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DUAL BANACH ALGEBRAS: CONNES-AMENABILITY,
NORMAL, VIRTUAL DIAGONALS, AND INJECTIVITY

OF THE PREDUAL BIMODULE

VOLKER RUNDE∗

Abstract

Let � be a dual Banach algebra with predual �∗ and consider the following assertions: (A) �
is Connes-amenable; (B) � has a normal, virtual diagonal; (C) �∗ is an injective �-bimodule.
For general �, all that is known is that (B) implies (A) whereas, for von Neumann algebras, (A),
(B), and (C) are equivalent. We show that (C) always implies (B) whereas the converse is false
for � = M(G) where G is an infinite, locally compact group. Furthermore, we present partial
solutions towards a characterization of (A) and (B) for � = B(G) in terms of G: For amenable,
discreteG as well as for certain compactG, they are equivalent toG having an abelian subgroup
of finite index. The question of whether or not (A) and (B) are always equivalent remains open.
However, we introduce a modified definition of a normal, virtual diagonal and, using this modified
definition, characterize the Connes-amenable, dual Banach algebras through the existence of an
appropriate notion of virtual diagonal.

Introduction

In [15], B. E. Johnson, R. V. Kadison, and J. Ringrose introduced a notion
of amenability for von Neumann algebras which modifies Johnson’s original
definition for general Banach algebras ([12]) in the sense that it takes the
dual space structure of a von Neumann algebra into account. This notion of
amenability was later dubbed Connes-amenability by A. Ya. Helemskiı̆ ([11]).

In [18], the author extended the notion of Connes-amenability to the larger
class of dual Banach algebras (a Banach algebra is called dual if it is a dual
Banach space such that multiplication is separatelyw∗-continuous). Examples
of dual Banach algebras (besides von Neumann algebras) are, for example, the
measure algebras M(G) of locally compact groups G. In [20], the author
proved that a locally compact group G is amenable if and only if M(G) is
Connes-amenable – thus showing that the notion of Connes-amenability is of
interest also outside the framework of von Neumann algebras.

In [8], E. G. Effros showed that a von Neumann algebra is Connes-amenable
if and only if it has a so-called normal, virtual diagonal. Like Connes-amena-
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bility, the notion of a normal, virtual diagonal adapts naturally to the context of
general dual Banach algebras. It is not hard to see that a dual Banach algebra
with a normal, virtual diagonal is Connes-amenable (the argument from the
von Neumann algebra case carries over almost verbatim; see [4]).

Let � be a dual Banach algebra with (not necessarily unique) predual �∗;
it is easy to see that �∗ is a closed submodule of �∗. Consider the following
three statements:

(A) � is Connes-amenable.

(B) � has a normal, virtual diagonal.

(C) �∗ is an injective �-bimodule in the sense of [10].

If � is a von Neumann algebra, then (A), (B), and (C) are equivalent (the
equivalence of (A) and (B) was mentioned before; that they are equivalent to
(C) is proved in [11]). If � = M(G) for a locally compact group G, then
(A) and (B) are also equivalent ([21]). For a general dual Banach algebra �,
we know that (B) implies (A), but nothing else seems to be known about the
relations between (A), (B), and (C).

As we shall see in the present paper, (C) always implies (B) – and thus (A)
– whereas the converse need not hold in general: this answers a question by
A. Ya. Helemskiı̆ ([19, Problem 24]) in the negative. The counterexample is
the measure algebra M(G) for any infinite, amenable, locally compact group
G; the proof relies on recent work by H. G. Dales and M. Polyakov ([6]).
(As O. Yu. Aristov informed us upon seeing a preprint version of this paper, it
had previously been shown by S. Tabaldyev that the Banach �1(G)-bimodule
c0(G) is not injective for every infinite discrete groupG, which already answers
Helemskiı̆’s question; see [25].)

The Fourier-Stieltjes algebra B(G) of a locally compact groupG, as intro-
duced in [9], is another example of a dual Banach algebra. In view of [20],
[21], and [22], it is not farfetched to conjecture that (A) and (B) for � = B(G)
are equivalent and hold true if and only if G has an abelian subgroup of finite
index. Even though we are not able to settle this conjecture in full generality,
we can corroborate it for certain G: (A) and (B) hold for B(G) – with G dis-
crete and amenable or a topological product of finite groups – if and only ifG
has an abelian subgroup of finite index.

In the last section of the paper we modify the definition of a normal, virtual
diagonal by introducing what we call a σWC-virtual diagonal. For a dual
Banach algebra �, we then consider the statement:

(B′) � has a σWC-virtual diagonal.

Unlike for (A) and (B), we can show that (A) and (B′) are indeed equivalent.
It thus seems that the notion of a σWC-virtual diagonal seems to be the more
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natural one to consider in the context of Connes-amenability if compared with
the notion of a normal, virtual diagonal.

1. Preliminaries

1.1. Notions of amenability

We start with the definition of a dual Banach module:

Definition 1.1. Let � be a Banach algebra. A Banach �-bimodule E is
called dual if it is the dual of some Banach spaceE∗ such that, for each a ∈ �,
the maps

E→ E, x �→
{
a · x,
x · a

are σ(E,E∗)-continuous.

Remarks. 1. The predual space E∗ in Definition 1.1 need not be unique.
Nevertheless, E∗ will always be clear from the context, so that we can speak
of the w∗-topology on E without ambiguity.

2. It is easily seen that a dual Banach space E (with predual E∗) which is
also a Banach �-bimodule is a dual Banach �-bimodule if and only if E∗ is a
closed submodule of E∗. Hence, our definition of a dual Banach �-bimodule
coincides with the usual one (given in [19], for instance).

