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QUASIANALYTIC FUNCTIONALS AND PROJECTIVE
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(To our friend Dietmar Vogt on the occasion of his 60th birthday)

Abstract

The topology of the weighted inductive limit of Fréchet spaces of entire functions in N variables
which is obtained as the Fourier Laplace transform of the space of quasianalytic functionals on
an open convex subset of RN cannot be described by means of weighted sup-seminorms.

1. Introduction

Let A (RN) denote the space of all real analytic functions on RN with complex
values. Its strong dual A (RN)′b is isomorphic to an (LF)-space FA ′(RN) of
entire functions on CN via Fourier Laplace transform. Each step space of this
(LF)-space is a Fréchet space whose topology is given by weighted sup-norms.
Ehrenpreis [9] showed that the topology of FA ′(RN) cannot be described by
weighted sup-seminorms. Similar questions on the projective description were
later investigated by various authors (see Bierstedt [1]).

In the present paper this question is investigated for the spaces FE ′{ω}(G)
of entire functions on CN which arise as the Fourier Laplace transforms of
E{ω}(G)′b, where G is a convex open set in RN and E{ω}(G) denotes the space
of all ω-ultradifferentiable functions of Roumieu type onG for a given weight
function ω (see 2.1). When ω is a non-quasianalytic weight function, we
showed in [4] that the natural (LF)-topology on FE ′{ω}(G) cannot be given
by weighted sup-seminorms. Now we prove that this result also holds when ω
is quasianalytic (see Theorem 3.1). To do this we have to use arguments which
are quite different from those that we applied in [4], because they were based
on the fact that E{ω}(G) contains non-trivial functions with compact support.

The proof of our main result (Theorem 3.1) relies on the observation that
Theorem 3.1 holds if for each convex open set G in RN there exists µ ∈
E{ω}(RN)′ having special properties (see Lemma 3.2) such that the convolution
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operator Tµ induced by µ maps E{ω}(G) into itself and is not surjective. For
N = 1 the existence of such a quasianalytic functional µ can be shown by
modifying a construction in Braun, Meise, and Vogt [8]. The case N > 1 is
then reduced to the case N = 1 by elementary geometric considerations.

2. Notation and Preliminaries

In this preliminary section we introduce the notation that will be used through-
out the paper. By |·| we denote the Euclidean norm on CN , N ∈ N, while for
a ∈ CN and r > 0 we let B(a, r) := {z ∈ CN : |z− a| < r}.

2.1. Weight functions. A function ω : R → [0,∞[ is called a weight
function if it is continuous, even, increasing on [0,∞[, and if it satisfiesω(0) =
0, ω(1) > 0, and also the following conditions:

(α) ω(2t) = O(ω(t)) as t tends to infinity.

(β) ω(t) = O(t) as t tends to infinity.

(γ ) log(t) = o(ω(t)) as t tends to infinity.

(δ) φ : t �→ ω(et ) is convex.

A weight function ω is called non-quasianalytic, if it satisfies∫ ∞

1

ω(t)

t2
dt <∞.

Otherwise it is called quasianalytic.
The radial extension ω̃ of a weight function ω is defined as

ω̃ : Cn → [0,∞[, ω̃(z) := ω(|z|).
It will also be denoted by ω in the sequel, by abuse of notation. The Young
conjugate of the function φ = φω, which appears in (δ), is defined as

φ∗(x) := sup{xy − φ(y) : y > 0}.

Example 2.2. The following functions are weight functions (possibly after
a change on the interval [−δ, δ], for suitable δ > 0).

(1) ω(t) := |t |α , 0 < α < 1.

(2) ω(t) := log(1+ |t |)β , β > 1.

(3) ω(t) := |t |(log(1+ |t |))−β , β > 0.

(4) ω(t) := |t |.
The weight function in (3) is quasianalytic forβ ∈ ]0, 1] and non-quasianalytic
for β > 1. The weight function in (4) is also quasianalytic.
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2.3. Spaces of ultradifferentiable functions. Let ω be a given weight func-
tion. For a compact subset K of RN and m ∈ N denote by C∞(K) the space
of all C∞-Whitney jets on K and define

E m
{ω}(K) :=

{
f ∈ C∞(K) : ‖f ‖K,m

:= sup
x∈K

sup
α∈NN

0

|f (α)(x)| exp

(
− 1

m
φ∗(m|α|)

)
<∞

}
.

For an open setG in RN , define the space of all ω-ultradifferentiable functions
of Roumieu type on G as

E{ω}(G) := {
f ∈ C∞(G) : For each K ⊂ G compact

there is m ∈ N so that ‖f ‖K,m <∞
}
.

It is endowed with the topology given by the representation

E{ω}(G) = proj←K indm→ E m
{ω}(K),

where K runs over all compact subsets of G.

