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A DIAGRAMMATIC APPROACH TO LINK
INVARIANTS OF FINITE DEGREE

OLOF-PETTER ÖSTLUND

Abstract
In [5] M. Polyak and O.Viro developed a graphical calculus of diagrammatic formulas forVassiliev
link invariants, and presented several explicit formulas for low degree invariants. M. Goussarov [2]
proved that this arrow diagram calculus provides formulas for all Vassiliev knot invariants. The
original note [5] contained no proofs, and it also contained some minor inaccuracies. This paper
fills the gap in literature by presenting the material of [5] with all proofs and details, in a self-
contained form. Furthermore, a compatible coalgebra structure, related to the connected sum of
knots, is introduced on the algebra of based arrow diagrams with one circle.

1. Introduction

1.1. Link diagrams and finite degree invariants

A singular link is a smooth immersion of a closed oriented 1-manifold into 3-
space that fails to be an embedding exactly by having a finite number of double
points, at which the branches are not tangent. A singular link without double
points is a link. A singular link diagram is the image of a singular link under
a generic projection, decorated with orientation information and over-under
information at the double points which are not double points of the singular
link. We call the double points with over-under information crossings, and the
other double points singular points.

A function on link diagrams is a link invariant if it is invariant under planar
isotopy and local transformations called Reidemeister moves. A numerical link

invariant v extends to singular links by repeated use of the formula v
( )

=
v
( )

− v
( )

. The invariant v is said to be of finite degree if there is

some n such that v(k) = 0 for all singular link diagrams k with more than n

singular points (the smallest such n is called the degree of v).

1.2. Arrow diagram formulas

A way to express link invariants of finite degree in terms of Gauss diagrams
was introduced by M. Polyak and O. Viro in [5]. The Gauss diagram of a link
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diagram consists of the immersing circles, with the two preimages of a crossing
connected with a signed arrow. Polyak and Viro gave several explicit formulas
for finite degree invariants, expressed as finite linear combinations of abstract
subdiagrams of Gauss diagrams, called arrow diagrams. They introduced an
algebra structure on the Q-vector space spanned by arrow diagrams with n

circles, n ∈ Z+. An element of this arrow diagram algebra defines a Q-valued
function on n-component link diagrams, and the multiplication corresponds to
multiplication of Q-valued functions. All link invariants that can be expressed
with arrow diagrams with less than n arrows have degree less than n.

Later M. Goussarov [2] showed that all knot invariants of finite degree
can be expressed in terms of arrow diagrams. The paper [2] also extends the
framework of the paper [5] to so-called virtual knots. The arrow diagram
formulas presented by Polyak and Viro give an easy way to compute some link
invariants of low degree, and have been used byA. Stoimenow to obtain bounds
for these invariants and some polynomial link invariants [7]. Arrow diagram
formulas for other knot invariants have been obtained by S. D. Tyurina [8].
Homological methods for finding arrow diagram formulas have recently been
developed by V. I. Vassiliev [9]. Vassiliev’s methods can also be used to find
explicit formulas for higher-dimensional finite-type cohomology classes of
spaces of knots.

Polyak and Viro’s paper [5] contains no proofs. In this paper proofs are
presented for all statements in [5]. Polyak and Viro have published a proof,
different from the proof in this paper, for their formula for the Casson knot
invariant v2, see [6].

1.3. Gauss diagrams of singular links

In order to prove that arrow diagram functions are of finite degree, this paper
extends the notion of Gauss diagrams to singular link diagrams. The definitions
of [5] concerning arrow diagram functions are extended to singular Gauss
diagrams, so that the extension to singular links of a link diagram invariant
given by arrow diagrams is given by an explicit formula. The explicit formula
shows immediately that the invariant is of finite degree, which is less than or
equal to the largest number of arrows in the arrow diagrams in the formula.

1.4. A bialgebra of based arrow diagrams

Polyak and Viro consider two kinds of arrow diagrams: with and without base
points. A based arrow diagram defines a Z-valued function on based Gauss
diagrams. For the link invariant formulas written with based arrow diagrams,
we will show that the choice of base points on the Gauss diagram is immaterial.

A based Gauss diagram with one circle can be regarded as the Gauss diagram
of a long knot diagram. For two long knot diagrams, their connected sum
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is well defined. In this paper a compatible coalgebra structure is introduced
on Polyak-Viro’s algebra of based arrow diagrams with one circle. For the
link diagram functions defined by the arrow diagrams, the comultiplication
corresponds to the connected sum of long knot diagrams. The introduction
of a bialgebra structure was inspired by the well-known bialgebra of chord
diagrams. Arrow diagram counterparts of chord diagram structures have been
further investigated by M. Polyak in [4], where a dual arrow diagram bialgebra
is presented.

1.5. Proving link invariance

An arrow diagram formula defines a link invariant if and only if the change
under a Reidemeister move is always zero. The change can be regarded as a
function on pairs (link diagram, Reidemeister move of the diagram). We shall
see that this function (a kind of differential of the arrow diagram function) is
given by a diagrammatic formula. Our basic tool for showing that the differen-
tial vanishes comes from two different ways of computing the linking number
from a link diagram.

When we consider Reidemeister moves on the level of Gauss diagrams, we
must deal with more equivalence classes of moves than what is common on
the level of link diagrams. For example, we have to distinguish moves that
involve segments from different numbers of link components. This leads to
some unexpected results about Reidemeister moves, see my paper [3].

1.6. Interpretations of non-based arrow diagrams

The treatment of non-based arrow diagrams was inaccurate in [5], so that
the multiplication did not correspond to multiplication of Q-valued functions.
The problem was related to how Gauss subdiagrams with some rotational
symmetry was counted. In this paper we recover by interpreting a non-based
arrow diagram as a symmetrization of a based arrow diagram in the based arrow
diagram algebra. As a result the link invariant formulas in this paper differ from
those in [5] by a factor 1/(# of symmetries) on all symmetric non-based arrow
diagrams. (Also note that there is a misprint in [5], eq. 8.)

