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AFFINE EQUIVALENCE AND GORENSTEINNESS

ANDERS FRANKILD and PETER JØRGENSEN

Abstract

Recently, Dwyer and Greenless established a Morita-like equivalence between categories consist-
ing of complete modules and torsion modules. It turns out that these categories contain certain full
subcategories which may be viewed as “perturbed” Auslander and Bass classes; Auslander and
Bass classes are used in the study of so-called Gorenstein dimensions. This observation allows
us to prove that any ideal in a commutative, local, Noetherian ring can detect whether or not the
underlying ring is Gorenstein.

0. Introduction

0.1. Background

For a commutative, local, noetherian ring R and an object X in D(R), the
derived category of R, one can consider the adjoint pair of covariant functors

(0.1.1) X
L⊗R − and RHomR(X,−),

and the contravariant functor

(0.1.2) RHomR(−, X).

It is familiar that for certain X’s, these functors restrict to quasi-inverse equi-
valences between suitable full subcategories of D(R),

X
L⊗R−−−−−−−−−−−→A B←−−−−−−−−−−

RHomR(X,−)

and
RHomR(−,X)−−−−−−−−−−→C D←−−−−−−−−−−
RHomR(−,X)

Important examples of this abound in the literature:
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X
Equivalence theory Equivalence theory based on

based on RHomR(−, X) X
L⊗R − and RHomR(X,−)

D Grothendieck/Hartshorne [12] Foxby [2]
E(k) Matlis [14] F+J [11]
R	�(D) Hartshorne [13] –

R Foxby/Yassemi [17] Trivial
R	�(R) – Dwyer/Greenlees [7]

The first three X’s in the diagram are:

• D is a dualizing complex for R.

• E(k) is the injective hull of R’s residue class field k.

• R	�(D) is obtained by taking the right derived section functor R	� with
respect to the ideal � in R, and applying it to D.

The purpose of this text is to study the two theories missing from the diagram.
In fact, these theories will contain the other theories in the upper right and
lower left quadrants of the diagram as special cases.

0.2. This text

A central point of section 0.1’s diagram is that the existing equivalence theories
in the upper right and lower left quadrants can recognize when the ring R is
Gorenstein. They do this by the sizes of the full subcategories A , B, C , D in
equations (0.1.1) and (0.1.2), which (in suitable senses) are maximal exactly
when R is Gorenstein. These results are known as “Gorenstein theorems”, see
[6, (2.3.14), (3.1.12), and (3.2.10)] and [11, thm. (3.5)], and live in the world
of “Foxby equivalence” which deals with equivalences of categories induced

by functors such as X
L⊗R − and RHomR(X,−), see [11].

Given this, and given that the two theories missing from section 0.1’s dia-
gram fall in the upper right and lower left quadrants, a reasonable question
is: Can the missing theories also recognize Gorenstein rings? We show in our
main result, theorem 2.2, that the answer is yes. Thus, we fill in the blanks in
section 0.1’s diagram by studying the missing theories and showing that they
are ring theoretically interesting.

To be specific, the theories missing from section 0.1’s diagram are based
on the functors

(0.2.1) R	�(D)
L⊗R − and RHomR(R	�(D),−),
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respectively

(0.2.2) RHomR(−, R	�(R)),

and we prove in theorem 2.2 that the subcategories between which these func-
tors induce equivalences are maximal exactly when R is Gorenstein. Note
that RHomR(−, R	�(R)) equals RHomR(−, C(�)) where C(�) is the Čech
complex or the stable Koszul complex of �, cf. remark 1.2.

We will not reproduce theorem 2.2 in this introduction. However, in the
special case � = 0, the theorem gives corollary 2.4 which is the following
improved version of the above mentioned Gorenstein theorems from [6]:

Corollary. Let R be a commutative, local, noetherian ring with residue
class field k. Now the following conditions are equivalent:

(1) R is Gorenstein.