Note that E{ω}(G) is a countable projective limit of (DFN)-spaces, which
is ultrabornological, reflexive and complete. If ω is non-quasianalytic this
follows from Braun, Meise, Taylor [7], Proposition 4.9. If ω is quasianalytic,
this follows from Rösner [16], Satz 3.25, together withVogt [18], Theorem 3.4,
and Wengenroth [19], Theorem 3.5. By E{ω}(G)′ we denote the dual of E{ω}(G)
while E{ω}(G)′b denotes the strong dual. When ω is quasianalytic, the elements
of E{ω}(G)′ are called quasianalytic functionals on G.

Remark 2.4.
(a) If ω is the weight function ω(t) = |t |, then the space E{ω}(G) coincides

with the space A (G) of all real analytic functions onG. Martineau [11]
proved that A (G) is ultrabornological.

(b) The classes of ultradifferentiable functions of Roumieu type in 2.3 are
defined as in Braun, Meise, and Taylor [7].

2.5. Support functions. For a compact set K in RN , K �= ∅, the support
function hK of K is defined as

hK : RN → R, hK(ξ) := sup
x∈K

〈x, ξ〉 .

Obviously, hK is a convex function which is positively homogeneous.
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2.6. Weighted spaces of holomorphic functions. Let ω be a weight function
and G an open convex subset of RN . Choose an increasing sequence (Kn)n∈N

of convex compact subsets ofG which satisfy the following conditions:Kn ⊂◦
Kn+1 and

⋃
n∈NKn = G. For n ∈ N denote by hn the support function of Kn

and define for n ∈ N, k ∈ N the weights vn,k ∈ C(CN) by

(2.1) vn,k(z) := exp

(
−hn(Im z)− 1

k
ω(z)

)
.

The family (vn,k)n∈N,k∈N is denoted by Vω,G. Next denote byH(CN) the space
of all holomorphic functions on CN and for a given non-negative upper semi-
continuous function v on CN define the weighted semi-normed space

Hv := {
f ∈ H(CN) : ‖f ‖v := sup

z∈CN
|f (z)|v(z) <∞}

.

Then the weighted (LF)-space of entire functions associated with ω and G is
defined as

Vω,GH := indn→ proj←k Hvn,k.

2.7. Fourier-Laplace transform. Letω be a weight function andG a convex
open set in RN . Then it is easy to check that for eachµ ∈ E{ω}(G)′, the Fourier-
Laplace transform µ̂ of µ, defined by

µ̂(z) := µx(exp(−i 〈x, z〉)), z ∈ CN,

(where 〈x, z〉 := ∑N
j=1 xjzj ), is in Vω,GH . In fact, the Fourier-Laplace trans-

form
F : E{ω}(G)′b → Vω,GH, F (µ) := µ̂,

is a linear topological isomorphism. When ω is non-quasianalytic, this was
shown in Braun, Meise, and Taylor [7], Theorem 7.4. When ω is quasianalytic
this was shown by Meyer [14] when N = 1 and in general by Rösner [16],
Satz 2.19.

2.8. The projective hullHV ω,G. Forω,G, and Vω,G as in 2.6, we define the
system V ω,G of weights associated with Vω,G according to Bierstedt, Meise
and Summers [2], 0.2, as

V ω,G := {
v : CN → [0,∞[ : v is upper semi-continuous and for each

n ∈ N there exist αn > 0 and k(n) ∈ N such that v ≤ αnvn,k(n)
}
.
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Then the projective hull HV ω,G of Vω,GH is defined as

HV ω,G := proj←v∈V ω,G
Hv.

It is easy to check that HV ω,G is a complete locally convex space and that
Vω,GH ⊂ HV ω,G with continuous inclusion.

3. Main results

In this section we state and prove the main result of this paper which answers
the following question in the negative: Is it possible to obtain the topology of
the (LF)-space Vω,GH by the weighted sup-seminorms ‖ · ‖v , v ⊂ V ω,G or in
other words, is Vω,GH a topological subspace of its projective hull HV ω,G?
The precise result is stated in the following theorem.

Theorem 3.1. For each weight function ω and for each convex open set
G in RN , the topology of Vω,GH is strictly finer than the one induced by its
projective hull HV ω,G.

Remark. For ω(t) = |t | and G = RN , Theorem 3.1 is due to Ehrenpreis
[9]. For non-quasianalytic weight functions it was proved by the present authors
in [4], Theorem 1. However, that proof uses the non-quasianalyticity of ω in
two ways. First by the existence of non-trivial functions in E{ω}(RN) having
compact support and second by the fact that ω admits a harmonic extension
to the upper and lower half plane in C (see [7], sect. 2). Both facts are not
available when ω is quasianalytic. Hence we have to use a new approach in
this case.

Remark. In [4] it was also shown that for non-quasianalytic weight func-
tions ω the algebraic equality Vω,GH = HV ω,G holds for each convex open
set in RN . For quasianalytic weight functions this question will be investigated
in Bonet, Meise, and Melikhov [6], where the research of [5] is continued.

The proof of Theorem 3.1 will be given only at the end of this section since
we need to provide several auxiliary results first. A main point in our proof is
the following lemma.