1.7. Organization of the paper

The statements from [5] are collected into Propositions 3 to 6. Proposition 3
says that invariants defined by arrow diagrams have finite degree, see Sec-
tion 2.3. Proposition 4 contains the formulas for link invariants, see Section 2.4.
Proposition 6 says that the multiplication of arrow diagrams correspond to
multiplication of Q-valued link invariants, see Section 2.5. In this paper Pro-
position 3 is a corollary of Proposition 2, which is the explicit formula for the
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extension of an arrow diagram function to singular link diagrams. The defin-
itions in Sections 2.1 and 2.3 extend Polyak and Viro’s definitions of Gauss
diagrams and arrow diagram functions to deal with singular link diagrams.
Sections 2.2 and 2.5 contain a slight reformulation of Polyak and Viro’s defini-
tions of arrow diagram algebras. In Section 3 a compatible coalgebra structure
is introduced on the algebra of based arrow diagrams with one circle. The
comultiplication is shown to correspond to a connected sum of knot diagrams.
Section 4 contains the proof of Proposition 4.

2. Gauss diagrams, algebras of arrow diagrams and arrow diagram
functions

2.1. The Gauss diagram of a singular link diagram

Recall that a link diagram k is the decorated image of an immersion of a
collection of circles to the plane. The Gauss diagram Gk of k consists of the
oriented immersing circles with the preimages of each crossing connected by an
arrow, pointing from overpass to underpass, and equipped with the sign of the

crossing. The sign is given by the rule sign
( )

= +1, sign
( )

= −1.

We extend the definition of Gauss diagram to singular link diagrams as follows:
The preimages of each singular point are connected by an unsigned singular
arrow drawn . The orientation of the singular arrow is the orientation of
the corresponding arrow in the Gauss diagram of the link diagram where we
have resolved the singular point into a crossing with positive sign.

Two Gauss diagrams are considered the same if they are related by an ori-
entation-preserving diffeomorphism of the circles. Hence the Gauss diagram
is a well-defined planar isotopy invariant of knot diagrams. The Gauss diagram
of a link with ordered components has an inherited ordering of the circles, and
is considered up to diffeomorphisms that preserve this ordering.

2.2. Arrow diagrams

A (based ordered) arrow diagram with n circles and degree m is n ordered
oriented based circles with m arrows with distinct end points on the circles
(distinct from base points). Each arrow is equipped with multiplicity 1 or 2.
An arrow of multiplicity 2 is drawn with a double arrow head.

Multiplicity 2 arrows appear naturally in products of arrow diagrams with
multiplicity 1 arrows (see Example 5), and allow to express some useful func-
tions on Gauss diagrams (see Example 1). (The newer approach in [2] may
be more straightforward. There the present algebra of arrow diagrams is re-
placed by the isomorphic algebra of diagrams with signed arrows, where an
arrow of even or odd multiplicity can be regarded as the sum, respectively the
difference, of a positive and a negative arrow.)
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In [5] the equivalence class of the arrow diagram A under orientation- and
ordering-preserving diffeomorphisms of the circles is called the isomorphism
class [A]. In this paper we abandon this terminology and consider two arrow
diagrams equal if they are related by an isomorphism of this kind.

An arrow polynomial with n circles is an element of the Q-vector space
Bn spanned by arrow diagrams with n circles. In section 2.5 we give Bn a
structure of Q-algebra graded by the degree, due to Polyak and Viro, and in
Section 3 we introduce a compatible coalgebra structure on B1.

A non-based arrow diagram is an arrow polynomial created by symmetriz-

ing a based arrow diagram with relation to base points, for example =
+ . A non-ordered arrow diagram is an arrow polynomial created by

symmetrizing an ordered arrow diagram with relation to the ordering. We will
see that the non-based arrow diagrams and the non-ordered arrow diagrams
with n circles form subalgebras A n and C n ⊂ Bn.

2.3. The function defined by an arrow diagram

Let G be a Gauss diagram equipped with base points on the circles, distinct
from arrow end points, and an ordering of the circles. Let A be an arrow
diagram. A representation σ of A in G is an embedding σ : A ↪→ G that

• takes circles to circles, preserving ordering, orientations and base points,
and

• takes each arrow to an arrow, preserving orientation if the arrow in the
Gauss diagram is not singular.

The representation σ is called contributing if σ(A) contains all singular arrows
of G. Define

sign(σ ) =
∏

Arrows α in A

sign(σ (α))µ(α)+ν(σ (α))

where µ(α) = 1 or 2 is the multiplicity of α and ν(σ (α)) = 1 if σ(α) is a
singular arrow in G, and ν(σ (α)) = 0 otherwise. Note that for non-singular
Gauss diagrams, we can ignore ν and all representations are contributing. The
value of A on G is

〈A,G〉 =
∑

Contributing representations σ :A→G

sign(σ ).

The pairing 〈·, ·〉 is extended linearly to Bn so that each arrow polynomial
defines a Q-valued function on Gauss diagrams equipped with base points and
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an ordering of the circles. It is evident that non-based and non-ordered arrow
diagrams define Q-valued functions on Gauss diagrams without base points
respectively without ordering of the circles. Some elements in Bn − A n also
give well-defined functions on non-based Gauss diagrams (for example the
arrow diagram V2 in Proposition 4).

Example 1.
〈

,G
〉

is the number of arrows in the (non-singular) Gauss

diagram G, while
〈

,G
〉

is the sum of signs of all arrows (called the writhe

of G).

Proposition 2. Let A ∈ Bn be such that v(k) = 〈A,Gk〉 is a link invariant.
Then the value of A on singular Gauss diagrams is the ordinary extension of
v to singular link diagrams.

