
MATH. SCAND. 95 (2004), 101–123

LIMIT C*-ALGEBRAS ASSOCIATED WITH AN
AUTOMORPHISM

BARUCH SOLEL∗

Abstract

We present and study C*-algebras generated by “periodic weighted creation operators” on the
Fock space associated with an automorphism α on a C*-algebra A. These algebras can be viewed
as generalized Bunce-Deddens algebras associated with the automorphism and can be written
as a certain direct limit. We prove a crossed product presentation for such an algebra and find
a necessary and sufficient condition for it to be simple. In the case where the automorphism is
induced by an irrational rotation (onC(T)) we compute the K-theory groups and obtain a complete
classification of these algebras.

1. Introduction

The purpose of this paper is to to present and study a class of C*-algebras
generalizing the Bunce-Deddens algebras.

Recall that the Bunce-Deddens algebra B({nk}), associated with the se-
quence {nk}, is a quotient (by the compact operators) of the C*-algebra gener-
ated by all weighted shifts (with respect to a fixed basis) of period nk for some
k ≥ 1 ([2]). In fact, for a fixed k ≥ 1, the C*-algebra of all weighted shifts of
period nk is isomorphic to the algebra of all nk ×nk matrices over the Toeplitz
algebra and its quotient by the compacts is isomorphic to Mnk(C(T)). Thus
the Bunce-Deddens algebra is a direct limit of the algebrasMnk(C(T)).

A natural noncommutative generalization of the unilateral shift is obtained
by considering creation operators on Fock Hilbert space. These operators were
studied in applications to quantum physics and in free probability. More re-
cently, creation operators, and the algebras that they generate, were studied
in the context of Fock spaces of C*-correspondences (also called Hilbert C*-
bimodules). This was initiated by M. Pimsner ([10]) and followed by several
other authors (e.g. [6], [7], [4], [12]).

In a recent paper, D. Kribs introduced the concept of periodic weighted
shifts on the full Fock space associated with a Hilbert space of dimension N
([5]). The C*-algebra that he obtained (taking the appropriate quotient of the
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C*-algebra generated by all periodic weighted shifts of period nk) is a direct
limit of algebras of the formMdk(ONk ) where dk are certain integers andONk
is the Cuntz algebra (with Nk generators).

In the present paper we start with an automorphism α on a C*-algebraA and
form the (full) Fock space F associated with the pair (A, α) (i.e. associated
with the bimodule αA). As Pimsner showed in [10], the C*-algebra gener-
ated by the creation operators on this Fock space is the Toeplitz extension,
T (A, α), of the crossed product A ×α Z. Letting K(F ) denote the compact
operators on F (in the sense of compact operators on a C*-module), the crossed
product is the quotient of T (A, α) by K(F ). We shall define the concept of
“periodic weighted creation operators” (more precisely, we define, in Defini-
tion 2.1, weighted representations of αA on F ) and consider the C*-algebra
generated by all these operators with a fixed period n. This algebra turns out
to be isomorphic to Mn(T (A, α

n)) and, taking an appropriate quotient, we
getMn(A×αn Z). Now let {nk} be an increasing sequence of positive integers
with nk|nk+1. Considering the C*-algebra generated by all “periodic weighted
creation operators” of period nk for some k ≥ 1 and taking an appropriate quo-
tient we get a certain direct limit of the algebrasMnk(A×αnk Z). We shall write
Bα({nk}) for this C*-algebra. It can be thought of as a “generalized Bunce-
Deddens algebra associated with (A, α)”. The details of this construction are
presented in Section 2. We also show there that the algebra depends, up to an
isomorphism, on the supernatural number of {nk} (and not on the sequence
itself).

In Section 3 we study the structure of the algebra Bα({nk}). We present
necessary and sufficient conditions for it to have a unique tracial state (The-
orem 3.1). In Theorem 3.4 we show that the algebra Bα({nk}) can also be
written as a crossed product C(X,A)×σ Z. We then use it in Theorem 3.5 to
prove a necessary and sufficient condition for simplicity of the algebra.

In Section 4 we specialize to the case whereA = C(T) and α is an irrational
rotation by θ (so thatA×αZ is the irrational rotation algebraAθ ). In this case we
use the notation Bθ ({nk}) for the algebra in order to emphasize the dependence
on θ . It follows from the previous section that the algebra is simple and has
a unique tracial state τ . We show that the K0 and K1 groups of the algebra
are both isomorphic to Q(δ) ⊕ Z (where δ is the supernatural number of the
sequence {nk} andQ(δ) is the group of rational numbers that can be written as
a quotientm/nk for some k). We also find that the image of the map τ∗, defined
on theK0 group, isQ(δ)+ θZ. It then follows that two such algebras, with θ1,
θ2 and supernatural numbers δ1, δ2 are isomorphic if and only if δ1 = δ2 and
either θ1 + θ2 or θ1 − θ2 belongs toQ(δ1) (Corollary 4.2).
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2. Preliminaries

LetA be a (unital) separable C*-algebra and let α be a unital automorphism of
A. Write E =α A for the C*-correspondence associated with this automorph-
ism. As a vector space, E is simply A. The bimodule structure is defined by

a · b · c = α(a)bc.
Here a, c are in A and b is in A viewed as an element of E. The inner product
is 〈b1, b2〉 = b∗

1b2.

This makes E into a C*-correspondence in the sense of [6]. It is easy to check
thatE⊗k =αk A and the isomorphism ofE⊗k ⊗E⊗m ontoE⊗(k+m) is given by

Vk,m(a ⊗ b) = αm(a)b
for a ∈αk A and b ∈αm A. In what follows we tend to suppress Vk,m and
identify the two spaces.

The Fock space associated with αA = E is

F (E) = A⊕ E ⊕ E⊗2 ⊕ · · · .
As a C*-module it is just the direct sum of infinitely many copies of A. To
distinguish between elements of αkA for different k’s, we write δk for the unit
of A viewed as an element of αkA. Thus δka would be a as an element of αkA.
The Fock space has a left action that makes it into a C*-correspondence:

φ∞(a)δkb = δkαk(a)b.
We shall denote the Fock space associated with αk by F (k) and the left action
there by φ(k)∞ .

Every a in E defines a shift operator on F (= F (E)) by

T (a)δkb = δ1a ⊗ δkb = δk+1α
k(a)b.

(In the last equality we omitted the reference to V1,k .)
A similar operator on F (k) will be denoted T (k)(a).