Lemma 3.2. Let G be an open convex set in RN and let ω and σ be weight
functions which satisfy σ(t) = o(ω(t)) as t tends to infinity. Assume that
F ∈ A(CN) satisfies the following two conditions:

(1) There is C ≥ 1 such that |F(z)| ≤ C exp(Cσ(z)) for z ∈ CN .

(2) There are R > 0 and D ≥ 1 such that for each z ∈ CN , |z| ≥ R, there
exists w ∈ CN such that

|z− w| ≤ Dσ(z) and |F(w)| ≥ 1

D
exp(−Dσ(z)).
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Then the multiplication operator

MF : Vω,GH → Vω,GH, MF (f ) := Ff,
is an injective topological homomorphism if Vω,GH is endowed with the to-
pology induced by HV ω,G.

Proof. It is easy to check that MF is injective, linear, and continuous for
the topology induced by HV ω,G. Hence it remains to show that the division
map Ff �→ f is continuous for this topology. To do so, it is no restriction to
assume that the existing constants C and D in (1) and (2) are both equal to
C. Let R as in (2). Since σ = o(ω) there is L > 0 such that σ(z) ≤ |z| + L,
z ∈ CN . If z, ζ ∈ CN satisfy |z− ζ | ≤ 4Cσ(z), then

(3.1) |ζ | ≤ |z| + 4Cσ(z) ≤ (4C + 1)|z| + 4CL,

hence σ(ζ ) ≤ T σ(z) + T for some T ≥ 1 depending only on σ . Therefore,
we can apply condition (1) to conclude the existence of A > 0 and B > 0
such that

sup
|z−ζ |≤4Cσ(z)

|F(ζ )| ≤ A exp(Bσ(z)).

Let D := B + 2C and fix w ∈ V ω,G. Without loss of generality, we may
assume that w is continuous and strictly positive by [2], Proposition 0.2. Then
for each l ∈ N there are αl > 0 and k(l) ∈ N such that, for each z ∈ CN ,

w(z) ≤ αl exp

(
−hl(Im z)− 1

k(l)
ω(z)

)
= αlvl,k(l)(z).

We define
ṽ(z) := sup

|z−ζ |≤4Cσ(ζ )
w(ζ ) exp(Dσ(ζ ))

and show that ṽ can be estimated by a weight w ∈ V ω,G. Since each function
hn is convex and positively homogeneous, hn is subadditive on RN . Moreover,
for each n ∈ N, there is Hn ≥ 1, such that hn(x) ≤ Hn|x| for every x ∈ RN .
Therefore, for each z, ζ ∈ CN with |z− ζ | ≤ 4Cσ(ζ ), we have

(3.2) hn(Im z) ≤ hn(Im ζ )+ 4HnCσ(ζ ).

Moreover, since σ(t) = o(t) there is R0 > R with σ(t) ≤ t/(8C) if t ≥ R0.
We determine R1 > R0 such that |z| ≥ R1 and |ζ − z| ≤ 4Cσ(ζ ) imply
|ζ | ≥ R0. For |z| ≥ R1 and |ζ − z| ≤ 4Cσ(ζ ) we then have

|ζ | ≤ |ζ − z| + |z| ≤ 4Cσ(ζ )+ |z| ≤ 1

2
|ζ | + |z|, and hence |ζ | ≤ 2|z|.
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Again by σ = o(ω), for each n ∈ N, there is Ln > 0 such that,

(3.3) (4HnC +D)σ(ζ ) ≤ 1

2k(n)
ω(ζ )+ Ln for all ζ ∈ CN.

Next note that if ζ, z ∈ CN satisfy |ζ − z| ≤ 4Cσ(ζ ) interchanging z and ζ
we get from (3.1) |z| ≤ (4C + 1)|ζ | + 4CL.

Therefore, condition (α) for the weight ω implies the existence of K > 0 and
S ∈ N, depending only on ω such that

ω(z) ≤ K(ω((1+ 4C)|ζ |)+ ω(4LC)+ 1) ≤ Sω(ζ )+ S.
For n ∈ N and ζ, z ∈ CN as before and |z| ≥ R1 we now get from (3.2) and

(3.3)

vn,k(n)(ζ ) exp(Dσ(ζ )) = exp

(
−hn(Im ζ )− 1

k(n)
ω(ζ )+Dσ(ζ )

)

≤ exp

(
−hn(Im z)− 1

k(n)
ω(ζ )+ (4HnC +D)σ(ζ )

)

≤ eLn exp

(
−hn(Im z)− 1

2k(n)
ω(ζ )

)

≤ eLne 1
2 exp

(
−hn(Im z)− 1

2Sk(n)
ω(z)

)
.