Proof. Let A be an arrow diagram, and G• a singular Gauss diagram which
is resolved into G+ respectively G− (possibly also singular) by resolving the
singular arrow a into the positive arrow a+ or the negative arrow a−.

〈A,G+〉 − 〈A,G−〉
=

∑
Repr. σ :A↪→G+

sign(σ ) −
∑

Repr. σ :A↪→G−

sign(σ )

= ⌈
The representations that take no arrow to a cancel.

⌋
=

∑
Repr. σ :A↪→G+

mapping some αa to a+

(+1)µ(αa) sign(α �= αa)

−
∑

Repr. σ :A↪→G−
mapping some αa to a−

(−1)µ(αa) sign(α �= αa)

=
∑

Repr. σ :A↪→G±
mapping some αa to a

sign(σ (αa))
µ(αa)+1 sign(α �= αa) = 〈A,G•〉

where sign(α �= αa) is the product
∏

sign(σ (α))µ(α)+ν(σ (α)) over all arrows
α �= αa in A.

Proposition 3 (Polyak-Viro). All link invariants obtained from arrow dia-
grams of degree ≤ n are of finite degree ≤ n.

Proof. If the number of singular arrows in the Gauss diagram G is greater
then the number of arrows in A, then there are no contributing representations
A ↪→ G.
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2.4. Formulas for link invariants

Consider the arrow polynomials

O3 = − , V2 = , Ṽ2 = , V3 =
3

+
2

,

V4 = 1

2
+ 3

2
+ 1

2
+ 3 + + 2

+ 2 + − + + + + 2 ,

+ 2 + +

W2 = + + + + + , C = ,

with one circle and the arrow polynomial

T = + + −
3

with two unordered circles. Consider the arrow polynomials with three ordered
circles

P = 2 + 2 +

+ ,

S = 1

6

∑
σ∈S3

sign(σ )P σ ,

where S is the result of anti-symmetrization of P over all permutations of the
circles. The following statement is proved in Section 4.

Proposition 4 (Polyak-Viro [5]). Let Gk be the Gauss diagram of the link
k.

(1) o3(k) = 〈O3,Gk〉 is identically zero.

(2) v2(k) = 〈V2,Gk〉 = 〈Ṽ2,Gk〉 is the Vassiliev invariant of degree 2 that
takes values 0 on the unknot and +1 on the trefoil (the Casson knot
invariant).
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(3) w2(k) = 〈W2,Gk〉
〈C,Gk〉 = v2(k).

(4) v3(k) = 〈V3,Gk〉 is the Vassiliev invariant of degree 3 that takes values
0 on the unknot, +1 on the right trefoil and −1 on the left trefoil.

(5) v4(k) = 〈V4,Gk〉 is the Vassiliev invariant of degree 4 that is additive,
invariant under mirror reflection, and takes values 3 on the trefoil and
2 on the figure eight knot.

(6) t (k) = 〈T ,Gk〉 is a link invariant of degree 3 of two-component links.

(7) µ123(k) = 〈S,Gk〉 mod gcd(lk(k2, k3), lk(k1, k3), lk(k1, k2)), where k1,
k2, k3 are the components of k, is the Milnor link invariant of an ordered
three-component link.

In point 2. and 7., we have chosen some base points on the Gauss diagram.
This choice is immaterial.

Note. Since the definitions concerning non-based arrow diagrams have
been changed, the formulas given here differ from those given by Polyak-
Viro [5]: Compared with the original formulas we have put a factor 1/(number
of symmetries) on all non-based diagrams with rotational symmetry. The for-
mula for t (k) given in [5] is misprinted and does not give a link invariant. This
is the correct formula [10].

2.5. Arrow diagram algebra

Let A1, A2 and B be arrow diagrams. We say that B can be decomposed into
A1 and A2 if there are embeddings φi : Ai ↪→ B, i = 1, 2 that

• takes circles to circles and arrows to arrows preserving ordering, orient-
ations and base points, so that

• for every arrow α ⊂ B there is either an arrow α1 ⊂ A1, or an arrow
α2 ⊂ A2, or both, so that α = φi(αi), and

• α has multiplicity µ(α) = µ(αi) if α is only in the image of φi , and
µ(α) = µ(α1) + µ(α2) mod 2 if α is in the image of both φ1 and φ2.

The triple (φ1, φ2, B) is called a composition of A1 and A2.
Let A1, A2 be arrow diagrams and let C(A1, A2) be the set of compositions

(φ1,l , φ2,l , Bl) of A1, A2. The product of the diagrams A1 and A2 is given by

A1 · A2 = µ(A1, A2) =
∑

C(A1,A2)

Bl.

The unit ν : Q → Bn is given by ν(α) = α
(
n copies of

)
. Clearly µ and

ν makes Bn into an associative commutative Q-algebra filtered by the degree,
with A n and C n as subalgebras.
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Example 5 (Multiplication of arrow diagrams).

· = 2 + 2 +

Proposition 6 (Polyak-Viro [5]). For all arrow diagrams A1, A2 and all
Gauss diagrams G,

〈A1 · A2,G〉 = 〈A1,G〉〈A2,G〉.

Proof. Let A1, A2 be arrow diagrams. We need only consider a non-
singular Gauss diagram G. We want to show that∑

(φ1,φ2,B)∈C(A1,A2)
Repr. σ :B↪→G

sign(σ ) =
∑

Repr. σ1:A1↪→G
Repr. σ2:A2↪→G

sign(σ1) sign(σ2).