Definition 2.1. Let λ = {λi : 1 ≤ i < ∞} be a bounded sequence of
positive elements of A. The weighted representation of E on F is

Tλ(a)δkb = δk+1α
k(λk+1a)b

for a, b ∈ A. The weighted representation will be said to be periodic of period
k if for all i ≥ 1, λi+k = λi .



104 baruch solel

Note. The word “representation” above refers only to the fact that it is a
representation of E as a right module over A (i.e. Tλ(a · c) = Tλ(a)φ∞(c) for
c ∈ A and a ∈ E).

Note that every operator on F can be written as an infinite matrix (with re-
spect to the decomposition of F as an infinite direct sum). It will be convenient
to denote by aδij the operator that maps δjb to δiab (for a in A).

Also we shall write S for T (1) (hence Sδka = δk+1a).

Definition 2.2. The C*-algebra generated by the operators {φ(k)∞ (A),
T (k)(αkA)} on F (k) is called the Toeplitz algebra associated with αk and will
be denoted Tk . Since F (k) is a subspace of F , each Tk can be viewed as a
subspace of L (F ).

Lemma 2.3. Given k ≥ 1, the C*-algebra generated by all the periodic
representations of period k (on F ) is isomorphic to the algebra of all k × k
matrices over Tk .

Proof. We start by setting some notation. We can write

F = Fk ⊕ (E ⊗ Fk)⊕ (E⊗2 ⊗ Fk)⊕ · · · ⊕ (E⊗(k−1) ⊗ Fk)

Let us write Ml forE⊗l⊗Fk , 0 ≤ l ≤ k−1. Then F = M0⊕M1⊕· · ·⊕Mk−1.
Every operator on F can be written in a matricial way with respect to this
decomposition. We shall write Xeij for the operator whose i, j entry is X (X
maps Mj into Mi) and all other entries vanish.

Note that, for all 0 ≤ l ≤ k − 1, φ∞(A)Ml ⊆ Ml so that the matrix of
φ∞(a) for a ∈ A is diagonal. For every b ∈ E, Tλ(b) maps Ml into Ml+1 if
l < k−1 and it maps Mk−1 into M0. Hence its matrix has non zero terms only
on the first lower diagonal and in the 0, k − 1 entry.

Now write

B =
k−1∑
i=0

k−1∑
j=0

SiTkS
∗j eij .

For a ∈ A and 0 ≤ l ≤ k − 1, the l, l entry of φ∞(a) is

αl(a)δll + αl+k(a)δl+k,l+k + · · · = Sl(αl(a)δ00 + αk+l(a)δkk + · · ·)S∗l

= Slφ(k)∞ (α
l(a))S∗l ∈ SlTkS

∗l .

For b ∈ E, the l + 1, l entry of Tλ(b), for l < k − 1, is

αl(λl+1b)δl+1,l + αl+k(λl+1+kb)δl+1+k,l+k + · · · .
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Since λ is of period k, this is equal to

αl(λl+1b)δl+1,l + αk(αl(λl+1b))δl+1+k,l+k + · · ·
(1) = Sl+1(αl(λl+1b)δ00 + αk+l(λl+1b)δk,k + · · ·)S∗l

= Sl+1φ(k)∞ (α
l(λl+1b))S

∗l ∈ Sl+1TkS
∗l .

For the 0, k − 1 entry of Tλ(b) we get

(αk−1(λkb)δk,0 + α2k−1(λkb)δ2k,k + · · ·)S∗(k−1)

(2) = T (k)(αk−1(λkb))S
∗(k−1) ∈ TkS

∗(k−1).

Now write Ak for the C*-algebra generated by all the periodic representations
of period k. It follows from the above that Ak ⊆ B. We shall now show that,
in fact, the two algebras are equal.

Fix 0 ≤ j < k−1. Settingλi = 1 if i ≡ j+1 (mod k) andλi = 0 otherwise,
we find, using (1) and (2), that Sj+1φ

(k)∞ (αj (b))S∗j ej+1,j = Tλ(b) ∈ Ak . Since
this holds for allb inA, we conclude that, for alla ∈ A and every 0 ≤ j < k−1,

(3) Sj+1φ(k)∞ (a)S
∗j ej+1,j ∈ Ak.

Similarly, by setting λi = 1 if i ≡ 0 (mod k) and λi = 0 otherwise, we find
that

(4) T (k)(E)S∗(k−1)e0,k−1 ⊆ Ak.

Thus, for every b, a1, . . . ak−1 in A we find that T (k)(b)S∗(k−1)e0,k−1,

Sk−1φ
(k)∞ (ak−1)S

∗(k−2)ek−1,k−2, . . . and Sφ(k)∞ (a1)e1,0 all lie in Ak . Multiplying
them, we see that T (k)(b)φ(k)∞ (ak−1 . . . a1)e0,0 lie in Ak .

Thus T (k)(E)e0,0 ⊆ Ak . Since {X : Xe0,0 ∈ Ak} is a C*-algebra,

(5) Tke0,0 ⊆ Ak.

Setting, in (3), a = 1 we find that Sj+1S∗j ej+1,j lies in Ak (for 0 ≤ j < k−1).
It follows that

Sj+1ej+1,0 = (Sj+1S∗j ej+1,j )(S
jS∗(j−1)ej,j−1) . . . Se1,0 ∈ Ak.

Finally, for 0 ≤ i, j ≤ k − 1 and X in Tk ,

SjXS∗iei,j = (Sj ej,0)(Xe0,0)(S
iei,0)

∗ ∈ Ak.

Hence B = Ak . But B is clearly isomorphic toMk(Tk) and the isomorphism
is given by conjugating by the (isometric) matrix diag(1, S, S2, . . . , Sk−1).
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Suppose n,m are two natural numbers with n|m and let λ be periodic of
period n. Then λ is periodic of period m and this implies that An ⊆ Am.
Using the isomorphisms of Lemma 2.3 we get an injective *-homomorphism
βn,m : Mn(Tn) → Mm(Tm). In the next result we describe this map. In what
follows we keep the notation set up in the proof of Lemma 2.3.

Lemma 2.4. Let n,m be two natural numbers with n|m. Write k = m/n.
Then the restriction of βm,n to Tne0,0 is defined by

βn,m(φ
(n)
∞ (a)e0,0) =

k−1∑
j=0

φ(m)∞ (αjn(a))ejn,jn

for a ∈ A and

βn,m(T
(n)(b)e0,0) =

k−2∑
j=0

φ(m)∞ (αjn(b))e(j+1)n,jn + T (m)(α(k−1)n(b))e0,(k−1)n

for b ∈ E.
Also, for 0 ≤ i, j ≤ n− 1 we have

(6) βn,m(ei,j ) =
k−1∑
l=0

ei+ln,j+ln.

