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LOWER BOUNDS FOR QUASIANALYTIC
FUNCTIONS, I. HOW TO CONTROL SMOOTH

FUNCTIONS

F. NAZAROV, M. SODIN∗ and A. VOLBERG

In memory of Thøger Bang (1917–1997)

Abstract

Let F be a class of functions with the uniqueness property: iff ∈ F vanishes on a setE of positive
measure, thenf is the zero function. In many instances, we would like to have a quantitative version
of this property, e.g. the estimate from below for the norm of the restriction operator f �→ f |E or,
equivalently, a lower bound for |f | outside a small exceptional set. Such estimates are well-known
and useful for polynomials, complex- and real-analytic functions, exponential polynomials. In this
work we prove similar results for the Denjoy-Carleman and the Bernstein classes of quasianalytic
functions.

In the first part, we consider quasianalytically smooth functions. This part relies upon Bang’s
approach and includes the proofs of relevant results of Bang. In the second part, which is to
be published separately, we deal with classes of functions characterized by exponentially fast
approximation by polynomials whose degrees belong to a given very lacunar sequence.

The proofs are based on the elementary calculus technique.

1. Motivation and the results

Let P be a polynomial. Its degree d governs the behaviour of P on any interval
I ⊂ R, for instance, P has at most d zeroes on I and for any measurable subset
E ⊂ I

(1.1) ‖P ‖I ≤
(

4|I |
|E|

)d

‖P ‖E.

Here and everywhere below, ‖f ‖K = supK |f | denotes the supremum norm
on K , and |E| denotes the length of a set E ⊂ R.

The first fact hardly needs any comments. The second one is a rough version
of the classical Remez inequality [19] (cf. [8] and [4]). Different proofs of (1.1)
are known. The simplest one uses the Lagrange interpolation formula for P
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with d + 1 nodes on E spaced by at least |E|/d, though this gives us (1.1)
with a worse constant 2e instead of 4 on the right hand side [16]. The Remez
inequality has a plenty of applications and extensions, some of them can be
found in [8], [4], [16], [17]; by no means is this list complete. The inequality
is sufficiently sharp to capture that P cannot have zeroes of multiplicity larger
than d.

Turning to analytic functions, we encounter another quantity which controls
their behaviour. Let G ⊂ C1 be a bounded domain, K ⊂ G be a compact
subset, and let f be a bounded analytic function in G. Then the logarithm of
the ratio

�f (K,G) = log
‖f ‖G
‖f ‖K

is called the Bernstein degree of f on (K,G). If P is polynomial of degree d,
and GR ⊂ C1 is the ellipse with the foci at −1,+1 and the semiaxes R, then
by the classical Bernstein inequality

�P ([−1, 1],GR) ≤ d logR.

The Bernstein degree controls the number of zeroes of f on K as well
as the local oscillations of f . By the Jensen formula the number of zeroes
of f on K counting with multiplicities does not exceed γ (K,G)�f (K,G)

where γ (K,G) depends only on the geometry of the couple (K,G). The
Cartan lemma yields local estimates on K similar to (1.1) with the exponent
γ (K,G)�f (K,G). The interest to this classical theme was recently revived
(cf. [5], [9], [10], [21], [24] and the references therein).

In this work we shall exhibit a new index which controls in a similar fashion
the behaviour of quasianalytically smooth functions.

Given closed interval J ⊂ R and given a sequence of positive numbers
{Mj }, introduce the class C{Mj }(J ) of C∞(J )-functions such that

(1.2) ‖f (j)‖J ≤ Mj, j ∈ Z+.

We assume that the sequence {Mj } is logarithmically convex, that is

(1.3) M2
j ≤ Mj−1Mj+1, j ∈ N.

A convenient way to generate logarithmically convex sequences is to fix a
non-decreasing function A : [1,∞) → (0,∞) and set

(1.4) Mj = Mj−1A(j), j ≥ 1.

Rescaling the argument of f and multiplying f by a constant, we can always
assume that f is defined on the interval J = [0, 1] and that M0 = 1. Usually,
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we shall keep this normalization and denote the normalized Denjoy-Carleman
classes by CA([0, 1]).