There is a 1-1-correspondence between the terms, which preserves the sign:
The composition (φ1, φ2, B) and σ : B ↪→ G define representations σi :
Ai ↪→ G, i = 1, 2, by σi = σ ◦ φi . On the other hand, given σ1, σ2 there is
an arrow diagram B made from the Gauss diagram G by erasing all arrows
α �⊂ (σ1(A1) ∪ σ2(A2)) and replacing the remaining arrows in G with arrows
of the correct multiplicity. Then (σ1, σ2, B) is a composition of A1 and A2,
and the inclusion B ↪→ G is a representation of B in G.

3. Bialgebra of arrow diagrams with one circle

3.1. Comultiplication

Let A be an arrow diagram with one circle. A splitting s of A is a point on the
circle of A, distinct from the arrows and base point, so that s and the base point
divides the circle into two segments with no common arrows (no arrow has its
tail on one segment and its head on the other). Let Ls(A) be the segment that
the orientation vector at the base point points into, together with all arrows
with end points on that segment. Call the other segment, together with all its
arrows, Rs(A). We make Ls(A) into an arrow diagram Ls(A) by closing the
segment to a circle and putting a base point at the splicing point. In the same
way we make an arrow diagram Rs(A) out of Rs(A).

Let P(A) be the set of all splittings of A. The coproduct is defined as

#(A) =
∑

s∈P(A)

Ls(A) ⊗ Rs(A)

Define ε : B1 → Q by ε(A) = 1 if A is the arrow diagram with no arrows,
and ε(A) = 0 otherwise.
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Example 1 (Comultiplication of arrow diagrams).

# = ⊗ + ⊗ + ⊗

Proposition 2. µ, ν, #, ε makes B1 into a associative, commutative,
coassociative bialgebra filtered by the degree.

That is, # and ε makes B1 into a coassociative coalgebra, and the algebra
and coalgebra structures are compatible. The proof is given in Section 3.3. Note
that A 1 ⊂ B1 (the algebra of non-based arrow diagrams) is a subalgebra, but
not a sub-coalgebra.

3.2. Connected sums of based Gauss diagrams and long knot diagrams

For two based Gauss diagrams G1, G2 we form their connected sum G1#G2 in
the following way: cut the circles G1 and G2 at their base points and glue the
two segments together in accordance with the orientation to form one circle.
Put a base point on the new circle at the glueing point where the orientation
vector points into the G1-segment.

Example 3 (Connected sum of Gauss diagrams.).
+

#
−

− −
=

−

−
−

+

A singular long knot is an immersion R1 → R3 which is the standard
embedding outside a compact set, and which fails to be an embedding exactly
by having a finite number of double points, at which the branches are not
tangent. Long knot diagrams are defined in the same way as ordinary knot
diagrams. To a long knot diagram we associate a based Gauss diagram in the
natural way. There is a natural connected sum of long knot diagrams (by scaling
and concatenation), well-defined up to planar isotopy, which corresponds to
the connected sum of based Gauss diagrams. (Hence G1#G2 is really the Gauss
diagram of some knot diagram).

Arrow polynomials in B1 define functions on long knot diagrams. An ele-
ment D = ∑

αiAi ⊗ Bi ∈ B1 ⊗ B1 defines a function 〈D, (G1,G2)〉 =∑
αi〈Ai,G1〉〈Bi,G2〉 on ordered pairs of based Gauss diagrams G1,G2.

Proposition 4. For α ∈ B1 and based Gauss diagrams G1,G2,

〈#(α), (G1,G2)〉 = 〈α,G1#G2〉
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Proof. We want to show that

∑
Repr. σ :A↪→G1#G2

sign(σ ) =
∑

s∈P(A)

( ∑
σL:Ls(A)↪→G1
σR :Rs(A)↪→G2

sign(σL) sign(σR)

)
.

If s ∈ P(A), the representations σL : Ls(A) ↪→ G1 and σR : Ls(A) ↪→ G2

define a representation σ : A ↪→ G1#G2 with sign(σ ) = sign(σL) sign(σR) in
a natural way. On the other hand, if σ : A ↪→ G1#G2 is a representation, there
must be a splitting s of A such that σ takes Ls(A)-part of A into the G1-part
of G1#G2 and Rs(A) into the G2-part (since there are no arrows between the
G1- and G2-part of G1#G2). Hence there is a 1-1-correspondence between the
terms.

3.3. Proof of Proposition 2

Proof of coassociativity. Let A be an arrow diagram. We want to show
that (Id ⊗#)(#(A)) = # ⊗ Id(#(A)), that is∑
p∈P(A),p′∈P(Rp(A))

Lp(A) ⊗ Lp′(Rp(A)) ⊗ Rp′(Rp(A))

=
∑

p′∈P(A),p∈P(Lp(A))

Lp(Lp′(A)) ⊗ Rp(Lp′(A)) ⊗ Rp′(A).

Let p ∈ P(A). A point q on the circle of Lp(A) (or Rp(A)) is a splitting
of Lp(A) (respectively Rp(A)) if and only if the corresponding point on the
circle of A is a splitting of A. Thus we can identify the sets {(p, p′) | p ∈
P(A), p′ ∈ P(Rp(A))} and {(p, p′) | p ∈ P(Lp′(A)), p ∈ P(A)}, and the
hypothesis follows from the relations below, where the blobs X, Y and Z may
be any configurations of arrows:

A = X Z

Yp p�

Lp(A) = X

Rp′(A) = Z

Lp′(A) = X

Yp

Rp(A) = Z

Y p�

Lp(Lp′(A)) = X

Rp(Lp′(A)) =
Y

Lp′(Rp(A)) =
Y

Rp′(Rp(A)) = Z

Proof of compatibility. Let O be the arrow diagram without arrows,
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α ∈ Q, and A1, A2 arrow diagrams. Then ε(ν(α)) = ε(αO) = α,

#(ν(α)) = α#(O) = α(O ⊗ O) = ν ⊗ ν(α(1 ⊗ 1)),

and

ε(µ(A1 ⊗ A2)) =
{

1 if A1 = A2 = O

0 otherwise

}
= ε(A1)ε(A2)

= ε ⊗ ε(A1 ⊗ A2).

