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LIMIT C*-ALGEBRAS ASSOCIATED WITH AN
AUTOMORPHISM

BARUCH SOLEL*

Abstract

We present and study C*-algebras generated by “periodic weighted creation operators” on the
Fock space associated with an automorphism o on a C*-algebra A. These algebras can be viewed
as generalized Bunce-Deddens algebras associated with the automorphism and can be written
as a certain direct limit. We prove a crossed product presentation for such an algebra and find
a necessary and sufficient condition for it to be simple. In the case where the automorphism is
induced by an irrational rotation (on C(T)) we compute the K-theory groups and obtain a complete
classification of these algebras.

1. Introduction

The purpose of this paper is to to present and study a class of C*-algebras
generalizing the Bunce-Deddens algebras.

Recall that the Bunce-Deddens algebra % ({n;}), associated with the se-
quence {n;}, is a quotient (by the compact operators) of the C*-algebra gener-
ated by all weighted shifts (with respect to a fixed basis) of period n; for some
k > 1 ([2]). In fact, for a fixed k > 1, the C*-algebra of all weighted shifts of
period ny, is isomorphic to the algebra of all n; x n; matrices over the Toeplitz
algebra and its quotient by the compacts is isomorphic to M, (C(T)). Thus
the Bunce-Deddens algebra is a direct limit of the algebras M, (C(T)).

A natural noncommutative generalization of the unilateral shift is obtained
by considering creation operators on Fock Hilbert space. These operators were
studied in applications to quantum physics and in free probability. More re-
cently, creation operators, and the algebras that they generate, were studied
in the context of Fock spaces of C*-correspondences (also called Hilbert C*-
bimodules). This was initiated by M. Pimsner ([10]) and followed by several
other authors (e.g. [6], [7], [4], [12]).

In a recent paper, D. Kribs introduced the concept of periodic weighted
shifts on the full Fock space associated with a Hilbert space of dimension N
([5]). The C*-algebra that he obtained (taking the appropriate quotient of the
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C*-algebra generated by all periodic weighted shifts of period ny) is a direct
limit of algebras of the form M, (Oy+) where dj are certain integers and Oy«
is the Cuntz algebra (with N* generators).

In the present paper we start with an automorphism « on a C*-algebra A and
form the (full) Fock space & associated with the pair (A, ) (i.e. associated
with the bimodule ,A). As Pimsner showed in [10], the C*-algebra gener-
ated by the creation operators on this Fock space is the Toeplitz extension,
T (A, ), of the crossed product A x, Z. Letting K (%) denote the compact
operators on & (in the sense of compact operators on a C*-module), the crossed
product is the quotient of I (A, @) by K (). We shall define the concept of
“periodic weighted creation operators” (more precisely, we define, in Defini-
tion 2.1, weighted representations of , A on &%) and consider the C*-algebra
generated by all these operators with a fixed period n. This algebra turns out
to be isomorphic to M,,(J (A, «")) and, taking an appropriate quotient, we
get M, (A xqn Z). Now let {n;} be an increasing sequence of positive integers
with ng|ng41. Considering the C*-algebra generated by all “periodic weighted
creation operators” of period n; for some k > 1 and taking an appropriate quo-
tient we get a certain direct limit of the algebras M,,, (A X4 Z). We shall write
By ({ny}) for this C*-algebra. It can be thought of as a “generalized Bunce-
Deddens algebra associated with (A, «)”. The details of this construction are
presented in Section 2. We also show there that the algebra depends, up to an
isomorphism, on the supernatural number of {n;} (and not on the sequence
itself).

In Section 3 we study the structure of the algebra %, ({n;}). We present
necessary and sufficient conditions for it to have a unique tracial state (The-
orem 3.1). In Theorem 3.4 we show that the algebra %, ({n;}) can also be
written as a crossed product C (X, A) X, Z. We then use it in Theorem 3.5 to
prove a necessary and sufficient condition for simplicity of the algebra.

In Section 4 we specialize to the case where A = C(T) and « is an irrational
rotation by 6 (so that A x,Z is the irrational rotation algebra Ay). In this case we
use the notation %y ({n}) for the algebra in order to emphasize the dependence
on 6. It follows from the previous section that the algebra is simple and has
a unique tracial state . We show that the Ky and K; groups of the algebra
are both isomorphic to Q(6) & Z (where § is the supernatural number of the
sequence {n;} and Q(4) is the group of rational numbers that can be written as
a quotient m /ny for some k). We also find that the image of the map 7., defined
on the K group, is Q(8) + 6Z. It then follows that two such algebras, with 6y,
6, and supernatural numbers §;, 8, are isomorphic if and only if §; = §, and
either 6, + 6, or 6; — 6, belongs to Q(8;) (Corollary 4.2).
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2. Preliminaries

Let A be a (unital) separable C*-algebra and let o be a unital automorphism of
A. Write E =, A for the C*-correspondence associated with this automorph-
ism. As a vector space, E is simply A. The bimodule structure is defined by

a-b-c=uawala)bc.

Here a, c are in A and b is in A viewed as an element of E. The inner product

is
(b1, by) = bibs.

This makes E into a C*-correspondence in the sense of [6]. It is easy to check
that E®% =, A and the isomorphism of E®* @ E®™ onto E®**™ is given by

Vim(a ® b) = a™(a)b

fora €, A and b €4n A. In what follows we tend to suppress V., and
identify the two spaces.
The Fock space associated with ,A = E is

FE)=A®EDE? @ ---.

As a C*-module it is just the direct sum of infinitely many copies of A. To
distinguish between elements of 4« A for different k’s, we write §; for the unit
of A viewed as an element of 4« A. Thus é;a would be a as an element of ,« A.
The Fock space has a left action that makes it into a C*-correspondence:

boo(@)8b = 8ra (a)b.