Proof. In the following we shall write ηn for the isomorphism ηn : An →
Mn(Tn) of Lemma 2.3. Fix 0 ≤ j < n−1 and let λp be 1 ifp ≡ j+1 (mod n)
and be 0 otherwise. Then (by equations (1) and (2)) the matricial form of Tλ(1)
as an element of An is Sj+1S∗j ej+1,j . Thus ηn(Tλ(1)) = ej+1,j . Using (1)
and (2) again, this time with m instead of n, we find that the matricial form
of Tλ(1) as an element of Am is

∑k−1
l=0 S

j+nl+1S∗(j+nl)ej+nl+1,j+nl and, thus,
ηm(Tλ(1)) = ∑

ej+nl+1,j+nl . Equation (6) for i = j + 1 follows. Since βn,m
is a *-homomorphism, (6) follows for all i, j .

Now let λ be defined by λp = 1 if p is a multiple of n and is equal to 0
otherwise. Then, for b ∈ E, the matricial form of Tλ(α1−n(b)) as an element
of An is T (n)(b)S∗(n−1)e0,n−1 (hence ηn(Tλ(α1−n(b))) = T (n)(b)e0,n−1) and
its matricial form as an element of Am is T (m)(α(k−1)n(b))S∗(m−1)e0,m−1 +∑k−1
l=1 S

lnφ
(m)∞ (αl−1(b))S∗(ln−1)eln,ln−1 (and therefore ηm(Tλ(α1−n(b))) =

T (m)(α(k−1)n(b))e0,m−1 + ∑k−1
l=1 φ

(m)∞ (αl−1(b))eln,ln−1). It follows that

βn,m(T
(n)(b)e0,n−1) = T (m)(α(k−1)n(b))e0,m−1 +

k−1∑
l=1

φ(m)∞ (αl−1(b))eln,ln−1.
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Since
T (n)(b)e0,0 = (T (n)(b)e0,n−1) · en−1,n−2 . . . e1,0

and,
φ(n)∞ (a)e0,0 = (T (n)(1)e0,0)

∗T (n)(a)e0,0, a ∈ A,
a straightforward computation, using the fact that βn,m is a *-homomorphism,
completes the proof.

Corollary 2.5. For n|m the map βn,m, described above, maps Tnei,j into∑k−1
l=0 Tmei+ln,j+ln where k = m/n.

In fact, define the map θn,m : Tn → Mk(Tm) by

θn,m(φ
(n)
∞ (a)) =

k−1∑
j=0

φ(m)∞ (αjn(a))ej,j

for a ∈ A and

θn,m(T
(n)(b)) = T (m)(α(k−1)n(b))e0,k−1 +

k−2∑
j=0

φ(m)∞ (αj (b))ej+1,j

for b ∈ E.
The matricial form of the elements of Am was with respect to the decom-

position
F = M0 ⊕ · · · ⊕ Mm−1

where Ml = El ⊗ Fm. As a C*-module over A each Ml is isomorphic to
Fm. Thus any permutation of these spaces defines a unitary operator on F .
Let U be the operator arising from the permutation (0, 1, . . . , m − 1) �→
(0, n, . . . , (k− 1)n, 1, 2, . . . , m−n− 1,m− 1). Then we have the following.

Corollary 2.6. With the notation above,

βn,m = U ∗(Ik ⊗ θn,m)U.

The following lemma follows immediately from the definition of the maps
βn,m (or by a straightforward tedious computation using Lemma 2.4).

Lemma 2.7. For positive integers n, k, l we have

βnk,nkl ◦ βn,nk = βn,nkl .

It is known that the Toeplitz algebra Tn is an extension of the crossed
product algebra ofA by αn,A×αn Z. The Toeplitz algebra contains the algebra
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K(Fn) of all compact operators on the C*-module Fn (where “compact” is
in the sense of C*-modules theory) which is isomorphic to A⊗K (where K
denotes the algebra of compact operators on a separable Hilbert space). The
quotient space Tn/K(Fn) is then isomorphic to the crossed product. One can
also check (see e.g. [6]) that the idealK(Fn) is generated by the set φ(n)∞ (A)P0

where P0 is the projection of Fn onto the first summand of Fn (i.e. A).
We now compute, for a, b, c in A and k ≥ 1,

(φ∞(ac∗)− T (α(a))T (α(c))∗)δkb = δkαk(ac∗)b − T (α(a))δk−1α
k(c∗)b

= δkαk(ac∗)b − δkαk(ac∗)b = 0

and, for k = 0,

(φ∞(ac∗)− T (α(a))T (α(c))∗)δ0b = δ0ac
∗b.

Hence,

(7) φ∞(ac∗)− T (α(a))T (α(c))∗ = φ∞(ac∗)P0.

Lemma 2.8. For every positive integers n,m with m/n = k ∈ Z the map
βn,m induces a map, denoted γn,m, fromMn(A×αn Z) intoMm(A×αm Z).

Proof. Using Corollary 2.6 it suffices to show that a similar statement
holds for the map θn,m. For this, we have to show that θn,m maps K(Fn) into
Mk(K(Fm)). We compute, for a, c ∈ A,

θn,m(φ
(n)
∞ (ac

∗)− T (n)(αn(a))T (n)(αn(c))∗)

=
k−1∑
j=0

φ(m)∞ (αjn(ac∗))ej,j−T (m)(α(k−1)n(αn(a)))T (m)(α(k−1)n(αn(c)))∗e0,0

−
k−2∑
j=0

φ(m)∞ (αjn(αn(ac∗)))ej+1,j+1

= (φ(m)∞ (ac∗)− T (m)(αm(a))T (m)(αm(c))∗)e0,0.

From the discussion preceeding the lemma it now follows that θn,m maps the
set φ(n)∞ (A)P0 intoMk(K(Fm)). Since this set generates the ideal K(Fn), the
claim follows.

Let γm,n be the map defined above and let qn and qm be the quotient maps on
Mn(Tn) andMm(Tm) respectively (induced by q). Recall that q(φ(n)∞ (a)) = a
for a ∈ A and q(T (n)(1)) = u∗

n (where un is the unitary that, together with A,
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generates A×αn Z and satisfies unau∗
n = αn(a), a ∈ A). Then it follows from

the definition of βn,m that γn,m is defined by

γn,m(ae0,0) =
k−1∑
l=0

αln(a)eln,ln

for a ∈ A,

γn,m(un) = ume(k−1)n,0 +
k−2∑
l=0

eln,(l+1)n

and, for 0 ≤ i, j ≤ n− 1,

γn,m(ei,j ) =
k−1∑
l=0

ei+ln,j+ln.

