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FOXBY EQUIVALENCE AND COTORSION THEORIES
RELATIVE TO SEMI-DUALIZING MODULES

EDGAR ENOCHS and SIAMAK YASSEMI∗

Abstract

Foxby duality has proven to be an important tool in studying the category of modules over a local
Cohen-Macaulay ring admitting a dualizing module. Recently the notion of a semi-dualizing
module has been given [2]. Given a semi-dualizing module the relative Foxby classes can be
defined and there is still an associated Foxby duality. We consider these classes (separately called
the Auslander and Bass classes) and two naturally defined subclasses which are equivalent to the
full subcategories of injective and flat modules. We consider the question of when these subclasses
form part of one of the two classes of a cotorsion theory. We show that when this is the case, the
associated cotorsion theory is not only complete but in fact is perfect. We show by examples that
even when the semi-dualizing module is in fact dualizing over a local Cohen-Macaulay ring it
both may or may not occur that we get this associated cotorsion theory.

1. The Foxby classes

Throughout this paper R will always be a commutative noetherian ring. For
use throughout the paper we quote the following easy result.

Lemma A. Let R, S be rings, let F,G be covariant right-exact (resp.,
contravariant left-exact) additive functors from the category of R-modules to
the category of S-modules and let ψ : F → G be a natural transformation
such that ψ(M) is an isomorphism for all finitely generated modules M . If
furthermore ψ(M) is an isomorphism for all free modules M , then ψ is an
isomorphism.

Definition 1.1. A finitely generated R-module C is said to be a semi-
dualizing module for R if

(i) Exti (C, C) = 0 for i ≥ 1

(ii) the canonical map R→ Hom(C,C) is an isomorphism.

If furthermore C has finite injective dimension then C is said to be a dual-
izing module for R.
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Throughout the rest of this paper C will always denote a semidualizing
module for R.

It is not obvious that a local ring admits semi-dualizing modules other
than itself and, possibly, a dualizing module. The question concerning their
existence was posed in 1985 by Golod (see [7]) and in 1987 Foxby gave
examples of rings with three different semi-dualizing modules (see Christensen
([2], pg. 1874) for examples of local Cohen-Macaulay rings having at least n
different semi-dualizing modules (for any n ≥ 1)).

In our situation there are two classes of modules associated with C.

Definition 1.2. The Auslander class of R (relative to C) is denoted A

and consists of modules M such that:

(i) Tori (C,M) = 0 for i ≥ 1

(ii) Exti (C, C ⊗M) = 0 for i ≥ 1

(iii) the canonical map µM : M → Hom(C,C ⊗M) is an isomorphism.

Definition 1.3. The Bass class of R (relative to C) is denoted B and
consists of modules N such that:

(i) Exti (C,N) = 0 for i ≥ 1

(ii) Tori (C,Hom(C,N)) = 0 for i ≥ 1

(iii) the canonical νN : C ⊗ Hom(C,N)→ N is an isomorphism.

When R is local Cohen-Macaulay and C is dualizing A and B have a nice
description in terms of Gorenstein projective and injective dimensions ([6],
corollaries 2.4 and 2.6).

We note that for any C,R ∈ A and C ∈ B, both classes are closed
under direct sums, direct summands and direct limits. and products. Since C

is finitely presented, Tori (C,−) and Exti (C,−) commute with products for
any i ≥ 0. So both classes are closed under products. If F is flat, then by
Lazard’s thesis F is a direct limit of projective modules. So if M ∈ A and
N ∈ B, then F ⊗M ∈ A and F ⊗ N ∈ B. And so R ∈ A gives F ∈ A .
The next result gives that E ∈ B for all injective E.

Proposition 1.4. For any module M,M ∈ A if and only if Hom(M,E) ∈
B for all injective E.

Proof. For any injective E and any M we have Hom(Tori (C,M),E) ∼=
Exti (C,Hom(M,E)) for all i, so easily Tori (C,M) = 0 for all i ≥ 1 if and
only if Exti (C,Hom(M,E)) = 0 for all i ≥ 1 and all injective E.

Similarly the natural isomorphisms Hom(Exti (C, C ⊗M),E) ∼= Tori (C,
Hom(C ⊗M,E)) ∼= Tori (C,Hom(C,Hom(M,E))) give that Exti (C, C ⊗
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M) = 0 for all i ≥ 1 if and only if Tori (C,Hom(C,Hom(M,E))) = 0 for all
i ≥ 1 and all injective E.

