
MATH. SCAND. 95 (2004), 44–58

LOWER BOUNDS FOR QUASIANALYTIC
FUNCTIONS, II. THE BERNSTEIN QUASIANALYTIC

FUNCTIONS

A. BORICHEV, F. NAZAROV and M. SODIN∗

Abstract
Let F be a class of functions with the uniqueness property: if f ∈ F vanishes on a set E
of positive measure, then f is the zero function. In many instances, we would like to have a
quantitative version of this property, e.g. a lower bound for |f | outside a small exceptional set.
Such estimates are well-known and useful for polynomials, complex- and real-analytic functions,
exponential polynomials. In this work we prove similar results for the Denjoy-Carleman and the
Bernstein classes of quasianalytic functions.

In the first part, we considered quasianalytically smooth functions. Here, we deal with classes
of functions characterized by exponentially fast approximation by polynomials whose degrees
belong to a given very lacunar sequence. We also prove the polynomial spreading lemma and a
comparison lemma which are of a certain interest on their own.

1. Introduction and the results

Let f be a continuous function on [−1, 1], and let

En(f ) = min
P∈Pn

‖f − P ‖[−1,1]

be the approximating sequence of the function f . Here Pn is a space of all
algebraic polynomials of degree ≤ n, and the norm ‖ . ‖F denotes the uniform
norm ‖ . ‖C(F) on the set F . A classical result of S. Bernstein [1], [2] states that
if for some β > 0

(1.1) En(f ) ≤ e−βn

when n runs through a subsequence {nj } ⊂ N, and if the function f vanishes
on a subset of [−1, 1] of positive measure, then f is the zero function. If a
sequence {nj } is not too lacunary:

lim sup
j→∞

nj+1

nj
≤ � < ∞,
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then condition (1.1) describes a class of real-analytic functions on [−1, 1] with
analytic extension into a certain complex neighbourhood of [−1, 1] whose size
depends on the quotient β/�.

The functions satisfying (1.1) are called the Bernstein quasianalytic func-
tions. Having the uniqueness property, generally speaking, they do not posses
any smoothness. They were studied by Bernstein [1], [2], Beurling [3], Merge-
lyan [9, Chapter VII], Pleśniak [13], by no means is this list complete.

Here, we give an asymptotic upper bound for the size of the level sets

mf (t) = |{x ∈ [−1, 1] : |f (x)| ≤ t}|
for t = E∗

nj
(f ) where E∗

n(f ) = max
(
En(f ), e

−n
)
. The main result follows:

Theorem A. Suppose f is a Bernstein quasianalytic function satisfying
condition (1.1) with sufficiently lacunar sequence {nj }:

(1.2) lim
j→∞

nj+1

nj
= +∞.

Then

(1.3) lim
j→∞

| logmf (E
∗
nj+1

(f ))|
| logmf (E∗

nj
(f ))| = +∞.

Corollary. In the assumptions of Theorem A, we have

(1.4) lim
j→∞

log | logmf (E
∗
nj
(f ))|

j
= +∞.

Mention that relations (1.3) and (1.4) are fulfilled with Enj (f ) instead of
E∗
nj
(f ) if we assume additionally that

lim
j→∞

| logEnj+1(f )|
| logEnj (f )|

= +∞.

This follows from the proof of the Theorem A given below.
The more lacunary is the sequence {nj } in Theorem A, the worse is our

bound (1.4). This is natural since as our second result shows, the Bernstein
quasianalytic functions may have deep zeros of prescribed flatness:

Theorem B. Given decreasing functions ϕ,ψ : [1,+∞) → (0,+∞),

lim
t→∞ϕ(t) = lim

t→∞ψ(t) = 0,
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there exist a function f ∈ C[−1, 1] and a subsequence {nj } ⊂ N such that for
n ∈ {nj }
(1.5) En(f ) ≤ ψ(n),

and

(1.6) |f (x)| ≤ e−n, |x| ≤ ϕ(n).

In particular, if ψ(s) = e−s , we get

mf (E
∗
nj
(f )) ≥ 2ϕ(nj ), j = 1, 2, . . . .