We now write B(n) (or Bα(n) if we want to emphasize the dependence on
α) for the algebraMn(A×αn Z).

Definition 2.9. Suppose that {nk} is an increasing sequence of positive
integers such that nk divides nk+1 for k ≥ 1. The Bunce-Deddens algebra of
α is the direct limit

Bα({nk}) = lim→ (B(nk), γnk,nk+1).

Recall that an element
∑∞
k=−∞ akukn in the crossed product is 0 if and only

if ak = 0 for every k. It follows from this and the definition of γn,m that this
map is injective. We can, thus, write the limit algebra Bα({nk}) as the closure
of the increasing union ∪B(nk).

Note that the analysis above shows that, for every k ≥ 1, we have

B(nk) = Mnk(A×αnk Z) ∼= Mnk(Tnk )/Mnk (K(Fnk ))
∼= Ank /K(F ).

It follows that Bα({nk}) is isomorphic to the quotient of ∪Ank by K(F ).
Recall that ∪Ank is the C*-algebras generated by all periodic representations
of perion nk for all k ≥ 1.

Proposition 2.10. Let {nk} and {mj } be increasing sequences of positive
integers for which nk|nk+1 andmj |mj+1 for all j, k ≥ 1. Write δ(nk) and δ(mj )
for the corresponding supernatural numbers. If δ(nk) = δ(mj ) then Bα({nk})
and Bα({mj }) are isomorphic.

Proof. The proof is standard. For each k, nk divides some mr and the
map γnk,mr is the inclusion of B(nk) into B(mr). Since the latter algebra is
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contained in B({mj }), we find that every B(nk) is contained there. Since this
holds for all k, B({nk}) ⊆ B({mj }). Equality follows from symmetry.

The converse of the proposition above holds in some cases (see Corol-
lary 4.2) but not in general, as we see in the following lemma.

Lemma 2.11. Suppose A is a unital C*-algebra such that A is isomorphic
to Mp(A) for some positive integer p. Let {nk} be an increasing sequence as
above and let α = id (the identity automorphism). Then

Bid({nk}) ∼= Bid({pnk}).

Proof. Since α = id, A ×αn Z ∼= A ⊗ C(T) for all n. Making these
identifications, the maps γnk,nk+1 (for the algebra Bid({nk})) now satisfy (when
we write mk for nk+1/nk)

γnk,nk+1((a ⊗ 1)ei,j ) =
mk−1∑
l=0

(a ⊗ 1)ei+lnk,j+lnk

for a ∈ A, and

γnk,nk+1((a ⊗ z)ei,j ) = (a ⊗ z)ei+(mk−1)nk,j +
mk−2∑
l=0

(a ⊗ 1)ei+nkl,j+nk(l+1)

where z is the identity function on T. The maps γpnk,pnk+1 (for the other algebra)
can be written similarly. Write ψ for the isomorphism ψ : A → Mp(A). It
induces an isomorphism from A⊗ C(T) ontoMp(A⊗ C(T)) defined by

t (a ⊗ f ) =
∑

0≤i,j≤p−1

(ψ(a)i,j ⊗ f )ei,j .

For every positive integer kwe write tk for the isomorphism fromMk(A⊗C(T))
ontoMkp(A⊗C(T)) defined by applying t to each entry. Hence, for 0 ≤ r, q ≤
k − 1,

tk((a ⊗ f )er,q) =
∑

0≤i,j≤p−1

(ψ(a)i,j ⊗ f )ei+rp,j+qp.

To prove the claimed isomorphism it suffices to show that, for every k ≥ 1,

(8) γpnk,pnk+1 ◦ tnk = tnk+1 ◦ γnk,nk+1 .

The required isomorphism in this case is lim→ tnk . To prove (8) it is enough to
apply both sides to elements of the form (a⊗ z)e0,0 and (a⊗ 1)er,q for a ∈ A.
The computation is straightforward and is omitted.
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3. The structure of Bα({nk})
Proposition 3.1. Bα({nk}) has a unique tracial state τ if and only ifA has an
α-invariant tracial state τ0 and for every k ≥ 1 this is the unique αnk -invariant
tracial state on A.

Moreover, in this case, τ is faithful if and only if τ0 is.

Proof. Let τ0 be an αnl -invariant tracial state on A. For every k ≥ 1, let
Ek be the canonical conditional expectation of the crossed product A ×αnk Z
onto A and write τk = τ0 ◦ Ek . If k ≥ l then τk is a tracial state on the crossed
product (faithful if τ0 is). For such k and an element X = (xij ) of the nk × nk
matrices over the crossed product A ×nk

α Z, we set τ̃k(X) = 1/nk
(∑

τk(xii)
)

and this defines a tracial state on B(nk) (that is faithful if τ0 is). To show that
these traces define a tracial state on the direct limit it is left to show that for
every k ≥ l,
(9) τ̃k+1 ◦ βnk,nk+1 = τ̃k.
For X = ae0,0 we have (set m = nk+1/nk),

τ̃k+1 ◦ γnk,nk+1(ae0,0) = τ̃k+1

(m−1∑
j=0

αjnk (a)ejnk,jnk

)
=

∑
1/nk+1τk(α

jnk (a))

= 1/nkτ0(a) = τ̃k(ae0,0).

For X = unk e0,0 we have,

τ̃k+1 ◦ γnk,nk+1(unk e0,0) = τ̃k+1(unk+1e0,(k−1)nk +
∑

τ̃k+1(e(j+1)nk,jnk )

= 0 = τk(unk ) = τ̃k(unk e0,0).

Since every tracial state onMnk(A×αnk Z) is determined by its values on ele-
ments of the formXe0,0 (X ∈ A×αnk Z), this proves (9). Thus, we constructed
a tracial state τ on Bα({nk}) that is faithful if τ0 is. Write τ = 4l(τ0). So
4l maps αnl -invariant traces of A to traces of Bα({nk}). It follows from the
definition of 4l that it is one-to-one.

To go in the other direction, fix a tracial state τ on Bα({nk}) and define,
for y in A×αnk Z, τk(y) = 1/nkτ (ye0,0) (where e0,0 is an element of B(nk)).
Note that we have the following.