(2) The biduality morphism

X −→ RHomR(RHomR(X, R), R)

is an isomorphism for X ∈ Df
b(R).

If R has a dualizing complex D, then the above conditions are also equivalent
to:

(3) k ∈ AD .

(4) AD = D(R).

(5) k ∈ BD .

(6) BD = D(R).

The notation employed here is: Df
b(R) is the derived category of bounded

complexes with finitely generated homology, and AD and BD are the so-
called Auslander and Bass classes of D which are, in a sense, the largest full

subcategories of D(R) between which D
L⊗R − and RHomR(D,−) induce

equivalences. See [11, (1.5)] (or paragraph 1.1 below with � = 0) for the
technical definition of AD and BD .

Another special case of theorem 2.2 is � = � where � is R’s maximal
ideal; this is given in corollary 2.6 which contains the Gorenstein theorem [11,
thm. (3.5)]. The corollary states the following:

Corollary. Let R be a commutative, local, noetherian ring with maximal
ideal � and residue class field k = R/�, and let C(�) be the Čech complex
of �. Now the following conditions are equivalent:

(1) R is Gorenstein.
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(2) The standard morphism

X
L⊗R RHomR(C(�), C(�)) −→ RHomR(RHomR(X, C(�)), C(�))

is an isomorphism for X ∈ Df
b(R).

If R has a dualizing complex D, and E(k) denotes the injective hull of k, then
the above conditions are also equivalent to:

(3) k ∈ AE(k).

(4) AE(k) = A�
comp.

(5) k ∈ BE(k).

(6) BE(k) = Ators
� .

Here AE(k) and BE(k) are the Auslander and Bass classes of E(k) which are
defined in a way analogous to AD and BD above, see [11, (3.3)], and A�

comp

and Ators
� are the categories of so-called derived complete and derived torsion

complexes with respect to �, see [7] or remark 1.2 below.

Observe that part (2) of the corollary gives a new, simple way of char-
acterizing Gorenstein rings. In fact, RHomR(C(�), C(�)) is R̂, the �-adic
completion of R, by lemma 1.9, so part (2) of the corollary is even simpler
than it first appears.

0.3. Remarks

The title of this text is chosen for the following reason: Hartshorne in [13]
considers an instance of the contravariant equivalence theory based on R	�(D),
that is, on the functor RHomR(−, R	�(D)). He calls it “affine duality”. It
hence seems natural that we should call the covariant equivalence theory based
on R	�(D), that is, on the functors from (0.2.1), “affine equivalence”, whence
our title.

Note that the equivalence theories based on the functors (0.2.1) and (0.2.2)
contain a number of the other theories in section 0.1’s diagram as special cases:
When R has a dualizing complex D, the theories with X = D and X = E(k)

in the upper portion of the diagram can be obtained from the theories with
X = R	�(D); namely, D ∼= R	0(D) and E(k) ∼= R	�(D). Similarly, the
theories with X = R in the lower portion of the diagram can be obtained from
the theories with X = R	�(R); namely, R ∼= R	0(R). Of course, this is the
reason theorem 2.2 contains as a special case corollary 2.4.
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0.4. Synopsis

The text is organized as follows: After this introduction comes section 1 which
gives a number of ways of characterizing Gorenstein rings, plus a number of
results about the derived section and completion functors, R	� and L��. Fi-
nally comes section 2 which gives our main result, theorem 2.2, and concludes
with some special cases in corollaries 2.4 and 2.6.

0.5. Notation

First note that all our results are formulated in the derived category, D(R). We
use the hyperhomological notation set up in [9, sec. 2], with a single exception:
We denote isomorphisms in D(R) by “∼=” rather than by “	”.

One very important tool is a number of so-called standard homomorphisms
between derived functors. These are treated in [9, sec. 2], and another reference
is [6, (A.4)].