It remains to show that # and µ are compatible, that is (µ ⊗ µ)((Id ⊗τ ⊗
Id)((# ⊗ #)(A1 ⊗ A2))) = #(µ(A1 ⊗ A2)), or explicitly∑

p1∈P(A1), p2∈P(A2),
(φL1,φL2,BL)∈C(Lp1 (A1),Lp2 (A2))

(φR1,φR2,BR)∈C(Rp1 (A1),Rp2 (A2))

BL ⊗ BR =
∑

(φA1 ,φA2 ,B)

q∈P(B)

Lq(B) ⊗ Rq(B).

For (φA1 , φA2 , B) ∈ C(A1, A2) and q ∈ P(B), let pi = φ−1
Ai,l

(q), i = 1, 2.
Then pi ∈ P(Ai), since otherwise some arrow in Ai would be mapped to
an arrow connecting L (B) and R(B). The embeddings φ̃Li = φAi

|Lpi
(Ai ) :

Lpi
(Ai) → Lq(B) and φ̃Ri = φAi

|Rpi
(Ai ) : Rpi

(Ai) → Rq(B) define com-
positions (φL1, φL2, Lq(B)) ∈ C(Lp1(A1), Lp2(A2)) and (φR1, φR2, Rq(B)) ∈
C(Rp1(A1), Rp2(A2)) in a natural way.

Given pi ∈ P(Ai) for i = 1, 2, (φL1, φL2, BL) ∈ C(Lp1(A1), Lp2(A2))

and (φR1, φR2, BR) ∈ C(Rp1(A1), Rp2(A2)), construct the arrow diagram B

by merging together BL and BR exactly as when taking the connected sum of
two based Gauss diagrams. Let q be the splicing point where the orientation
vector point into the BR-segment. Then q ∈ P(BA,l). The maps φLi and φRi ,
i = 1, 2 define embeddings φ̃Li : Lp1(Ai) ↪→ Lq(B), φ̃Ri : Rp1(Ai) ↪→
Rq(B) which fit together to embeddings φi : Ai ↪→ B, i = 1, 2, so that
φ1, φ2, B) ∈ C(A1, A2).

4. Proofs of invariance

4.1. The linking number relation

Here we introduce a tool for showing that an arrow diagram formula gives
a trivial function. This tool will later be used to show that the change of the
formulas in Proposition 4 under a Reidemeister move is zero. As noted in [5],
the linking number of an ordered 2-component link L is given by two different
formulas:

lk(L) =
〈

,GL

〉
=
〈

,GL

〉
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where GL is the Gauss diagram of L. This is simply the fact that the linking
number can be computed as the sum of signs of either the overcrossings, or
equally well the undercrossings, of the first component over (under) the second
component.

As the first application we prove the following subset of Proposition 4:

Proposition 1. For each based Gauss diagram G of a knot diagram,

〈
,G
〉
=
〈

,G
〉

Proof. Consider the arrow polynomial A + B = ab +
a�

b� evaluated

on a based Gauss diagram Gk of a knot diagram k.

〈A + B,Gk〉 =
∑

arrows α⊂Gk

( ∑
σ :A↪→Gk

σ(a)=α

sign(σ ) +
∑

σ ′:B↪→Gk

σ ′(a′)=α

sign(σ ′)

)

For each arrow α we can smooth k at the crossing corresponding to α to create a
2-component link diagram: if for example sign(α) = +1, the crossing α looks

like
a

, where the dotted arcs symbolize the rest of the knot diagram.

Then we create the link
IIa Ia

by smoothing α. Link component Iα is

the part of the knot diagram between overcrossing at α and undercrossing at α.
Link component IIα is the other part of the knot diagram. The expression in
the parenthesis is sign(α) · lk(Iα, IIα), because the representations of A count
the signs of overcrossings of IIα over the part of Iα between the base point
and α, and the representations of B count the signs of overcrossings of IIα
over the part of Iα between α and the base point.

If we apply the same procedure as above to B +A′ = a�

b�
+

a�b�
we get

the same value, using the other formula for the linking number: 〈B+A′,Gk〉 =∑
α∈Gk

sign(α) lk(Iα, IIα), where the linking number is computed as the sum
of signs of overcrossings of Iα over IIα .

To summarize the method, we split the sum of signs into sub-sums from
representations that coincide on every arrow but one. In the sub-sum, the final
arrow counts the signs of overcrossings of some arc in the link diagram over
some other arc. We then find a way to interpret these two arcs as components
of some link, and apply the linking number relation.
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4.2. Philosophy of the proofs

Each Reidemeister move has a distinguished positive direction, and we define
the differential of a knot diagram function at a Reidemeister move to be the
change of the function under the move in positive direction. We shall prove
that all differentials of the functions in Proposition 4 are zero.

In Section 4.4 we see that for each arrow diagram formula and each equi-
valence class of Reidemeister moves, we get a diagrammatic formula for the
corresponding differential. This arrow diagram fragment formula is given by
an evaluation of arrow diagrams on fragments of Gauss diagrams, and it eval-
uates on fragments of Gauss diagrams that correspond to the unchanged part
of some link diagram where we perform a move of the given class.

In some cases the differential vanishes as a sum of arrow diagram fragments.
To prove that the non-trivial formulas define vanishing functions we use the
linking number relation in section 4.1 above. We can use this relation for arrow
diagram fragment formulas in exactly the same way as outlined for ordinary
arrow diagram formulas in the proof of Proposition 1. More involved formulas
for the trivial invariant can be used in the same way as the linking number
relation. In the proof of the formula for v4, we use the fact that 〈O3, ·〉 = 0.