Finally consider the commutative diagram:

Hom(Hom(C,C ⊗M),E)
Hom(µM,E)−−−−−−−−→ Hom(M,E)

↑∼= ↑νHom(M,E)

C ⊗ Hom(C ⊗M,E)
∼=−−−−−−−−→ C ⊗ Hom(C,Hom(M,E)).

We see that µM is an isomorphism if and only if νHom(M,E) is an isomorphism
for all injective E.

Corollary 1.5. For any semi-dualizing C, E ∈ B for all injective E.

Proof. R ∈ A so Hom(R,E) = E ∈ B for all injective E.

The preceding Proposition raises the question of whether we get the ana-
logous result concerning N ∈ B.

Proposition 1.6. For any module N , N ∈ B if and only if Hom(N,E) ∈
A for all injective modules E.

Proof. LetE be an injective module. Then the canonical mapM⊗Hom(N,

E) → Hom(Hom(M,N),E) is an isomorphism for all finitely generated
modules M by Lemma A. Deriving both sides and putting M = C we obtain
the isomorphism

Tori (C,Hom(N,E)) ∼= Hom(Exti (C,N)E).

Applying LemmaA again we obtain that, hence, the canonical map Hom(N,E)

→ Hom(M ⊗ Hom(C,N)E) is an isomorphism for all finitely generated
modules M . Deriving both sides as functors in M and putting M = C, we
obtain the isomorphism

Exti (C, C ⊗ Hom(N,E)) ∼= Hom(Tori (C,Hom(C,N))E).

These two isomorphisms immediately imply Proposition 1.6.

2. Foxby duality and cotorsion theories

In this section we again let C be a semi-dualizing module for R and again let
A and B denote the associated Auslander and Bass classes.

Proposition 2.1 (Foxby equivalence). The functors C⊗− : A → B and
Hom(C,−) : B → A give a well-defined equivalence between A and B

(viewed as full subcategories of the category of R-modules).
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Proof. If M ∈ A then Exti (C, C⊗M) = 0 for i ≥ 1. Also Hom(C,C⊗
M) ∼= M so Tori (C,Hom(C,C ⊗M)) ∼= Tori (C,M) = 0 for i ≥ 1.

If we consider the commutative

C ⊗ Hom(C,C ⊗M)
νC⊗M−−−−−−→ C ⊗M

C ⊗ Hom(C,C ⊗M)
∼=←−−−−−−

C⊗µM
C ⊗M

we see that νC⊗M is an isomorphism. So C ⊗M ∈ B.
The argument that Hom(C,N) ∈ A for N ∈ B is similar. Now it is clear

that the two functors given an equivalence of categories.

Now given our equivalence A ←→ B we note that F ⊂ A and E ⊂ B

where F and E are respectively the class of flat and of injective modules. The
image of the class F under A → B is denoted W (R) or W and the image
of E under B → A is denoted U(B) or U. So W consists of all the modules
C ⊗ F with F flat and U of the modules Hom(C,E) with E injective.

Proposition 2.2. We have for any C

a) M ∈ U implies Hom(M,E) ∈ W for all injective E and

b) N ∈ W implies Hom(N,E) ∈ U for all injective E.

Proof. a) If M ∈ U then M ∼= Hom(C,E′) for an injective E′. So
Hom(M,E) ∼= Hom(Hom(C,E′), E) ∼= C⊗Hom(E′, E). But Hom(E′, E)

is flat, so Hom(M,E) ∈ W .
b) If N ∈ W then N ∼= C ⊗ F for a flat module F . So if E is injective

then Hom(N,E) ∼= Hom(C ⊗ F,E) ∼= Hom(C,Hom(F,E)) ∈ U since
Hom(F,E) is injective.

It is well known that any module (over any ring) has an injective envelope.
Recently it has also been shown that every module has a flat cover [1]. We
will consider the analogous questions using the classes of modules W and U.
We first note that both W and U are closed under direct sums, summands and
direct limits and direct products.

Definition 2.3. Given a class G of modules, a linear φ : G → M with
G ∈ G is said to be a G-precover of M if Hom(H,G) → Hom(H,M) is
surjective for all H ∈ G . If moreover any f : G → G such that φ ◦ f = φ

is an automorphism of G, then φ is said to be a G-cover. G-preenvelopes and
G-envelopes are defined dually.

If, for example, G is the class of flat modules, then a G-cover is just called
a flat cover.
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Theorem 2.4. Every module has a W -cover and a U-envelope.