According to the classical Denjoy-Carleman theorem [6], the divergence of
the series

(1.5)
∞∑
j=1

Mj−1

Mj

= +∞

(or equivalently of the integral
∫ ∞

1
dt
A(t)

= +∞) is a necessary and sufficient
condition for quasianalyticity of the class C{Mj }(J ) [6] (that is, C{Mj }(J ) con-
tains no non-trivial function which vanishes at a point with all derivatives). In
the paper [2] published 50 years ago, Bang gave an intrinsic and elementary
real variable proof of the uniqueness part of the Denjoy-Carleman theorem.
Strangely enough, this concise paper left no trace in the vast literature devoted
to quasianalytic functions, unlike Bang’s thesis [1] which appeared to be more
influential (cf. [14, Chapter IV], [7], [12, Section 1.3]). For this reason, we
took a liberty to reproduce (with minor variations) some results from [2] with
their proofs.

Definition. The Bang degree �f of the function f ∈ CA([0, 1]) is the
largest integer N such that

(1.6)
∑

log ‖f ‖−1
[0,1]<j≤N

Mj−1

Mj

< e

If the set of positive integers N satisfying (1.6) is unbounded, then we set
formally �f = +∞.

After a minute reflection, one can see a certain similarity between the Bern-
stein and the Bang degrees. The latter depends on the decay of the sequence
{Mj−1/Mj } (that is, on the a priori smoothness of f ), and on the lower bound
for ‖f ‖[0,1] (the closer is ‖f ‖[0,1] to its a priori upper bound M0 = 1, the smal-
ler is the degree �f ). If the series (1.5) diverges, that is the class CA([0, 1])
is quasianalytic, then the degree �f is always finite. In the non-quasianalytic
case, the degree can be infinite. In fact, we can allow the function f to have
only finite smoothness: if f ∈ Cm([0, 1]), then we simply put A(j) = +∞
starting with j = m + 1.

Theorem A (Bang [2]). The total number of zeroes (counting with mul-
tiplicities) of any function f ∈ CA([0, 1]) does not exceed its Bang degree
�f .
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The first result of that type was conjectured by Borel and proved by Carle-
man in [6, p.24–27]. Carleman based the proof on the Fourier transform and
harmonic estimation. The theorem says that if f ∈ Cn([0, 1]) and satisfies

f (j)(0) = 0, 0 ≤ j ≤ n − 1, and f (1) = 1,

then
n∑

j=1

1

M
1/j
j

< 8

(
1

2
+ πe + 2

√
πe

)

where Mj = ‖f (j)‖[0,1].
This estimate cannot be deduced directly from Theorem A since the se-

quence {Mj } we deal with is assumed to be logarithmically convex whereas
Borel and Carleman did not impose any condition on that sequence. Never-
theless, as we shall see in subsection 5.4, there is a more general version of
Bang’s result which contains the result of Carleman.

One can probably extract from Hirschman’s paper [11] a result similar to
Theorem A (even with 2

π
instead of e on the right hand side of (1.6)), however

with some additional regularity of the sequence {Mj }. Hirschman used the
Carleman technique combined with the Cartan-Gorny estimates of derivatives
of smooth functions.

In the second theorem it will be convenient to assume that the function A

which defines according to (1.4) the sequence {Mj } is a C1-function (if A is a
piecewise linear function, then one can use the left derivative). We set

(1.7) γ (n) := sup
1≤s≤n

sA′(s)
A(s)

and
�(n) = 4e4+γ (n).

Theorem B. Suppose f ∈ CA([0, 1]). Then for any interval I ⊂ [0, 1]
and any measurable subset E ⊂ I

(1.8) ‖f ‖I ≤
(
�(2�f )|I |

|E|
)2�f

‖f ‖E.

We say that the class CA([0, 1]) is regular if the supremum

γ := sup
s≥1

sA′(s)
A(s)
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is finite. For example, the real analytic class (A(s) = s) and the logarithmic
classes (A(s) = s logα(s + e)) are regular. For regular classes, estimate (1.8)
holds with the factor � = 4e4+γ on the right hand side.

Theorems A and B show that Bang’s degree is an important characteristics
of smooth functions. However, we do not know much about its basic properties.
For example, if f is a polynomial, how to bound from above the Bang degree
�f by the usual degree? If f is real analytic, the same question can be asked
about the upper bound of the Bang degree by the Bernstein degree. Recently,
N. Roytvarf [20] and D. Novikov and S. Yakovenko [18] obtained useful es-
timates for the Bernstein degree of linear combinations, products, (analytic)
quotients and derivatives of given functions. It seems to be interesting to get
results in that spirit for the Bang degree. At last, it looks probable, that Bang’s
degree has a certain invariance under real analytic diffeomorphisms of the
interval [0, 1].