Acknowledgement. The authors thank Eugenia Malinnikova, Iossif Os-
trovskii, and Alexander Volberg for useful discussions and comments.

2. The polynomial spreading lemma

The key ingredient in the proof of Theorem A is the following

Polynomial spreading lemma. Let P ∈ Pn, ‖P ‖[−1,1] ≤ 1, and let

δ ≥ δ0 > 0, 0 < c0 ≤ c < 1, 0 < ε <
1 − c

2 − c
,

be some parameters. Suppose E ⊂ [−1, 1] is a measurable subset of suffi-
ciently small measure

(2.1) |E| < κ(δ0, ε, c0)

such that
‖P ‖E ≤ e−δn,

and suppose that I is an interval, E ⊂ I ⊂ [−1, 1]. Then

‖P ‖I ≤ e−cδn

provided

(2.2) |I | ≤ |E| 1
2−c

+ε.

If the set E is itself an interval, then (2.2) can be significantly improved to
|I | ≤ |E|c+ε (cf. the end of the proof of comparison lemma below). This can
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be regarded as a polynomial version of the Hadamard three circle theorem. An
‘ideal statement’ would be

‖P ‖I ≤ ‖P ‖cE‖P ‖1−c
[−1,1]

provided that E ⊂ I ⊂ [−1, 1] are intervals such that

|I | ≤ |E|c21−c.

This is too good to be true. Our result gives a reasonable approximation to
such a logarithmic convexity.

The exponent 1
2−c

+ε in (2.2) is larger than the exponent c+ε we need. How-
ever, they are close to each other when c is close to one. To obtain Theorem A
we first use a dyadic decomposition with a simple stopping-time rule, and then
apply iteratively the spreading lemma for c = 1 − ρ with small ρ > 0 to get
the comparison lemma (Section 3) which claims that under natural conditions∣∣{x ∈ [−1, 1] : |P(x)| ≤ e−tδn‖P ‖[−1,1]}

∣∣
≥ ∣∣{x ∈ [−1, 1] : |P(x)| ≤ e−δn‖P ‖[−1,1]}

∣∣t+γ

with 0 < t0 < t < 1 and 0 < γ < 1 − t . The proof of Theorem A is then
completed in Section 4.

Proof of the spreading lemma. We use an argument adopted from
Nadirashvili’s work [10], [11]. Let η = |I |/|E|, and let x0 be the centre of the
interval I . Fix k ≥ 0, and consider the Taylor polynomial

Pk(x) =
k∑

j=0

P (j)(x0)

j !
(x − x0)

j ,

and the remainderRk = P −Pk . Applying toPk the classical Remez inequality
[14] (cf. [4], [5]), we get

‖P ‖I ≤ ‖Pk‖I + ‖Rk‖I
≤ (4η)k‖Pk‖E + ‖Rk‖[−1,1]

≤ (4η)k
(‖P ‖E + ‖Rk‖[−1,1]

) + ‖Rk‖[−1,1]

≤ (4η)k
(
e−δn + 2‖Rk‖[−1,1]

)
(due to conditions (2.1) and (2.2), we assume without loss of generality that
η > 1/4). Using the Lagrange formula for the remainder, we have

‖Rk‖[−1,1] ≤
( |I |

2

)k+1 ‖P (k+1)‖[−1,1]

(k + 1)!
<

(
e

2

|I |
k + 1

)k+1

‖P (k+1)‖[−1,1].
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Recalling the classical V. Markov inequality [8] for the (k + 1)-st derivative
of the polynomial P of degree n1

‖P (k+1)‖[−1,1] ≤ 1

2

(
2

k + 1

)k+1

n2k+2‖P ‖[−1,1],

we get

‖Rk‖[−1,1] ≤ 1

2

(
e|I |n2

(k + 1)2

)k+1

,

and then

(2.3) ‖P ‖I ≤ (4η)k
{
e−δn +

(
e|I |n2

(k + 1)2

)k+1}
.

Now, our requirements to the choice of k are the following:

(2.4) (4η)k ≤ eδ(1−c)n

and

(2.5)

(
e|I |n2

(k + 1)2

)k+1

≤ e−δn.