Proof. For any module M let C ⊗ M ⊂ E be an injective envelope of
C ⊗M . We will argue that M → Hom(C,C ⊗M) → Hom(C,E) is a U-
envelope. Given M → Hom(C, Ē) with Ē injective, we get a map C⊗M →
C ⊗ Hom(C, Ē) ∼= Ē (recall that Ē ∈ B). This map can be extended to a
map E → Ē which in turn gives a map Hom(C,E) → Hom(C, Ē). But
then the composite M → Hom(C,E) → Hom(C, Ē) is the original map
M → Hom(C, Ē). So M → Hom(C,E) is a U-preenvelope.

Now if f : Hom(C,E) → Hom(C,E) is such that f ◦ φ = f where
φ : M → Hom(C,E) is our given map, then applying C ⊗ − and using the
fact that c⊗Hom(C,E = E is an injective envelope, we see that C⊗ f is an
automorphism of E.

But then f = Hom(C,C ⊗ f ) : Hom(C,E) → Hom(C,E) is an auto-
morphism of Hom(C,E).

The argument that every module N has a W -cover is similar. We just
start with a flat cover F → Hom(C,N) and argue that C ⊗ F → C ⊗
Hom(C,N)→ N is the desired W -cover.

Definition 2.5 (see Salce [11]). For any class F of R-modules, let F⊥
consist of all modulesC such that Ext1(F, C) = 0 for allF ∈ F . Similarly, for
a class C with let ⊥C consist of all F such that Ext1(F, C) = 0 for all C ∈ C .
The pair (F ,C ) is said to be a cotorsion theory if F⊥ = C and F = ⊥C . A
cotorsion theory (F ,C ) is said to be complete if for every module there is an
exact sequence 0→ N → C → F → 0 with C ∈ C and F ∈ F and if for
every module M there is an exact sequence 0 → C → F → M → 0 with
C ∈ C and F ∈ F .

If (F ,C ) is a complete cotorsion theory and 0→ N → C → F → 0 is
exact as in the definition, and if D ∈ C , then Hom(C,D)→ Hom(N,D)→
Ext1(F,D) = 0 is exact and so N → C is a C -preenvelope. Similarly if
0 → C → F → M → 0 is as in the definition then F → M is an F -
preenvelope.

Definition 2.6. A complete cotorsion theory (F ,C ) is said to be perfect
if every module has an F -cover and a C -envelope.

For any ring R, if E is the class of injective modules, then ⊥E is the class of
all modules. Clearly (⊥E , E ) is a perfect cotorsion theory. If F is the class of
flat modules then (F ,F⊥) is also a perfect cotorsion theory (by [12], Lemma
3.4.1 and [5] Theorem 7.4.4 and Theorem 7.26).

It is natural to ask when (⊥U,U) and (W ,W ⊥) are cotorsion theories.
This question will be answered in Theorems 2.10 and 2.11 below. We begin
with the following auxiliary result.
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Proposition 2.7. The classes U and W are closed under extensions.

Proof. LetE′, E′′ be injective and let 0→ Hom(C,E′)→G→ Hom(C,

E′′)→ 0 be exact. Since Tor1(C,Hom(C,E′′)) = 0 we have

0→ C ⊗ Hom(C,E′)→ C ⊗G→ C ⊗ Hom(C,E′′)→ 0

is exact. ButC⊗Hom(C,E′) ∼= E′ andC⊗Hom(C,E′′) ∼= E′′ so 0→ E′ →
C ⊗ G → E′′ → 0 is exact and in fact split. Therefore C ⊗ G is injective.
Now applying Hom(C,−)we get as 0→ Hom(C,E)→ Hom(C,C⊗G)→
Hom(C,E′′)→ 0 is exact. So G ∼= Hom(C,C ⊗G) and so G ∈ U.

Now let 0 → C ⊗ F ′ → G → C ⊗ F ′′ → 0 be exact where F ′
and F ′′ are flat. Since Ext1(C,C ⊗ F ′) = 0 we have 0 → Hom(C,C ⊗
F ′) → Hom(C,G) → Hom(C,C ⊗ F ′′) → 0 is exact. So 0 → F ′ →
Hom(C,G)→ F ′′ → 0 is exact. SoF ′ ⊂ Hom(0,G) is pure and Hom(C,G)

is flat. So applying C ⊗− we get

0→ C ⊗ F ′ → C ⊗ Hom(C,G)→ C ⊗ F ′′ → 0

exact. So G ∼= C ⊗ Hom(C,G) ∈ W .