Apart from the material covered in [9, sec. 2], we make extensive use of
the right derived section functor R	� and the left derived completion functor
L��. They are defined as follows:

When � is an ideal in R, the section functor with respect to � is defined on
modules by

	�(−) = colim
n

HomR(R/�n,−).

It is left exact, and has a right derived functor R	� which lives on D(R).
Similarly, the completion functor with respect to � is defined on modules by

��(−) = lim
n

(R/�n ⊗R −).

It has a left derived functor L�� which also lives on D(R).
A salient fact is that (R	�, L��) is an adjoint pair. For this and other prop-

erties, see [1].

0.6. Setup

Throughout the text, R is a commutative, local, noetherian ring with maximal
ideal � and residue class field k = R/�, and � is an ideal in R generated
by a = (a1, . . . , an). The �-adic completion of R is denoted R�̂. The Koszul
complex on a is denoted K(a); it is a bounded complex of finitely generated
free modules. The Čech complex of � (also known as the stable Koszul complex
of �) is denoted C(�); it is a bounded complex of flat modules. See [4, chp. 5]
for a brushup on Koszul and Čech complexes.
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1. Preparatory results

1.1. Affine equivalence

Suppose that R has a dualizing complex D. As described in the introduction,
we shall consider the adjoint pair of functors

R	�(D)
L⊗R−−−−−−−−−−−−−−→D(R) D(R)←−−−−−−−−−−−−−−

RHomR(R	�(D),−)

Let us sum up the main content of Foxby equivalence as introduced in [11,
(1.5)] in this situation: Letting η be the unit and ε the counit of the adjunction,
and defining the Auslander class by

AR	�(D) =
{
X

∣∣∣∣ ηX : X −→ RHomR(R	�(D), R	�(D)
L⊗R X)

is an isomorphism

}

and the Bass class by

BR	�(D) =
{
Y

∣∣∣∣ εY : R	�(D)
L⊗R RHomR(R	�(D), Y ) −→ Y

is an isomorphism

}
,

there are quasi-inverse equivalences of categories between the Auslander and
Bass classes,

(1.1.1)
R	�(D)

L⊗R−−−−−−−−−−−−−−→AR	�(D) BR	�(D)←−−−−−−−−−−−−−−
RHomR(R	�(D),−)

Our main result, theorem 2.2, characterizes Gorenstein rings in terms of
maximality of AR	�(D) and BR	�(D).

Remark 1.2. In [7] is considered the following situation: Given a ring,
S, and a bounded complex of finitely generated projective S-left-modules,
A, one can construct the endomorphism Differential Graded Algebra, E =
HomS(A, A), and A becomes a Differential Graded E -left-module whose
E -structure is compatible with its S-structure. Likewise, the complex A� =
HomS(A, S) is a bounded complex of finitely generated projective S-right-
modules, and becomes a Differential Graded E -right-module whose E -struc-
ture is compatible with its S-structure. Moreover, there are two full subcat-
egories Acomp and Ators of D(S), and a diagram

(1.2.1)
A�

L⊗S−−−−−−−−−−−−−→ − L⊗E A−−−−−−−−−−→Acomp D(E opp) Ators←−−−−−−−−−−−−
RHomE opp (A�,−)

←−−−−−−−−−−
RHomS (A,−)
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where each half is a pair of quasi-inverse equivalences of categories. Note
that we write E opp for the opposite algebra of E and D(E opp) for the derived
category of Differential Graded E opp-left-modules which is equivalent to the
derived category of Differential Graded E -right-modules.