Naturally, relations (2.3)–(2.5) yield that

(2.6) ‖P ‖I ≤ 2e−cδn.

Applying (2.6) to PM with M ∈ N, we obtain

‖PM‖I ≤ 2e−cδnM

or

‖P ‖I = ‖PM‖1/M
I ≤ 21/Me−cδn = (1 + o(1))e−cδn, M → ∞,

completing the proof of the lemma.
It remains to verify that under conditions (2.2) there exists k satisfying

(2.4)–(2.5). Suppose that for some positive λ,

(2.7) λ ≤ δ
1 − c

log 4η
,

1 There are several relatively simple proofs of this inequality, see e.g. [6] for one of them. In fact,
we could use a slightly cruder version of Markov’s estimate given in [7, Chapter VI, Lemma 4.III]
with a proof found by Th. Bang.
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(2.8) λ log
λ2

e|I | ≥ δ,

(2.9) λ2 ≥ |I |
e
,

and choose k such that
k ≤ λn < k + 1.

Then (2.4) follows from (2.7):

(4η)k ≤ (4η)λn ≤ eδ(1−c)n,

and (2.5) follows from (2.8) because the left-hand side of (2.8) increases as a
function of λ satisfying (2.9):

(
e|I |n2

(k + 1)2

)k+1

= exp

[
−(k + 1) log

(k + 1)2

e|I |n2

]

≤ exp

[
−λn log

λ2

e|I |
]

≤ exp[−δn].

First of all, without loss of generality, we assume that δ ≤ 1 (otherwise,
we set n1 := [δn] ≥ n, and apply the lemma with the parameters n1 and 1
instead of n and δ). Now, we denote A = δ2/(e|I |), B = A/ log2 A, and
set λ = δ/ logB. We have to check that inequalities (2.7)–(2.9) hold for this
choice of λ under the condition that the length of E (and therefore that of I )
is sufficiently small, that is the value A is sufficiently large.

Estimate (2.7) says that

(4η)1/(1−c) ≤ eδ/λ = B = δ2

e|I | log2 δ2

e|I |
,

or, equivalently, (
4

|I |
|E|

)1/(1−c)

≤ δ2

e|I | log2 δ2

e|I |
,

|I | 2−c
1−c log2 δ2

e|I | ≤ δ2

41/(1−c)e
|E|1/(1−c)

that follows from (2.1) and (2.2).
Inequality (2.8) becomes

δ

logB
log

A

log2 B
≥ δ,
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that is
A

log2 B
≥ A

log2 A
,

which is evidently true.
At last, inequality (2.9) becomes

1

log2 B
≥ 1

e2A

which is true when A is sufficiently large.

3. Comparison lemma

Here, we give a corollary to the spreading lemma which will be needed for the
proof of Theorem A. For P ∈ Pn, we set

EP (δ) = {
x ∈ [−1, 1] : |P(x)| ≤ e−δn‖P ‖[−1,1]

}
.

Comparison Lemma. Let P ∈ Pn and let

δ ≥ δ0 > 0, 0 < t0 ≤ t < 1, 0 < γ < 1 − t

be some parameters. Then

(3.1) |EP (tδ)| ≥ |EP (δ)|t+γ

provided that the length of the set EP (δ) is (δ0, γ, t0)-sufficiently small.

Proof. Without loss of generality we assume that ‖P ‖[−1,1] = 1. First of
all, we prove a weaker result:

Claim. If

0 < c0 ≤ c < 1, 0 < ε <
1 − c

2 − c
,

and if
|EP (δ)| ≤ κ(δ0, ε, c0),

where κ has the same value as in the spreading lemma, then

|EP (cδ)| ≥ |EP (δ)| 1
2−c

+ε.

Set E = EP (δ) and choose an integer

N ≥ κ−1(δ0, ε, c0).
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Let J be the collection of all maximal N -adic subintervals I of [−1, 1] such
that |E ∩ I | 1

2−c
+ε ≥ |I |.