Let � be a Banach algebra, and letE be a Banach �-bimodule. A derivation
from � to E is a bounded, linear map D: � → E satisfying

D(ab) = a ·Db + (Da) · b (a, b ∈ �).

A derivation D: � → E is called inner if there is x ∈ E such that

Da = a · x − x · a (x ∈ �).

Definition 1.2. A Banach algebra � is called amenable if every derivation
from � into a dual Banach �-bimodule is inner.

The terminology is, of course, motivated by [12, Theorem 2.5]: A locally
compact groupG is amenable if and only if its group algebraL1(G) is amenable
in the sense of Definition 1.2.

For some classes of Banach algebra, Definition 1.2 seems to be “too strong”
in the sense that it only characterizes fairly uninteresting examples in those
classes: A von Neumann algebra is amenable if and only if it is subhomogen-
eous ([26]), and the measure algebra M(G) of a locally compact group G is
amenable if and only if G is discrete and amenable ([5]).

Both von Neumann algebras and measure algebras are dual Banach algebras
in the sense of the following definition:
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Definition 1.3. A Banach algebra � which is a dual Banach �-bimodule
is called a dual Banach algebra.

Examples. 1. Every von Neumann algebra is a dual Banach algebra.
2. The measure algebraM(G) of a locally compact groupG is a dual Banach

algebra (with predual C0(G)).
3. If E is a reflexive Banach space, then B(E) is a dual Banach algebra

(with predualE⊗̂E∗, where ⊗̂ denotes the projective tensor product of Banach
spaces).

4. The bidual of every Arens regular Banach algebra is a dual Banach
algebra.

We shall now introduce a variant of Definition 1.2 for dual Banach algebras
that takes the dual space structure into account:

Definition 1.4. Let � be a dual Banach algebra, and letE be a dual Banach
�-bimodule. An element x ∈ E is called normal if the maps

� → E, a �→
{
a · x,
x · a

are w∗-continuous. The set of all normal elements in E is denoted by Eσ . We
say that E is normal if E = Eσ .

Remark. It is easy to see that, for any dual Banach �-bimodule E, the set
Eσ is a norm closed submodule of E. Generally, however, there is no need for
Eσ to be w∗-closed.

Definition 1.5. A dual Banach algebra � is called Connes-amenable if
everyw∗-continuous derivation from � into a normal, dual Banach �-bimodule
is inner.

Remarks. 1. “Connes”-amenability was introduced by B. E. Johnson, R.
V. Kadison, and J. Ringrose for von Neumann algebras in [15]. The name
“Connes-amenability” seems to originate in [11], probably in reverence to-
wards A. Connes’ fundamental paper [2].

2. For a von Neumann algebra, Connes-amenability is equivalent to a num-
ber of important properties, such as injectivity and semidiscreteness; see [19,
Chapter 6] for a relatively self-contained account.

3. The measure algebra M(G) of a locally compact group G is Connes-
amenable if and only if G is amenable ([20]).
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1.2. Virtual diagonals

Let � be a Banach algebra. Then � ⊗̂ � is a Banach �-bimodule via

a · (x ⊗ y) := ax ⊗ y and (x ⊗ y) · a := x ⊗ ya (a, x, y ∈ �),

so that the multiplication map

�: � ⊗̂ � → �, a ⊗ b �→ ab

becomes a homomorphism of Banach �-bimodules.
The following definition is also due to B. E. Johnson ([13]):

Definition 1.6. A virtual diagonal for a Banach algebra � is an element
M ∈ (� ⊗̂ �)∗∗ such that

a ·M = M · a and a�∗∗M = a (a ∈ �).

In [13], Johnson showed that a Banach algebra � is amenable if and only
if it has a virtual diagonal. This allows to introduce a quantified notion of
amenability:

Definition 1.7. A Banach algebra � is calledC-amenable for someC ≥ 1
if it has a virtual diagonal of norm at mostC. The infimum over allC ≥ 1 such
that � is C-amenable is called the amenability constant of � and denoted by
AM�.

Remark. It follows from the Alaoglu–Bourbaki theorem ([7, Theorem
V.4.2]), that the infimum in the definition of AM� is attained, i.e. is a minimum.

Definition 1.6 has a variant that is better suited for dual Banach algebras.
Let � be a dual Banach algebra with predual �∗, and let B2

σ (�,C) denote the
bounded, bilinear functionals on �× � which are separately w∗-continuous.
Since�∗ maps �∗ into B2

σ (�,C), it follows that�∗∗ drops to an �-bimodule
homomorphism �σ : B2

σ (�,C)
∗ → �. We define:

Definition 1.8. A normal, virtual diagonal for a dual Banach algebra �
is an element M ∈ B2

σ (�,C)
∗ such that

a ·M = M · a and a�σM = a (a ∈ �).

Remarks. 1. Every dual Banach algebra with a normal, virtual diagonal is
Connes-amenable ([4]).

2. A von Neumann algebra is Connes-amenable if and only if it has a normal,
virtual diagonal ([8]).
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3. The same is true for the measure algebras of locally compact groups
([21]).

In [18], we introduced a stronger variant of Definition 1.5 – called “strong
Connes-amenability” – and showed that the existence of a normal, virtual
diagonal for a dual Banach algebra was equivalent to it being strongly Connes-
amenable ([18, Theorem 4.7]). The following proposition, observed by the late
B. E. Johnson, shows that strong Connes-amenability is even stronger than it
seems:

Proposition 1.9. The following are equivalent for a dual Banach algebra
�:

(i) There is a normal, virtual diagonal for �.

(ii) � has an identity, and every w∗-continuous derivation from � into a
dual, unital Banach �-bimodule is inner.

