an
action given by Si → zSi for z ∈ C, |z| = 1. This C∗-algebra can also be
constructed as a Cuntz-Pimsner algebra ([26, Proposition 6.1], cf. [5]) and as
a groupoid C∗-algebra ([26, Section 3], cf. [4]).

Each element X of the ∗-algebra P� of O� algebraically generated by
Sµ, S

∗
ν , µ, ν ∈ �∗ can be written as a finite sum

X =
∑
|ν|≥1

X−νS∗
ν +X0 +

∑
|µ|≥1

SµXµ for some X−ν, X0, Xµ ∈ F�.

By the same manner as the proof of [17, Theorem 5.2] and [17, Corollary 5.7]
(also [26], cf. [5]), we have

Lemma 2.3. If a subshift� satisfies condition (I), the mapX ∈ P� → X0 ∈
F� can be extended to a projection of norm one from O� to the AF-algebra
F�.

Hence we have

Proposition 2.4. If a subshift � satisfies condition (I), then the universal
property for the algebra O� as stated in [23, Lemma 2.3] holds.

We then conclude with Lemma 2.2

Proposition 2.5. If a subshift � satisfies condition (I), then the results:
[19, Theorem 4.13, Corollary 6.11], [20, Theorem 3.5], [23, Theorem 5.2] and
[24, Theorem 6.1] hold for the algebra O�.

In particular we can prove the following proposition in a similar manner to
how [17, Theorem 6.3 and 7.5] and [18, Theorem 5.8] are deduced.

Proposition 2.6. If a subshift � satisfies condition (I ) and is irreducible
in past equivalence, then O� is simple. In addition, if � is aperiodic in past
equivalence, O� is purely infinite.

The second half of this secion is devoted to studying the originally con-
structed C∗-algebras associated with subshifts. The following is the original
construction of C∗-algebras associated with subshifts ([17]). Let {e1, . . . , en}
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be an orthonormal basis of n-dimensional Hilbert space Cn. We put

F 0
� = Ce0 (e0: the vacuum vector),

F k� = the Hilbert space spanned by the vectors
eµ = eµ1 ⊗ · · · ⊗ eµk , µ = (µ1, . . . , µk) ∈ �k,

F� = ⊕∞
k=0F

k
� (the direct sum of the Hilbert spaces).

We denote by Ti for i ∈ � the creation operator on F� of ei defined by

Tie0 = ei and Tieµ =
{
ei ⊗ eµ, if iµ ∈ �∗

0 otherwise

which is a partial isometry. We denote by P0 the rank one projection onto the
vacuum vector e0. It immediately follows that

∑n
i=1 TiT

∗
i +P0 = 1. We denote

by Tµ for µ = µ1 . . . µk the operator Tµ1 . . . Tµk . For µ, ν ∈ �∗, the operator
TµP0T

∗
ν is the rank one partial isometry from eν to eµ. Hence, the C∗-algebra

generated by elements of the form TµP0T
∗
ν , µ, ν ∈ �∗ is nothing but the C∗-

algebra K (F�) of all compact operators on F�. Let T� be the C∗-algebra on
F� generated by the elements Tν , ν ∈ �∗.

Definition 2.7 ([17]). The C∗-algebra O�∗ associated with the subshift
� is defined as the quotient C∗-algebra T�/K (F�) of T� by K (F�).

In this paper, we write the quotient algebra T�/K (F�) as O�∗ , although in
[17], [19], [20], [23] and [24], it has been written as O�. We denote by Si, Sµ
the quotient image of the operator Ti , i ∈ �, Tµ,µ ∈ �∗. Remark that S∅ = 1.
Hence O�∗ is generated by n partial isometries S1, . . . , Sn which satisfy the
relation

∑n
i=1 SiS

∗
i = 1. In this paper, We will use the following notation for

the C∗-algebra O�∗ . For a natural number l, we put

Al∗ = The C∗-subalgebra of O�∗ generated by S∗
µSµ, µ ∈ �l .