We shall denote the Fock space associated with o by % ® and the left action
there by ¢<‘,’§3.
Every a in E defines a shift operator on &# (= % (E)) by

T(a)8eb = 81a ® 8;b = 81" (a)b.

(In the last equality we omitted the reference to V .)
A similar operator on % ® will be denoted T® ().

DEerFINITION 2.1. Let A = {A; : 1 < i < oo} be a bounded sequence of
positive elements of A. The weighted representation of E on & is

T;.(@)8kb = 81" (Mgq1a)b

fora, b € A. The weighted representation will be said to be periodic of period
kifforalli > 1, Ay = A;.
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NotEe. The word “representation” above refers only to the fact that it is a
representation of E as a right module over A (i.e. T (a - ¢) = T, (a)¢(c) for
ceAanda € E).

Note that every operator on & can be written as an infinite matrix (with re-
spect to the decomposition of & as an infinite direct sum). It will be convenient
to denote by ad;; the operator that maps §;b to §;ab (for a in A).

Also we shall write S for 7'(1) (hence S8a = 8 1a).

DerFiNITION 2.2. The C*-algebra generated by the operators {qbgé)(A),
T® (. A)} on F® is called the Toeplitz algebra associated with of and will
be denoted 7. Since #® is a subspace of %, each I} can be viewed as a
subspace of £ (%).

LEMmA 2.3. Given k > 1, the C*-algebra generated by all the periodic
representations of period k (on &) is isomorphic to the algebra of all k x k
matrices over .

PrOOF. We start by setting some notation. We can write
F=FOEQF)DEPRF)® & (E>"@F)

Letus write /4, for E¥'@%;,0 <1 <k—1.Then ¥ = My M, D" - - D M_,.
Every operator on &% can be written in a matricial way with respect to this
decomposition. We shall write Xe;; for the operator whose i, j entry is X (X
maps /; into ./;) and all other entries vanish.

Note that, forall 0 < [ < k — 1, ¢oo(A)M; C M, so that the matrix of
¢o(a) for a € A is diagonal. For every b € E, T (b) maps #; into M, if
| < k—1 and it maps ., into /. Hence its matrix has non zero terms only
on the first lower diagonal and in the 0, k — 1 entry.

Now write )

=~
—

B = S’%S*jeij.

k

i=0 j

Il
=}

Fora € Aand 0 <[ < k — 1, thel, [ entry of ¢ (a) is

o' (@)dy + oM@k sk + - = S (@ (@)oo + &F T @)k + - - ) ST
= 89 (@' (@)$" € §'T; $*.

Forb € E,thel 4 1,1 entry of T (b), for! < k —1,1s

o Mi1D)8110 + & g1 ab) S 1k gk +



LIMIT C*-ALGEBRAS ASSOCIATED WITH AN AUTOMORPHISM 105

Since A is of period k, this is equal to
o (A10)81 1.0 + o (@ (i1 D)1tk + -+
(1) = S Qug1b)800 + & Qg1 D)8 i 4 - ) ST
_ Sz+1¢g;) (al(xl+lb))S*’ c Sl“ng*l.
For the 0, k — 1 entry of T, (b) we get
@ ' b)80 + & (b)Y + -+ ) ST
2) =T @ (b)) s € 7.54¢D,

Now write .27 for the C*-algebra generated by all the periodic representations
of period k. It follows from the above that &/, C 98. We shall now show that,
in fact, the two algebras are equal.

Fix0 < j < k—1.SettingA; = 1ifi = j+1 (mod k) and A; = 0 otherwise,
we find, using (1) and (2), that Sf“qbg;) (a/(b))S*ej41.; = Ti(b) € . Since
this holds forall bin A, we conclude that, foralla € A andevery0 < j < k—1,

3) SiteW (@)SH e ;€ .

Similarly, by setting A; = 1 if i = 0 (mod k) and A; = O otherwise, we find
that

@) TOE)S* Vet C .

Thus, for every b, ay, ...a;_; in A we find that T® (b)§**=Deg
S8 (1) S* Ve 1 4 s, ... and SP%) (ay)ey o all lie in .. Multiplying
them, we see that T® ()% (ax_1 . . . ay)ep o lie in .

Thus T®(E)ego C . Since {X : Xeg € o} is a C*-algebra,

&) Treoo S .

Setting, in (3), @ = 1 we find that S/*!S*/¢; ;| ; liesin o (for0 < j < k—1).
It follows that

Sitei 0= (S8 e N(SIS*Ve; ;1) ... Ser o € .
Finally, for0 <i,j <k —1and X in 9,
SIXS*e; ;= (S7ej0)(Xeoo)(S eio)* € y.

Hence # = ;.. But A is clearly isomorphic to M, (J) and the isomorphism
is given by conjugating by the (isometric) matrix diag(1, S, S2, ..., S*=1).
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Suppose n, m are two natural numbers with n|m and let A be periodic of
period n. Then A is periodic of period m and this implies that .27, C o7,.
Using the isomorphisms of Lemma 2.3 we get an injective *-homomorphism
Bnm : My(Ty) = M,,(T ). In the next result we describe this map. In what
follows we keep the notation set up in the proof of Lemma 2.3.