Proof. In view of [18, Theorem 4.7], only (i) �⇒ (ii) needs proof.
Let E be a dual, unital Banach �-bimodule. Due to [18, Theorem 4.7], it is

sufficient to show thatD� ⊂ Eσ . This, however, is automatically true because

a ·Db = D(ab)− (Da) ·b and (Db) ·a = D(ab)−b ·Da (a, b ∈ �)

holds.

1.3. Injectivity for Banach modules

Let � be a Banach algebra, and let E be a Banach space. Then B(�, E)
becomes a left Banach �-bimodule by letting

(a · T )(x) := T (xa) (a, x ∈ �).

If E is also a left Banach �-module, there is a canonical module homomorph-
ism ι:E→ B(�, E), namely

ι(x)a := a · x (x ∈ E, a ∈ �).

For the definition of injective, left Banach modules denote, for any Banach
algebra �, by �# the unconditional unitization, i.e. we adjoin an identity to �
no matter if � already has one or not. Clearly, if E is a left Banach �-module,
the module operation extends canonically to �#.

Definition 1.10. Let � be a Banach algebra. A left Banach �-module E
is called injective if ι:E→ B(�#, E) has a bounded left inverse which is also
a left �-module homomorphism.



130 volker runde

There are various equivalent conditions characterizing injectivity (see, e.g.,
[19, Proposition 5.3.5]). The following is [6, Proposition 1.7]:

Lemma 1.11. Let � be a Banach algebra, and letE be a faithful left Banach
�-module, i.e. if x ∈ E is such that a · x = 0 for all a ∈ �, then x = 0. Then
E is injective if and only if ι:E→ B(�, E) has a bounded left inverse which
is also an �-module homomorphism.

Definition 1.10 and Lemma 1.11 can be adapted to the context of right
modules and bimodules in a straightforward way.

The relevance of injectivity in the context of amenable Banach algebras be-
comes apparent from [10, Theorem VII.2.20] and the duality between injectiv-
ity and flatness ([10, Theorem VII.1.14]): A Banach algebra � with bounded
approximate identity is amenable if and only if the Banach �-bimodule �∗ is
injective.

2. Injectivity of the predual bimodule

In view of the characterization of amenable Banach algebras just mentioned,
one might ask if an analogous statement holds for Connes-amenable, dual
Banach algebras � with �∗ replaced by �∗. For von Neumann algebras, this
is known to be true ([11]).

Our first result is true for all dual Banach algebras:

Proposition 2.1. Let � be a dual Banach algebra with identity such that
its predual bimodule �∗ is injective. Then � has a normal, virtual diagonal.

Proof. Consider the short exact sequence

(1) {0} → �∗
�∗|�∗−→ B2

σ (�,C)→ B2
σ (�,C)/�

∗�∗ → {0}.
Define P : B2

σ (�,C)→ �∗ by letting

(P�)(a) := �(a, e�) (� ∈ B2
σ (�,C), a ∈ �),

where e� denotes the identity of �. Then it is routinely checked that P is a
bounded projection onto �∗�∗ and thus a left inverse of �∗|�∗ . Hence, (1)
is admissible ([19, Definition 2.3.12]). Since �∗ is an injective �-bimodule,
there is a bounded �-bimodule homomorphism ρ: B2

σ (�,C)→ �∗ which is
a left inverse of �∗|�∗ ([19, Proposition 5.3.5]). It is routinely checked that
ρ∗(e�) is a normal, virtual diagonal for �.

As we shall soon see, the converse of Proposition 2.1 is, in general, false.
Nevertheless, for certain �, the injectivity of �∗ is indeed equivalent to the ex-
istence of a normal virtual diagonal for � (and even to its Connes-amenability).
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We first require a lemma:

Lemma 2.2. Let � be a Banach algebra with identity, let I be a closed ideal
of �, and let E be a unital Banach �-bimodule such that:

(a) E is injective as a Banach I -bimodule.

(b) E is faithful both as a left and a right Banach I -module.

Then E is injective as a Banach �-bimodule.

Proof. Turn B(� ⊗̂ �, E) into a Banach �-bimodule, by letting

(a ·T )(x⊗y) := T (x⊗ya) and (T ·a)(x⊗y) := T (ax⊗y) (a, x, y ∈ �).

Define ι:E→ B(� ⊗̂ �, E) by letting

ι(x)(a ⊗ b) := a · x · b (x ∈ E, a, b ∈ �).

Since � has an identity andE is unital, it is sufficient by (the bimodule analogue
of) Lemma 1.11 to show that ι has a bounded left inverse which is an �-
bimodule homomorphism.

By (a), ι has a bounded left inverse ρ which is an I -bimodule homomorph-
ism. We claim that ρ is already an �-bimodule homomorphism. To see this,
let a ∈ �, T ∈ B(� ⊗̂ �, E), and b ∈ I . Since I is an ideal of �, we obtain
that

b · ρ(a · T ) = ρ(ba · T ) = ba · ρ(T ),
so that b · (ρ(a · T )− a · ρ(T )) = 0. Since b ∈ I was arbitrary, and since E is
a faithful left Banach I -module by (b), we obtain ρ(a · T ) = a · ρ(T ); since
a ∈ � and T ∈ B(� ⊗̂ �, E) were arbitrary, ρ is therefore a left �-module
homomorphism.

Analogously, one shows that ρ is a right �-module homomorphism.

Our first theorem, considerably improves [18, Theorem 4.4]:

Theorem 2.3. Let � be an Arens regular Banach algebra which is an ideal
in �∗∗. Then the following are equivalent:

(i) � is amenable.

(ii) �∗ is an injective Banach �∗∗-bimodule.

(iii) �∗∗ has a normal, virtual diagonal.