If we now define βn := αne
Ln+ 1

2 , l(n) := 2Sk(n) ∈ N then for z ∈ CN ,
|z| ≥ R1, and n ∈ N we have

ṽ(z) ≤ βnvn,l(n)(z).
Since ṽ is bounded on the disc in CN of center 0 and radius R1, ṽ can be
estimated by an element in V ω,G, and we can select w ∈ V ω,G which is
strictly positive and continuous such that ṽ ≤ w.

Now, the same argument given at the end of the proof of [3], Proposition
2.5, permits us to use the condition (2) to show that there is ε > 0 such that,
if f ∈ Vω,GH satisfies ‖Ff ‖w ≤ ε, then ‖f ‖w ≤ 1. This completes the proof
of the continuity of the division.

Remark 3.3. Assume that µ ∈ E{ω}(RN)′ satisfies the following continuity
estimate

(3.4)
For each m ∈ N there exists Cm > 0 such that

|µ(φ)| ≤ Cm‖φ‖B(0, 1
m ),m

for each φ ∈ E{ω}(RN).
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Then for each open set G in RN , µ induces a convolution operator,

Tµ : E{ω}(G)→ E{ω}(G), Tµ(φ) := µ ∗ φ : x �→ µ(φ(x − ·)),
which is linear and continuous. The adjoint operator T tµ of Tµ is given by

T tµ : E{ω}(G)′ → E{ω}(G)′, T tµ(ν) := µ̌ ∗ ν,

where µ̌ ∗ ν(φ) = ν(µ ∗ φ), while µ̌(φ) := µ(φ̌) and φ̌(x) = φ(−x) for
φ ∈ E{ω}(RN), x ∈ RN .

IfG is convex, then the Fourier-Laplace transform F : E{ω}(G)′b → Vω,GH

is a linear topological isomorphism by 2.7. Let F := F (µ̌) = ˆ̌µ and define

MF : Vω,G → Vω,G, MF (f ) := Ff.
Then the following identity holds:

(3.5) F ◦ T tµ = MF ◦F .

The next proposition shows that the proof of Theorem 3.1 can be reduced
to the construction of a convolution operator Tµ on E{ω}(G) which is not sur-
jective.

Proposition 3.4. Let G be an open convex subset of RN and let ω be a
weight function. Assume that there exists µ ∈ E{ω}(RN)′ and there is a weight

function σ which satisfies σ = o(ω) such that F := ˆ̌µ satisfies the conditions
(1) and (2) of Lemma 3.2. If the operator Tµ : E{ω}(G) → E{ω}(G) is not
surjective, then the topology induced by HV ω,G is strictly coarser than the
topology of Vω,GH .

Proof. Suppose that the two topologies coincide. By Lemma 3.2 the op-
erator

MF : Vω,GH → Vω,GH, MF (f ) := Ff
is an injective topological homomorphism. According to (3.5), the operator

T tµ : E{ω}(G)′b → E{ω}(G)′b

is also an injective topological homomorphism. Since E{ω}(G) is reflexive, a
direct application of the Hahn-Banach theorem implies that

Tµ : E{ω}(G)→ E{ω}(G)

is surjective in contradiction to the hypothesis.
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Remark. For N ≥ 3 it follows from Rösner [16] that there even exist
partial differential operators Tµ which satisfy the hypotheses of Proposition
3.4. However, for N = 2 no partial differential operator with this property
exists. This and the fact that heavy machinery is needed to obtain Rösner’s
results is the reason why we are going to use convolution operators and an
argument which reduces the general case to the case N = 1.

Next we present a version of an example due to Braun, Meise and Vogt
[8], 3.11, which is suitable to construct later the functional µ required in
Proposition 3.4.

Lemma 3.5. Let ω be a weight function. There is a weight function σ0,
satisfying σ0(t) = o(ω(t)) as t tends to infinity, and there is F ∈ H(C) such
that the following conditions are fullfilled:

(i) There is C > 0 with |F(z)| ≤ C exp(σ0(z)), z ∈ C.

(ii) V (F) := {z ∈ C : F(z) = 0} consists of a sequence {aj : j ∈ N} of
simple zeros with Im aj ≥ 2 for each j ∈ N.

(iii) For eachn ∈ N there are infinitely many j ∈ N with Im aj/ω(aj ) = 1/n.

(iv) There is ε0 > 0 such that, if w ∈ C \⋃∞
j=1 B(aj , 1), then

|F(w)| ≥ ε0 exp(−σ0(w)).

(v) There are ε0 > 0 andK0 > 0 such that, ifw ∈ C satisfies 1 ≤ |w − aj | ≤
2 for some j ∈ N, then

|F(w)| ≥ ε0 exp(−K0σ0(aj )).

Proof. Since log t = o(ω(t)) as t tends to infinity, we select (sj )j in [2,∞[
such that

(a) sj+1 ≥ 4sj for all j ∈ N, and

(b) n(t) := card{j ∈ N | sj ≤ t} satisfies n(t) log t = o(ω(t)) as t tends to
infinity.