Acknowledgment. The authors thank Alexander Borichev and Iossif Os-
trovskii for numerous useful remarks.

2. Bang’s fundamental inequality

Given a function f ∈ CA([0, 1]) and a point x ∈ [0, 1], we define the norm of
f at x as

Bf (x) := max
j≥0

|f (j)(x)|
ejMj

.

A small norm means that a large section of the sequence
{ |f (j)(x)|

Mj

}
j≥0

consists

of small numbers. For example, Bf (x) ≤ e−q for some q ∈ Z+ if and only if
|f (j)(x)| ≤ ej−qMj for 0 ≤ j ≤ q.

Lemma 2.1 (Bang). For any q ∈ N and any x, x + h ∈ [0, 1],

(2.2) Bf (x + h) < max
{
Bf (x), e

−q
}
ee|h|A(q).

Proof of the lemma. We fix j in the range 0 ≤ j ≤ q − 1 and find ξ

between x and x + h such that

f (j)(x + h) =
q−j−1∑
l=0

f (j+l)(x)hl

l!
+ f (q)(ξ)hq−j

(q − j)!
.
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Then

|f (j)(x + h)|
ejMj

≤
q−j−1∑
l=0

|f (j+l)(x)| |h|l
ejMj l!

+ |f (q)(ξ)||h|q−j

ejMj (q − j)!

=
q−j−1∑
l=0

|f (j+l)(x)|
ej+lMj+l

Mj+l

Mj

el|h|l
l!

+ e−q |f (q)(ξ)|
Mq

Mq

Mj

|h|q−j eq−j

(q − j)!

(1.3)≤ Bf (x)

q−j−1∑
l=0

(
Mq

Mq−1

)l
el|h|l
l!

+ e−q

(
Mq

Mq−1

)q−j |h|q−j eq−j

(q − j)!

< max
{
Bf (x), e

−q
}

exp

(
e|h| Mq

Mq−1

)
.

If j ≥ q, the same estimate holds for a trivial reason:

|f (j)(x + h)|
ejMj

≤ e−q < max
(
Bf (x), e

−q
)
ee|h|A(q),

completing the argument.

Corollary 2.3. Suppose f ∈ CA([0, 1]). If

(2.4) max
[0,1]

Bf ≥ e−L,

and

(2.5) min
[0,1]

Bf ≤ e−N,

then

(2.6)
∑

L+1≤j≤N

Mj−1

Mj

< e.

Proof of the corollary. Let Bf (xN) = e−N and Bf (xL) = e−L. By
(2.2), the function x �→ Bf (x) is continuous on [0, 1]. Therefore, we can
choose a monotonic sequence {xj }L≤j≤N ⊂ J such that Bf (xj ) = e−j for
L ≤ j ≤ N . By Lemma 2.1,

|xj − xj−1| > 1

e

Mj−1

Mj

,
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so that
1 ≥

∑
L+1≤j≤N

|xj − xj−1| > 1

e

∑
L+1≤j≤N

Mj−1

Mj

,

proving the corollary.

If the function f ∈ CA([0, 1]) has a zero of order at least N at some
point x0 ∈ [0, 1] (that is, f (x0) = f ′(x0) = . . . = f (N−1)(x0) = 0), then
Bf (x0) ≤ e−N . On the other hand,

max
[0,1]

Bf ≥ ‖f ‖[0,1].

Then the corollary says that the order N of any zero of f is bounded from
above by the Bang degree �f . This is a version of a theorem of Borel and
Carleman mentioned above. In particular, the uniqueness part of the Denjoy-
Carleman theorem follows at once: non-trivial functions f from the quasiana-
lytic Denjoy-Carleman class CA([0, 1]) cannot have a zero of infinite order.

In the non-quasianalytic case, when

∞∑
j=1

Mj−1

Mj

< ∞,

rescaling estimate (2.6), we get an upper bound for the function f near its
zeroes of infinite order.

Corollary 2.7. Suppose f ∈ CA([0, 1]). Let

f (j)(0) = 0, j ∈ Z+.

Then ∑
j≥log �−1

f (c)+1

Mj−1

Mj

< ec

where
�f (c) = max

x∈[0,c]
|f (x)|.