τk(unk ) = 1/nkτ (unk e0,0) = 1/nkτ (γnk,nk+1(unk e0,0))

= 1/nk

(
τ(unk+1enk+1−nk,0)−

m−2∑
l=0

τ(elnk,(l+1)nk )

)
= 0
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wherem = nk+1/nk . The last term is equal to 0 because we evaluate τ there on
matrices whose diagonal entries are all zeros. It follows that τk = (τk|A) ◦ Ek
; i.e. τk is determined by its values on A. Now set 6k(τ) = τk|A for a ∈ A.
Since τk is a tracial state on A×αnk Z, it follows that 6k(τ) is αnk -invariant.

Now suppose that Bα({nk}) has a unique tracial state τ . Let τ0 be 61(τ ).
Then it is an α-invariant tracial state on A. Fix k ≥ 1. Suppose τ ′

0 is another
(different) αnk -invariant trace on A. Then 4k(τ ′

0) �= 4k(τ0) (since 4k is in-
jective). But this contradicts the assumed uniqueness of traces on Bα({nk}).
This proves one direction. Note also that if τ is faithful then so is τ0 (which is,
roughly speaking, a restriction of τ to a copy of A).

For the other direction, let τ0 be an α-invariant trace with the uniquness
property stated in the proposition. Write τ = 41(τ0). Then τ is a tracial state
on Bα({nk}). Suppose τ ′ ia also a tracial state on Bα({nk}) that is different
from τ . But then, for some k ≥ 1, the restrictions of τ and τ ′ to B(nk) are
different. Since a trace on B(nk) = Mnk(A×αnk Z) is determined by its values
on matrices of the form ye0,0 for y ∈ A ×αnk Z, and since, as we saw above,
these values are determined by the restriction to elements of the form ae0,0

for a ∈ A, we find that 6k(τ) �= 6k(τ
′). But this contradicts the uniqueness

property of τ0. In the construction of 41(τ0) above it was noted that if τ0 is
faithful so is 41(τ0).

We shall now proceed to show that the algebra Bα({nk}) is isomorphic to a
crossed product algebra of the form C(X,A)×σ Z.

In order to define the space X, fix a sequence {nk} of positive integers
with nk|nk+1 for all k ≥ 1 and with n1 = 1. Set mk = nk+1/nk , let Xi =
{0, 1, . . . , mi − 1} and let X be the Cantor set X = ∏∞

i=1Xi . We can think
of each element x of X either as a sequence {xi} or as a formal sum

∑
i xini .

We write σ0 for the odometer action on X. For x ∈ X let i(x) be the smallest
i for which xi < mi − 1 (and i(x) = ∞ if xi = mi − 1 for all i). Then, if
i(x) < ∞, σ0(x)i = 0 for all i < i(x), σ0(x)i(x) = xi(x) + 1 and σ0(x)i = xi
for i > i(x). If i(x) = ∞, σ0(x) = {0, 0, . . .}. It is known that this map is a
homoemorphism on X.

We consider the cylinder sets

J (x1, x2, . . . xk) = {y ∈ X : yi = xi 1 ≤ i ≤ k}.
Then σ0(J (x1, . . . , xk)) = J (y1, . . . , yk) where

1 +
k∑
i=1

xini ≡
k∑
i=1

yini (mod nk+1).

Given (y1, . . . , yk) with 0 ≤ yi ≤ mi − 1, we write δ(y1,...,yk) for the function
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in C(X,A) which is 1 (the unit of A) on J (y1, . . . , yk) and 0 otherwise. For
an element a ∈ A we shall write (by a slight abuse of notation) also a for the
function in C(X,A) that is constantly equal to a. For k ≥ 2 write

Ck = {f ∈ C(X,A) : f (x) = f (y)
whenever (x1, . . . , xk−1) = (y1, . . . , yk−1)}

and, for k = 1, C1 = A (where A is viewed as the algebra of all constant
functions in C(X,A)). Then Ck ⊆ Ck+1 and

C(X,A) = ∪∞
k=1Ck.

Now define the automorphism σ on C(X,A) by

σ(f )(x) = α(f (σ−1
0 (x))).

We shall show that Bα({nk}) is isomorphic to C(X,A) ×σ Z. To do this, we
write U for the unitary that, together with C(X,A), generates the crossed
product and let, for every k ≥ 1, Gk be the C*-algebra generated by Ck and
U . For a given k and 0 ≤ j ≤ nk − 1, write j for (j1, . . . , jk−1) satisfying∑
l jlnl = j . Note that we have

Ujδ0U
∗j = σ j (δ0) = δ0 ◦ σ−j

0 = δj

for 0 ≤ j ≤ nk − 1. For j = nk a similar argument shows that

Unkδ0U
∗nk = δ0.

Lemma 3.2. The algebra Gk is the C*-algebra generated by the algebra A
(as a subalgebra of Ck), the operator δ0U

nkδ0 and the operators of the form
Uiδ0U

∗j for 0 ≤ i, j ≤ nk − 1. (For k = 1 we let δ0 be 1).

Proof. Write Dk for the algebra defined in the statement of the lemma.
Since the function δ0 lies in Ck , it follows that Dk ⊆ Gk . Given f ∈ Ck and
0 ≤ j ≤ nk − 1 we write aj = f (j1, j2, . . .) where j = ∑k−1

l=1 jlnl . Then

f =
nk−1∑
j=0

aj δj =
∑
j

ajU
j δ0U

∗j .
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Thus Ck ⊆ Dk . Also

U =
nk−1∑
j=0

Uδj =
nk−2∑
j=0

U(Ujδ0U
j∗)+ U(Unk−1δ0U

(nk−1)∗)

=
nk−2∑
j=0

Uj+1δ0U
j∗ + (δ0U

nkδ0)(δ0U
(nk−1)∗).

Thus U ∈ Dk , completing the proof.

Lemma 3.3. Fix k ≥ 1 and define the map

ρk : Mnk(A×αnk Z)→ Gk

by
ρk(au

l
nk
ei,j ) = U ∗iaδ0U

j+nkl .

Then ρk is a *-isomorphism onto Gk .

Proof. Note first that, since aδ0 belongs to Ck , the image of ρk lies in
Gk . Write x = aulnk ei,j and y = burnk ep,q for a, b ∈ A, r, l ∈ Z and 0 ≤
i, j, q, p ≤ nk − 1. We compute (assuming for simplicity that j ≥ p)

ρk(x)ρk(y) = U ∗iaδ0U
nkl+jU ∗pbδ0U

nkr+q

= U ∗iaδ0α
j−p+nkl(b)δj−pU

nk(l+r)−p+j+q .