In this text, we use the following special case, based on the data from
setup 0.6: The ring S is R, and the complex A is K(a). We then write A�

comp

for Acomp, and Ators
� for Ators. By [7, proof of 4.3] and [7, prop. 6.10] we have

K(a)�
L⊗E K(a) ∼= CellK(a)(R) ∼= C(�),

so the composite of the two upper functors in diagram (1.2.1) is

(K(a)�
L⊗R −)

L⊗E K(a) 	 (K(a)�
L⊗E K(a))

L⊗R −
	 C(�)

L⊗R −,(1.2.2)

where “	” signifies an equivalence of functors, and where the first “	” is by
associativity of tensor products, see [3, sec. 4.4]. Similarly, the composite of
the two lower functors is

RHomE opp(K(a)�, RHomR(K(a),−)) 	 RHomR(K(a)�
L⊗E K(a),−)

	 RHomR(C(�),−),(1.2.3)

where the first “	” is by adjointness, see [3, sec. 4.4]. Note that these equi-
valences are valid as equivalences of functors defined on the entire derived
category D(R).

Diagram (1.2.1) shows that the essential image of the functor K(a)�
L⊗R −

defined on D(R) is all of D(E opp). (The essential image of a functor is the clos-
ure of the functor’s image under isomorphisms.) In turn, equation (1.2.2) there-

fore shows that the essential image of the functor C(�)
L⊗R −, defined on D(R),

equals the essential image of the functor− L⊗E K(a), defined on all of D(E opp),
and this image is Ators

� by diagram (1.2.1). A similar argument with equation
(1.2.3) shows that the essential image of the functor RHomR(C(�),−), defined
on D(R), equals A�

comp.
Note that by [16, thm. 1.1(iv)] and [1, (0.3)aff , p. 4] there are natural equi-

valences of functors on D(R),

(1.2.4) R	�(−) 	 C(�)
L⊗R − and L��(−) 	 RHomR(C(�),−),

so the above can also be phrased: The essential image of R	� is Ators
� , and the

essential image of L�� is A�
comp.
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Note also the following special case of the first of equations (1.2.4),

(1.2.5) R	�(R) ∼= C(�)
L⊗R R ∼= C(�).

Computations (1.2.2) and (1.2.3) also show that ignoring the middle part of
diagram (1.2.1) leaves the pair of quasi-inverse equivalences of categories

(1.2.6)
R	�(−)	C(�)

L⊗R−−−−−−−−−−−−−−−−−−→Acomp Ators
�←−−−−−−−−−−−−−−−−−−

L��(−)	RHomR(C(�),−)

In particular, X ∈ A�
comp gives

(1.2.7) X
∼=−→ L��R	�X

∼=−→ L��X

where the first isomorphism is the unit of the adjunction in diagram (1.2.6),
and the second is by [1, p. 6, cor., part (iii)]. Similarly, Y ∈ Ators

� gives

(1.2.8) R	�Y
∼=−→ R	�L��Y

∼=−→ Y

where the first isomorphism is by [1, p. 6, cor., part (iv)], and the second is the
counit of the adjunction in diagram (1.2.6).

Lemma 1.3. R is Gorenstein if and only if R�̂ is Gorenstein.

Proof. The canonical homomorphism R −→ R�̂ is flat and local by [15,
p. 63, (3) and (4)]. We also have

R�̂/�R�̂
∼= R�̂ ⊗R R/� = R�̂ ⊗R k ∼= k,

where the last “∼=” is because k is complete in any �-adic topology, so R�̂/�R�̂

is Gorenstein. Hence R and R�̂ are Gorenstein simultaneously by [5, cor.
3.3.15].

Lemma 1.4. R is Gorenstein if and only if

(1.4.1) RHomR(RHomR(k, R), R) ∼= k.

Proof. If R is Gorenstein, then we have RHomR(RHomR(k, R), R)
∼=←− k

via the biduality morphism, see [6, thm. (2.3.14)].
Conversely, suppose that (1.4.1) holds. It is easy to see in general that

RHomR(k, R) can be represented by a complex where the modules are anni-
hilated by �. So RHomR(k, R) is really just a complex over the field k = R/�.
Hence we can use [6, (A.7.9.3)] with V = RHomR(k, R) and Y = R to get

sup RHomR(RHomR(k, R), R) = sup RHomR(k, R)− inf RHomR(k, R).
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In the present situation, the left hand side is zero by equation (1.4.1). Hence
sup RHomR(k, R) = inf RHomR(k, R), so RHomR(k, R) only has homology
in a single degree, so only a single ExtiR(k, R) is non-zero. This implies R

Gorenstein by [15, thm. 18.1].