LEMMA 2.4. Let n, m be two natural numbers with n|m. Write k = m/n.
Then the restriction of By, to Tyeo is defined by

k—1
Bum (@ @eo0) = Y ¢ (/" (@))ejn.jn

j=0
fora € A and
k—2
Bum(T ™ (beoo) = D L @ B)ej i jn + T @ D" (B))e0, g 1yn
j=0
forb e E.
Also, for0 <i, j <n —1we have
k—1
(6) Bum(€ij) =Y eisin jtin-
=0

PRrROOF. In the following we shall write 7, for the isomorphism 7, : &, —
M, (J,)of Lemma2.3.Fix0 < j <n—1landletA,belif p = j+1 (modn)
and be 0 otherwise. Then (by equations (1) and (2)) the matricial form of 7; (1)
as an element of .o, is S/™'S*¢; ;1 ;. Thus 1,(T5(1)) = e;j41.;. Using (1)
and (2) again, this time with m instead of n, we find that the matricial form
of T,.(1) as an element of &7, is 25:01 Sl g D e, i1 j+u and, thus,
(T (1)) = Y €jtni+1,j+ni- Equation (6) for i = j + 1 follows. Since B,
is a *-homomorphism, (6) follows for all 7, j.

Now let A be defined by A, = 1 if p is a multiple of n and is equal to 0
otherwise. Then, for b € E, the matricial form of T (a' (b)) as an element
of o, is T™ (b)S*" Ve, (hence n, (T (' ™" (b)) = T™ (b)eg,_1) and
its matricial form as an element of .7, is T (a%*=D"(b))S*"" Ve | +

=1 SMp% (@71 (£))S* Ve, 1y (and therefore 1, (T (' " (b)) =
T (@*=(b))eg w1 4+ Y52 d% (@' (b))ern.n—1). It follows that

k—1

BTV B)eo-1) = T™ @ " B)eo ot + Y 6L @ 0))esn 1.
=1
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Since @ =
T (b)eo,o = (T (b)eon—1) - en—in—2-.-€10

and,
o (a)eoo = (T (1ep0)* T (@)enp,  a € A,

a straightforward computation, using the fact that g, ,, is a *-homomorphism,
completes the proof.

COROLLARY 2.5. For n|m the map B, », described above, maps 7 e, j into
k-1
Y 1—0 Iméitin, j+in Where k = m/n.

In fact, define the map 6, ,, : I, &> My(J,,) by

k-1
Onm (@) (@) =D o @ (a))e;,
j=0
fora € A and
k-2
Gn,m(T(n) (b)) = T(m)(a(k—l)n (b))eos—1 + Z ¢((>g1)(0[./ (b))ej+1,j
j=0

forb € E.
The matricial form of the elements of .7, was with respect to the decom-

position
F=Mo® @ My

where #; = E' @ %,,. As a C*-module over A each ./ is isomorphic to
. Thus any permutation of these spaces defines a unitary operator on .
Let U be the operator arising from the permutation (0,1,...,m — 1)
O,n,...,k—1n,1,2,...,m—n—1,m—1). Then we have the following.

COROLLARY 2.6. With the notation above,

IBn,m = U*(Ik ® en,m)U

The following lemma follows immediately from the definition of the maps
Bn.m (or by a straightforward tedious computation using Lemma 2.4).

LEMMA 2.7. For positive integers n, k, | we have

IBnk,nkl o IBn,nk = ﬁn,nkl-

It is known that the Toeplitz algebra &, is an extension of the crossed
product algebra of A by «”, A X4 Z. The Toeplitz algebra contains the algebra
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K (#,) of all compact operators on the C*-module %, (wWhere “compact” is
in the sense of C*-modules theory) which is isomorphic to A ® K (where K
denotes the algebra of compact operators on a separable Hilbert space). The
quotient space J,, /K (&) is then isomorphic to the crossed product. One can
also check (see e.g. [6]) that the ideal K (#,) is generated by the set ¢>§2> (A) Py
where Py is the projection of &, onto the first summand of &, (i.e. A).

We now compute, for a, b,cin A and k > 1,

(Poo(ac*) — T(a(@)) T (a(c)) )b = 8rak (ac*)b — T (a(a))8i_1a* (c*)b
= 8k (ac™)b — 8ra*(ac*)b =0

and, for k = 0,
(poolac®) — T (a(a)T (@ (c))*)ob = Soac*b.

Hence,

) Poo(ac”) — T (a(a)T (a(c))” = ¢poolac™) Po.

LEMMA 2.8. For every positive integers n,m with m/n = k € Z the map
Bn.m induces a map, denoted y,, p, from M, (A Xgn Z) into My, (A Xgn Z).

Proor. Using Corollary 2.6 it suffices to show that a similar statement
holds for the map 6, ,,. For this, we have to show that 8, ,, maps K (%,) into
M (K (#,,)). We compute, fora, c € A,

Opm (@2 (ac*) — T (" (@)T™ (@"(c))*)

k—1
=D % @ @c))e; ;=T @ " (@ (@NT™ (@~ (@" () e0

Jj=0
k—2

=) W@ (@ (@c))ejs i
j=0

= (@2 (ac*) — T™ (@™ (@))T"™ (&" (c))*)eo -

From the discussion preceeding the lemma it now follows that 6, ,, maps the
set ¢§’;) (A) Py into M. (K (¥,,)). Since this set generates the ideal K (%,), the
claim follows.

Let y,,, be the map defined above and let g, and g,, be the quotient maps on
M, (J,) and M,,(7,,) respectively (induced by ¢). Recall that ¢ (¢§’g) (@) =a
fora € A and g(T™ (1)) = u* (where u, is the unitary that, together with A,
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generates A X,» Z and satisfies u,au;, = o”(a), a € A). Then it follows from
the definition of g, ,, that y, ,, is defined by

k—1
l
Vn,m (an,O) = Za n(a)eln,ln
[=0

fora e A, o
Vom (n) = Um€e—1mo + Y €.+ im
1=0
and, for0 <i,j <n—1,
k—1
Yam(€ij) = Zei+ln,j+ln-
1=0

We now write %(n) (or B, (n) if we want to emphasize the dependence on
«a) for the algebra M, (A X4 Z).