Then we apply [7], 1.7 and 1.8 (a), to find a weight function σ0 such that
n(t) log t = o(σ0(t)) and σ0(t) = o(ω(t)) as t tends to infinity. For each
j ∈ N, we select aj ∈ C with |aj | = sj such that condition (iii) in the statement
and Im aj ≥ 2 for j ∈ N are satisfied. As in [8], 3.11, we define

F(z) :=
∞∏
j=1

(
1− z

aj

)
, z ∈ C,
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which is an entire function by Rudin [17], Theorem 15.6 and satisfies condition
(ii). Proceeding as in [8], 3.11, if |z| ≥ s1,

log |F(z)| ≤ n(|z|) log |z| + log 2+ 4

9
.

This implies condition (i) in the statement.
Next we show that condition (iv) holds. Since σ0 is a weight function, there

is t1 > s1 such that if t ≥ t1, then, for some K > 0, σ0(2t) ≤ Kσ0(t). Now
select t0 > t1 with log t ≤ 1

4K σ0(t). If |z| ≥ t0, we have

1 ≤ 2 log(2|z|)+ 4

9
≤ 4 log(2|z|) ≤ 1

K
σ0(2|z|) ≤ σ0(z).

Now select j0 ∈ N with sj0 > t0. Suppose that w ∈ C \⋃∞
j=1 B(aj , 1) satisfies

|w| ≥ sj0 . Then there is l ≥ j0 such that sl ≤ |w| < sl+1. Since |w − al| ≥ 1
and |w − al+1| ≥ 1, we can proceed as in [8], 3.11, to conclude

log |F(w)| ≥ −2 log(2|w|)− 4

9
≥ −σ0(w).

This yields |F(w)| ≥ exp(−σ0(w)) if |w| ≥ sj0 , w �∈ ⋃∞
j=1 B(aj , 1), which

clearly implies condition (iv).
We suppose now that 1 ≤ |w − aj | ≤ 2 for some j ≥ j0 + 1. Either

sj−1 ≤ |w| < sj or sj ≤ |w| ≤ sj+1. In any case, we can proceed as above to
get |F(w)| ≥ exp(−σ0(w)).

Since |w − aj | ≤ 2, we apply [7], Lemma 1.2, to find S > 0 and K > 0 with
−σ0(w) ≥ −S − Kσ0(aj ). Therefore |F(w)| ≥ e−S exp(−Kσ0(aj )). Since
F(w) does not vanish on

j0+1⋃
j=1

{
w ∈ C : 1 ≤ |w − aj | ≤ 2

}
,

we can conclude (v).

Definition 3.6. Let α = (αj )j , β = (βj )j be sequences of non-negative
real numbers such that βj →∞, as j →∞ and let (rn)n∈N be an increasing
sequence tending to 1 or to∞. For k, n ∈ N, we set

λ(n, k) :=
{
x ∈ CN : ‖x‖n,k :=

∞∑
j=1

|xj | exp

(
rnαj + 1

k
βj

)
<∞

}
,

K(n, k) :=
{
x ∈ CN : ‖|x|‖n,k := sup

j∈N
|xj | exp

(
−rnαj − 1

k
βj

)
<∞

}
.



quasianalytic functionals and projective descriptions 259

We put, for n ∈ N, λn(α, β) := indk λ(n, k), and we denote by :(α, β) the
projective spectrum (λn(α, β), i

n
n+1), where inn+1 is the inclusion map. Then let

λ(α, β) := projn indk λ(n, k), and K(α, β) := indn projk K(n, k)

and note that λ(α, β) is a countable projective limit of (DFN)-spaces, and
K(α, β) is an (LF)-space. By Meise [12], 1.6, λ(α, β) is a complete Schwartz
space and λ(α, β)′b coincides with K(α, β).

The following result follows from Braun, Meise, and Vogt [8], Proposi-
tion 3.7, and Vogt [18], Theorem 4.3. The basic facts about the functor Proj1

can be found in these articles.

Lemma 3.7. Let α = (αj )j and β = (βj )j be sequences of non-negative
real numbers such that βj →∞ as j →∞ and let (rn)n∈N be an increasing
sequence tending to 1 or to∞. The following conditions are equivalent:

(1) Proj1 :(α, β) = {0},
(2) λ(α, β) is bornological (or barrelled),

(3) K(α, β) is a complete (or regular) (LF)-space,

(4) there exists δ > 0 such that the set of finite limit points of the set {αj/βj |
j ∈ N, βj �= 0} is contained in {0} ∪ [δ,∞[.

Lemma 3.8. Let ω be a weight function and let F ∈ H(C) and σ0 be as in
Lemma 3.5. Suppose that hn : R → [0,∞[ is of one of the following types

(a) hn(t) =
(
1− 1

n

)|t |,
(b) hn(t) = n|t |,
(c) hn(t) = max

(
1
n
t, nt

)
.