Corollary 2.8. For any W -cover φ : W → M , ker(φ) ∈ W ⊥ and for
any U-envelope ψ : N → U , coker(ψ) ∈ ⊥U.

Proof. ApplyWakamatsu’s lemma (see [5] Corollary 7.2.3 and Proposition
7.2.4).

Proposition 2.9. Let 0 → W ′ → W → W ′′ → 0 be a short exact
sequence where W,W ′′ ∈ W . Then W ′ ∈ W if and only if Ext1(C,W ′) = 0.

Proof. The condition is necessary since W ⊂B. Now assume Ext1(C,W ′)
= 0. Then

0→ Hom(C,W ′)→ Hom(C,W)→ Hom(C,W ′′)→ 0

is exact. But Hom(C,W) and Hom(C,W ′′) are flat and hence so is Hom(C,W ′).
Since Hom(C,W ′′) is flat so is 0→ C⊗Hom(C,W ′)→ C⊗Hom(C,W)→
C⊗Hom(C,W ′′)→ 0. But C⊗Hom(C,W) ∼= W and C⊗Hom(C,W ′′) ∼=
W ′′ so C ⊗ Hom(C,W ′) ∼= W ′. Since Hom(C,W ′) is flat this gives that
W ′ ∈ W .

Theorem 2.10. The following are equivalent for U:

a) (⊥U,U) is a cotorsion theory

b) E ⊂ U where E is the class of injective modules

c) every U-envelope M → U is injective
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d) µM : M → Hom(C,C ⊗M) is an injection for all M

e) E→ Hom(C,C ⊗ E) is an injection for all injective modules E

f) E→ Hom(C,C ⊗ E) is injective for an injective cogenerator E

Proof. a)⇒ b). Clearly E ⊂ (⊥U)⊥.
b) ⇒ c). Let M → U be a U-envelope. Let M ⊂ E with E injective.

Since E ∈ U, M → E can be factored M → U → E. So since M → E is
injective, so is M → E.

d)↔ c) From the proof of Theorem 2.6 we know that a U-envelope of M
is of the form M → Hom(C,C ⊗M) → Hom(C,E) where C ⊗M ⊂ E

is an injective envelope. So Hom(C,C ⊗ M) → Hom(C,E) is injective.
So M → Hom(C,E) is injective if and only if M → Hom(C,C ⊗ M) is
injective.

d)→ e) trivially. To get e)→ d), let M ⊂ E with E injective. Then we
have a commutative diagram

M −−−→ Hom(C,C ⊗M)

↓ ↓
E −−−→ Hom(C,C ⊗ E)

by e), E → Hom(C,C ⊗ E) is an injection. Since M → E is an injection,
M → Hom(C,C ⊗M) is also an injection.

e)→ f) is trivial. To get f)⇒ e), let Ē be an injective cogenerator. Then if
E is injective we have E ⊂ Ē(I) for some set I . Since Ē→ Hom(C,C ⊗ Ē)

is injective, so is Ē(I)→ Hom(C,C⊗ Ē)(I) ∼= Hom(C,C⊗ Ẽ(I) (since C is
finite generated). But we have a commutative diagram

E −−−→ Hom(C,C ⊗ E)

↓ ↓
Ē −−−→ Hom(C,C ⊗ Ē(I))

and we quickly see that E→ Hom(C,C ⊗ E).
d)→ a). Let M ∈ (⊥U)⊥. We want to show that M ∈ U. Let M → U be a

U-envelope. By d), M → U is an injection. So we have the exact 0→ M →
U → U

M
→ 0. By Corollary 2.8, U

M
∈ ⊥U. But then since M ∈ (⊥U)⊥ the

sequence 0 → M → U → U
M
→ 0 splits. So M is a direct summand of U .

Since U is closed under direct summands we see that M ∈ U.

We also have

Theorem 2.11. The following are equivalent:
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a) (W ,W ⊥) is a cotorsion theory

b) F ⊂ W where F is the class of flat module

c) for all M , C ⊗ Hom(C,M)→ M is surjective

d) every W -cover W → M is surjective

Proof. The proof is analogous to that of the preceding theorem.

Proposition 2.12. If (⊥U,U) (or (W ,W ⊥)) is a cotorsion theory then it
is a perfect cotorsion theory.