Under additional regularity assumptions on the function A, Matsaev and
Sodin recently found in [15] the sharp asymptotics for

log sup
f

�f (c), c → 0,

where the supremum is taken over all functions f ∈ C{Mj }(R) with M0 = 1,
having the zero of infinite order at the origin.
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3. Proof of Theorem A

Now, we consider a sequence of ‘norms’ obtained from the remainders:

bf,n(x) = max
j≥n

|f (j)(x)|
ejMj

= e−nBf (n) (x),

here f (n) is considered in the class C{Mn,Mn+1,...}([0, 1]). List some properties
of this sequence:

(i) bf,n(x) ≤ e−n;

(ii) Bf (x) = bf,0(x) ≥ bf,1(x) ≥ · · · ≥ bf,n(x) ≥ · · ·;
(iii) if f (n)(x∗) = 0, then bf,n(x

∗) = bf,n+1(x
∗);

(iv) the function bf,n satisfies the estimate

bf,n(x + h) ≤ max
{
bf,n(x), e

−q−n
}
ee|h|A(q),

for every q ∈ N and every x, x + h ∈ [0, 1].

From the last property we conclude that

(v) the function x �→ bf,n(x) is continuous on [0, 1];

(vi) bf,n(x + h) < e−j+1 provided bf,n(x) ≤ e−j and e|h|A(j) ≤ 1.

The latter is interesting only for j > n.
After these preliminaries we start the proof. Let x∗ ∈ [0, 1] be the maximum

point of Bf :
max
[0,1]

Bf = Bf (x∗).

First, we consider a special case, when x∗ is one of the end-points of [0, 1].
Without loss of generalities, suppose that x∗ = 0. Let

0 < ξ1 ≤ · · · ≤ ξN

be the zeroes of f on [0, 1] counted with their multiplicities. Applying Rolle’s
theorem, we find another N -point set {xj }0≤j≤N−1, such that

f (j)(xj ) = 0, for 0 ≤ j ≤ N − 1,

x0 = ξ1, and xj ≤ ξj+1. Then we can paste together the functions bf,j with
different j and define the new function

bf (x) =




bf,0(x), 0 ≤ x < x0

bf,1(x), x0 ≤ x < x1

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

bf,N−1(x), xN−2 ≤ x < xN−1

bf,N(x), x ≥ xN−1.
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This is a continuous function with the following properties:

bf (0) = Bf (0) ≥ ‖f ‖[0,1],

bf (x) ≤ e−N, for x ≥ xN−1,

and bf (x + h) < e−j+1 provided that bf (x) ≤ e−j and ehA(j) ≤ 1, h > 0.
Computing as above, in the proof of Corollary 2.3, the number of level

crossings of the function bf we obtain

1 >
1

e

N∑
j=Kf +1

Mj−1

Mj

where Kf = ⌊| log ‖f ‖[0,1]|
⌋

. Thereby N ≤ �f , completing the proof in the
special case.

Now, consider the general case. If x∗ is not the end-point of [0, 1], then x∗
splits [0, 1] into two subintervals J1 and J2 on which f has N1 and N2 zeroes
respectively, N1 + N2 = N . By the special case proven above (rescaling the
argument of f ) we have

|Jl| > 1

e

Nl∑
j=Kf +1

Mj−1

Mj

, l = 1, 2.

At last, making use of the logarithmic convexity of the sequence {Mj } we
obtain

1 = |J1| + |J2| > 1

e

{ N1∑
j=Kf +1

+
N2∑

j=Kf +1

}
Mj−1

Mj

≥ 1

e

{ N1∑
j=Kf +1

+
N1+N2∑
j=N1+1

}
Mj−1

Mj

= 1

e

N∑
j=Kf +1

Mj−1

Mj

whence N ≤ �f . This completes the proof of Theorem A.

4. Proof of Theorem B

We put m0 = M0 = 1 and

mj = Mj

j !
, j ∈ N.
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We shall prove Theorem B in three steps. First, we prove a preliminary version
of estimate (1.8) with a remainder term:

(4.1) ‖f ‖I ≤
(

2e|I |
|E|

)n

‖f ‖E + mn+1|I |n+1

for each n ∈ N. Then we shall show that if the interval I is sufficiently short,
then the remainderm2�f |I |2�f is smaller than the norm ‖f ‖I we are estimating.
Combined with (4.1) this gives us estimate (1.8) for short intervals I . At the
last step, we shall extend estimate (1.8) to arbitrary intervals I ⊂ [0, 1].