A�∗ = The C∗-subalgebra of O�∗ generated by S∗
µSµ, µ ∈ �∗.

As stated in the introduction, the algebra Al∗ is not necessarily isomorphic
to the algebra C(�l). Hence the criterion for the algebra O�∗ to be simple is
different from [19, Corollary 6.11] unless the subshift � satisfy the condition
(∗) that will be stated in the next section. Also the K-theory formulas for
O�∗ in terms of the underlying symbolic dynamics are different from [24,
Corollary 6.4] because they are based on the property (
) in the introduction.
The rest of this section is devoted to finding a compact space �∗

l which can
replace �l such that Al∗ is isomorphic to C(�∗

l ). This will be done by using
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the underlying symbolic dynamics. As a result, simplicity condition and K-
theory formulas for O�∗ will be described in terms of the underlying symbolic
dynamics.

For an admissible word w ∈ �∗ and l ∈ N, we put �l(w) = {µ ∈ �l |
µw ∈ �∗}. Two admissible words µ, ν ∈ �∗ are said to be l-past equivalent
if�l(µ) = �l(ν)and written as µ ∼l ν. We consider the following subsets of
the admissible words

�∗
l = {w ∈ �∗ | The cardinality of the set {µ ∈ �∗ | µ ∼l w} is infinite}.

Lemma 2.8.
(i) For µ, ν ∈ �∗

l if µ ∼l ν, then µ ∼m ν for m < l.

(ii) For µ, ν ∈ �∗
l and w ∈ �k with l > k, if µ ∼l ν and wµ ∈ �∗

l−k , then
wν ∈ �∗

l−k and wµ ∼l−k wν.

(iii) For µ ∈ �∗
l , there exists a word ν ∈ �∗

l+1 such that µ ∼l ν.

(iv) For µ ∈ �∗
l , there exist a word ν ∈ �∗

l+1 and a symbol j ∈ � such that
µ ∼l jν.

Proof. The assertions (i) and (ii) are clear.
(iii) Let {µi | i ∈ N} be the infinite set of all words in�∗ for whichµi ∼l µ.

Since the l + 1-past equivalence classes �∗/∼l+1 of �∗ is a finite set, there
exists an infinite subset {µim | m ∈ N} of {µi | i ∈ N} such that theµim ,m ∈ N
are l + 1-past equivalent to each other. Hence we have µim ∈ �∗

l+1 for m ∈ N
so that we can take one of the words µim as ν.

(iv) Let {µim | m ∈ N} be the set as above. Since the set {µim | m ∈ N} is
infinite, there exists a subset {µimk | k ∈ N} of {µim | m ∈ N} such that the first
letters of µimk are the same. We denote by j the first letter. Hence there exists
an infinite sequence of admissible words νik , k ∈ N satisfying µimk = jνik .
Since the l + 1-past equivalence classes �∗/∼l+1 of �∗ is a finite set, there
exists an infinite subset {νikp | p ∈ N} of {νik | k ∈ N} such that νikp , p ∈ N
are l + 1-past equivalent to each other. Hence we have νikp ∈ �∗

l+1, p ∈ N so
that we can take one of the words νikp ∈ �∗

l+1, p ∈ N as ν.

We denote by �∗
l = �∗

l /∼l the l-past equivalence classes of �∗
l . There is

a natural surjection from �∗
l+1 to �∗

l . It is easy to see that a subshift � is a
sofic shift if and only if �∗

l = �∗
l+1 for some l ∈ N. For a fixed l ∈ N, let F ∗l

i ,
i = 1, 2, . . . , m∗(l) be the set of the l-past equivalence classes of �∗

l . Hence
�∗
l is a disjoint union of the set F ∗l

i , i = 1, 2, . . . , m∗(l). The projections
S∗
µSµ, µ ∈ �∗ are mutually commutative so that the C∗-algebras Al∗, l ∈ N

are commutative. It is direct to see that the set of all minimal projections of
Al∗ exactly corresponds to the set F ∗l

i , i = 1, 2, . . . , m∗(l) of �∗
l . Thus we

have the following lemma (cf. [17, Section 3], [19, Section 4]).
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Lemma 2.9. Al∗ is isomorphic to the commutativeC∗-algebraC(�∗
l ) of all

continuous functions on �∗
l .