Define vn,k(z) := exp
(−hn(Im z) − 1

k
ω(z)

)
, z ∈ C. We set G = ]−1, 1[, R

or ]0,∞[ in the cases (a), (b) and (c) respectively. Then F ∈ Vω,RH , and we
have

(1) MF(Vω,GH) = {f ∈ Vω,GH | f (aj ) = 0 for each j ∈ N}, hence this
ideal is closed in Vω,GH , and

(2) the quotient Vω,GH/MF (Vω,GH) is isomorphic to K(α, β) with α =
(|Im aj |)j , β = (ω(aj ))j and rn = 1− 1

n
in case (a) and rn = n in cases

(b) and (c).

Proof. The condition in Lemma 3.5 ensures that the function F belongs
to Vω,RH and that the multiplication operator MF defines a continuous linear
operator from Vω,GH into itself. We define

ρ : Vω,GH → K(α, β) by ρ(f ) := (f (aj ))j .
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Observe that, since Im aj ≥ 2 by Lemma 3.5 (ii), then hn(Im aj ) = rn|Im aj |,
n, j ∈ N. Consequently, if f ∈ Vω,GH , (f (aj ))j ∈ K(α, β), and the map ρ is
well defined and continuous. We claim that ρ is surjective. To prove this, fix
n ∈ N and x = (xj )j ∈ ⋂

k∈NK(n, k). Since ‖|x|‖n,k <∞ for each k, we can
find a weight function σ such that

σ0(t) ≤ σ(t) = o(ω(t)) as t →∞,
and |xj | ≤ exp(hn(Im aj )+ σ(aj )), j ∈ N.

Then fix φ ∈ D(B(0, 2)) satisfying φ|B(0,1) ≡ 1 and
∣∣ ∂φ
∂z
(z)

∣∣ ≤ L for each
z ∈ C and some L > 0 and define

f̃ (z) :=
∞∑
j=1

xjφ(z− aj ), z ∈ C.

Clearly f̃ (z) = 0 if z ∈ C \⋃∞
j=1 B(aj , 2). Then let

v(z) := − F(z)

|F(z)|2
∂f̃

∂z
.

Obviously, v|B(aj ,1) ≡ 0 for each j ∈ N. For 1 ≤ |z− aj | ≤ 2 Lemma 3.5 (v)
gives

|v(z)| ≤ 1

|F(z)| |xj |L ≤ Lε
−1
0 exp

(
hn(Im aj )+ σ(aj )+K0σ0(aj )

)
.

This implies, for C1 > 0, and some S > 0, depending on the weight σ , that

v(z) ≤ C1 exp
(
hn(Im z)+ Sσ(z)), if 1 ≤ |z− aj | ≤ 2, j ∈ N.

If we denote by dλ the Lebesgue measure on C = R2, we get
∫

C

(|v(z)| exp(−hn(Im z)− (S + 1)σ (z))
)2
dλ(z) ≤ (C1D)

2,

with D2 := ∫
C e

−2σ(z) dλ(z). By Hörmander [10], 4.4.2, there exists g ∈
L2

loc(C) such that ∂g = v and
∫

C

(|g(z)| exp(−hn(Im z)− (S + 2)σ (z))
)2
dλ ≤ (C1D)

2,

and g ∈ C∞(C), since v ∈ C∞(C).
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Then f := f̃ + gF satisfies ∂f = 0, hence f ∈ H(C). Moreover f (aj ) =
f̃ (aj ) = xj for each j ∈ N. Proceeding as in the estimate of v(z) above, we
have, for z ∈ B(aj , 2),

|f̃ (z)| ≤ |xj | ≤ C1 exp
(
hn(Im z)+ Sσ(z)),

hence ∫
C

(|f (z)| exp(−hn(Im z)− (S + 3)σ (z))
)2
dλ(z) <∞.

Sincef is holomorphic, standard arguments now imply the existence of S1 > 0
such that

sup
z∈C
|f (z)| exp(−hn(Im z)− S1σ(z)) <∞.

As σ(t) = o(ω(t)) as t →∞, we conclude f ∈ Vω,GH and ρ(f ) = (xj )j .
The spaces Vω,GH and K(α, β) are (LF)-spaces, therefore the map ρ is

a surjective homomorphism [13], 24.30, and Vω,GH/ ker ρ is isomorphic to
K(α, β). It remains to show that ker ρ = MF(Vω,GH) which is property
(1) in the statement. The inclusion MF(Vω,GH) ⊂ ker ρ is trivial. Suppose
that g ∈ Vω,GH satisfies g(aj ) = 0 for each j ∈ N. Clearly, f := g/F

is holomorphic. Then note that there are m ∈ N and a weight function τ ,
σ0(t) ≤ τ(t) = o(ω(t)), as t →∞, such that

|g(z)| ≤ C exp(hm(Im z)+ τ(z)), z ∈ C.

We can apply the condition (iv) of Lemma 3.5 to conclude, for z ∈ C \⋃∞
j=1 B(aj , 1),

|f (z)| ≤ C ′ exp(hm(Im z)+ S ′τ(z)),
for some S ′ > 0 and C ′ > 0. By the maximum principle applied to each
B(aj , 1), we conclude f ∈ Vω,GH , as in Meise [12], proof of 2.3.