Proof of estimate (4.1). We choose well-spaced points {xj }n+1
j=1 ⊂ E,

x1 < x2 < · · · < xn+1, min
j

(xj+1 − xj ) ≥ |E|
n

,

and set

Q(x) =
n+1∏
j=1

(x − xj ).

Then for x ∈ I

(4.2) f (x) =
n+1∑
j=1

f (xj )Q(x)

Q′(xj )(x − xj )
+ f (n+1)(ξ)Q(x)

(n + 1)!
, ξ = ξx ∈ I.

This is a well-known version of the Lagrange interpolation formula. The proof
goes as follows: fix x ∈ I and consider the function

G(t) = Q(t)R(x) − Q(x)R(t)

where R(t) is the remainder; i.e. the difference between f and the Lagrange
interpolation polynomial of degree n with the nodes at {xj }. The function G(t)

has at least n + 2 zeroes on I : it vanishes at n + 1 points: t = xj and also at
t = x. Therefore, the derivative G(n+1)(t) vanishes at least once on I :

0 = G(n+1)(ξ) = Q(n+1)(ξ)R(x) − Q(x)R(n+1)(ξ)

= (n + 1)!R(x) − Q(x)f (n+1)(ξ),

proving (4.2).
Then using the estimates ‖Q‖I ≤ |I |n+1 and

∥∥∥∥ Q(x)

x − xj

∥∥∥∥
I

≤ |I |n,
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we get

‖f ‖I ≤
(n+1∑

j=1

1

|Q′(xj )|
)

|I |n‖f ‖E + mn+1|I |n+1.

Further,

|Q′(xj )| = (xj − xj−1) . . . (xj − x1)(xj+1 − xj ) . . . (xn+1 − xj )

≥ (j − 1)!(n + 1 − j)!

nn
|E|n > (j − 1)!(n + 1 − j)!

n!

( |E|
e

)n

,

so that
n+1∑
j=1

1

|Q′(xj )| <
(

2e

|E|
)n

,

and (4.1) follows.

We shall use estimate (4.1) with n = 2�f − 1.

Lemma 4.3. Suppose

(4.4) m2�f |I |2�f ≤ e−2�f (3+γ (2�f ))

Then

(4.5) m2�f |I |2�f <
1

2
‖f ‖I .

Now, combining estimates (4.1) and (4.5) we get

Corollary 4.6. Suppose the interval I is short; i.e. estimate (4.4) is valid.
Then

(4.7) ‖f ‖I ≤ 2

(
2e|I |
|E|

)2�f

‖f ‖E.

Proof of Lemma 4.3. follows from two claims:

Claim 4.8. Estimate (4.4) yields

(4.9) m2�f |I |2�f ≤ e−4�f mk|I |k

for each k, 0 ≤ k ≤ �f .

Claim 4.10. There exists k, 0 ≤ k ≤ �f , such that

(4.11) mk

( |I |
2

)k

≤ e(2+ 1
e
)�f

[
‖f ‖I + m2�f

( |I |
2

)2�f ]
.
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First, we finish off the proof of Lemma 4.3 and then will prove the claims.
Putting the claims together, we get

m2�f |I |2�f ≤ e−4�f · 2�f · e(2+ 1
e
)�f

[
‖f ‖I + m2�f

( |I |
2

)2�f ]

≤ e−0.9�f

[
‖f ‖I + 1

4
m2�f |I |2�f

]

whence

2m2�f |I |2�f <

(
e0.9 − 1

4

)
m2�f |I |2�f ≤

(
e0.9�f − 1

4

)
m2�f |I |2�f ≤ ‖f ‖I ,

proving the lemma.

Proof of Claim 4.8. is straightforward. We have

m2�f

mk

|I |2�f −k
(4.4)≤ e−(2�f −k)(3+γ (2�f ))

m
k/2�f
2�f

mk

.