If j �= p, xy = 0 and the computation above shows that also ρk(x)ρk(y) = 0
because δ0δj−p = 0 in this case. Suppose p = j . Then the computation above
shows that

ρk(x)ρk(y) = U ∗iaαnkl(b)δ0U
nk(l+r)Uq = ρk(aαnkl(b)ul+rnk ei,q)

= ρk(aulnk burnk ei,q) = ρk(xy).
Thus ρk is multiplicative. To show that ρk is a *-map we compute

(ρk(au
l
nk
ei,j ))

∗ = U−j−nklδ0a
∗Ui = U ∗jα−nkl(a∗)δ0U

i−nkl

= ρk(αnkl(a∗)u∗l
nk
ej,i) = ρk((aulnk ei,j )∗).

Note that

δnk−pU
∗i (aδ0U

nkl)Uj δnk−q = U ∗i (aδ0U
nkl)Uj

if p = i and q = j and it is equal 0 otherwise. Thus

Upδnk−pρk

(∑
ai,ju

li,j
nk ei,j

)
δnk−qU

∗q = ap,qδ0U
nklp,q .
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Hence, if ρk
(∑

ei,j u
li,j
nk ei,j

) = 0, then ai,j = 0 for all i, j . Thus ρk is injective.
The fact that the map is onto follows from Lemma 3.2. (Note that Uiδ0U

∗j =
U ∗(nk−i)δ0U

nk−j = ρk(enk−i,nk−j )).
Theorem 3.4. Let {nk} be an increasing sequence of positive integers

with nk|nk+1 (and n1 = 1). Then the algebra Bα({nk}) is *-isomorphic to the
algebra C(X,A)×σ Z.

Proof. To construct the isomorphism we first show that, for every k,

(10) ρk = ρk+1 ◦ γnk,nk+1 .

Fix k and writem = nk/nk+1. It will suffice to apply both maps to a generating
set ofMnk(A×αnk Z). In the following computations we shall write δ(p)j instead

of δj as before, to indicate that j = (j1, . . . , jp−1) is of length p − 1 (and δ(p)j
is an element of Cp). For a ∈ A we have

ρk+1 ◦ γnk,nk+1(ae0,0) = ρk+1

( m−1∑
l=0

αlnk (a)elnk,lnk

)

=
∑

U ∗lnkαnkl(a)δ(k+1)
0 Ulnk =

∑
aδ
(k+1)
nk+1−lnk

= aδ(k)0 = ρk(ae0,0).

Also,

ρk+1 ◦ γnk,nk+1(unk e0,0) = ρk+1(unk+1e(m−1)nk,0)+
m−2∑
l=0

ρk+1(elnk,(l+1)nk )

= U ∗(m−1)nk δ
(k+1)
0 Unk+1 +

m−2∑
l=0

U ∗lnk δ(k+1)
0 U(l+1)nk

= δ(k+1)
nk

Unk +
m−2∑
l=0

δ
(k+1)
nk+1−lnk

Unk = δ(k)0 U
nk = ρk(unk e0,0).

For every 0 ≤ i, j ≤ nk − 1,

ρk ◦ γnk,nk+1(ei,j ) =
m−1∑
l=0

ρk(ei+lnk,j+lnk ) =
∑

U ∗(i+lnk)δ(k+1)
0 U(j+lnk)

=
∑

U ∗iδ(k+1)
nk+1−lnk

Uj = U ∗iδ(k)0 U
j = ρk(ei,j ).

This proves (10) and it follows that we have a *-homomorphism ρ : Bα({nk})
→ C(X,A) ×σ Z whose “restriction” to B(nk) is ρk . Since each map ρk is
injective, so is ρ. It is left to show that ρ is onto. Since the image of ρk is Gk ,
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it amounts to showing that the (increasing) union of the algebras Gk is dense
in the crossed product. But each of the algebras Gk contains U and we know
that C(X,A) is the closure of the union of the algebras Ck . Hence the density
of ∪Gk follows.

Theorem 3.5. Let {nk} be a sequence of positive integers with nk|nk+1 and
n1 = 1. Then the algebra Bα({nk}) is simple if and only if, for every k ≥ 1, A
is αnk -simple (i.e. it has no proper closed two sided αnk -invariant ideals).

Proof. Suppose that there is an m ≥ 1 and an αnm -invariant proper ideal
J ⊆ A. Then J is also αnk -invariant for all k ≥ m. For every such k, the
closed ideal of A ×αnk Z generated by J will be written Jk . Then Mnk(Jk) is
an ideal (closed and proper) in B(nk). It is easy to check (using the definition
of γnk,nk+1 ) that

γnk,nk+1(Mnk (Jk)) ⊆ Mnk+1(Jk+1)

and, in fact,

γnk,nk+1(Mnk (Jk)) = Mnk+1(Jk+1) ∩ γnk,nk+1(Mnk (A×αnk Z)).

Hence J̃ := lim→Mnk(Jk) is a non zero ideal in Bα({nk}). It also follows that,
for k ≥ m, J̃ ∩ B(nk) = Mnk(Jk). Thus J̃ �= Bα({nk}).

We now turn to prove the other direction. We assume that A is αnk -simple
for all k ≥ 1. We start by showing thatC(X,A) is σ -simple. Let I ⊆ C(X,A)
be a σ -invariant ideal in C(X,A). Since

C(X,A) = ∪Ck

where Ck (as defined above) form an increasing sequence of subalgebras, it
follows that

I = ∪(I ∩ Ck).

Write Ik = I ∩ Ck . The algebra Ck can be identified with C(
∏k−1
i=1 Xi,A) and∏k−1

i=1 Xi is a finite set with nk points. Thus there are nk ideals {Ik,j : 0 ≤ j ≤
nk − 1} in A such that

Ik =
{ nk−1∑
j=0

aj δj : aj ∈ Ik,j
}
.

We have

σ

( nk−1∑
j=0

aj δj

)
=

∑
α(aj )(δj ◦ σ−1

0 ) =
nk−2∑
j=0

α(aj )δj+1 + α(ank−1)δ0.
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Hence the σ -invariance of Ik implies that

α(Ik,j ) ⊆ Ik,j+1

for all 0 ≤ j ≤ nk − 2 and

α(Ik,nk−1) ⊆ Ik,0.
Thus, for all j , we have

αnk (Ik,j ) = Ik,j .
It follows from our assumptions that, for all 0 ≤ j ≤ nk −1, Ik,j is eitherA or
{0}. In fact, the relations above show that either Ik,j = A for all j or Ik,j = {0}
for all j . It follows that Ik is either Ck or {0}. Since {Ik} is an increasing
sequence whose union is dense in I , either I = C(X,A) or I = {0}. This
proves that C(X,A) is σ -simple. In order to prove that the crossed product of
C(X,A) by σ is simple it is left to show that the Connes’ spectrum of σ , :(σ),
is the full unit circle. (See [9, Theorem 8.11.12]).