4.3. Reidemeister moves of Gauss diagrams

It is sufficient to show that the functions in Proposition 4 are invariant under
the local transformations of Gauss diagrams in Table 1, where the dotted part
of the diagram is supposed to be unchanged. This is easily proved using the
classification and relations for Reidemeister moves introduced in [3]. (The
paper [3] contains an even smaller sufficient set of Gauss diagram transform-
ations involving one link component, but the set in Table 1 is more suited for
computing representations.) A move is said to be in positive direction if it goes
from left to right in Table 1.

4.4. Diagram fragments

We shall call the pictures inTable 1 Gauss diagram fragments. A Gauss diagram
that we want to perform a certain Reidemeister move on can be divided into two
fragments, one related to the Reidemeister move and the other a complementary
Gauss diagram fragment, so that they fit together to make the whole diagram.

For example, the Gauss diagram of the link diagram can be divided

as
+

−
+
+

+

−

−−

�→
+ +
−

, ++

−

−−

, where the first Gauss diagram

fragment is related to the Reidemeister move -III+−+m in Table 1.
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Table 1. A sufficient set of Reidemeister moves for Gauss diagrams.

⇀↽
-1++ +

⇀↽
-1−+ +

⇀↽
-2+±

±
± ⇀↽

-2−±
±
±

−
+

+

⇀↽
-3+−++

+
−

+ −+

−
⇀↽

-3+−−−
−

+−

⇀↽
-II+± ±

±
⇀↽

-II−± ±

±

+ +

−
⇀↽

-III+−+b

+

+
−

+

+

−
⇀↽

-III+−+m
+ +
−

+

+−
⇀↽

-III+−+t +

+
−

+ + −
⇀↽

-III+−+3 + +−

An arrow diagram A can be evaluated on a Gauss diagram fragment D

from Table 1 in a natural way: A representation A ↪→ D is an embedding
of the circles (preserving ordering and orientation) such that for each arrow
α ⊂ A, α is either mapped to an arrow in D (with the same orientation), or
both end points of α are mapped to dotted arcs in D. Given a representation
σ : A ↪→ D, erase the arrows in D, and instead insert the arrows from σ(A)

that have their end points on dotted arcs of D. The result is an arrow diagram
fragment. The representation also has a sign, given by the product of signs of
the arrows of D in the image of multiplicity one arrows of A. The value of A

on D is the sum of signed arrow diagram fragments, for example:〈
,

+

+

−

〉
= − +

−
+ +

+
+ · · ·

The solid arrows are the arrows in the arrow diagram that are mapped to dotted
arcs. The dotted arrows are not considered part of the arrow diagram fragment,
but are included to show how the fragment arises from some representation.

In a similar way, an arrow diagram fragmentP defines a functionF(P )(·)on
complementary Gauss diagram fragments H , that complete the Gauss diagram
fragment from the table into a Gauss diagram: A representation P ↪→ H is an
embedding that takes each arc of the circle of P to the corresponding arc of
the circle of H , and each arrow of P to an arrow of H . Each representation
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has a natural sign, and we define the value of P on H as the sum of signs of all
representations. For any arrow diagram A, 〈A, ·〉 obviously factorizes through
this construction, for example:

F
(〈

A, + +
−

〉)(
++

−

−− )
=
〈
A,

+
−
+
+

+

−

−− 〉

The function 〈T , ·〉, T ∈ Bn, is invariant under the move X : Dl ⇀↽ Dr

in Table 1, Dl,Dr Gauss diagram fragments, if and only if the differential
∂X = F(〈T ,Dr〉 − 〈T ,Dl〉) = 0 on all Gauss diagram fragments that are
complementary to Dr and Dl .

4.5. Arrow diagram fragments that always cancel

For any arrow diagram A, some fragments will always cancel in the formula
for the differential 〈A,Dl〉 − 〈A,Dr〉. These are:

(1) Fragments that contain all the arrows of A.

(2) For -2: Fragments that contain all the arrows of A except one arrow of
multiplicity one.

(3) For -3: Fragments that contain all the arrows of A except two.

Proof. 1. is obvious. 2: Such arrow diagram fragments come in pairs with
opposite sign since -2 introduces two parallel arrows with opposite sign. 3:
In this move each individual arrow in Dl is present in Dr with the same sign
and orientation; the only thing that changes is the relative configuration of
all three arrows. Hence the fragments that arise from mapping less then two
arrows to the arrows in Dl are cancelled by the fragments that arise from the
corresponding representations in Dr .

4.6. Invariance under change of base point

Here we show that the formulas for v2 and µ123, which are written with based
arrow polynomials, are invariant under the process of moving a base point
past an arrow end point. We use essentially the same method as for showing
invariance under a Reidemeister move.

4.6.1. v2. The process of moving an arrow head past the base point is de-

scribed by the Gauss diagram fragment pair
+

⇀↽
+

. Let

J =
〈

,

+ 〉
−
〈

,

+ 〉
=

+

−
+
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We interpret J as a function on the ordered based two-component link made by
completing the complementary link diagram (symbolized by the dotted parts
in the picture below) into a diagram of a 2-component link:

�−→
II I

.

This link diagram has a Gauss diagram with two ordered circles I and II, which
correspond to the left respectively the right dotted arc in the Gauss diagram
fragments of the base point move. Interpreted as an arrow diagram function
on this Gauss diagram, both arrow diagram fragments in J give the linking
number, so F(J ) = 0. The proof for the case of the base point passing an
arrow tail is similar.