Therefore, we need to estimate the expression

(
m

k/(2�f )
2�f

mk

) 1
2�f −k

= m

1
2�f −k

− 1
2�f

2�f

m

1
2�f −k

k

Taking the logarithm and setting a(s) = A(s)

s
, that ism(k) = a(1)a(2) . . . a(k),

we obtain

1

2�f − k

2�f∑
j=k+1

log a(j) − 1

2�f

2�f∑
j=1

log a(j)

= 1

2�f − k

2�f∑
j=k+1

[log a(j) − log a(1)] − 1

2�f

2�f∑
j=1

[log a(j) − log a(1)]

(4.12) =
∫ 2�f

1

a′

a
(s)

{
1

2�f − k

2�f∑
j=k+1

χ[1,j ] − 1

2�f

2�f∑
j=1

χ[1,j ]

}
(s) ds

where χ[a,b](s) is the indicator function of the interval [a, b]. Since

0 ≤
{
. . .

}
(s) <

s

2�f
,
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then we get

the RHS of (4.12) <
1

2�f

∫ 2�f

1

sa′(s)
a(s)

ds ≤ sup
s≥1

sa′(s)
a(s)

(1.7)= γ (2�f ) − 1.

Therefore
m

k/(2�f )
2�f

mk

< e(2�f −k)(γ (2�f )−1)

and

m2�f

mk

|I |2�f −k < exp
{−(2�f − k)

(
3 + γ (2�f ) − γ (2�f ) + 1

)}

= exp
{−4(2�f − k)

} ≤ exp
{ − 4�f

}
,

proving the claim.

Proof of Claim 4.10. Let cI be the centre of the interval I , and let

P2�f −1(x) =
2�f −1∑
j=0

f (j)(cI )

j !
(x − cI )

j

be the Taylor polynomial of f at cI . Then for x ∈ I

f (x) = P2�f −1(x) + f (2�f )(ξ)

(2�f )!
(x − cI )

2�f , ξ = ξx ∈ I,

so that

‖P2�f −1‖I ≤ ‖f ‖I + m2�f

( |I |
2

)2�f

.

For an arbitrary polynomial S we have

|S(k)(0)| ≤ (degS)k‖S‖[−1,1].

This is a relatively simple special case of V. Markov’s inequalities see e.g. [14,
Chapter VI, Sections 4.II and 4.III]). Using this inequality, we get

|f (k)(cI )| = |P (k)
2�f −1(cI )|

≤
(

2

|I |
)k

(2�f − 1)k‖P2�f −1‖I

≤
(

2

|I |
)k

(2�f − 1)k
[
‖f ‖I + m2�f

( |I |
2

)2�f ]
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and

|f (k)(cI )|
ekMk

≤ 1

mk

(
2

|I |
)k (

2�f − 1

k

)k [
‖f ‖I + m2�f

( |I |
2

)2�f ]

≤ 1

mk

(
2

|I |
)k

exp

(
2�f − 1

e

) [
‖f ‖I + m2�f

( |I |
2

)2�f ]
.

Then using Corollary 2.3 from Bang’s fundamental lemma and the definition
of the Bang degree �f , we obtain that

Bf (cI ) ≥ min
[0,1]

Bf > e−�f −1.

Hence, for at least one k, 0 ≤ k ≤ �f ,

e−�f −1 <
|f (k)(cI )|
ekMk

≤ 1

mk

(
2

|I |
)k

exp

(
2�f − 1

e

) [
‖f ‖I + m2�f

( |I |
2

)2�f ]
,

whence

mk

( |I |
2

)k

≤ e(2+ 1
e
)�f

[
‖f ‖I + m2�f

( |I |
2

)2�f ]
,

proving the claim.

It remains to spread estimate (4.7) from short to arbitrary sub-intervals
I ⊂ [0, 1]. We shall prove a bit more: we show that if the interval I ⊂ [0, 1]
is not short, then

(4.13)

(
�(2�f )|I |

|E|
)2�f

‖f ‖E ≥ 1

for any measurable subset E ⊂ I . Since ‖f ‖I ≤ ‖f ‖[0,1] ≤ 1, this does the
job.

We fix a measurable subset E ⊂ I where I is not short, and choose a short
sub-interval I1 ⊂ I such that

(4.14) |E ∩ I1| ≥ |E| |I1|
|I | ,

and

(4.15) m2�f |I1|2�f ≥ 2−2�f e−2�f (3+γ (2�f )).
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Existence of such I1 follows by a straightforward dyadic argument. Then

1
(4.15)≤ (

2e3+γ (2�f )
)2�f

m2�f |I1|2�f

(4.5)≤ 1

2

(
2e3+γ (2�f )

)2�f ‖f ‖I1

(4.7)≤ 1

2

(
2e3+γ (2�f )

)2�f · 2

(
2e|I1|

|E ∩ I1|
)2�f

‖f ‖E∩I1

(4.14)
<

(
4e4+γ (2�f )

|I |
|E|

)2�f

‖f ‖E

proving (4.13) and completing the proof of Theorem B.