Remark. The cases (a) and (b) of Lemma 3.8 were treated in Meyer [15],
Theorem 2.8, for a larger class of functions; see also Meise [12], Lemma 2.5.
Since the case (c) does not appear there and since the proof is simpler in the
special case needed here, we decided to prove the lemma for the convenience
of the reader.

Lemma 3.9. Let ω be a weight function. For each open intervalG in R there
is µ ∈ E{ω}(R)′ such that F := ˆ̌µ satisfies the conditions (i)–(v) of Lemma
3.5 for a weight function σ0, and such that the convolution operator Tµ is not
surjective on E{ω}(G).
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Proof. By dilation and/or translation, we may assume thatG = ]−1, 1[ or
G = R orG = ]0,∞[, and we can select a fundamental sequence of compact
intervals in G such that the support functions are of one of the types (a) or (b)
or (c) in Lemma 3.8 respectively. Let F ∈ H(C) and σ0 be as in Lemma 3.5.
By 2.7 there existsµ ∈ E{ω}(R)′ such thatF = ˆ̌µ. Suppose that Tµ is surjective
on E{ω}(G). Proceeding as in Meise [12], 3.4, formulas (2), (3), it follows from
Lemma 3.8 that

(ker Tµ)
′
b � Vω,GH/MF (Vω,GH) � K(α, β).

Since Proj1 E{ω}(G) = {0} (this is proved by Meyer [15] for G = ]−1, 1[ or
R, and by Rösner [16]) and since Tµ is surjective, it follows from Vogt [18],
Theorem 1.5 (a result of Palamodov), that Proj1(ker Tµ) = {0}. Since λ(α, β)
is semireflexive, and λ(α, β)′b = K(α, β), we conclude Proj1 :(α, β) = {0}.
This contradicts Lemma 3.7 by the choice of α, β and Lemma 3.5 (iii).

Lemma 3.10. LetG �= ∅ be an open, convex, bounded subset of RN ,N ≥ 2.
Then there exist a hyperplane H and a parallel hyperplane H+ so that G lies
betweenH andH+ and such that there are points a ∈ H∩∂G and b ∈ H+∩∂G
for which the segment ]a, b[ is contained in G.

Proof. Choose a0, a1 ∈ G such that diamG = |a0 − a1|. Let H be the
hyperplane which is orthogonal to the vector a1 − a0 and which contains a0,
and let H+ be the parallel hyperplane through a1. If the line ]a0, a1[ lies in
G, the lemma is proved. Otherwise, the convexity of G implies that ?1 :=
convhull(a0, a1) ⊂ ∂G. Now apply the following induction argument: Assume
that a0, . . . , ak are points in ∂G for which

?k := convhull(a0, . . . , ak)

has dimension k (equiv. a1−a0, . . . , ak−a0 are linearly independent). Choose
a hyperplaneHk which contains?k and is a supporting hyperplane forG. Since
G is compact and convex, there is ak+1 ∈ ∂G such thatG is contained between
Hk and the hyperplane parallel to Hk which contains ak+1. Since G �= ∅ and
open, ak+1 �∈ Hk . If there is a point ξ ∈ ?k such that the open segment ]ξ, ak[
belongs to G, the lemma is proved. Otherwise

?k+1 := convhull(a0, . . . , ak+1)

has dimension k+ 1 and we can apply the induction step again. When k = N ,
the existence of ξ ∈ ?N−1 with ]ξ, aN [ ⊂ G is obvious. Hence the proof is
complete.
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Lemma 3.11. LetG be an open convex set in RN ,N ≥ 2, which is unbounded
and is not equal to RN . Then G satisfies one of the following two alternative
conditions, up to a linear change of coordinates and up to a translation:

(1) G ⊂ {x ∈ RN : x1 > 0} and {(t, 0, . . . , 0) : t > 0} ⊂ G.

(2) There exists k with 1 ≤ k ≤ N − 1 and a bounded open convex set Gk

in Rk , such that G = Gk × RN−k .

Proof. It is no restriction to assume 0 ∈ G. Then define

φ : SN−1 → [0,∞], φ(ξ) := sup{t > 0 : tξ ∈ G}.
Since G is unbounded, the set

M∞ := {ξ ∈ SN−1 : φ(ξ) = ∞}
is not empty.

Case 1. There is ξ ∈ M∞ such that −ξ �∈ M∞. Then φ(−ξ)(−ξ) ∈ ∂G.
Let H be a supporting hyperplane for G at this point. Then it is easy to see
that after a translation and a linear change of variables we have (1).

Case 2. For each ξ ∈ M∞ also −ξ ∈ M∞. Then spanM∞ ⊂ G. Choose
coordinates so that

spanM∞ = {x ∈ RN : x1 = 0, . . . , xk = 0},
i. e., dim spanM∞ = N − k. Denote by L := {x ∈ RN : xj = 0, j =
k + 1, . . . , N} and let

Gk := G ∩ L.
Since L ∩M∞ = ∅, Gk is a bounded convex set and it is easy to check that
now (2) holds.