(iv) �∗∗ is Connes-amenable.

Proof. (i) �⇒ (ii): We wish to apply Lemma 2.2. Since � is amenable,
it has a bounded approximate identity. The Arens regularity of � yields that
�∗∗ has an identity and that �∗ is a unital Banach �∗∗-bimodule. Since � is
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amenable and thus a flat �-bimodule over itself ([10, Theorem VII.2.20]), �∗
is an injective Banach �-bimodule by (the bimodule version of) [10, Theorem
VII.1.14]. Thus, Lemma 2.2(a) is satisfied. To see that Lemma 2.2(b) holds as
well, let φ ∈ �∗ \ {0}. Choose a ∈ � such that 〈a, φ〉 �= 0. Let (eα)α be a
bounded approximate identity for �. Since limα〈aeα, φ〉 = 〈a, φ〉 �= 0, there
is b ∈ � such that 〈ab, φ〉 = 〈a, b·φ〉 �= 0 and thus b·φ �= 0. Consequently, �∗
is faithful as a left Banach �-module. Analogously, one verifies the faithfulness
of �∗ as a right Banach �-module.

(ii) �⇒ (iii) is clear by Proposition 2.1.
(iii) �⇒ (iv) holds by [4].
(iv) �⇒ (i): This is one direction of [18, Theorem 4.4].

Example. LetE be a reflexive Banach space with the approximation prop-
erty, and let � be K (E), the algebra of all compact operators on E. Then �∗
can be canonically identified with N (E∗), the nuclear operators onE∗, and we
have �∗∗ = B(E). By Theorem 2.3, we have the equivalence of the following
properties:

(i) K (E) is amenable.

(ii) N (E∗), the space of nuclear operators on E∗, is an injective Banach
B(E)-bimodule.

(iii) B(E) has a normal, virtual diagonal.

(iv) B(E) is Connes-amenable.

In view of the situation for von Neumann algebras, one might be tempted by
Theorem 2.3 to jump to the conclusion that, for a dual Banach algebra � with
predual �∗, the injectivity of �∗ is equivalent to � being Connes-amenable or
having a normal, virtual diagonal.

Our next theorem reveals that this is not the case: this gives a negative
answer to a question posed by A. Ya. Helemskiı̆ ([19, Problem 24]).

Lemma 2.4. LetG be a locally compact group, and suppose that C0(G) is
injective as a left BanachM(G)-module. Then C0(G) is also injective as a left
Banach L1(G)-module.

Proof. For � = M(G) or � = L1(G), turn B(�,C0(G)) into a left
BanachM(G)-module in the canonical way, and let ι�: C0(G)→B(�,C0(G))

be the respective canonical left M(G)-module homomorphism.
Since C0(G) is a unital left M(G)-module, it is immediate that the ho-

momorphism ιM(G): C0(G) → B(M(G),C0(G)) of left modules, has a lin-
ear, bounded left inverse. Since C0(G) is injective as a left Banach M(G)-
module, ιM(G) has a left inverse ρ which is a bounded homomorphism of left
M(G)-modules. Let T ∈ B(M(G),C0(G)) be such that T |L1(G) = 0. Since
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L1(G) is an ideal in M(G), it follows from the definition of the module ac-
tion on B(M(G),C0(G)), that f · T = 0 for all f ∈ L1(G) and therefore
f · ρ(T ) = ρ(f · T ) = 0 for all f ∈ L1(G). Since C0(G) is a faithful left
L1(G)-module, this means that ρ(T ) = 0. Since L1(G) is complemented in
M(G), it follows that ρ: B(M(G),C0(G)) → C0(G) drops to bounded ho-
momorphism of left M(G)-modules ρ̃: B(L1(G),C0(G)) → C0(G), which
is easily seen to be a left inverse of ιL1(G).

Since ρ̃ is trivially a homomorphism of left L1(G)-modules, Lemma 1.11
yields the injectivity of C0(G) as a left Banach L1(G)-module.

Theorem 2.5. LetG be a locally compact group. Then C0(G) is an injective
Banach M(G)-bimodule if and only if G is finite.

Proof. Suppose that C0(G) is an injective Banach M(G)-bimodule. By
[10, Proposition VII.2.1] and Lemma 2.4, C0(G) is also injective as a left
BanachL1(G)-module. By [6, Theorem 3.8], this means thatGmust be finite.

The converse is obvious.

Remark. In contrast, it was proven in [20], for a locally compact group
G, that M(G) is Connes-amenable – and, equivalently, has a normal, virtual
diagonal by [21] – if and only if G is amenable.

3. Fourier-Stieltjes algebras of locally compact groups

The Fourier-Stieltjes algebra B(G) of a locally compact group G was intro-
duced by P. Eymard in [9] along with the Fourier algebra A(G). We refer to
[9] for further information on these algebras. It is straightforward to see that
B(G) is a dual Banach algebra – with predualC∗(G) – for any locally compact
group G whereas A(G) need not even be a dual space (unless G is compact,
of course).

Let G be a locally compact group G with an abelian subgroup of finite
index. ThenA(G) is amenable andw∗-dense inB(G), so thatB(G) is Connes-
amenable. In fact, a formally stronger conclusion holds:

Proposition 3.1. Let G be a locally compact group with an abelian sub-
group of finite index. Then B(G) has a normal, virtual diagonal.