5. Variations on Bang’s theme

5.1. Bang’s differential inequality

One can rewrite the fundamental inequality (2.2) as the differential inequality
for the function

Lf (x) = log
1

Bf (x)
.

If Bf (x) is positive, then taking the logarithms in (2.2) and choosing there
q = [Lf (x)] + 1, we obtain

Lf (x + h) > Lf (x) − e|h|A(Lf (x) + 1).

Interchanging x and x + h, we arrive at

Corollary 5.1.1. Suppose f ∈ CA([0, 1]). Then the function Lf : [0, 1]
→ [0,∞] is continuous and

|Lf (x + h) − Lf (x)| < e|h|A(Lf (x) + 1)

whenever x, x + h ∈ [0, 1] and the values Lf (x), Lf (x + h) are finite. In
particular, if L′

f (x) exists, then

(5.1.2) |L′
f (x)| < eA(Lf (x) + 1).

It is remarkable that the functionLf satisfies a simple differential inequality.
Integrating this inequality, we get a reformulation of Corollary 2.3:

Corollary 5.1.3. Suppose f ∈ CA([0, 1]). Then
∫ L∗+1

L∗+1

ds

A(s)
< e
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where
L∗ = min

x∈[0,1]
Lf (x) and L∗ = max

x∈[0,1]
Lf (x).

5.2. One-sided version of the Denjoy-Carleman theorem

Theorem 5.2.1. Suppose f ∈ C∞([0, 1]) and

min
[0,1]

f (j) ≥ −Mj, j ∈ Z+,

where the sequence {Mj } satisfies the quasianalyticity condition (1.5). If all
derivatives of f are non-negative at the origin, then they are non-negative
everywhere on [0, 1].

Recall that C∞([0, 1))-functions with all derivatives positive everywhere
on [0, 1) are called absolutely monotonic. By the classical Bernstein theorem,
every absolutely monotonic function on [0, 1) has an analytic extension to the
unit complex disc.

Under a somewhat stronger assumption f ∈ CA([0, 1]), this result was
conjectured by Borel (see [6, p. 74]) and proved by Täcklind [22] and Bang [2].

For the proof of Theorem 5.2.1, we set

B−
f (x) = max

j≥0

max{−f (j)(x), 0}
ejMj

.

Repeating verbatim the proof of Lemma 2.1, we obtain that

B−
f (x + h) < max

{
B−
f (x), e−q

}
eehA(q)

for every q ∈ N, every x, x + h ∈ [0, 1], h > 0. Then Theorem 5.2.1 readily
follows from this estimate.

5.3. Non-extendable quasianalytic functions

If f is a real analytic function on a closed interval J (that is f ∈ C{Kj j !}(J )
with some constant K), then f always has a real analytic extension on a larger
interval J ′ ⊃ J . In contrast, the Täcklind-Bang theorem combined with the
Bernstein theorem give us examples of quasianalytically smooth functions
defined on a closed interval which do not have a quasianalytically smooth
extension; i.e. a smooth extension which belongs to a (probably, different)
Denjoy-Carleman quasianalytic class on a larger interval.

We fix a logarithmically convex sequence {Mj } satisfying (1.5) and such
that

lim
j→∞

(
Mj

j !

)1/j

= +∞,
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and choose a positive sequence {cj } such that

lim
j→∞ c

1/j
j = 1,

and ∞∑
j=1

jncj ≤ Mn

for all n ∈ Z+. For example, if Mn = n!(log n)n, then one can take

cj = exp

[
− Cj

log(j + e)

]

with a proper choice of a positive constant C.
Then consider an even function

f (x) =
∞∑
k=0

c2kx
2k

which is is analytic in (−1, 1) and belongs to the quasianalytic class C{Mj } on
the segment [−1, 1]. This function has no quasianalytically smooth extension
on a larger interval. Otherwise, the extension would be an even function (by
the Denjoy-Carleman theorem), and by the theorems of Täcklind-Bang and
Bernstein it would have an analytic extension to a disk of radius larger than
one. Clearly, this is impossible since the radius of convergence of the Taylor
series which represents f equals one.

This construction answers the question raised by P. Milman1.