Lemma 1.5. R is Gorenstein if and only if

RHomR(RHomR(k, R), R�̂ ) ∼= k.

in D(R�̂ ).

Proof. We start with a computation in D(R�̂ ),

RHomR�̂
(RHomR�̂

(k, R�̂ ), R�̂ )

(a)∼= RHomR�̂
(RHomR�̂

(k
L⊗R R�̂, R�̂ ), R�̂ )

(b)∼= RHomR�̂
(RHomR(k, RHomR�̂

(R�̂, R�̂ )), R�̂ )

∼= RHomR�̂
(RHomR(k, R�̂ ), R�̂ )

∼= RHomR�̂
(RHomR(k, R

L⊗R R�̂ ), R�̂ )

(c)∼= RHomR�̂
(RHomR(k, R)

L⊗R R�̂, R�̂ )

(d)∼= RHomR(RHomR(k, R), RHomR�̂
(R�̂, R�̂ ))

∼= RHomR(RHomR(k, R), R�̂ ).

Here “(a)” is because k
L⊗R R�̂ is k�̂ which is just k since k is complete in

any �-adic topology. “(b)” and “(d)” are by adjointness, [6, (A.4.21)]. “(c)”
is by [6, (A.4.23)] because we have k ∈ Df

b(R) and R ∈ Db(R), while R�̂ is
a bounded complex of flat modules. Observe that both “(b)”, “(c)”, and “(d)”
are proved using the standard homomorphisms mentioned in the introduction.
The remaining isomorphisms follow from

RHomR�̂
(R�̂, R�̂ ) ∼= R�̂ and R

L⊗R R�̂
∼= R�̂.

Now, R is Gorenstein if and only if R�̂ is Gorenstein by lemma 1.3. By
lemma 1.4 applied to R�̂ this amounts to

RHomR�̂
(RHomR�̂

(k, R�̂ ), R�̂ ) ∼= k.
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And by the above computation, this is equivalent to

RHomR(RHomR(k, R), R�̂ ) ∼= k

in D(R�̂ ).

Proposition 1.6. If R has a dualizing complex D, then

AR	�(D) ⊆ A�
comp and BR	�(D) ⊆ Ators

� .

Proof. We only prove the first inclusion, as the proof of the second is
similar.

Let X ∈ AR	�(D) be given. Then X is the image under RHomR(R	�(D),−)

of some Y ∈ BR	�(D), by diagram (1.1.1). Hence

X ∼= RHomR(R	�(D), Y )

(a)∼= RHomR(C(�)
L⊗R D, Y )

(b)∼= RHomR(C(�), RHomR(D, Y ))

(c)∼= L��(RHomR(D, Y )),

where “(a)” and “(c)” are by equations (1.2.4), and where “(b)” is by adjoint-
ness, [6, (A.4.21)].

So X is in the essential image of L��, hence X is in A�
comp by remark 1.2.

Lemma 1.7. We have k ∈ A�
comp and k ∈ Ators

� .

Proof. To prove the first statement, consider

L��(k) ∼= k
L⊗R R�̂

∼= k

where the first “∼=” is by [10, prop. (2.7)] and the second “∼=” is because k is
complete in any �-adic topology. This shows that k is in the essential image of
L��, whence it is in A�

comp by remark 1.2.
To prove the second statement, note that by [4, cor. 2.1.6] there is an injective

resolution I of k in which each Ii satisfies that each of its elements is annihilated
by some power �n, and hence also by some power �n. This gives 	�(I ) ∼= I ,
and therefore

R	�(k) ∼= 	�(I ) ∼= I ∼= k.