DEFINITION 2.9. Suppose that {n;} is an increasing sequence of positive
integers such that n; divides ng4; for k > 1. The Bunce-Deddens algebra of
« is the direct limit

Bo({ni}) = i (B (1), Yy i)+

Recall that an element ) o~ axu* in the crossed product is 0 if and only
if a = 0 for every k. It follows from this and the definition of y,, ,, that this
map is injective. We can, thus, write the limit algebra %, ({n,}) as the closure
of the increasing union UZ (n;).

Note that the analysis above shows that, for every k£ > 1, we have
%(nk) = Mnk (A X ok Z) = Mnk (gnk)/Mnk (K(‘q;nk)) = (anl\/K((g?)

It follows that %, ({ni}) is isomorphic to the quotient of U/, by K(F).
Recall that U/, is the C*-algebras generated by all periodic representations
of perion n; for all k > 1.

PrOPOSITION 2.10. Let {n} and {m;} be increasing sequences of positive
integers for whichni|ngy andmj|m;qy forall j, k > 1. Write §(ny) and §(m;)
for the corresponding supernatural numbers. If §(ny) = 6(m;) then B, ({ni})
and By, ({m;}) are isomorphic.

Proofr. The proof is standard. For each k, n; divides some m, and the
map ¥u,.m, is the inclusion of & (n;) into AB(m,). Since the latter algebra is
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contained in Z({m;}), we find that every % (n;) is contained there. Since this
holds for all k, B({ni}) € PB({m;}). Equality follows from symmetry.

The converse of the proposition above holds in some cases (see Corol-
lary 4.2) but not in general, as we see in the following lemma.

LEmMMA 2.11. Suppose A is a unital C*-algebra such that A is isomorphic
to M,(A) for some positive integer p. Let {ny} be an increasing sequence as
above and let a = id (the identity automorphism). Then

Ba({ni}) = Bia({pnr})).

PrOOF. Since ¢ = id, A xpn Z = A ® C(T) for all n. Making these
identifications, the maps y;, n,,, (for the algebra %4 ({nx})) now satisfy (when
we write my for ngyq/ny)

mk—l

Voo (@@ Deij) = Y (@ ® ey jsin,

=0
fora € A, and
mkfz
Ve, (@ ® 2)e; ;) = (a @ 2eitme—yn,,j + Z (a ® 1)eiyni, j+n a+1)
=0

where z is the identity function on T. The maps ¥, pn, ., (for the other algebra)
can be written similarly. Write v for the isomorphism ¢ : A — M, (A). It
induces an isomorphism from A ® C(T) onto M,(A ® C(T)) defined by

ta® = Y @i Ne
0<i,j=<p-1

For every positive integer k we write #;, for the isomorphism from M; (AQC (T))
onto My, (A® C(T)) defined by applying ¢ to each entry. Hence, for0 < r,g <

k—1,
W(@® fleng) = Y W@ ® eirrp jtap-

0<i,j<p-1
To prove the claimed isomorphism it suffices to show that, for every k > 1,
() Vpne.prir © Ing = Tnyy © Vogongy -

The required isomorphism in this case is lim_, #,,. To prove (8) it is enough to
apply both sides to elements of the form (a ® z)eg o and (a ® 1)e, , fora € A.
The computation is straightforward and is omitted.
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3. The structure of B, ({n.})

PRrROPOSITION 3.1. B, ({ni}) has a unique tracial state t if and only if A has an
a-invariant tracial state Ty and for every k > 1 this is the unique o"** -invariant
tracial state on A.

Moreover, in this case, T is faithful if and only if 1y is.

PrROOF. Let 1y be an o™ -invariant tracial state on A. For every k > 1, let
& be the canonical conditional expectation of the crossed product A X yu Z
onto A and write 7, = 1o 0 &. If K > [ then 7 is a tracial state on the crossed
product (faithful if 7g is). For such k and an element X = (x;;) of the ny x ny
matrices over the crossed product A x* Z, we set T (X) = 1/ny (Z T (xl-,»))
and this defines a tracial state on % (n;) (that is faithful if 7, is). To show that
these traces define a tracial state on the direct limit it is left to show that for
every k > [,

) Tit1 © By = Tke

For X = aey,o we have (set m = nyy1/ny),

m—1
Tht1 © Yigunes (@€0,0) = Thql (Z ol (a)ejnk,,ink) =Y 1/ mepm@™ (a))

=0
= 1/nxto(a) = Ti(aeq)).

For X = u,, ep o we have,

'Ek-H O Vg, ns1 (unke0,0) = -Ek-f-l(u”kﬂeoﬁ(k_l)"k + Z fk+1(e(j+1)nk’jnk)
= 0 = Tk(ul’lk) = fk(unkeO‘O)'

Since every tracial state on M, (A X, Z) is determined by its values on ele-
ments of the form Xeg o (X € A xyu Z), this proves (9). Thus, we constructed
a tracial state T on %B,({n,}) that is faithful if 7, is. Write T = ®;(1g). So
®; maps «’-invariant traces of A to traces of A, ({n;}). It follows from the
definition of ®, that it is one-to-one.

To go in the other direction, fix a tracial state T on %, ({n;}) and define,
for yin A xXou Z, 7 (y) = 1/nxt(yeo0) (Where e o is an element of B (ny)).
Note that we have the following.