Then the ‘remainder set’

F = E \
⋃
I∈J

(E ∩ I )

has zero length. Indeed, for any ξ > 0 we can cover F by disjoint N -adic
intervals Jα of length |Jα| < ξ , and

|F ∩ Jα| ≤ |Jα| · ξ ( 1
2−c

+ε)−1−1.

Summing up by α, we see that

|F | ≤ ξ(
1

2−c
+ε)

−1−1, ξ > 0,

and hence, |F | = 0.
Now, we apply the spreading lemma to the sets E ∩ I , I ∈ J . Since

I0 = [−1, 1] /∈ J , we have

|E ∩ I | ≤ |I | ≤ 1

N
≤ κ(δ0, ε0, c0),

and the conditions of the lemma are satisfied. Hence,

‖P ‖I ≤ e−cδn, I ∈ J ,

that is ⋃
I∈J

I ⊂ Ep(cδ).

Since I is the maximal interval, its N -adic ‘supinterval’ I ∗ does not belong
to J , that is

|E ∩ I | 1
2−c

+ε ≤ |E ∩ I ∗| 1
2−c

+ε ≤ |I ∗| = N |I |,
or |I | ≥ N−1|E ∩ I | 1

2−c
+ε. Therefore,

|EP (cδ)| ≥
∑
I∈J

|I | ≥ 1

N

∑
I∈J

|E ∩ I | 1
2−c

+ε

≥ 1

N

(∑
I∈J

|E ∩ I |
) 1

2−c
+ε

= |E| 1
2−c

+ε

N
= |EP (δ)| 1

2−c
+ε

N
.
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Increasing slightly ε, we get the claim.

Now we choose an integer M and ε > 0 in such a way that
(

1

2 − t1/M
+ ε

)M

≤ t + γ,

set c0 = t0, c = t1/M and apply the claim M times. If on each step the sets
EP (c

j δ), 1 ≤ j ≤ M have small length, then this is legitimate, and we get

|EP (tδ)| ≥ |EP (δ)|
(

1
2−t1/M

+ε

)M
≥ |EP (δ)|t+γ .

Otherwise, |EP (tδ)| ≥ κ1(δ0, ε, c0).

In both cases we get (3.1), and thus the lemma is proved.

4. Proof of Theorem A

Theorem A is a simple corollary to the comparison lemma.
Let Pn be the polynomials of the best approximation to f , that is

‖f − Pn‖[−1,1] = En(f ).

Without loss of generality, we assume that ‖f ‖[−1,1] = 1, and

1/2 ≤ ‖Pnj ‖[−1,1] ≤ 2.

Now, according to the definition of E∗
n(f ) and (1.1),

E∗
nj
(f ) = e−δj nj , min(β, 1) ≤ δj ≤ 1.

Due to the lacunarity condition (1.2), for any ε > 0,

(4.1)
1

4
E∗
nj−1

(f ) ≥ (4E∗
nj
(f ))

ε
, j ≥ j (ε),

and we consider only these sufficiently large j ’s. Then{
x ∈ [−1, 1] : |f (x)| ≤ E∗

nj
(f )

}
⊂ {

x ∈ [−1, 1] : |Pnj (x)| ≤ 4E∗
nj
(f )‖Pnj ‖[−1,1]

}
and{

x ∈ [−1, 1] : |f (x)| ≤ E∗
nj−1

(f )
}

⊃
{
x ∈ [−1, 1] : |Pnj (x)| ≤ 1

4
E∗
nj−1

(f )‖Pnj ‖[−1,1]

}
.
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In the second inclusion, we used that if |Pnj (x)| ≤ 4−1E∗
nj−1

||Pnj ||[−1,1], then

|f (x)| ≤ Enj (f ) + |Pnj (x)| ≤ E∗
nj
(f ) + 1

4
E∗
nj−1

· 2 < E∗
nj−1

(f ).