Proof. LetH be a an abelian subgroup ofG such that n := [G : H ] <∞.
Replacing H by its closure, we may suppose that H is closed and thus open.
Consequently, the restriction map from B(G) onto B(H) is surjective so that

B(G) ∼= B(H)n ∼= M(Ĥ)n,
where Ĥ is the dual group ofH . By [21],M(Ĥ) has a normal, virtual diagonal.
It is easy to see that therefore M(Ĥ)n ∼= B(G) must have a normal, virtual
diagonal as well.
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In view of [22, Theorem 5.2], we conjecture that the converse of Proposi-
tion 3.1 holds as well – even with the existence of a normal, virtual diagonal
replaced by Connes-amenability. We have, however, been unable to confirm
this conjecture for arbitrary locally compact groups. In the remainder of this
section, we shall prove partial converses of Proposition 3.1 for groups with
certain additional properties.

Given a family (Gα)α of locally compact groups, we denote by
∏
α Gα its

direct product equipped with the product topology.

Lemma 3.2. Let (Gα)α be a family of locally compact groups, let G :=∏
α Gα , and let πα:B(G)→ B(Gα) be the canonical quotient map for each

index α. Then
π :=

⊕
α

πα:B(G)→ �∞-
⊕
α

B(Gα).

is a w∗-continuous algebra homomorphism with w∗-dense range.

Proof. Since each Gα – viewed as a subgroup of G – is open, it follows
that each map πα is w∗-continuous. Consequently, π is w∗-continuous.

We may view each B(Gα) as a closed subalgebra of �∞-
⊕

α B(Gα) in a
canonical fashion. To establish that π has w∗-dense range, it is sufficent to
show that B(Gα) ⊂ π(B(G)) for each index α. Fix α, and let χα:G → C
denote the indicator funtion of Gα . Since Gα is an open subgroup of G, we
have that χα ∈ B(G). Clearly, π maps χαB(G) onto B(Gα).

Lemma 3.3. Let (Gα)α be a family of finite groups, let G := ∏
α Gα , and

suppose that B(G) is Connes-amenable. Then supα AMB(Gα) is finite.

Proof. SinceB(G) is Connes-amenable, the same is true for �∞-
⊕

αB(Gα)

by [18, Proposition 4.2(ii)]. Since each group Gα is finite, B(Gα) is finite-
dimensional so that

�∞-
⊕
α

B(Gα) =
(
c0-

⊕
α

B(Gα)

)∗∗
.

Since � := c0-
⊕

α B(Gα) is an ideal in �∞-
⊕

α B(Gα), it follows from [18,
Theorem 4.4] that � is amenable. Since amenability constants only shrink
under passage to quotients, we conclude that AMB(Gα) ≤ AM� holds for each
index α.

We can now prove our first partial converse of Proposition 3.1:

Theorem 3.4. Let (Gα)α be a family of finite groups, and letG :=∏
α Gα .

Then the following are equivalent for G:

(i) All but finitely many of the groups Gα are abelian.
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(ii) A(G) is amenable.

(iii) B(G) has a normal, virtual diagonal.

(iv) B(G) is Connes-amenable.

Proof. (i) �⇒ (ii) is well known ([14, Theorem 4.5] or [16, Corollary
4.3]).

(ii) �⇒ (iii): Since G is compact, we have B(G) = A(G), so that B(G) is
amenable and thus has a virtual diagonal M ∈ (B(G) ⊗̂ B(G))∗∗. Restricting
M to B2

σ (B(G),C) ⊂ (B(G) ⊗̂B(G))∗, we obtain a normal, virtual diagonal
for B(G).

(iii) �⇒ (iv) is clear.
(iv)�⇒ (i): Assume that there is a subfamily (Gαn)

∞
n=1 of (Gα)α , such that

Gαn is not abelian for each n ∈ N. For n ∈ N, define

Hn := Gαn(n+1)
2

× · · · ×Gαn(n+1)
2 +(n−1)

.

Let H := ∏∞
n=1Hn. Since the restriction map from B(G) to B(H) is a w∗-

continuous algebra homomorphism withw∗-dense range (even surjective), [18,
Proposition 4.2(ii)] shows that B(H) is Connes-amenable as well. It therefore
follows from Lemma 3.2 that supn∈N AMB(Hn) < ∞. This, however, contra-
dicts [14, Corollary 4.2 and Proposition 4.3] which assert that AMB(Hn) ≥

(
3
2

)n
for each n ∈ N.

The groups considered in Theorem 3.4 are compact. For amenable, discrete
groups, another partial converse of Proposition 3.1 holds:

Theorem3.5. The following are equivalent for an amenable, discrete group
G:

(i) G has an abelian subgroup of finite index.

(ii) A(G) is amenable.

(iii) B(G) has a normal, virtual diagonal.

(iv) B(G) is Connes-amenable.

Proof. (i) �⇒ (iii) is Proposition 3.1 and (iii) �⇒ (iv) is clear.
(iv)�⇒ (ii): LetE be a BanachA(G)-bimodule, and letD:A(G)→ E∗ be

a bounded derivation. SinceG is amenable, A(G) has a bounded approximate
identity by Leptin’s theorem ([19, Theorem 7.1.3]). Hence, by [19, Proposition
2.1.5], we may suppose that E is pseudo-unital ([19, Definition 2.1.4]). Let τ
denote the multiplier topology on B(G), i.e. a net (fα)α in B(G) converges
to f ∈ B(G) with respect to τ if and only if ‖fαg − fg‖A(G) → 0 for each
g ∈ A(G). By [19, Proposition 2.1.6], the module actions ofA(G) onE extend
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to B(G) in a canonical manner; it is immediate that, for x ∈ E, the module
actions

B(G)→ E, f �→
{
f · x,
x · f

are τ -norm-continuous. Furthermore, [19, Proposition 2.1.6] asserts that D
extends to a τ -w∗-continuous derivation D̃:B(G)→ E∗. Since G is discrete
and since A(G) is regular, τ and the w∗-topology of B(G) coincide on norm
bounded subsets. From the Krein-Šmulian theorem ([7, Theorem V.5.7]), we
conclude that E∗ is a normal, dual Banach B(G)-module and that D̃ is w∗-
continuous. Consequently, D̃ is inner, and so is D.