T (Un,) = 1/npt (U e0,0) = 1/0T Vg, @ng€0,0))

m—2

= 1/m <T(unk+|enk+|—nk,0) -3 T(elnk,(l+1)nk)) =0

=0
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where m = ny1/ng. The last term is equal to O because we evaluate t there on
matrices whose diagonal entries are all zeros. It follows that 7, = (x| A) o &;
; i.e. 7; is determined by its values on A. Now set Wi (t) = 1¢|A fora € A.
Since 1y is a tracial state on A X, Z, it follows that Wy (7) is o”*-invariant.

Now suppose that %, ({n;}) has a unique tracial state t. Let tp be ¥ (7).
Then it is an «-invariant tracial state on A. Fix k > 1. Suppose 7 is another
(different) "*-invariant trace on A. Then & (7)) # Pi(7o) (since Py is in-
jective). But this contradicts the assumed uniqueness of traces on %, ({n;}).
This proves one direction. Note also that if 7 is faithful then so is 7y (which is,
roughly speaking, a restriction of t to a copy of A).

For the other direction, let 7y be an a-invariant trace with the uniquness
property stated in the proposition. Write t = ®(1p). Then 7 is a tracial state
on %B,({ny}). Suppose t’ ia also a tracial state on %, ({n;}) that is different
from 7. But then, for some k > 1, the restrictions of T and 7’ to %(n;) are
different. Since a trace on B (ny) = M, (A X Z) is determined by its values
on matrices of the form yeg for y € A x4 Z, and since, as we saw above,
these values are determined by the restriction to elements of the form aeg o
fora € A, we find that W;(t) # W;(t’). But this contradicts the uniqueness
property of tg. In the construction of @ (7p) above it was noted that if 7y is
faithful so is ®(1p).

We shall now proceed to show that the algebra %, ({n;}) is isomorphic to a
crossed product algebra of the form C(X, A) x, Z.

In order to define the space X, fix a sequence {n;} of positive integers
with ng|ngy; for all & > 1 and with n; = 1. Set my = npq/ng, let X; =
{0,1,...,m; — 1} and let X be the Cantor set X = ]_[fil X;. We can think
of each element x of X either as a sequence {x;} or as a formal sum ) _; x;n;.
We write o) for the odometer action on X. For x € X let i(x) be the smallest
i for which x; < m; — 1 (and i(x) = oo if x; = m; — 1 for all i). Then, if
i(x) <o00,00(x); =0foralli <i(x),o0(x)ix) = Xi) + 1 and op(x); = x;
fori > i(x). If i(x) = o0, op(x) = {0, 0, ...}. It is known that this map is a
homoemorphism on X.

We consider the cylinder sets

J(xp, x0, . .cxp) ={yeX:y=x; 1 <i <k}

Then oo (J (x1, ..., x)) = J (1, ..., yx) Where

k k
1+ inni = Zy,-n,- (modnk+1).
i=1

i=1

Given (y1, ..., ») with0 < y; < m; — 1, we write §y, ., for the function

yeens
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in C(X, A) which is 1 (the unit of A) on J(yy, ..., yx) and O otherwise. For
an element a € A we shall write (by a slight abuse of notation) also a for the
function in C (X, A) that is constantly equal to a. For k > 2 write

CG={feCX,A): f(x)=f()
whenever (x1,...,x_1) = V1, ..., Yk—1)}

and, for k = 1, 4, = A (where A is viewed as the algebra of all constant
functions in C (X, A)). Then 6, C 6}, and

C(X,A) =UR %
Now define the automorphism o on C(X, A) by

o (f)x) = a(f(oy ' (x)).

We shall show that B, ({n;}) is isomorphic to C(X, A) x, Z. To do this, we
write U for the unitary that, together with C(X, A), generates the crossed
product and let, for every k > 1, ¥, be the C*-algebra generated by €; and
U.Foragiven k and 0 < j < ng — 1, write j for (ji, ..., jr—1) satisfying
>, jini = j. Note that we have

U'sgU* =07 (89) = 8po0y’ =6
for0 < j < n; — 1. For j = n; a similar argument shows that
U™ U™ = §y.

LEMMA 3.2. The algebra G is the C*-algebra generated by the algebra A
(as a subalgebra of €), the operator §oU" 8y and the operators of the form
UisoU* for0 <i, j <ny — 1. (Fork =1 we let 8y be 1).

PrOOF. Write & for the algebra defined in the statement of the lemma.
Since the function § lies in %, it follows that &, C %. Given f € %} and

0<j<ng—1wewritea; = f(ji, ja,...) where j = Y/~ jin;. Then

ng—1

f = Z(lj(Sj = Z(ljU'iSOU*j.
Jj=0 J
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Thus 6, < ;. Also

ng—1 ny—2
U= Us=> UWUsU™+UU""su" ")
j=0 j=0
ng—2
= Z U/ soU ™ 4 (SoU"89) (8U ™).
j=0

Thus U € 9, completing the proof.
LEmMMA 3.3. Fix k > 1 and define the map

Pk - Mnk (A X 'k Z) g gk

by L, N — gy JHnil
pr(au, e; ;) = U"adU .

Then py is a *-isomorphism onto 9.

Proor. Note first that, since ady belongs to %y, the image of p; lies in
9. Write x = a”i;kei,j and y = bu; e,, fora,b € A, r,l € Zand 0 <
i,j,q, p < n; — 1. We compute (assuming for simplicity that j > p)

P (X) i (y) = U adgU™ ' U*PbsyU™ +4

_ U*ia500(j7p+nkl (b)aj,pUnk(l+r)7p+j+q .