5.4. Bang’s original version of the fundamental inequality

Mention that Bang proved his results without assumption of the logarithmic
convexity of the sequence {Mj }. He assumed thatMj is the upper bound for the
|f (j)(x)| on the closed interval J and the sequence {Mj } increases so rapidly
that M1/j

j → ∞. Then there exists a unique largest logarithmically convex

1 A. Borichev indicated another construction of a non-extendable quasianalytic function. He
considers the absolutely convergent series

f (z) =
∑
n

δn

z − λn
, λn = 1 + εn − iδn,

with
εn ↓ 0, εn+1/εn ↓ 0, δn ↓ 0, δn+1/δn ↓ 0, δn/εn ↓ 0

and using some results from [3] shows that under a special choice of these sequences the function
has no quasianalytic extension to any larger interval [−1 − γ, 1 + γ ].
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minorant Mc
j ≤ Mj . The equation Mc

j = Mj is satisfied for infinitely many
integers j , in particular for j = 0 (see e.g. [14, Chapter 1]). This set of integers
is denoted by P. Then Bang defines the ‘norm’

Bf (x) = inf
p∈P

max

{
e−p, max

0≤j≤p

|f (j)(x)|
ejMc

j

}

and proves that if Bf (x) ≥ e−q , q ∈ N, then

Bf (x + h) < Bf (x)e
e|h|Ac(q)

where
Ac(q) = Mc

q

Mc
q−1

.

From here he deduces a more general version of Corollary 2.3 which already
contains the result of Borel and Carleman formulated in the Introduction.

5.5. Propagation of smallness for quasianalytically smooth functions

Here, we give a simple ‘global corollary’ to Theorem B excluding the degree
�f from estimate (1.8). We assume that CA([0, 1]) is a regular quasianalytic
Denjoy-Carleman class of functions, that is A : [1,∞) → (0,∞) is a non-
decreasing C1-function such that the integral

∫ ∞
A−1(s) ds is divergent and

γ = sup
s≥1

sA′(s)
A(s)

< ∞.

We set

3(t)
def= exp

[
−1

e

∫ log(e/t)

1

ds

A(s)

]
, 0 ≤ t ≤ 1.

The function3 steadily increases on the interval [0, 1], 3(0) = 0, and3(1) =
1.

A relative smallness of the setE ⊂ [0, 1] will be measured in the logarithmic
scale by the quantity

α(E) = 1

3
log−1

(
�

|E|
)

where as above � = 4e4+γ .

Corollary 5.5.1. Suppose CA([0, 1]) is a regular Denjoy-Carleman quasi-
analytic class, and suppose that f ∈ CA([0, 1]). Then

(5.5.2) 3
(‖f ‖[0,1]

) ≤ e3
(‖f ‖α(E)

E

)
.
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In the real analytic case when A(s) = Cs, C is a positive constant, we have

3(t) = exp

[
− 1

eC
log log

e

t

]
=

(
log

e

t

)−1/(eC)
.

Suppose that ‖f ‖E ≤ ε. Then estimate (5.5.2) gives us

(5.5.3) ‖f ‖[0,1] ≤ eεα(E)e−eC

.

Certainly, estimate (5.5.3) can be obtained by classical means using a complex
extension with control over the uniform norm and the two-constants-theorem
[13], [23], or by an elementary real variable technique [17].

However, already in the logarithmic Denjoy-Carleman class when A(s) =
Cs log(s + e), the Corollary gives a new result.

Proof of Corollary 5.5.1. We have

‖f ‖[0,1] ≤
(

�

|E|
)2�f

‖f ‖E
or

1 ≤ exp

{
2�f log

(
�

|E|
)

+ log
1

‖f ‖[0,1]

}
‖f ‖E

< exp

{
3�f log

(
�

|E|
)}

‖f ‖E = exp

{
�f

α(E)

}
‖f ‖E,

that is
e−�f ≤ ‖f ‖α(E)

E .

Since

log3
(‖f ‖[0,1]

) − log3(e−�f ) = 1

e

∫ �f +1

log ‖f ‖−1
[0,1]+1

ds

A(s)

≤ 1

e

∑
log ‖f ‖−1

[0,1]<j≤�f

Mj−1

Mj

< 1,

we finally get

3
(‖f ‖[0,1]

)
< e3

(
e−�f

)
< e3

(‖f ‖α(E)
E

)
,

completing the proof.
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