Therefore, applying the comparison lemma to the polynomials Pnj with
t = γ = ε, we get for sufficiently large j :

mf (E
∗
nj−1

(f )) ≥
∣∣∣∣
{
x ∈ [−1, 1] : |Pnj (x)| ≤ 1

4
E∗
nj−1

(f )‖Pnj ‖[−1,1]

}∣∣∣∣
≥

∣∣∣{x ∈ [−1, 1] : |Pnj (x)| ≤ 4E∗
nj
(f )‖Pnj ‖[−1,1]

}∣∣∣2ε ≥ m2ε
f (E∗

nj
(f )).

This proves the theorem.

5. Proof of Theorem B

We start with

Lemma. Let Q be a polynomial, Q(0) = 0. Then for any odd positive
integer n and any sufficiently large integer l ≥ l0(n) there is a polynomial P
of degree at most ln degQ such that

‖P ‖[−1,1] ≤ C1 · ‖Q‖∗
n

,

and
|(Q + P)(t)| ≤ C1 · (2n|t |)l+1 · ‖Q‖∗, |t | ≤ 1

n
.

Here ‖Q‖∗ means the sum of the absolute values of the coefficients of Q,
and C1 is a constant.

Proof. First, we prove a special case of the lemma with Q(t) = t . Set

/n(w) = n sin

(
1

n
arcsinw

)
, w = u + iv.

The functions /n are analytic in the unit disc, continuous up to its boundary
and uniformly bounded. Furthermore,

|/n(w)| <∼ |w|, |w| ≤ 1,

where the notation A <∼ B means that A ≤ C · B for a positive numerical
constant C. Also,

|/(k)
n (w)| <∼ 2kk!, |w| ≤ 1

2
, k ∈ Z+.
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Set

/n,l(w) =
l∑

k=0

/(k)
n (0)

k!
wk.

The function u �→ arcsin u has an absolutely convergent Taylor series in
the closed unit disc. Since postcomposition with any entire function (in our
case, with λ �→ n sin(λ/n)) preserves this property, the polynomials /n,l(u)

converge to /n(u) at the points u = ±1, and therefore converge to /n(u)

uniformly in u ∈ [−1, 1], so that

(5.1) |/n,l(u)| <∼ 1, u ∈ [−1, 1], l ≥ l0(n),

and

(5.2) |(/n − /n,l)(u)| ≤ |u|l+1

(l + 1)!
‖/(l+1)

n ‖[−u,u] <∼ (2|u|)l+1, |u| ≤ 1

2
.

Let t = sin
(

1
n

arcsin u
)
, then u = un(t) = sin(n arcsin t). Since n is odd,

un(t) is a polynomial of degree n, and

(5.3) |un(t)| ≤ min(1, n|t |), |t | ≤ 1.

Indeed, it is sufficient to verify that

n sin t − sin(nt) ≥ 0, 0 ≤ sin t ≤ 1

n
.

This inequality holds for t = 0, and taking the derivative of the left-hand side
we get

n[cos t − cos(nt)]

which is non-negative on the interval [0, arcsin 1
n

].
Set

Rn,l(t) = −1

n

(
/n,l ◦ un

)
(t).

This is a polynomial of degree at most ln. We have

∣∣t + Rn,l(t)
∣∣ =

∣∣∣∣1

n

(
/n − /n,l

)
(un(t))

∣∣∣∣
(5.2)
<∼ (2|un(t)|)l+1

(5.3)
<∼ (2n|t |)l+1, |t | ≤ 1

n
,

and
|Rn,l(t)|

(5.1)
<∼

1

n
, |t | ≤ 1.
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This proves the special case of the lemma.
The general case follows if we set

Q(t) =
∑
j≥1

cj t
j ,

and
P(t) =

∑
j≥1

cjRn,l(t
j ).

Corollary. Given a polynomial Q, Q(0) = 0, ε > 0, N < ∞, and
given a function ϕ decreasing to zero at infinity, there exist M > N , and a
polynomial P , P(0) = 0, such that degP ≤ M ,

‖P ‖[−1,1] ≤ ε,

and |(Q + P)(t)| ≤ e−2M, |t | ≤ ϕ(M).

Proof. We apply the lemma with

n = C1 · ‖Q‖∗
ε

,

and l such that

M = ln degQ > N,

ϕ(M) ≤ 1

2n
e−2n degQ,

e2n(l+1) degQ ≥ C1 · e2M‖Q‖∗.