If j # p, xy = 0 and the computation above shows that also o (x) 0 (¥) =0
because §9dj—p = O in this case. Suppose p = j. Then the computation above
shows that

P pe(y) = U aa™ (b)syU™ U = pr(ac™ (b)ulyt ei )
= pi(aul, buj, e; ) = p(xy).
Thus py is multiplicative. To show that p; is a *-map we compute
(pr(aul, e, )* = U™ 8ga*U" = U a™™ (a*)8yU' ™"
= pe(" (@*)ujleji) = pi((au € ))*).
Note that
Sn—pU ™ (@8gU™ U 8 —q = U (adyU™ U’

if p =i and ¢ = j and it is equal O otherwise. Thus

li.j * dp
U? Sn—pPk (Z ai,jln; ei,j) Sm—qU™ = ap 480U
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Hence, if p; (Z ei‘juﬁ’kj ei,j) = 0,thena; ; = Oforalli, j. Thus py is injective.
The fact that the map is onto follows from Lemma 3.2. (Note that U'§eU*/ =
U*(nkii)(SOUnkij = pk(enk—i,nk—j))-

THEOREM 3.4. Let {n;} be an increasing sequence of positive integers
with ny|nyy1 (and ny = 1). Then the algebra B, ({ny}) is *-isomorphic to the
algebra C(X, A) x, Z

PRroOOF. To construct the isomorphism we first show that, for every k,

(10) Pk = Pk+1 O Vnp,npyr -
Fix k and write m = ny /n;1. It will suffice to apply both maps to a generating
set of M, (A X gu Z). In the following computations we shall write ch(p ) instead
of §; as before, to indicate that j = (ji, ..., j,—1) is of length p — 1 (and 8J.(p)
is an element of €,). For a € A we have
m—1
Prt1 © Vignis (A€0,0) = Pkt 1 ( > ot (a)elnk,lnk)
1=0
v k+1 k+1 k
= Z U g (@) syt = Za(?r(,k: )lnk = ady’ = pr(aeo).
Also,
m—2
pk+1 o Vnk,nkﬂ (unke(),()) = karl (unk+le(M7l)l’lk,0) + Z pk+1 (elnk,(l+1)”k)
1=0
m—2
— U*(m—l)nkat()k-H) Unit 4 Z U*lizk(s(()k+1)U(l+l)nk
1=0

m—2
=80V Um 43y 0D U = 50U = prlug,e0,0)-

nk1—Ing

Forevery 0 <i, j <n; — 1,

m—1
i+ing) o (k+1 j+ing
Pk © Vi (€1.1) = D prl€ivimy. o) = Y _ UXIHWSIEFD g UHin
=0
k+1 i o(k i
=Y Ursitl Ul = Ut s U = pcen ).

This proves (10) and it follows that we have a *-homomorphism p : %, ({ns})
— C(X, A) x, Z whose “restriction” to % (n;) is pi. Since each map py is
injective, so is p. It is left to show that p is onto. Since the image of oy is %,
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it amounts to showing that the (increasing) union of the algebras %; is dense
in the crossed product. But each of the algebras %; contains U and we know
that C(X, A) is the closure of the union of the algebras %;. Hence the density
of U¥, follows.

THEOREM 3.5. Let {n;} be a sequence of positive integers with ny|ng4 and
ny = 1. Then the algebra B, ({ny}) is simple if and only if, for everyk > 1, A
is ot -simple (i.e. it has no proper closed two sided o"*-invariant ideals).

PRrROOF. Suppose that there is an m > 1 and an "~ -invariant proper ideal
J € A. Then J is also o"*-invariant for all k > m. For every such k, the
closed ideal of A xqn Z generated by J will be written J;. Then M,, (Ji) is
an ideal (closed and proper) in % (n;). It is easy to check (using the definition

of Yu,.n,.,) that
Vnk,nkH (Ml’lk (Jk)) g Mnk_H (Jk+1)

and, in fact,
Vnk,nH] (Mnk (Jk)) = Mnk+1 (Jk-l,-]) m ynk’nl‘qu (Mﬂk (A X(y”k Z))

Hence J := lim_, M, (Jy) is anon zero ideal in %, ({ny}). It also follows that,
for k > m, J N B(ny) = My, (Ji). Thus J # By ({ni)).

We now turn to prove the other direction. We assume that A is o**-simple
forall k > 1. We start by showing that C (X, A) is o-simple. Let I € C(X, A)
be a o-invariant ideal in C (X, A). Since

C(X, A) = U%,

where 4 (as defined above) form an increasing sequence of subalgebras, it

follows that -
I =U(N%E).

Write I, = I N %;. The algebra % can be identified with C(]_[f:]l X;, A) and
1—[5:11 X; is a finite set with n; points. Thus there are ny ideals {I; ; : 0 < j <
ny — 1} in A such that

nkfl
I, = { Z(lj(Sj taj € Ik,j}.
j=0

We have

nk—l nk—2
o( Z aj5j> = Za(aj)(éj o 007]) = Z a(a;)djp1 + a(an,—1)do.
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Hence the o-invariance of I; implies that
o(lx,j) S Ik, j+1

forall0 < j <n; —2and

(g p—1) € Iro-

Thus, for all j, we have
o™ (I, j) = Ik ;-

It follows from our assumptions that, forall0 < j < n; —1, I ; is either A or
{0}. In fact, the relations above show that either I} ; = A forall j or [; ; = {0}
for all j. It follows that I is either €, or {0}. Since {I;} is an increasing
sequence whose union is dense in /, either I = C(X, A) or I = {0}. This
proves that C(X, A) is o-simple. In order to prove that the crossed product of
C(X, A) by o is simple it is left to show that the Connes’ spectrum of o, I' (0),
is the full unit circle. (See [9, Theorem 8.11.12]).