This shows that k is in the essential image of R	�, whence it is in Ators
� by

remark 1.2.
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Lemma 1.8. If R has a dualizing complex D, then

(1) For X ∈ Df+(R) ∩ A�
comp we have

RHomR(R	�(D), R	�(D)
L⊗R X) ∼= RHomR(D, D

L⊗R X).

(2) For Y ∈ D−(R) ∩ Ators
� we have

R	�(D)
L⊗R RHomR(R	�(D), Y ) ∼= D

L⊗R RHomR(D, Y ).

Proof. We only prove (1), as the proof of (2) is similar:

RHomR(R	�(D), R	�(D)
L⊗R X)

(a)∼= RHomR(R	�(D), R	�(D
L⊗R X))

(b)∼= RHomR(D, L��R	�(D
L⊗R X))

(c)∼= RHomR(D, L��(D
L⊗R X))

(d)∼= RHomR(D, D
L⊗R X

L⊗R R�̂)

(e)∼= RHomR(D, D
L⊗R L��(X))

(f)∼= RHomR(D, D
L⊗R X),

where “(a)” follows from (1.2.4) by an easy computation, “(b)” is by [1, (0.3)aff ,
p. 4], “(c)” is by [1, p. 6, cor., part (iii)], “(d)” and “(e)” are by [10, prop. (2.7)],
and “(f)” is by equation (1.2.7).

Lemma 1.9. We have RHomR(C(�), C(�)) ∼= R�̂ in D(R).

Proof. This is a computation,

RHomR(C(�), C(�))
(a)∼= RHomR(R	�(R), R	�(R))

(b)∼= RHomR(R, L��R	�(R))

∼= L��R	�(R)

(c)∼= L��(R)

(d)∼= R
L⊗R R�̂

∼= R�̂,
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where “(a)” is by equation (1.2.5), “(b)” is by [1, (0.3)aff , p. 4], “(c)” is by [1,
p. 6, cor., part (iii)], and “(d)” is by [10, prop. (2.7)].

2. The parametrized Gorenstein theorem

Remark 2.1. Theorem 2.2 below is our main result. Among other things, it
considers complexes X for which the standard morphism

X
L⊗R RHomR(C(�), C(�)) −→ RHomR(RHomR(X, C(�)), C(�))

from [6, (A.4.24)] is an isomorphism. Note that by lemma 1.9 we have

RHomR(C(�), C(�)) ∼= R�̂,

so the X’s in question have the property that there is an isomorphism

X
L⊗R R�̂

∼= RHomR(RHomR(X, C(�)), C(�)).

The parametrized Gorenstein theorem 2.2. Recall from setup 0.6 that
R is a commutative, local, noetherian ring which has residue class field k and
contains the ideal �, and that C(�) denotes the Čech complex of �. Now the
following conditions are equivalent:

(1) R is Gorenstein.

(2) The standard morphism

X
L⊗R RHomR(C(�), C(�)) −→ RHomR(RHomR(X, C(�)), C(�))

is an isomorphism for X ∈ Df
b(R).

If R has a dualizing complex D, then the above conditions are also equivalent
to the following, where we remind the reader that AR	�(D) and BR	�(D) were
defined in paragraph 1.1:

(3) k ∈ AR	�(D).

(4) AR	�(D) = A�
comp.

(5) k ∈ BR	�(D).

(6) BR	�(D) = Ators
� .