This lemma is the right one instead of (
). We notice that in [19, Lemma 4.6]
there is a corresponding result. However [19, Lemma 4.6] does not hold in
general unless the subshift � satisfies the condition (∗) stated in the next
section.

We introduce the following condition called (I ∗) for subshifts:

(I ∗): For any l ∈ N andµ ∈ �∗
l , there exist distinct words ξ1, ξ2 ∈ �∗ with

|ξ1| = |ξ2| such that

µ ∼l ξ1γ1 and µ ∼l ξ2γ2

for some γ1, γ2 ∈ �∗
l+|ξi |.

In [17], the condition (I�) for the C∗-algebras associated with subshifts
has been introduced. In this paper, we denote it by (I�∗). We can prove the
following lemma by an argument similar to the proof of [19, Lemma 5.3].

Lemma 2.10 (cf. [19], [26]). A subshift � satisfies condition (I ∗) if and
only if the C∗-algebra O�∗ satisfies condition (I�∗).

Put λ�∗(X) = ∑n
j=1 S

∗
j XSj , X ∈ A�∗ . The operator λ�∗ is said to be

irreducible if there is no non-trivial λ�∗ -invariant ideal in A�∗ . In addition, it
is said to be aperiodic if for any number l ∈ N, there exists N ∈ N such that
λN�∗(p) ≥ 1 for any minimal projection p in Al∗.

(i) A subshift� is said to be irreducible in past equivalence of words if for
any l ∈ N, µ ∈ �∗

l and a sequence νk ∈ �∗
k , k ∈ N with νk ∼k ν

k+1,
k ∈ N there exist a number N and an admissible word ξ of length N
such that µ ∼l ξν

l+N .

(ii) A subshift � is aperiodic in past equivalence of words if for any l ∈ N,
and µ ∈ �∗

l there exists a number N ∈ N such that for any word
ν ∈ �∗

l+N there exists an admissible word ξ of length N such that
µ ∼l ξν.

We know that if a subshift � is aperiodic in past equivalence of words or
irreducible in past equivalence of words with an aperiodic point, then it satisfies
the condition (I ∗) (cf. [19, Proposition 5.2]).

By the same argument used in the proof of [19, Proposition 4.12], we see that
λ�∗ is irreducible (resp. aperiodic) if and only if the subshift � is irreducible
(resp. aperiodic) in past equivalence of words. Hence by the discussion of
Section 6 in [17], we have



some remarks on the C∗-algebras associated with subshifts 153

Proposition 2.11 (cf. [17, Theorem 6.3 and 7.5], [18, Theorem 5.8], [26]).
If a subshift � satisfies condition (I ∗) and is irreducible in past equivalence
of words, then O�∗ is simple. In addition, if� is aperiodic in past equivalence
of words, O�∗ is purely infinite.

We next describe the K-theory of the algebra O�∗ . Let A∗
l,l+1(i, j) be the

cardinality of the set

{a ∈ � | aµ ∈ F ∗l
i for some µ ∈ F ∗l+1

j }.
We write I ∗

l,l+1(i, j) = 1 if F ∗l+1
j ⊂ F ∗l

i otherwise I ∗
l,l+1(i, j) = 0. Hence we

have two m∗(l) × m∗(l + 1) matrices I ∗
l,l+1 and A∗

l,l+1 with entries in {0, 1}
and with entries in nonnegative integers respectively such that

I ∗
l,l+1A

∗
l+1,l+2 = A∗

l,l+1I
∗
l+1,l+2, l ∈ N.