Let A and Cm) be the set of equivalence classes of the irreducible
representations of A and C(X, A) respectively. For every x € X and an ir-
reducible representation T of A one can define an irreducible representation
T =7y of C(X, A) by m(f) = t(f(x)) and, conversely, every irreducible
representation of C(X, A) is equivalent to some 7, ;). Moreover t; and 7, are
equivalent if and only if the corresponding 7 ’s are equivalent (for the same x).
Also, 7(x -,y and 7(, -,y are inequivalent whenever x # y. Hence we can write

C&,\A) ={ren:xeX, te A}.

The automorphism ¢ induces a map on C(/X,\A) which we also denote by o
(and similarly one has a map « on A). Then

U(E(X,T)) = n(a(fl(x),roa)'

Suppose now that, for some n € Z, 6" (7(x,r)) = T(,7). Then it follows that
oy (x) = x. But this is possible only if n = 0 (from the definition of oy)
and, thus, o acts freely on C(X, A). We now use Theorem 10.4 of [8] (the
equivalence of (i) and (v) there) to conclude that I'(o) = T, completing the
proof.

PROPOSITION 3.6. The algebras B, ({ny}) and By-1 ({ny}) are isomorphic.

PROOF. One can prove the proposition by constructing isomorphisms be-
tween B, (ny) and PB,-1(ny) that are intertwined by the connecting maps in
the direct limit. We prefer here to use the crossed product presentation. So let
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X =J[{0, ..., my — 1} (where my = nyy1/ny) and let oy be the odometer
map as above. Recall that we definedo : C(X, A) - C(X, A) byo(f)(x) =
a(f (g ' (x))). Write o' (f)(x) = @~ (f (5 ' (x))). Then

Boa({ni}) = C(X, A) x4 Z

and
Bo-1({n ) = C(X, A) x4 L.

We shall write U for the unitary operator that satisfies UfU* = o (f) for
f € C(X, A) and such that C(X, A) and U generate the crossed product.
Similarly we shall write V for the unitary operator that, together with C (X, A),
generates the other crossed product and satisfies

VIVi=d'(f), feCX A).
Now define a map g on X by
glxy,xp,..)=m —1—x;,my—1—1xp,...).
Then g is a homeomorphism of X. It is also easy to check that
gocr():crofl og.
Let W be the map from C(X, A) x, Z into C(X, A) X, Z defined by setting
V(f)=fog, feCX, A

and
() =V*

We have, for f in C(X, A),
VXU(HV(x) =01 (f og)x) = alf oglop(x)))
=a(f(oy ' (g(x))) =0 (f)og = W(o(f)).

Hence the map W is a well defined *-homomorphism on C(X, A) X, Z. Sim-
ilarly, by replacing the roles of @ and @', one can define a *-homomorphism
that is the inverse of W, completing the proof of the proposition.

4. Example: %y ({ny))

In this section we discuss the special case where A = C(T) (the continuous
functions on the unit circle), 6 is a fixed irrational number and o = «ay is the
irrational rotation by 0. Identifying T with R/Z we can write

ag(f)() = f(t =0).
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The algebra C(T) x4 Z will be written (as is costumary) Ay and the resulting
limit algebra, %, ({n;}) will be denoted %y ({n;}). It follows immediately from
the results of Section 3 that this algebra (for a given increasing sequence {rn;}
of positive integers each dividing the next one) is simple and has a unique trace
(denoted 7).

Given a sequence {n;} as above, we shall write §(ny) (or simply § if the
sequence is fixed) for the associated supernatural number and Q(5(ny)) (or
Q($)) for the group of all rational numbers that can be written as a quotient
m/ny for some m € Z and k > 1. It is known that this group depends only on
the supernatural number of the sequence.

THEOREM 4.1. Let 0 be an irrational number and {n;} be a sequence
of positive integers with ny dividing nyy; and ny = 1. Write §(ny) for its
supernatural number and Rt for the set of all non negative real numbers.
Then

(1) Ko(By({ni})) is isomorphic, as an ordered group, to (Q(8(ny)) + 6Z,
(Q(ny) +60Z) NRT).
(ii) Let t, be the map on Ko(By({ni})) induced by the unique trace. Then

T, (Ko (Bo ({nic})) = Q(8(ny)) + 6Z.

PRrOOF. Since %(n;) is the algebra of n; x n; matrices over the irrational
rotation algebra A,,, the ordered group Ko(Z(ny)) is order isomorphic to
(Z+ 6Z, (Z+ ni0Z) N RY). Let 19 be the tracial state on C(T) that one gets
by integrating with respect to the normalized Lebegue measure (and then the
unique trace T on %By ({ny}) is (7o) in the notation of Proposition 3.1) then
we write (as in Proposition 3.1) t, = 79 o &; (Where & is the conditional
expectation from A, to C(T)) and 7; for the induced trace on % (ny). Let
J i Ane = B(ng) = M, (Aye) be the map j(X) = Xepo. Then j, is an
isomorphism of the Ky groups and, since 7; o j = (1/ny)t, we have

- . 1
(Ti)x © jx = —(Ti)x-
ng

Recall that we denote by u,, the unitary that, together with a copy of C(T)
generates the crossed product C(T) X gy Z = Agy, . Thus u,, can be identified
with the operator of rotation by 6n; on L?(T).