We get a polynomial P of degree at most M such that

‖P ‖[−1,1] ≤ ε,

and
|(Q + P)(t)| ≤ C1‖Q‖∗

e2n(l+1) degQ
≤ e−2M, |t | ≤ ϕ(M).

This establishes the corollary.

Proof of Theorem B. We use the corollary in an inductive procedure.
We build the function f in the form

f =
∑
j≥1

Pj ,
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where Pj are polynomials such that for an increasing sequence of integers {nj }
we have degPj ≤ nj , ‖Pj‖[−1,1] < ψ(nj−1)/2, and

∣∣∣∣
( ∑

1≤j≤m

Pj

)
(x)

∣∣∣∣ ≤ e−2nm, |x| ≤ ϕ(nm).

We start with P1(x) = x. After P1, . . . , Pm have been chosen, set

Q =
∑

1≤j≤m

Pj ,

ε = ψ(nm)/2,

N = nm,

and get nm+1 = M > nm and Pm+1 from the corollary.
We may always assume that

(5.4) ψ(x) ≤ e−2x, x ≥ 1,

otherwise, from the very beginning, we replaceψ(x) by min(e−2x, ψ(x)); and
that

(5.5)
∑

j≥m+1

ψ(nj−1)/2 ≤ ψ(nm).

Now, we check that f and {nj } satisfy conditions (1.5) and (1.6) of The-
orem B. For n = nm we have

∑
j≥m+1

‖Pj‖[−1,1] ≤
∑

j≥m+1

ψ(nj−1)/2
(5.5)≤ ψ(n)

that proves (1.5). Finally, for |x| ≤ ϕ(n)

|f (x)| ≤
∣∣∣∣
( ∑

1≤j≤m

Pj

)
(x)

∣∣∣∣ +
∑

j≥m+1

‖Pj‖[−1,1] ≤ e−2n + ψ(n) ≤ e−n

that proves (1.6).
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6. Remarks and questions

6.1. Beurling’s theorem.

Beurling [3, p. 396–403] gave a general quasianalyticity condition which con-
tains those of Bernstein and Denjoy-Carleman. Here, we formulate a special
case of his result. Given a sequence 1 ≥ en ↓ 0, consider the Bernstein class

F{en} = {f ∈ C[−1, 1] : En(f ) ≤ en} \ {0}.
Theorem (Beurling). The class F{en} contains no function vanishing on a

subset of positive measure if and only if

∑
n≥1

log− en

n2
= +∞,

where log− a = max
(
log 1

a
, 0

)
.

Beurling’s proof uses the Laplace transform combined with the harmonic
estimation in the “if part” and the Paley-Wiener theorem in the “only if part”.
One can extract a quantitative estimate from his proof which however is es-
sentially weaker than Theorem A above and Theorem B from the part I [12]
of this work.

It seems to be interesting to obtain another proof of Beurling’s theorem by
means of the constructive function theory and to get its quantitative version in
a sharp form.

6.2. Potential theory approach

A minute’s reflection suggests that there could be a natural generalization of
the spreading lemma and comparison lemma for the logarithmic potentials of
probability measures.

Let u be a subharmonic function in the complex plane C with compactly
supported Riesz measure µ, µ(C) ≤ 1, and let u

∣∣
[0,1] ≤ 0. Let E ⊂ [0, 1] be

a subset of positive measure such that u
∣∣
E

≤ −δ.

Problem. Given c, 0 < c < 1, estimate from below the length of the set
{x ∈ [0, 1] : u(x) ≤ −cδ}.

An ‘ideal’ lower bound would be |E|c, which is true in the trivial limiting
cases c = 0 and c = 1. Probably, our polynomial comparison lemma (com-
bined with a suitable atomization of the Riesz measure µ) yields an ‘asymp-
totic’ lower bound |E|c+ε . However, it seems more natural to treat this problem
by means of potential theory.
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One can also ask a similar question replacing the unit interval by the unit
disk. In this case, probably, one should deal with capacity instead of linear
measure.
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