Let Â and Ĉ(X,A) be the set of equivalence classes of the irreducible
representations of A and C(X,A) respectively. For every x ∈ X and an ir-
reducible representation τ of A one can define an irreducible representation
π = π(x,τ) of C(X,A) by π(f ) = τ(f (x)) and, conversely, every irreducible
representation of C(X,A) is equivalent to some π(x,τ). Moreover τ1 and τ2 are
equivalent if and only if the corresponding π ’s are equivalent (for the same x).
Also, π(x,τ1) and π(y,τ2) are inequivalent whenever x �= y. Hence we can write

Ĉ(X,A) = {π(x,τ) : x ∈ X, τ ∈ Â}.
The automorphism σ induces a map on Ĉ(X,A) which we also denote by σ
(and similarly one has a map α on Â). Then

σ(π(x,τ)) = π(σ−1
0 (x),τ◦α).

Suppose now that, for some n ∈ Z, σn(π(x,τ)) = π(x,τ). Then it follows that
σn0 (x) = x. But this is possible only if n = 0 (from the definition of σ0)

and, thus, σ acts freely on Ĉ(X,A). We now use Theorem 10.4 of [8] (the
equivalence of (i) and (v) there) to conclude that :(σ) = T, completing the
proof.

Proposition 3.6. The algebras Bα({nk}) and Bα−1({nk}) are isomorphic.

Proof. One can prove the proposition by constructing isomorphisms be-
tween Bα(nk) and Bα−1(nk) that are intertwined by the connecting maps in
the direct limit. We prefer here to use the crossed product presentation. So let
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X = ∏{0, . . . , mk − 1} (where mk = nk+1/nk) and let σ0 be the odometer
map as above. Recall that we defined σ : C(X,A)→ C(X,A) by σ(f )(x) =
α(f (σ−1

0 (x))). Write σ ′(f )(x) = α−1(f (σ−1
0 (x))). Then

Bα({nk}) ∼= C(X,A)×σ Z

and
Bα−1({nk}) ∼= C(X,A)×σ ′ Z.

We shall write U for the unitary operator that satisfies UfU ∗ = σ(f ) for
f ∈ C(X,A) and such that C(X,A) and U generate the crossed product.
Similarly we shall writeV for the unitary operator that, together withC(X,A),
generates the other crossed product and satisfies

VfV ∗ = σ ′(f ), f ∈ C(X,A).
Now define a map g on X by

g(x1, x2, . . .) = (m1 − 1 − x1,m2 − 1 − x2, . . .).

Then g is a homeomorphism of X. It is also easy to check that

g ◦ σ0 = σ−1
0 ◦ g.

Let 6 be the map from C(X,A)×σ Z into C(X,A)×σ ′ Z defined by setting

6(f ) = f ◦ g, f ∈ C(X,A)
and

6(U) = V ∗.

We have, for f in C(X,A),

V ∗6(f )V (x) = σ ′−1(f ◦ g)(x) = α(f ◦ g(σ0(x)))

= α(f (σ−1
0 (g(x)))) = σ(f ) ◦ g = 6(σ(f )).

Hence the map 6 is a well defined *-homomorphism on C(X,A)×σ Z. Sim-
ilarly, by replacing the roles of α and α−1, one can define a *-homomorphism
that is the inverse of 6, completing the proof of the proposition.

4. Example: Bθ ({nk})
In this section we discuss the special case where A = C(T) (the continuous
functions on the unit circle), θ is a fixed irrational number and α = αθ is the
irrational rotation by θ . Identifying T with R/Z we can write

αθ(f )(t) = f (t − θ).
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The algebra C(T)×α Z will be written (as is costumary) Aθ and the resulting
limit algebra, Bα({nk})will be denoted Bθ ({nk}). It follows immediately from
the results of Section 3 that this algebra (for a given increasing sequence {nk}
of positive integers each dividing the next one) is simple and has a unique trace
(denoted τ ).

Given a sequence {nk} as above, we shall write δ(nk) (or simply δ if the
sequence is fixed) for the associated supernatural number and Q(δ(nk)) (or
Q(δ)) for the group of all rational numbers that can be written as a quotient
m/nk for some m ∈ Z and k ≥ 1. It is known that this group depends only on
the supernatural number of the sequence.

Theorem 4.1. Let θ be an irrational number and {nk} be a sequence
of positive integers with nk dividing nk+1 and n1 = 1. Write δ(nk) for its
supernatural number and R+ for the set of all non negative real numbers.
Then

(i) K0(Bθ ({nk})) is isomorphic, as an ordered group, to (Q(δ(nk)) + θZ,
(Q(δ(nk))+ θZ) ∩ R+).

(ii) Let τ∗ be the map on K0(Bθ ({nk})) induced by the unique trace. Then

τ∗(K0(Bθ ({nk}))) = Q(δ(nk))+ θZ.

Proof. Since B(nk) is the algebra of nk × nk matrices over the irrational
rotation algebra Ankθ , the ordered group K0(B(nk)) is order isomorphic to
(Z + θZ, (Z + nkθZ) ∩ R+). Let τ0 be the tracial state on C(T) that one gets
by integrating with respect to the normalized Lebegue measure (and then the
unique trace τ on Bθ ({nk}) is 41(τ0) in the notation of Proposition 3.1) then
we write (as in Proposition 3.1) τk = τ0 ◦ Ek (where Ek is the conditional
expectation from Ankθ to C(T)) and τ̃k for the induced trace on B(nk). Let
j : Ankθ → B(nk) = Mnk(Ankθ ) be the map j (X) = Xe0,0. Then j∗ is an
isomorphism of the K0 groups and, since τ̃k ◦ j = (1/nk)τ , we have

(τ̃k)∗ ◦ j∗ = 1

nk
(τk)∗.

Recall that we denote by unk the unitary that, together with a copy of C(T)
generates the crossed product C(T)×αθnk

Z = Aθnk . Thus unk can be identified
with the operator of rotation by θnk on L2(T).