It is known that (i) is an order isomorphism from K¢ (Ag,, ) onto Z46n;Z
([1, 10.11.6] or [11, Example 5.8]). It follows that (7). is an isomorphism of
Ko(AB(ny)) onto (1/ny)Z + 6Z. Write y; for the map y,, .., and (yi). for the
map it induces on the K groups. Hence

Vi)« : Ko(B(nk)) = Ko(B(nis1)).
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We have T;11 o y = T (Proposition 3.1) and, thus, (Ty+1)« © (Vi) = (Tw)«

and the map
Iim (%) : lim Ko(B(ni)) — R

is a well defined order isomorphism into R. In fact, since T = lim_, 7 (Pro-
position 3.1), the map lim_, (T;), is 7,. We also know that lim_, Ko(% (1))
is isomorphic to Ko(%Bs({n;})) as ordered groups ([11, Theorem 6.3.2]). It

follows that
7.t Ko(PBo({ni})) — R

is an order isomorphism. Its image is

U((1/n)Z+02) = Q(8(ni)) + 0Z.

COROLLARY 4.2. We have By, ({ni}) = By, {my}) if and only if §(ny) =
8(my) and either 61 + 0, or 61 — 6, lies in Q(8(ny)) (=0 (5(my))).

PrOOF. Assume first that the condition on the supernatural numbers and
the 6’s holds. It follows from Proposition 3.6 that we can assume that 8; — 6,
lies in Q(8(ny)) (replacing 6, by —6, if necessary). Then, for some k£ > 1,
ni0y —ni6; liesin Z. In fact, n;60; —n;6, € Zforevery! > k. The algebras A, 4,
and A, 4, are then isomorphic. In fact, if we write v, for this isomorphism and
apply ¥, entrywise we get an isomorphism v; of By, (n;) onto By, (n;). These
isomorphisms intertwines the connecting maps and we get an isomorphism of
the limit algebras.

For the other direction, assume the two algebras are isomorphic. Write n
for the isomorphism 1 : %Bp, ({nr}) — PBo, {my}). If T is the unique tracial
state on By, ({my}) then t o 1 is the unique tracial state on By, ({nx}). Using
Proposition 4.1 we have

Q(8(ny)) + 01 Z = (1 0 n)(Ko(By, {11 }))) = (0 (Ko (Bo, ({1 }))))
= 1.(Ko(%Bs,({mr}))) = Q(8(my)) + 6,Z.

It follows that, for every k > 1, there are [ > 1 and p, ¢ in Z such that
1/ny = p/m; + c6,. Since 0, is irrational, ¢ = 0 and ny|m;. This shows that
8(ny) divides §(my) and, by symmetry, they are equal. Hence

Q(ny)) +01Z = Q(8(ny)) + 6,Z.

Thus there is some k > 1 and integers a, b, ¢, d such that 8, = b/n; + a6,
and 6, = c¢/n; + d6,. Combining these equalities we find that ad = 1. Hence
eithera =d = 1 (and then 6; — 6, € Q(8(n))) ora = d = —1 (and then
01 + 62 € Q(8(ng))).
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One can also compute the K; group of the algebra %y ({n;}) using the
continuity of K.

ProrosITION 4.3. For every 0 and {n;} as above,

Ky (Bo({ni}) = Q(6(ni)) & Z.

PRrOOF. It is known that K| (A,,¢) = Z @ Z for every k > 1 and the gener-
ators of the group are the class [u,, ] of the unitary u,, and the class [v] where
v is the function in C(T) defined by v(z) = z ([3, Example VIIL.5.2] and [1,
10.11.6]). Fix k > 1, write m = ny41/n; and y; for the map y,, »,,,. The
K group of M, (A,,s) is again Z @ Z and the generators are the classes of
Uy = U, €00 + Z;.”‘:_ll ej j and Uy := veg o + Z;’k:_ll e j. We compute

m—2
Vilik) =t nm-1.0 + Y €. aem + D €0
1=0 i
and
m—1
vi(Uy) = E o (V) €y in, + E e
1=0 i

where the last sums in both equations run over all integers 0 < i < ng4; — 1
that are not multiples of n;. But then it follows easily that

Vi)« ([e]) = [tx41]

and ~ _
V)« ([Ve]) = m[Vg41].

Hence, viewing (yx). as amap fromZ @ Z to Z @ Z, we have
V)« : (a, b) = (ng41/nka, b).

Using the continuity of K ([11, Proposition 8.2.7]) we get the result.

We close with the observation that every matrix algebra over an algebra of
this class is again an algebra of this class. The precise statement is presented
in the following proposition.

PROPOSITION 4.4. For every p € N,

M, (By({ni})) = Boyp({prr})-

Hence, for p > 1, the algebras %Bo({nx}) and M,(%Bs({ni})) are non iso-
morphic.
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PrOOF. Write )
By ({ni}) = 111)“(939 (1), vio)

where y; stands for y,, .. Then
M, (B ({ni})) = im (M, (B (n4)), (ve) p) = (M, (Mo (Agn))s (Vi) p)
where (yx), is defined by applying y; entrywise. We also have,
PBao;p{pni}) = 1211(%’9/17(19”0, Yo = Hm(Mpn, (Ao p)pn) Y0

where Y/ is ¥pn, pn,.,- An element of M,(M,, (As,,)) can be written, in an
obvious way, as an pn; X pnj matrix over Ag,,. Now perform the canonical
shuffle on the matrix by applying the permutation

tk:(O,...,pnk—l)
= O, p,2p,...,(mp —Dp, L,p+1,....,p(npy —1) =1, pni — 1)

on the rows and columns of the matrix. This defines an isomorphism

Wk : M/)(Mnk (AQnA)) - Mpnk (Aﬂnk)

that satisfies )
Vi1 0 (V)p = Vi © Vs k>1.

The map v := lim Y is the required isomorphism.
The last statement follows from Corollary 4.2 since 6 — 6/ p is irrational.
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