(ii) �⇒ (i) is the difficult direction of [22, Theorem 5.2].

The reduced Fourier–Stieltjes algebraBr(G) of a locally compact groupG,
was also introduced in [9]. It is the dual of the reduced groupC∗-algebraC∗r (G)
and is a ∗-closed ideal in B(G). As another consequence of Theorem 3.5, we
obtain (compare [23, Theorem 4.4]):

Corollary 3.6. Let G be a discrete group. Then Br(G) is Connes-amen-
able if and only if G has an abelian subgroup of finite index.

Proof. Suppose thatBr(G) is Connes-amenable. ThenBr(G) has an iden-
tity ([18, Proposition 4.1]) and thus equals B(G). Consequently, G is amen-
able.

The rest is a straightforward consequence of Theorem 3.5.

4. Weak almost periodicity, w∗-weak continuity, and normality

One of the unsatisfactory sides of dealing with Connes-amenability for dual
Banach algebras is the apparent lack of a suitable intrinsic characterization
in terms of virtual diagonals. Dual Banach algebras with a normal, virtual
diagonal are Connes-amenable, but the converse is likely to be false in general.
For von Neumann algebras ([8]) and measure algebras ([21]), (A) and (B) are
equivalent, but in both cases the methods employed to prove this equivalence
give no clue about how to tackle the general case.

In this section, we pursue a different approach towards a “virtual diagonal
characterization” for Connes-amenable, dual Banach algebras. The main prob-
lem with trying to prove that (A) implies (B) is that, for a general dual Banach
algebra �, the module B2

σ (�,C)
∗ need not be normal. In this section, we show

that every dual Banach �-bimodule has what one might call a largest normal
quotient. Using this idea to modify the definition of a normal, virtual diagonal,
we then obtain the desired characterization (Theorem 4.8 below).

We begin with recalling the notion of weak almost periodicity (in a slightly
more general context than usual):
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Definition 4.1. Let � be a Banach algebra, and let E be a Banach �-
bimodule. Then an element x ∈ E is called weakly almost periodic if the
module maps

� → E, a �→
{
a · x,
x · a

are weakly compact. The collection of all weakly almost periodic elements of
E is denoted by WAP(E).

Remark. It follows easily from Grothendieck’s double limit criterion that

WAP(�∗) = {φ ∈ �∗ : � � a �→ a · φ is weakly compact},
so that our choice of terminology is consistent with the usual one as used in
[17], for instance.

The reason why we are interested in weak almost periodicity in the context
of dual Banach algebras is that it is closely related to the normality of dual
Banach modules:

Proposition 4.2. Let � be a dual Banach algebra, and let E be a Banach
�-bimodule such that E∗ is normal. Then E = WAP(E) holds.

Proof. Let x ∈ E. Since E∗ is normal, it follows immediately from the
definition of σ(E,E∗) that the maps

(2) � → E, a �→
{
a · x,
x · a

are σ(�,�∗)-σ(E,E∗)-continuous, where �∗ is the predual bimodule of �.
Since the closed unit ball of � is σ(�,�∗)-compact by the Alaoglu-Bourbaki
theorem, it follows that the maps (2) are weakly compact.

At first glance, one might conjecture that the converse of Proposition 4.2
holds as well. This, however, is not true:

Example. Let G be a locally compact group. Recall that a continuous,
bounded function on G is called weakly almost periodic if its orbit under left
(and, equivalently, under right) translation is weakly compact ([1]). We de-
note the space of all weakly almost periodic functions onG by WAP(G). It is
easy to see that WAP(G) is a commutativeC∗-algebra. Its character space car-
ries a natural semigroup structure (with separately continuous multiplication)
that extends multiplication onG (see [1] for details): we denote this so-called
weakly almost periodic compactification of G by wG. Identifying WAP(G)∗
withM(wG), we can equip WAP(G)∗ with a convolution type product turning
it into a dual Banach algebra. Via integration, the dual Banach algebra M(G)
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can be identified with a subalgebra of WAP(G)∗, so that E = WAP(G) be-
comes a a BanachM(G)-bimodule in a canonical fashion. It is straightforward
to check that WAP(E) = WAP(G) whereas E∗ is normal as a dual Banach
M(G)-bimodule if and only if G is compact.

We therefore feel justified to introduce a new definition:

Definition 4.3. Let � be a dual Banach algebra with predual �∗, and
let E be a Banach �-bimodule. Then an element x ∈ E is called w∗-weakly
continuous if the module maps

� → E, a �→
{
a · x,
x · a

are σ(�,�∗)-σ(E,E∗)-continuous. The collection of all w∗-weakly continu-
ous elements of E is denoted by σWC(E).

Remarks. 1. It is easy to see that σWC(E) is a closed submodule of E.
2. If F is another Banach �-bimodule and if θ :E → F is a bounded

�-bimodule homomorphism, then θ(σWC(E)) ⊂ σWC(F ) holds.
3. It is implicit in the proof of Proposition 4.2 that σWC(E) ⊂ WAP(E).
4. For a locally compact groupG, � = M(G), andE = WAP(G), we have

that WAP(E) = WAP(G) whereas σWC(E) = C0(G). Hence, σWC(E) �

WAP(E) holds whenever G is not compact.

Proposition 4.4. Let � be a dual Banach algebra, and let E be a Banach
�-bimodule. Then then following are equivalent:

(i) E∗ is normal.

(ii) E = σWC(E).