Proof of Theorem 3.1. We first treat the special case that G is an open
convex subset of RN for which there is an open interval G1 ⊂ R such that

G ∩ (R× {0, . . . , 0}) = {(t, 0, . . . , 0) : t ∈ G1},
and

G ⊂ {(x1, . . . , xN) ∈ RN : x1 ∈ G1}.
By Lemma 3.9, we find µ ∈ E ′{ω}(R) such that Tµ is not surjective on E{ω}(G1)

and that ˆ̌µ satisfies the conditions (i)–(v) of Lemma 3.5. Define ν ∈ E ′{ω}(RN)
by

〈ν, φ〉 := 〈µ, φ(·, 0, . . . , 0)〉 , φ ∈ E{ω}(RN).
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Then ν̂(z) = µ̂(z1) for each z = (z1, . . . , zN) ∈ CN . Therefore it is easy to
check that the choice of µ implies that F := ˆ̌ν satisfies the conditions (1) and
(2) of Lemma 3.2. Hence it follows from Proposition 3.4 that the topology
induced by HV ω,G is strictly coarser than the one of Vω,GH , if we show
that the convolution operator Tν : E{ω}(G) → E{ω}(G) is not surjective. To
do so, assume that Tν is surjective. To show that this assumption implies the
surjectivity of Tµ, let φ ∈ E{ω}(G1) be given. Then

φ̃(x) := φ(x1), x = (x1, . . . , xN) ∈ G
is in E{ω}(G), due to the special form ofG. Since we assume Tν to be surjective,
there is ψ̃ ∈ E{ω}(G) satisfying Tνψ̃ = φ̃. For x ∈ G1 this implies

φ(x) = φ̃(x, 0, . . . , 0) = (Tνψ̃)(x, 0, . . . , 0) = νy(ψ̃((x, 0, . . . , 0)− y))
= µ(ψ̃(x − ·, 0, . . . , 0)) = (Tµψ)(x),

where ψ(x) := ψ̃(x, 0, . . . , 0) for x ∈ G1. Hence Tµ is surjective in con-
tradiction to our choice of µ. Therefore the theorem is proved in the special
case.

To reduce the general case to the special case, let now G be a non-empty
open convex set in RN . Since G = RN is certainly of the form treated in the
special case, we may assumeG �= RN . Therefore it follows from Lemma 3.10
and 3.11 that modulo a translation we can find a hyperplane H through the
origin, and a real linear isomorphism A : RN → RN such that

A(G) ⊂ { y ∈ RN : 0 < y1 < a }, a > 0 or a = ∞,
A(H) = { y ∈ RN : y1 = 0 },

and A(G) lies between A(H) and a parallel hyperplane or in a half space de-
termined byA(H). ThereforeA(G) is a convex open subset as we considered
it in the special case.

Denote by AT the real adjoint of A, and find d > 0 with

1

d
|x| ≤ |AT (x)| ≤ d|x|, x ∈ RN.

If (Kn)n is a fundamental sequence of convex compact subsets of G, then
(A(Kn))n is a fundamental sequence of convex compact subsets of A(G).
Moreover, for each compact set K in RN

hA(K)(y) = hK(AT (y)), y ∈ RN.
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Next define

X : H(CN)→ H(CN), X(g)(z) := g(AT (z)), z ∈ CN,

where AT is a real linear map canonically defined on CN . We show that X in-
duces a linear topological isomorphism from Vω,GH onto Vω,A(G)H . Indeed,
since (A−1)T = (AT )−1, only one estimate for the continuity is needed. Sup-
pose that g ∈ Vω,GH . Then there exists n ∈ N such that for each k ∈ N there
is Ck > 0 such that

|g(z)| ≤ Ck exp

(
hKn(Im z)+ 1

k
ω(z)

)
, z ∈ CN.

If z ∈ CN , and k ∈ N, we have

|X(g)(z)| = |g(AT (z))| ≤ Ck exp

(
hKn(ImAT (z))+ 1

k
ω(AT z)

)

≤ C ′k exp

(
hA(Kn)(Im z)+ L

k
ω(z)

)
,

for some L ∈ N which depends only on ω and d > 0.
It is easy to check that

V ω,A(G) = {v ◦AT : v ∈ V ω,G}.
This implies that

Y : HV ω,G → HV ω,A(G), Y (g)(z) := X(g)(z) = g(AT (z)), z ∈ CN

is a linear topological isomorphism, too. If jG : Vω,GH → HV ω,G denotes
the inclusion map then we obviously have

Y ◦ jG = jA(G) ◦X and hence jA(G) = Y ◦ jG ◦X−1.

By the special case jA(G) is not a topological homomorphism, therefore jG
cannot be a topological homomorphism. Thus we reduced the general case to
the special case.
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