We denote by λ∗
l the restriction of the operator λ�∗ to Al∗. It induces a ho-

momorphism from K0(Al∗) to K0(Al+1∗). We denote by ιl the natural em-
bedding of Al∗ into Al+1∗. The homomorphisms λl∗, ιl∗ from K0(Al∗) to
K0(Al+1∗) induced by λl, ιl are regarded as the transposed matrices A∗t

l,l+1,

I ∗t
l,l+1 of A∗

l,l+1, I
∗
l,l+1 respectively through isomorphisms between K0(Aj∗)

and Zm
∗(j), j = l, l + 1. By [18], the K-groups for O�∗ are computed as

Proposition 2.12 (cf. [18, Theorem 4.9]).
(i) K0(O�∗) ∼= lim−→ Zm

∗(l+1)/(I ∗t
l,l+1 − A∗t

l,l+1)Z
m∗(l),

(ii) K1(O�∗) ∼= lim−→ Ker(I ∗t
l,l+1 − A∗t

l,l+1) in Zm
∗(l),

where the sequences of homomorphisms in lim−→ are coming from the inclusions
I ∗t
l,l+1 : Zm

∗(l) ↪→ Zm
∗(l+1).

3. Relations between O�∗ and O�

We consider the following condition for a subshift �:

(∗): There exists for each l ∈ N and each infinite sequence of admissible
wordsµi , i ∈ N satisfying�l(µi) = �l(µj ), i, j ∈ N a right infinite sequence
x ∈ X� such that

�l(x) = �l(µi), i ∈ N.

The topological Markov shifts, the β-shifts and a synchronizing counter
shiftZ refered as the context free shift in [16, Example 1.2.9] satisfy the above
condition (∗) (cf. [11], [21]).

Wolfgang Krieger kindly informed to the authors that the condition (∗) is
not an invariant property for topological conjugacy and is strictly weaker than
the existence of an instantaneous presentation of subshifts (cf. [15]).
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We first note the following proposition.

Proposition 3.1. Suppose that a subshift � satisfies condition (∗). Then
we have

(i) � satisfies condition (I ∗) if and only if � satisfies condition (I ).

(ii) � is irreducible in past equivalence of words if and only if� is irreducible
in past equivalence.

(iii) � is aperiodic in past equivalence of words if and only if� is aperiodic
in past equivalence.

For x ∈ X�, we denote by [x]l ∈ X�/∼l its l-past equivalence class. Put

�cl (x) = {µ ∈ �l | µx does not belong to X�}.
Since the cardinality of the set�cl (x) is finite, there exists a number Nx,l such
that

�l(x) = �l(x[1,...,n]) for all n ≥ Nx,l

where x[1,...,n] = x1 · · · xn for (xi)i∈N ∈ X�. As x[1,...,n] ∼l x[1,...,m] for n,m >
Nx,l , we know that x[1,...,n] belongs to �∗

l and the map

x ∈ X� −→ x[1,...,n] ∈ �∗
l for n ≥ Nx,l

induces a map

[x]l ∈ X�/∼l = �l −→ [x[1,...,n]]l ∈ �∗
l /∼l = �∗

l .

We will denote this map by πl .

Lemma 3.2. The map πl : �l → �∗
l is injective and compatible to ι and λ,

that is,
πl ◦ ιl+1 = ι∗l+1 ◦ πl+1, πl([jx]l) = [jx[1,...,Nx,l+1]]l

for j ∈ � with jx ∈ X�. Furthermore πl is surjective for all l ∈ N if and only
if � satisfies condition (∗).

Proof. Injectivity for πl is clear by its construction.
For x ∈ X�, we have

πl(ιl+1([x]l+1)) = πl(([x]l)) = [x[1,...,Nx,l ]]l .

As x[1,...,Nx,l ] ∼l x[1,...,Nx,l+1], it follows that

[x[1,...,Nx,l ]]l = [x[1,...,Nx,l+1]]l = ι∗l+1(x[1,...,Nx,l+1]) = ι∗l+1(πl+1([x]l+1)).