Proof. (i) �⇒ (ii): The argument used to prove Proposition 4.2 does in
fact yield the stronger assertion (ii).

(ii) �⇒ (i): This is proved in the same way as (i) �⇒ (ii), only with the
rôles of E and E∗ interchanged.

It follows from Proposition 4.4 that, for any Banach �-bimodule E, the
dual module σWC(E)∗ is normal. We therefore obtain:

Corollary 4.5. A dual Banach algebra � is Connes-amenable if, for every
Banach �-bimodule E, every w∗-continuous derivation D: � → σWC(E)∗
is inner.

Since any dual Banach algebra is a normal dual Banach module over itself,
we obtain as another consequence of Proposition 4.4:

Corollary 4.6. Let � be a dual Banach algebra with predual bimodule
�∗. Then �∗ ⊂ σWC(�∗) holds.
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Let � be a dual Banach algebra with predual �∗, and let �: � ⊗̂ � → �
be the multiplication map. From Corollary 4.6, we conclude that �∗ maps
�∗ into σWC((� ⊗̂�)∗). Consequently,�∗∗ drops to homomorphism�σWC:
σWC((� ⊗̂ �)∗)∗ → �.

With these preparations made, we can now characterize the Connes-amen-
able, dual Banach algebras through the existence of certain virtual diagonals:

Definition 4.7. Let � be a dual Banach algebra. A σWC-virtual diagonal
for � is an element M ∈ σWC((� ⊗̂ �)∗)∗ such that

a ·M = M · a and a�σWCM = a (a ∈ �).

Theorem 4.8. The following are equivalent for a dual Banach algebra �:

(i) � is Connes-amenable.

(ii) There is a σWC-virtual diagonal for �.

Proof. (i) �⇒ (ii): First, note that � ⊗̂ � is canonically mapped into
σWC((�⊗̂�)∗)∗; in order to make notation not more complicated than neces-
sary (and than it already is), we just write those elements of σWC((� ⊗̂�)∗)∗
that lie in the canonical image of � ⊗̂ � as tensors.

By [18, Proposition 4.1], � has an identity e�. Define a derivation

D: � → σWC((�⊗̂�)∗)∗, a �→ a⊗e�−e�⊗a(= a·(e�⊗e�)−(e�⊗e�)·a).
Since the dual module σWC((� ⊗̂ �)∗)∗ is normal, it follows that D is w∗-
continuous. Clearly,D attains its values in thew∗-closed submodule ker�σWC.
Hence, there is N ∈ ker�σWC such that

Da = a · N − N · a (a ∈ �).

Letting M := e� ⊗ e� − N, we obtain an element as required by Definition
4.7.

(ii) �⇒ (i): Clearly, (ii) implies that � has an identity. Let E be a normal,
dual Banach �-bimodule – which we may suppose without loss of generality
to be unital –, and let D: � → E be a w∗-continuous derivation. Define

θD: � ⊗̂ � → E, a ⊗ b �→ a ·Db.
By Lemma 4.9 below, θ∗D maps the predual module E∗ of E into
σWC((� ⊗̂ �)∗). Hence, +D := (θ∗D|E∗)∗ maps σWC((� ⊗̂ �)∗)∗ into E.

Let M ∈ σWC((� ⊗̂ �)∗)∗ be a σWC-virtual diagonal for �, and let
x := +D(M). A more or less verbatim copy of the argument given in the proof
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of [19, Theorem 2.2.4] then shows thatD is the inner derivation implemented
by x.

To complete the proof of Theorem 4.8, we require the technical Lemma 4.9
below. To make its proof more transparent, we introduce new notation: Given
a dual Banach algebra � and a left Banach �-module E, we define

σWCl(E) := {x ∈ E : � � a �→ a · x is w∗-weakly continuous};
similarly, we define σWCr (E) for a right Banach �-module E. Clearly,
σWCl(E) ∩ σWCr (E) equals σWC(E) if E is a Banach �-bimodule.

Lemma 4.9. Let � be a dual Banach algebra with identity, letE be a normal,
dual Banach �-bimodule with predual bimodule E∗, and let D: � → E be a
w∗-continuous derivation. Then the adjoint of

θD: � ⊗̂ � → E, a ⊗ b �→ a ·Db.
maps E∗ into WAP((� ⊗̂ �)∗)∗.

Proof. Clearly, θD is a homomorphism of left Banach �-modules, so that
θ∗D is a homomorphism of right Banach �-modules. It follows from Proposition
4.4 that

θ∗D(E∗) ⊂ θ∗D(σWC(E∗)) ⊂ θ∗D(σWCr (E
∗)) ⊂ σWCr ((� ⊗̂ �)∗).

Let e� denote the identity of �, and let R := e� ⊗ �. Then R is a closed
submodule of the right Banach �-module �⊗̂� such that we have a direct sum
�⊗̂� = ker�⊕R of right Banach �-modules. Consequently, we have a direct
sum (� ⊗̂�)∗ = (ker�)∗ ⊕R∗ of left Banach �-modules. Let θ1 := θD|ker�

and θ2 := θD|R , so that θD = θ1 ⊕ θ2 and, consequently, θ∗D = θ∗1 ⊕ θ∗2 . It is
easy to check that θ∗1 is a homomorphism of left Banach �-modules, so that
θ∗1 (E∗) ⊂ σWCl((�⊗̂�)∗). Clearly, the right Banach �-modulesR and � are
canonically isomorphic. Identifying, R with �, we see that θ∗2 is nothing but
the pre-adjoint of the w∗-continuous linear map D. In view of Corollary 4.6,
it follows that

θ∗2 (E∗) ⊂ �∗ ⊂ σWCl(�
∗) = σWCl(R

∗) ⊂ σWCl((� ⊗̂ �)∗).