Proof. Suppose (⊥U,U) is a cotorsion theory. Then by Theorem 2.6 every
M has a U-envelope M → U which is injective by d) of Theorem 2.12. By
Corollary 2.8 the cokernel is in ⊥U.

By an argument of Salce ([10] or see [4] Proposition 7.1.7) (⊥U,U) is
complete. By ([4], Theorem 7.2.6) (⊥U,U) is perfect.

A similar argument works for (W ,W ⊥).

3. Examples with dualizing modules

We recall that a module D is said to dualizing if it is semi-dualizing and if
inj. dim D <∞. In this section D will always be dualizing for R and U will
always be the class of modules Hom(D,E) with E injective. Our rings R will
always be local and Cohen-Macaulay. We will show that if dim R = 0, then
(⊥U,U) is a cotorsion theory if and only if R is Gorenstein. Of course, if R is
Gorenstein of any dimension then (⊥U,U) is a cotorsion theory (U is just the
class of injective modules). For any d ≥ 1 we will show there are examples of
our rings R of dimension d which are not Gorenstein but for which (⊥U,U) is
a cotorsion theory and such examples where (⊥U,U) is not a cotorsion theory.

Proposition 3.1. If R is local and artinian and R is not Gorenstein, then
(⊥U,U) is not a cotorsion theory.

Proof. By Theorem 2.12 e) it suffices to argue that D→ Hom(D,D⊗D)

since D = E(k) where k is the residue field of k. We let Mv = Hom(M,D)

be the Matlis dual of M for any M . We have (D ⊗ D)v = Hom(D,R). But
if σ ∈ Hom(D,R) then σ(k) = 0 since R is not injective (recall that length
D = length R). Now

D ⊗D ∼= ((D ⊗D)v)v ∼= Hom(D,R)v ∼= Hom(Hom(D,R),D)

So D→ Hom(D,D ⊗D) becomes

D→ Hom(D,Hom(Hom(D,R),D))
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This map is x �→ (y �→ (σ ( �→ σ(x)(y))). By the remark above, k is in the
kernel of this map.

Remark 3.2. If R is local artinian, let S ⊂ R be the socle of R and let
dimk S = p where k is the residue field. If p is a prime, then the only semi-
dualizing modules C for R are E(k) (the dualizing module) and C = R. For if
m is the maximal ideal of R and T ⊂ C is the socle of C then Hom(C/mC, T )

is the socle ofR = Hom(C,C). But its dimension over k is dim C/mC ·dim T .
So either dim C/mC = 1 or dim T = 1. Then it is not hard to see that C = R

in the first case and C = E(k) in the second.

Example 3.3. Let k be a field and let R = k[[x3, x4, x5]]. Then R is
local, Cohen-Macaulay and of dimension 1. But R is not Gorenstein since the
submonoid of N generated by 3, 4 and 5 is not symmetric.

The R-submodule D of k[[x]] generated by x and x2 is dualizing for R. We
argue that E→ Hom(D,D⊗E)) is an injection for the injective cogenerator
E = E(k).

If P is the maximal ideal of R then E(R/P ) = E(k) = k[x−3, x−4, x−5]
(by Park [9]). To argue that k[x−3, x−4, x−5]→Hom(D,D⊗k[x−3, x−4, x−5])
is an injection means we have to argue that if z ∈ k[x−3, x−4, x−5] and if
y ⊗ z = 0 in D ⊗ k[x−3, x−4, x−5] for all y ∈ D then z = 0.

We argue that if z �= 0 then x⊗z �= 0 in D⊗k[x−3, x−4, x−5]. If x⊗z = 0
then x ⊗ z+ x2 ⊗ 0 = 0. But x and x2 generate D. So in matrix notation

[ x x2 ]⊗
[
z

0

]
= 0

So for this to happen there must be y, y2, y3 ∈ k[x−3, x−4, x−5] such that

[
x4 x5 x6

−x3 −x4 −x5

] [
y1

y2

y3

]
=

[
z

0

]
.

Since it is easy to check that the modules of relations between x and x2 (as
a submodule of R2) is generated by (x4,−x3), (x5,−x4) and (x6,−x5). But
−x3y1 − x4y2 − x5y3 = 0 implies x4y1 + x5y2 + x6y3 = 0, i.e. that z = 0.

Remark. It would be of interest to characterize the submonoids S =
〈a1, a2, . . . , a5〉 ⊂ N such that R = k[[xa1 , xa2 , . . . , xa5 ]] are such that
(⊥U,U) is a cotorsion theory.