Proof. We show this by showing the following implications:
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(1)

(2)

(3) (5)

(6)(4)

(1)⇔ (2). We start by considering the chain of morphisms

X
L⊗R RHomR(C(�), C(�))

ε→ RHomR(RHomR(X, R), R)
L⊗R RHomR(C(�), C(�))

α→ RHomR(RHomR(X, R), R
L⊗R RHomR(C(�), C(�)))

∼=→ RHomR(RHomR(X, R), RHomR(C(�), C(�)))

∼=← RHomR(RHomR(X, R)
L⊗R C(�), C(�))

∼=← RHomR(RHomR(X, R
L⊗R C(�)), C(�))

∼=← RHomR(RHomR(X, C(�)), C(�)),(2.2.1)

where ε is δ
L⊗R 1RHomR(C(�),C(�)) with

X
δ−→ RHomR(RHomR(X, R), R)

being the biduality morphism from [6, def. (2.1.3)], and where the other arrows
are either induced by the standard morphisms from [6, sec. (A.4)] or induced
by the identifications

R
L⊗R RHomR(C(�), C(�))

∼=−→ RHomR(C(�), C(�))

and
R

L⊗R C(�)
∼=−→ C(�).

For X ∈ Df
b(R), the morphisms in (2.2.1) marked “∼=” are isomorphisms; this

is clear except for the one second to last, for which it follows from [6, (A.4.23)]
because X ∈ Df

b(R) and R ∈ Db(R), while C(�) is a bounded complex of flat
modules.
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As one can check, the morphisms in (2.2.1) combine simply to give the
standard morphism

X
L⊗R RHomR(C(�), C(�))

θ−→ RHomR(RHomR(X, C(�)), C(�))

from [6, (A.4.24)].
Now suppose that (1) holds, that is, R is Gorenstein, and let X ∈ Df

b(R)

be given. Then ε an isomorphism, since already the biduality morphism δ

is an isomorphism [6, thm. (2.3.14)(iii’)]. And α is an isomorphism by [6,
(A.4.23)] because we have RHomR(X, R) ∈ Df

b(R) by [6, thm. (2.3.14)(iii’)],
and clearly have R ∈ Db(R), while RHomR(C(�), C(�)) is isomorphic to a
bounded complex of flat modules by lemma 1.9. Hence θ is an isomorphism,
so (2) holds.

Conversely, suppose that (2) holds, that is, θ is an isomorphism for each
X ∈ Df

b(R). Letting X be k gives

k
(a)∼= k

L⊗R R�̂

(b)∼= k
L⊗R RHomR(C(�), C(�))

∼=→ RHomR(RHomR(k, C(�)), C(�))

where “(a)” is because k is complete in any �-adic topology, and “(b)” is by
lemma 1.9. Now, the second half of the chain of isomorphisms (2.2.1) read
backwards is

RHomR(RHomR(X, C(�)), C(�))

∼=→ RHomR(RHomR(X, R
L⊗R C(�)), C(�))

∼=→ RHomR(RHomR(X, R)
L⊗R C(�), C(�))

∼=→ RHomR(RHomR(X, R), RHomR(C(�), C(�))).

By lemma 1.9 we again have

RHomR(RHomR(X, R), RHomR(C(�), C(�)))

∼= RHomR(RHomR(X, R), R�̂).

Setting X = k and combining the three previous computations says

k ∼= RHomR(RHomR(k, R), R�̂),

whence R is Gorenstein by lemma 1.5, so (1) holds.
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(1)⇒ (4). When R is Gorenstein, then the dualizing complex D is a shift
of R by [6, thm. (A.8.3)], so we can assume D = R. But then R	�(D) =
R	�(R) ∼= C(�) by equation (1.2.5), so the functors in diagram (1.1.1) are
equivalent to the functors in diagram (1.2.6). But this certainly shows A�

comp ⊆
AR	�(D) and Ators

� ⊆ BR	�(D), and the reverse inclusions are by proposition 1.6.
(4)⇒ (3). This is clear since k ∈ A�

comp by lemma 1.7.
(3)⇒ (1). Suppose that k ∈ AR	�(D) holds. It is easy to see in general that

D
L⊗R k can be represented by a complex where all the modules are annihilated

by R’s maximal ideal �. So D
L⊗R k is really just a complex over the field

k = R/�, hence satisfies RHomk(k, D
L⊗R k) ∼= D

L⊗R k. This observation
gives the first “∼=” in

RHomR(D, D
L⊗R k) ∼= RHomR(D, RHomk(k, D

L⊗R k))

∼= RHomk(D
L⊗R k, D

L⊗R k),

where the second “∼=” is by adjointness, [6, (A.4.21)]. However, since D
L⊗R k

is a complex over k, we can use [6, (A.7.9.3)] with V = Y = D
L⊗R k to get

sup RHomk(D
L⊗R k, D

L⊗R k) = sup RHomk(k, D
L⊗R k)− inf(D

L⊗R k)

= sup(D
L⊗R k)− inf(D

L⊗R k).