4.6.2. µ123. Let i, j, k be a permutation of 1, 2, 3. Since S has no arrows with
both end points on the same circle, we only have to consider the case when the
base point on Gauss diagram circle Gj moves past the end point of an arrow
connecting to Gi . For an arrow head passing the base point, the change is

J =
〈
T , +

〉
−
〈
T , +

〉

= 1

6

{
2 +

a1 a2 a3

+ +

c1 c2 c3

+ 2 +

b3 b2 b1

+ +

c3 c2 c1

}

where the three circles come from Gi,Gj ,Gk . The labels a1, a2, a3, et cetera,
tell us which circle of the terms of P that is mapped to which circle of the
Gauss diagram fragment; a1 means the leftmost circle of the first term of P ,
and so on.

We immediately see that interpreted as a function on complementary link
diagrams, the first term counts the signs of crossings of link component j over
component k, the second term counts the signs of crossings of link component
k over component j , and so on. If we call the n:th link component Ln, F(J ) =
1
6 (2 lk(Lj , Lk) + lk(Lk, Lj ) + 2 lk(Lj , Lk) + lk(Lk, Lj )) = lk(Lj , Lk), so
〈T , ·〉 is invariant modulo gcd(lk(L2, L3), lk(L1, L3), lk(L1, L2)).
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For the case of an arrow tail passing the base point, we get

F
(〈

T , +

〉
−
〈
T , +

〉)

= F

(
1

6

{
2 +

b1 b2 b3

+ +

d1 d2 d3

+ 2 +

a3 a2 a1

+ +

d3 d2 d1

})

= 1

6

(
2 lk(Lk, Lj ) + lk(Lj , Lk) + 2 lk(Lk, Lj ) + lk(Lj , Lk)

)
= lk(Lj , Lk).

4.7. Invariance under -1-moves

An arrow diagram function can fail to be invariant under -1 only if the arrow
diagram formula contains a diagram with an arrow with adjacent head and tail.
This is the case only for W2 and C. We shall show that 〈W2, ·〉 and v2(·)〈C, ·〉
are covariant. The introduction of a new arrow increases the v2(·)〈C, ·〉 by
v2(·), while

〈
W2, +

〉
−
〈
W2,

〉
=

+
,

〈
W2, +

〉
−
〈
W2,

〉
=

+
.

Complete the complementary knot diagram into a knot diagram k′ isotopic to
the knot diagram on the left-hand side of the Reidemeister move and let Gk′

be the Gauss diagram of k′ with base point at the point where the new arrow
is introduced. We immediately see that the jump of 〈W2, ·〉 is 〈V2,Gk′ 〉, so the
statement is proved given the formula v2(k) = 〈V2,Gk〉.

4.8. Invariance under -2-moves

4.8.1. o3, v3, v4, µ123. 〈O3, ·〉, 〈V3, ·〉 and 〈S, ·〉 are easily seen to be invariant.
〈V2, ·〉 is invariant since it is independent of the choice of base point on the
Gauss diagram, and we can choose a base point which is not between the arrow
heads introduced by the move. For 〈V4, ·〉 all terms in the difference cancel as
Gauss diagram fragments.

4.8.2. w2. A move in the positive direction increases v2(·)〈C, ·〉 by 2v2(·),
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while〈
W2,

±
±

〉
−
〈
W2,

〉

=
(
∓ ±

± ± ±
±

)
+
(

± + ±
)

+
(

± + ±
)

+
(

± + ±
)

+
(

± + ±
)

+
(

± + ±
)

and〈
W2,

±
±

〉
−
〈
W2,

〉

=
(
∓ ±

± ± ±
± − ±

±

)
+
(

± + ±

)
+
(

± + ±

)

+
(

± + ±

)
+
(

± + ±

)
+
(

± + ±

)
.

In the first, indirect, case, the knot diagram on the left-hand side of the Re-

idemeister move can be drawn , where the dotted strands symbolize

the complementary knot diagram. Complete the complementary knot diagram

into the link diagram . No new intersections are introduced, and

the two link components correspond to the dotted arcs in the Gauss diagram
fragments. The linking number relation shows that the two terms in the first
parenthesis do not contribute to the differential.

In the direct case, complete the complementary knot diagram as

�−→ ,

where the first picture is the knot diagram on the left-hand side of the Re-
idemeister move. This introduces a new crossing, an overcrossing of the link
component corresponding to the upper dotted arc in the Gauss diagram frag-

ment over the component corresponding to the lower dotted arc. Then
〈

±
±, ·
〉

is the linking number of this link and
〈

±
±, ·
〉

is the same linking number

minus the sign (which is +1) of the new crossing. So
〈

±
± − ±

±, ·
〉

=
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+1 =
〈

±
±, ·
〉

and the sum in the first parenthesis does not contribute to the

jump.
The remaining terms are the same in both cases. We can interpret these

terms as an arrow diagram function on the knot diagram k on the left hand side
of the -2-move. We then recognize the differential as twice 〈V2,Gk〉.
4.8.3. t . The only non-trivial case is -II+:

〈
T , ±

±
〉
−
〈
T ,

〉
= − ±

± − 1

3

(
−3 ±

±
)
.

Interpret this formula as an arrow diagram formula on the link diagram on the
left-hand side of the -2-move, and apply the linking number relation.

4.9. Invariance under -3-moves

The Gauss diagram move
−
+

+
⇀

+
−

+
corresponds to the Reidemeister

move that transforms the knot diagram
I

II

III

into , and the Gauss

diagram move
−+

−
⇀ −

+−
corresponds to the Reidemeister move that

transforms
I

II

III

into . Here the dotted strands symbolize the

complementary knot diagram. The three parts I, II, III of the complementary

knot diagram correspond to the three dotted arcs
I II

III

in the Gauss diagram

fragments.

4.9.1. v2. Since 〈V2, ·〉 is invariant under change of base point, it is sufficient

to note that it is invariant under the based -3:s
−
+

+

⇀↽
−

+

+

and
−
+

+

⇀↽

−

+

+

, which is easy (all arrow diagram fragments cancel).