All in all, θ∗D(E∗) ⊂ σWCl((� ⊗̂ �)∗) holds.

Finally, we return to weak almost periodicity in the sense of Definition 4.1.
Recall (from [17], for instance) the notion of a left introverted subspace

of the dual of a Banach algebra: A right �-submodule E of �∗ is called left
introverted if, for any φ ∈ E andA ∈ E∗ the functionalA ·φ ∈ �∗ defined by

〈a,A · φ〉 := 〈φ · a,A〉 (a ∈ �).
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lies again in E. This can be used to turn E∗ into a Banach algebra by letting

(3) 〈φ,AB〉 := 〈B · φ,A〉 (A,B ∈ E∗, φ ∈ E).

We can use this construction to define, for an arbitrary Banach algebra, a
dual Banach algebra with a certain universality property:

Theorem 4.10. Let � be a Banach algebra. Then WAP(�∗) is a left in-
troverted subspace of �∗ such that WAP(�∗)∗, equipped with the product
defined in (3), is a dual Banach algebra with the following universal property:
Whenever � is a dual Banach algebra, and θ : � → � is a bounded algebra
homomorphism, then there is a uniquew∗-continuous algebra homomorphism
π : WAP(�∗)∗ → � such that the diagram

(4)

� ι−−→ WAP(�∗)∗

❅↘θ ↓π
�

commutes where ι: � → WAP(�∗)∗ is the canonical map.

Proof. By [17, Lemma 1.2], WAP(�∗) is left introverted, and by [17,
Lemma 1.4], WAP(�∗)∗ is a dual Banach algebra (the commutativity hypo-
thesis from that lemma is not required for this particular assertion).

Let � be a dual Banach algebra with predual �∗, and let θ : � → � be
a bounded algebra homomorphism. By Corollary 4.6, �∗ ⊂ σWC(�∗) ⊂
WAP(�∗) holds. Furthermore, it is easy to see that θ∗(WAP(�∗))⊂WAP(�∗).
Letting π := (θ∗|�∗)

∗, we obtain a w∗-continuous map π : WAP(�∗)∗ → �
such that (4) commutes; since ι(�) is w∗-dense in WAP(�∗)∗, this uniquely
determines π . Clearly, π is multiplicative if restricted to ι(�). Since multiplic-
ation in both WAP(�∗)∗ and � is separatelyw∗-continuous, thew∗-density of
ι(�) and the w∗-continuity of π show that π is in fact multiplicative on all of
WAP(�∗)∗.

Remarks. 1. If � isArens regular, WAP(�∗)=�∗ holds, so that WAP(�∗)∗
is nothing but �∗∗ equipped with either Arens product.

2. There is no need for ι: � → WAP(�∗)∗ to be injective, let alone an
isometry: If E is a non-reflexive Banach space with the approximation prop-
erty, we have WAP(K (E)∗) = {0} by [27, Theorem 3] (and, consequently,
WAP(K (E)∗)∗ = {0}).

3. If � is a dual Banach algebra, then � embeds isometrically into WAP(�∗)∗
by Corollary 4.6.
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Since the image of � in WAP(�∗)∗ is w∗-dense for any Banach algebra �,
the amenability of � immediately yields the Connes-amenability of WAP(�∗)∗.
The converse is clearly false:

Example. The dual space B(�2) of E := �2 ⊗̂ �2 lacks the approximation
property ([24]). Consequently, K (E) cannot have a bounded approximate
identity, let alone be amenable ([19, Corollary 3.1.5]). SinceE is not reflexive,
WAP(K (E)∗)∗ = {0} is trivially Connes-amenable.

Nevertheless, for certain Banach algebras � the Connes-amenability of
WAP(�∗)∗ is indeed equivalent to the amenability of �:

Proposition 4.11. The following are equivalent for a locally compact group
G:

(i) G is amenable.

(ii) L1(G) is amenable.

(iii) WAP(L1(G)∗)∗ is Connes-amenable.

Proof. (i)⇐⇒ (ii) is [12, Theorem 2.5], and (ii) �⇒ (iii) is clear by [18,
Proposition 4.2(i)].

(iii) �⇒ (i): Suppose that WAP(L1(G)∗)∗ is Connes-amenable. First, note
that the dual Banach algebras WAP(L1(G)∗)∗ and WAP(G)∗ (mentioned ear-
lier) are identical. Since C0(G) ⊂ WAP(G), restriction is a w∗-continuous
algebra homomorphism from WAP(G)∗ ontoM(G), so thatM(G) is Connes-
amenable by [18, Propositon 4.2(ii)]. By [20], this means that G is amenable.

LetG be a compact group. By [21], WAP(G)∗ = M(G) then has a normal,
virtual diagonal. We do not know if this is still true for locally compact, but
non-compact G. We suspect, but have been unable to prove, that WAP(G)∗
withG amenable, but not compact, is an example of a Connes-amenable, dual
Banach algebra which fails to have a normal, virtual diagonal.

Added in proof.
1. In the proof of Theorem 3.5, [22, Theorem 5.2] was invoked. As it turned

out the proof of that result has a gap. A correct proof is given in Forrest,
B. E., and Runde, V., Amenability and weak amenability of the Fourier
algebra, preprint (2003).

2. After this paper had been accepted for publication, the author was able to
settle the conjecture stated at the end of the paper in the negative: there
are non-compact groups for which WAP(G)∗ is nevertheless Connes-
amenable. For [SIN]-groupes, however, the conjecture is indeed true:
This proves that (A) �⇒ (B). These results are contained in Runde, V.,
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Connes-amenable, dual Banach algebra need not have a normal, virtual
diagonal, preprint (2003).
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