Hence we see πl(ιl+1([x]l+1)) = ι∗l+1(πl+1([x]l+1)).
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For j ∈ � and x ∈ X� with jx ∈ X�, put y = jx. As y[1,...,Ny,l ] ∼l

j · x[1,...,Nx,l+1], we see πl([jx]l) = [jx[1,...,Nx,l+1]]l .
It is immediate that πl is surjective for all l ∈ N if and only if � satisfies

condition (∗).
Since we may regard the algebras Al∗ and Al as the algebras of all con-

tinuous functions on the sets�∗
l and�l respectively, we have an induced map

π∗
l : Al∗ → Al for each l ∈ N.

Corollary 3.3. The sequence of the induced maps π∗
l : Al∗ → Al , l ∈ N

yields a unital surjective ∗-homomorphism π� from A�∗ to A�. The map π�
is injective if and only if the subshift � satisfies condition (∗).

Theorem 3.4. The correspondence π : Si ∈ O�∗ → Si ∈ O�, i ∈ �

gives rise to a surjective ∗-homomorphism π : O�∗ → O�. If in particular the
subshift � satisfies conditions both (∗) and (I ), the map π is injective so that
the algebra O�∗ is canonically isomorphic to the algebra O�.

Corollary 3.5. If a subshift is one of the followings:

(i) a topological Markov shift for which its adjacency matrix is irreducible
and not permutation,

(ii) β-shift for each 1 < β ∈ R,

(iii) the context free shift Z,

then the associated C∗-algebras O�∗ and O� are canonically isomorphic.

Although the constructions of the C∗-algebras O� and O�∗ are different,
we can unify them by the following observations.

Let �� be ths canonicalλ-graph system for the subshift� that is constructed
from l-past equivalence classes of �l = X�/∼l ([22, p. 297]). Let ��∗ be the
λ-graph system constructed from l-past equivalence classes �∗

l = �∗
l /∼l of

words. The λ-graph system ��∗ corresponds to the symbolic matrix system
(M∗

l,l+1, I
∗
l,l+1)l∈N where the symbolic matrices M∗

l,l+1, l ∈ N are defined
as follows: Let a1, . . . , ap be the set of all symbols in � for which akµ ∈
F ∗l
i for some µ ∈ F ∗l+1

j . We then define the (i, j)-component of the matrix
M∗
l,l+1(i, j) as M∗

l,l+1(i, j) = a1 + · · · + ap, the formal sum of a1, . . . , ap. In
[26], general construction of the C∗-algebras associated with λ-graph systems
have been introduced. The constructed C∗-algebras have universal property
subject to certain operator relations that come from concatenations of vertices
and edges of the λ-graph systems. We note that

(i) � satisfies condition (I ∗) if and only if the λ-graph system ��∗ satisfies
condition (I ).
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(ii) � satisfies condition (I ) if and only if the λ-graph system �� satisfies
condition (I ).

Then we have

Theorem 3.6.
(i) Suppose that a subshift � satisfies condition (I ). Then the C∗-algebra

O� is canonically isomorphic to theC∗-algebra O�� associated with the
λ-graph system ��.

(ii) Suppose that a subshift � satisfies condition (I ∗). Then the C∗-algebra
O�∗ is canonically isomorphic to the C∗-algebra O��∗ associated with
the λ-graph system ��∗ .

Proof. The assertions come from the universality of the C∗-algebras O�,
O�∗ , O�� and O��∗ .

4. An example

We finally present an example of subshift � for which the C∗-algebras O�∗

and O� are not isomorphic. Let � be the subshift given by the set

� = {12k1, 32k12, 32k13, 42k14 | k ∈ N0}
of forbidden words, where 2k denotes 2 · · · 2︸ ︷︷ ︸

k times

and N0 denotes the set of all

nonnegative integers.
For an admissible word ω ∈ �∗ we put

�∗(ω) =
∞⋃
l=1

�l(ω) = {µ ∈ �∗ | µω ∈ �∗}.