4.9.2. O3. 〈
O3,

−
+

+

〉
−
〈
O3,

+
−

+

〉
= − ,

〈
O3,

−+

−〉− 〈
O3,

−

+−

〉
= − .
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We easily see that the differentials are zero by interpreting the arrow diagram

fragment formulas as functions of the three-component link made

from the complementary knot diagram. In the first formula each term gives the
linking number of the component from arc I with the component from arc II.
In the second difference each term gives the linking number of the components
from arcs II and III.

4.9.3. w2. v2 and 〈C, ·〉 are invariant under -3, while

〈
W2,

−
+

+

〉
−
〈
W2,

+
−

+

〉

= 2 − 2 + − + −
〈
W2,

−+

−〉− 〈
W2,

−

+−

〉

= 2 − 2 + − + −

The jumps are zero by the same argument as in Section 4.9.2.

4.9.4. v4. In the descending case, the difference cancels as fragments. In the
ascending case, by tedious calculation, we get

J =
〈
V4,

−+

−〉− 〈
V4,

−

+−

〉

= 2 + + − 2 − 2 −

− + 2 − − 2 + −

+ − + − + 2 −

To see that F(J ) is zero as a function on complementary Gauss diagram frag-
ments, we shall use several tricks. First complete the complementary knot
diagram into a three-component link diagram as in Section 4.9.2. The arrow
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diagram product

(
−

)

= 2 + 2 +

− − − −

gives a vanishing function on two-component links by Proposition 6 and the
linking number relation. In terms of the link created from the complementary

diagram this gives us F
(

2 + 2 + − − − −)
= 0.

Now consider + . Fix maps of the horizontal arrows to the same

arrow in the complementary fragment and sum over all such representations.
The sum is the linking number of the link components I and II multiplied by

the sign of the selected arrow. F( + is the sum of such sums over all

maps of the horizontal arrows. F( + ) can be computed in the same

way and gives the same function. Hence F
(

+ − −
)

= 0.

Consider in the same setup. Fix a map of the arrow with both end

points in the same dotted arc (the arc II) to an arrow α in the Gauss diagram of
the three-component link diagram, and sum over all such representations. We
can resolve the link diagram at the selected crossing α into a four component
link diagram as below:

a
�−→

I �I�

The sum of representations with α fixed is the linking number of the III-

component with the I ′′-component. Thus F
(

−
)

= 0.

Now interpret + as an arrow diagram function on the link diagram
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. Fix a map of the horizontal arrows to an arrow in the complementary

Gauss diagram fragment, resolve the link at the corresponding crossing in the
link, and interpret the sum of representations as a linking number. We get

F
(

+ − +
)

= 0.

Finally, consider the two knot diagrams and (of isotopic

knots), made from the II- and III-arcs of the complementary knot diagram.

These knot diagrams have Gauss diagrams G1 =
II

III

and G2 =
II

III
+

+. By

Proposition 4 we have that
〈

− ,G2

〉
−
〈

− ,G1

〉
= 0. For

the Gauss diagram fragment this gives F
(

2 − 2 + + −
− + + − − − −

)
= 0. Together,

these relations prove that F(J ) = 0 as a function on complementary Gauss
diagram fragments.

4.9.5. t . Since no arrow diagram in T has more than one arrow with both end
points in the same circle, it is enough to consider the versions of the move that
involve two circles. After cancellations of arrow diagram fragments we get

〈
T ,

+ +

−

〉
−
〈
T ,

+

+
−

〉
=
(
− +

−

)
− 1

3

(
−3

+

−

)

−
(
−

+
−

)
− 1

3

(
−3

+

−
)

〈
T ,

+

+

−

〉
−
〈
T , + +

−

〉
= 0

〈
T ,

+

+−
〉
−
〈
T ,

+

+
−

〉
=
(
− −

+
) − 1

3
(−3

−

+

)

−
(
− −

+

)
− 1

3

(
−3

−

+

)

all of which are easily seen to give zero jump functions by the linking number
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relation, after completing the complementary link diagram as below:

�−→

4.9.6. µ123. The difference cancels as a sum of arrow diagram fragments.

4.10. Identification of the invariants

4.10.1. o3. By Proposition 3 we know that this invariant is of at most degree
3. However, the two terms in O3 clearly take the same value on all singular
Gauss diagrams of order 3. Thus the invariant is of degree ≤ 2

By the theory of Vassiliev invariants (see [1]) we know that the value of
an invariant of degree n on a singular knot of order n only depends on the
unoriented configuration of singular arrows in the Gauss diagram, that is, the
chord diagram of the singular knot. There are only two chord diagrams of

order 2: and . The latter represents an inadmissible class of singular

knots and can be ignored.

The first is represented by the knot + with Gauss diagram
+

,

and since 〈T , ·〉 clearly is zero on this Gauss diagram, it is zero on all Gauss
diagrams of degree 2. Since there are no Vassiliev invariants of degree 1, the
invariant is constant, and it obviously takes value 0 on the unknot.

4.10.2. v2, v3. v2 takes the value +1 on the trefoil knot, which has Gauss

diagram
+

++
. Since it takes value 0 on the unknot, it is non-trivial, and so

must be of at least degree 2. By Proposition 3 we conclude that it has degree 2.
Computing v3 on the trefoils is likewise easy. Since the trefoils differ by

three crossing changes and only one or two crossing changes give the unknot,
v3 is of degree 3.

4.10.3. v4. Additivity follows since the arrow diagrams in V4 cannot be non-
trivially split into connected components. Mirroring a knot diagram affects the
Gauss diagram just by reversing all signs, and since all terms in V4 have an even
number of arrows, counting multiplicity, this does not affect the function. The
degree is 4, since v4 takes value 10 on the singular knot made by transforming
all four crossings of the figure-eight knot diagram into double points.
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