Combining the equations gives

(2.2.2) sup RHomR(D, D
L⊗R k) = sup(D

L⊗R k)− inf(D
L⊗R k).

Now, in the present situation, k ∈ AR	�(D) gives the first isomorphism in

k
∼=→ RHomR(R	�(D), R	�(D)

L⊗R k)

∼= RHomR(D, D
L⊗R k),(2.2.3)

and the second isomorphism is by lemma 1.8(1), which applies because k ∈
A�

comp by lemma 1.7. This says that the left hand side of equation (2.2.2) is

zero, so sup(D
L⊗R k) = inf(D

L⊗R k), so D
L⊗R k only has homology in

a single degree. By [6, eq. (A.7.4.1)] this says that D has finite projective
dimension, so D is a non-zero complex in Df

b(R) with finite injective and
projective dimensions. Hence R is Gorenstein by [8, prop. 2.10].
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(1)⇒ (6), (6)⇒ (5), and (5)⇒ (1): These are proved by arguments dual
to the ones given for (1)⇒ (4), (4)⇒ (3), and (3)⇒ (1).

Remark 2.3. The reason that we refer to 2.2 as “The parametrized Goren-
stein theorem” is that it is parametrized by the ideal �, and generalizes a number
of “Gorenstein theorems” from the literature, as shown below.

Corollary 2.4. Recall from setup 0.6 that R is a commutative, local,
noetherian ring with residue class field k. Now the following conditions are
equivalent:

(1) R is Gorenstein.

(2) The biduality morphism

X −→ RHomR(RHomR(X, R), R)

is an isomorphism for X ∈ Df
b(R).

If R has a dualizing complex D, then the above conditions are also equivalent
to:

(3) k ∈ AD .

(4) AD = D(R).

(5) k ∈ BD .

(6) BD = D(R).

Proof. Immediate from theorem 2.2 by setting � = 0.

Remark 2.5. Note that corollary 2.4 contains several of the “Gorenstein
theorems” from [6], namely, [6, (2.3.14) and (3.1.12), and (3.2.10)]. In fact,
corollary 2.4 improves these results, since our classes AD and BD avoid the
boundedness restrictions imposed in [6].

Corollary 2.6. Recall from setup 0.6 that R is a commutative, local,
noetherian ring with maximal ideal � and residue class field k, and that C(�)

denotes the Čech complex of �. Now the following conditions are equivalent:

(1) R is Gorenstein.

(2) The standard morphism

X
L⊗R RHomR(C(�), C(�)) −→ RHomR(RHomR(X, C(�)), C(�))

is an isomorphism for X ∈ Df
b(R).

If R has a dualizing complex D, and E(k) denotes the injective hull of k, then
the above conditions are also equivalent to:
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(3) k ∈ AE(k).

(4) AE(k) = A�
comp.

(5) k ∈ BE(k).

(6) BE(k) = Ators
� .

Proof. Immediate from theorem 2.2 by setting � = �, since if D is a
dualizing complex, shifted so that its leftmost homology module sits in degree
dim R, then R	�(D) ∼= E(k) by the local duality theorem, [8, p. 155].

Remark 2.7. Note that if R has a dualizing complex, then corollary 2.6
implies the “Gorenstein sensitivity theorem” [11, thm. (3.5)]. Note also that
part (2) of the corollary gives a new characterization of Gorenstein rings.
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