Then for k ∈ N and ν ∈ �∗, we have

�∗(1) = �∗ \ {µ12j ∈ �∗ | µ ∈ �∗, j ∈ N0};
�∗(2k) = �∗ \ {µ32j1 ∈ �∗ | µ ∈ �∗, j ∈ N0};
�∗(3ν) = �∗ \ {µ32j1 ∈ �∗ | µ ∈ �∗, j ∈ N0} where 3ν ∈ �∗;
�∗(4ν) = �∗ \ {µ42j1 ∈ �∗ | µ ∈ �∗, j ∈ N0} where 4ν ∈ �∗;

�∗(2k3ν) = �∗ \ {µ32j1 ∈ �∗ | µ ∈ �∗, j ∈ N0} where 2k3ν ∈ �∗;
�∗(2k4ν) = �∗ \ {µ32j1 ∈ �∗ | µ ∈ �∗, j ∈ N0} where 2k4ν ∈ �∗;
�∗(2k1) = �∗ \ {µ12j ∈ �∗ | µ ∈ �∗, j ∈ N0};

�∗(2k12ν) = �∗ \ {µ12j , µ32j ∈ �∗ | µ ∈ �∗, j ∈ N0}
where 2k12ν ∈ �∗;
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�∗(2k13ν) = �∗ \ {µ12j , µ32j ∈ �∗ | µ ∈ �∗, j ∈ N0}
where 2k13ν ∈ �∗;

�∗(2k14ν) = �∗ \ {µ12j , µ42j ∈ �∗ | µ ∈ �∗, j ∈ N0}
where 2k14ν ∈ �∗;

�∗(12ν) = �∗ \ {µ12j , µ32j ∈ �∗ | µ ∈ �∗, j ∈ N0} where 12ν ∈�∗;
�∗(13ν) = �∗ \ {µ12j , µ32j ∈ �∗ | µ ∈ �∗, j ∈ N0} where 13ν ∈�∗;
�∗(14ν) = �∗ \ {µ12j , µ42j ∈ �∗ | µ ∈ �∗, j ∈ N0} where 14ν ∈�∗.

Thus for l ≥ 4, we have that m∗(l) = 5,

F ∗l
1 = {2k12ν, 2k13ν ∈ �∗ | k ∈ N0, ν ∈ �∗},
F ∗l

2 = {2k14ν ∈ �∗ | k ∈ N0, ν ∈ �∗},
F ∗l

3 = {2k, 3ν, 2k3ν, 2k4ν ∈ �∗ | k ∈ N, ν ∈ �∗},
F ∗l

4 = {4ν ∈ �∗ | ν ∈ �∗},
F ∗l

5 = {2k1 ∈ �∗ | k ∈ N0},
and

M∗
l,l+1 =




2 0 1 0 0
0 2 0 1 0
0 3 2 + 3 2 + 3 3
4 0 4 4 4
0 0 0 0 2


 .

It follows that

I ∗t
l,l+1 − A∗t

l,l+1 =




0 0 0 −1 0
0 0 −1 0 0

−1 0 −1 −1 0
0 −1 −2 0 0
0 0 −1 −1 0




so that
K1(O�∗) ∼= lim−→

(
Ker(I ∗t

l,l+1 − A∗t
l,l+1) in Zm

∗(l)) ∼= Z,

K0(O�∗) ∼= lim−→
(
Zm

∗(l+1)/(I ∗t
l,l+1 − A∗t

l,l+1)Z
m∗(l)) ∼= Z.