It is known that (τk)∗ is an order isomorphism fromK0(Aθnk ) onto Z+θnkZ
([1, 10.11.6] or [11, Example 5.8]). It follows that (τ̃k)∗ is an isomorphism of
K0(B(nk)) onto (1/nk)Z + θZ. Write γk for the map γnk,nk+1 and (γk)∗ for the
map it induces on the K0 groups. Hence

(γk)∗ : K0(B(nk))→ K0(B(nk+1)).
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We have τ̃k+1 ◦ γk = τ̃k (Proposition 3.1) and, thus, (τ̃k+1)∗ ◦ (γk)∗ = (τ̃k)∗
and the map

lim→ (τ̃k)∗ : lim→ K0(B(nk))→ R

is a well defined order isomorphism into R. In fact, since τ = lim→ τ̃k (Pro-
position 3.1), the map lim→(τ̃k)∗ is τ∗. We also know that lim→K0(B(nk))

is isomorphic to K0(Bθ ({nk})) as ordered groups ([11, Theorem 6.3.2]). It
follows that

τ∗ : K0(Bθ ({nk}))→ R

is an order isomorphism. Its image is

∪((1/nk)Z + θZ) = Q(δ(nk))+ θZ.

Corollary 4.2. We have Bθ1({nk}) ∼= Bθ2({mk}) if and only if δ(nk) =
δ(mk) and either θ1 + θ2 or θ1 − θ2 lies inQ(δ(nk)) (=Q(δ(mk))).

Proof. Assume first that the condition on the supernatural numbers and
the θ ’s holds. It follows from Proposition 3.6 that we can assume that θ1 − θ2

lies in Q(δ(nk)) (replacing θ2 by −θ2 if necessary). Then, for some k ≥ 1,
nkθ1−nkθ2 lies in Z. In fact, nlθ1−nlθ2 ∈ Z for every l ≥ k. The algebrasAnlθ1

andAnlθ2 are then isomorphic. In fact, if we write ψl for this isomorphism and
apply ψl entrywise we get an isomorphism ψ̃l of Bθ1(nl) onto Bθ2(nl). These
isomorphisms intertwines the connecting maps and we get an isomorphism of
the limit algebras.

For the other direction, assume the two algebras are isomorphic. Write η
for the isomorphism η : Bθ1({nk}) → Bθ2({mk}). If τ is the unique tracial
state on Bθ2({mk}) then τ ◦ η is the unique tracial state on Bθ1({nk}). Using
Proposition 4.1 we have

Q(δ(nk))+ θ1Z = (τ ◦ η)∗(K0(Bθ1({nk}))) = τ∗(η∗(K0(Bθ1({nk}))))
= τ∗(K0(Bθ2({mk}))) = Q(δ(mk))+ θ2Z.

It follows that, for every k ≥ 1, there are l ≥ 1 and p, c in Z such that
1/nk = p/ml + cθ2. Since θ2 is irrational, c = 0 and nk|ml . This shows that
δ(nk) divides δ(mk) and, by symmetry, they are equal. Hence

Q(δ(nk))+ θ1Z = Q(δ(nk))+ θ2Z.

Thus there is some k ≥ 1 and integers a, b, c, d such that θ1 = b/nk + aθ2

and θ2 = c/nk + dθ1. Combining these equalities we find that ad = 1. Hence
either a = d = 1 (and then θ1 − θ2 ∈ Q(δ(nk))) or a = d = −1 (and then
θ1 + θ2 ∈ Q(δ(nk))).
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One can also compute the K1 group of the algebra Bθ ({nk}) using the
continuity of K1.

Proposition 4.3. For every θ and {nk} as above,

K1(Bθ ({nk})) ∼= Q(δ(nk))⊕ Z.

Proof. It is known that K1(Ankθ )
∼= Z ⊕ Z for every k ≥ 1 and the gener-

ators of the group are the class [unk ] of the unitary unk and the class [v] where
v is the function in C(T) defined by v(z) = z ([3, Example VIII.5.2] and [1,
10.11.6]). Fix k ≥ 1, write m = nk+1/nk and γk for the map γnk,nk+1 . The
K1 group of Mnk(Ankθ ) is again Z ⊕ Z and the generators are the classes of
ũk := unk e0,0 + ∑nk−1

j=1 ej,j and ṽk := ve0,0 + ∑nk−1
j=1 ej,j . We compute

γk(ũk) = unk+1enk(m−1),0 +
m−2∑
l=0

elnk,(l+1)nk +
∑
i

ei,i

and

γk(ṽk) =
m−1∑
l=0

αlnkθ (v)elnk,lnk +
∑
i

ei,i

where the last sums in both equations run over all integers 0 ≤ i ≤ nk+1 − 1
that are not multiples of nk . But then it follows easily that

(γk)∗([ũk]) = [ũk+1]

and
(γk)∗([ṽk]) = m[ṽk+1].

Hence, viewing (γk)∗ as a map from Z ⊕ Z to Z ⊕ Z, we have

(γk)∗ : (a, b) �→ (nk+1/nka, b).

Using the continuity of K1 ([11, Proposition 8.2.7]) we get the result.

We close with the observation that every matrix algebra over an algebra of
this class is again an algebra of this class. The precise statement is presented
in the following proposition.

Proposition 4.4. For every p ∈ N,

Mp(Bθ ({nk})) ∼= Bθ/p({pnk}).
Hence, for p > 1, the algebras Bθ ({nk}) and Mp(Bθ ({nk})) are non iso-
morphic.
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Proof. Write
Bθ ({nk}) = lim→ (Bθ (nk), γk)

where γk stands for γnk,nk+1 . Then

Mp(Bθ ({nk})) = lim→ (Mp(Bθ (nk)), (γk)p) = lim→ (Mp(Mnk (Aθnk )), (γk)p)

where (γk)p is defined by applying γk entrywise. We also have,

Bθ/p({pnk}) = lim→ (Bθ/p(pnk), γ
′
k) = lim→ (Mpnk (A(θ/p)pnk ), γ

′
k)

where γ ′
k is γpnk,pnk+1 . An element of Mp(Mnk (Aθnk )) can be written, in an

obvious way, as an pnk × pnk matrix over Aθnk . Now perform the canonical
shuffle on the matrix by applying the permutation

tk : (0, . . . , pnk − 1)

�→ (0, p, 2p, . . . , (nk − 1)p, 1, p + 1, . . . , p(nk − 1)− 1, pnk − 1)

on the rows and columns of the matrix. This defines an isomorphism

ψk : Mp(Mnk (Aθnk ))→ Mpnk (Aθnk )

that satisfies
ψk+1 ◦ (γk)p = γ ′

k ◦ ψk, k ≥ 1.

The map ψ := limψk is the required isomorphism.
The last statement follows from Corollary 4.2 since θ − θ/p is irrational.
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