We now consider passage from the ring R to the ring R[[x]]. Given an
R-module M we have the R[[x]]-module M[[x]]. If N is another R-module
then HomR[[x]](M[[x]], N [[x]]) ∼= HomR(M,N [[x]]) ∼= HomR(M,N)[[x]].
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This and some of the isomorphisms below can be found in (Park [9]). For
completeness, we give short arguments for them.

Also, for any R[[x]]-module U , R[[x]] ⊗R[[x]] U ∼= R ⊗R U and so if
P is a projective R-module, P [[x]] ⊗R[[x]] U ∼= P ⊗R U . Hence M is any
R-module, and P1 → P0 → M → 0 is exact with P1, P0 projective, we get
the commutative diagram

P1 ⊗R U −−−→ P0 ⊗R U −−−→ M ⊗R U −−−→ 0

↓∼= ↓∼= ↓
P1[[x]]⊗R[[x]] U −−−→ P0[[x]]⊗R[[x]] U −−−→M[[x]]⊗R[[x]] U −−−→ 0

with exact rows. So M ⊗R U ∼= M[[x]]⊗R[[x]] U .
If we furthermore assume U = N [[x]] with N an R-module, we get

M[[x]] ⊗R[[x]] N [[x]] ∼= M ⊗R N [[x]] ∼= M[[x]] ⊗R N . But if M is fur-
thermore finitely generated, we get M ⊗R N [[x]] ∼= (M ⊗R N)[[x]]. So we
get M[[x]]⊗R[[x]] N [[x]] ∼= (M ⊗R N)[[x]] if either M or N is finitely gen-
erated.

These isomorphisms then give ExtnR[[x]](M[[x]],N [[x]])∼=ExtnR(M,N)[[x]]
and TorR[[x]]

n (M[[x]], N [[x]]) ∼= TorRn (M,N)[[x]] (here if M or N is finitely
generated).

From these isomorphisms it easily follows that if C is semi-dualizing for
R, then C[[x]] is semi-dualizing for R[[x]]. But also if D is dualizing for R
then D[[x]] is dualizing for R[[x]] (see [4], Proposition 2.7).

Letting R be a local artinian ring which is not Gorenstein and D = E(k),
then we know D → HomR(D,D ⊗R D) is not injective. So with D̄ =
D[[x1, . . . , xs]] and R̄ = R[[x · · · xs]] we get

D̄ = D[[x1, . . . , xs]]

→ HomR̄(D̄, D̄ ⊗R D̄) = HomR(D,D ⊗R D)[[x1, . . . , xs]]

Now let R be local with a dualizing module D and suppose R with D (as our
C) satisfies the conditions of Theorem 2.10. By f) of that theorem this means
E(k)→ Hom(D,D⊗E(k)) is an injection where k is the residue field of R.
The injective envelope of the residue field of R[[x]] is E(k)[x−1] and D[[x]]
is a dualizing module for R[[x]]. We argue that

E(k)[x−1]→ HomR[[x]](D[[x]],D[[x]]⊗R[[x]] E(k)[x−1])

is also an injection.
We haveD[[x]]⊗R[[x]]E(k)[x−1]∼=D⊗R (E(k)[x−1])∼=(D⊗RE(k))[x−1].

But an R[[x]]-linear map D[[x]] → (D ⊗R E(k))[x−1] is uniquely de-
termined by its R-linear restriction D → (D ⊗R E(k))[x−1] (since ever
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element of (D ⊗R E(k))[x−1] is annihilated by xn for some n ≥ 1) and
this restriction can be any R-linear map. So HomR[[x]](D[[x]],D[[x]]⊗R[[x]]

E(k)[x−1]) ∼= HomR(D, (D ⊗R E(k))[x−1]). But this R[[x]]-module is iso-
morphic to Hom(D,D ⊗ E(k))[x−1]. So our map becomes

E(k)[x−1]→ Hom(D,D ⊗ E(k))[x−1].

Since E(k)→ Hom(D,D ⊗ E(k)) is an injection, so is this map.
Noting that R[[x]] is Gorenstein if and only if R is, we see that by this

procedure we can use our zero dimensional example to get a local Cohen-
Macaulay ring of any dimension d ≥ 1 admitting a dualizing module which
is not Gorenstein but which does satisfy the conditions of Theorem 2.10 (with
C being a dualizing module). Similarly we can get examples for every d ≥ 0
which do not satisfy these conditions.
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