For a right infinite sequence x ∈ X� we put

�∗(x) =
∞⋃
l=1

�l(x) = {µ ∈ �∗ | µx ∈ �∗}.
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Then for k ∈ N and x ∈ X�, we have

�∗(2∞) = �∗ \ {µ32j1 ∈ �∗ | µ ∈ �∗, j ∈ N0};
�∗(3x) = �∗ \ {µ32j1 ∈ �∗ | µ ∈ �∗, j ∈ N0} where 3x ∈ X�;
�∗(4x) = �∗ \ {µ42j1 ∈ �∗ | µ ∈ �∗, j ∈ N0} where 4x ∈ X�;

�∗(2k3x) = �∗ \ {µ32j1 ∈ �∗ | µ ∈ �∗, j ∈ N0} where 2k3x ∈ X�;
�∗(2k4x) = �∗ \ {µ32j1 ∈ �∗ | µ ∈ �∗, j ∈ N0} where 2k4x ∈ X�;
�∗(2k12x) = �∗ \ {µ12j , µ32j ∈ �∗ | µ ∈ �∗, j ∈ N0}

where 2k12x ∈ X�;
�∗(2k13x) = �∗ \ {µ12j , µ32j ∈ �∗ | µ ∈ �∗, j ∈ N0}

where 2k13x ∈ X�;
�∗(2k14x) = �∗ \ {µ12j , µ42j ∈ �∗ | µ ∈ �∗, j ∈ N0}

where 2k14x ∈ X�;
�∗(12x) = �∗ \ {µ12j , µ32j ∈ �∗ | µ ∈ �∗, j ∈ N0} where 12x ∈X�;
�∗(13x) = �∗ \ {µ12j , µ32j ∈ �∗ | µ ∈ �∗, j ∈ N0} where 13x ∈X�;
�∗(14x) = �∗ \ {µ12j , µ42j ∈ �∗ | µ ∈ �∗, j ∈ N0} where 14x ∈X�.

Thus for l ≥ 4, we have that m(l) = 4,

F l1 = {2k12x, 2k13x ∈ X� | k ∈ N0, x ∈ X�},
F l2 = {2k14x ∈ X� | k ∈ N0, x ∈ X�},
F l3 = {2∞, 3x, 2k3x, 2k4x ∈ X� | k ∈ N, x ∈ X�},
F l4 = {4x ∈ X� | x ∈ X�}.

Let a1, . . . , aq be the set of all symbols in {1, 2, 3, 4} for which akµ ∈ F li for
someµ ∈ F l+1

j . We then define the (i, j)-component of the matrix Ml,l+1(i, j)

as a1 +· · ·+aq , the formal sum of a1, . . . , aq andAl,l+1(i, j) as q respectively.
We also define Il,l+1(i, j) as 1 if F l+1

j ⊂ F li , otherwise 0. It is straightforward
to see that

Ml,l+1 =



2 0 1 0
0 2 0 1
0 3 2 + 3 2 + 3
4 0 4 4



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and

I tl,l+1 − Atl,l+1 =



0 0 0 −1
0 0 −1 0

−1 0 −1 −1
0 −1 −2 0




so that
K1(O�) ∼= lim−→

(
Ker(I tl,l+1 − Atl,l+1) in Zm(l)

) ∼= 0,

K0(O�) ∼= lim−→
(
Zm(l+1)/(I tl,l+1 − Atl,l+1)Z

m(l)
) ∼= 0.

We note the four sets F li , i = 1, 2, . . . , 4 for l ≥ 4 exactly correspond to the
vertex set of the left Krieger cover graph for the subshift �. The vertex set of
the graph is finite so that� is sofic and also irreducible because the adjacency
matrix of the graph is given by the irreducible matrix Ml,l+1 (cf. [13], [14]).
Therefore we obtain

Theorem 4.1. Let� be the subshift over {1, 2, 3, 4} defined by the forbidden
words

� = {12k1, 32k12, 32k13, 42k14 | k = 0, 1, 2, . . .}
Then � is an irreducible sofic shift such that the K-groups for the associated
C∗-algebras O�∗ and O� are

K0(O�∗) ∼= K1(O�∗) ∼= Z, K0(O�) ∼= K1(O�) ∼= 0.

Hence the C∗-algebras O�∗ and O� are not stably isomorphic.

We remark that O� is simple and purely infinite whereas O�∗ is not simple.
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