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SUFFICIENT CONDITIONS FOR THE INVERSION
FORMULA FOR THE k-PLANE RADON

TRANSFORM IN Rn

SINE R. JENSEN

Abstract

The inversion theorem (1) for the k-plane Radon transform in Rn is often stated for Schwartz
functions, cf. [5, p. 110], and lately for smooth functions on Rn fulfilling that f (x) = O(|x|−N)
for some N > n, cf. [6, Thm. I.6.2]. In this paper it will be shown, that it suffices to require that
f is locally Hölder continuous and f (x) = O(|x|−N) for some N > k (N not necessarily an
integer) in order for (1) to hold, and that the same decay on f but f only continuous implies an
inversion formula only slightly weaker than (1).

Introduction

An important area in the theory of the k-plane Radon transform on Rn is the
inversion theorems, which gives explicit formulas by which one can recover a
function from its k-plane transform. Here we shall consider the formula

(1) f = (4π)−
k
2
�

(
n−k

2

)
�

(
n
2

) I−k(f̂ ) ,̌

where f̂ (resp. f̌ ) denotes the k-plane transform (resp. the dual transform) of
f , while I−k is a Riesz potential, cf. Section 4. It will be shown in this paper,
that the formula holds for all functions in the spaceC(k, n) (see Definition 1.3),
and that the formula with I k replaced by limα→−k+ Iα holds if f ∈ Ca(Rn) for
some a > k.

Notice, that the decay requirement of C(k, n) (f (x) = O(|x|−N) for some
N > k) on its member functions is, in some sense, the weakest possible in
order for an inversion formula to hold: A sufficient condition for the integral
in the k-plane transform of a continuous function f to be convergent is, that
for every k-plane there exists an ε > 0 such that f (x) = O(|x|−k−ε) on this
k-plane. However this non-uniform decrease of f is not enough to make the
inversion formula valid. In [14], Zalcman shows the existence of a smooth
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function f 	= 0 on R2 satisfying f (x) = O(|x|−2) on every line, which
nonetheless has f̂ = 0. For further examples see e.g. [1] and [2].

The proof in this paper of the inversion formula is rooted in the basic
definition of the Riesz potential, Iα (α ∈ C), which is

(I αf )(x) = 1

Hn(α)

∫
Rn
f (y)|x − y|α−n dy.

Here Hn is a certain meromorphic function. If f is continuous and O(|x|−a)
for some a > 0, the integral converges if 0 < Re α < a. For values of α
with Re α ≤ 0, the Riesz potential can, depending on the regularity of f , be
defined by analytic continuation (see e.g. [9, sec. 10.2, 10.7] for various ways
of performing this extension). The key to the proof of the inversion formula is
the identity I−k(I kf ) = f , which will be established exactly for f inC(k, n).

Inversion formulas for the Radon transform ofLp-functions also exists, but
then the interpretation of the Riesz potentials is quite different. Examples can
be found e.g. in [11] where Rubin verifies two inversion formulas for the case
k = n − 1. One of them is of the same nature as (1), and the other is of the
type, where a suitably interpreted Riesz potential in applied before the dual
transform instead of after. The last mentioned variant of inversion formula is
in [10] proved forLp-functions in the case of a general k under the assumption
that 1 ≤ p < n

k
. It is interesting to note, that given f ∈ C(Rn) such that it

is O(|x|−N), then f ∈ Lp(Rn) when −Np < −n, i.e. p > n
N

. Thus Rubin’s
inversion formula can be used on this f when there exists a p ≥ 1 with
n
N
< p < n

k
, i.e. when k < N which is precisely the decay condition in the

inversion theorem of this paper.
The paper follows the lines of Helgason’s exposition [6, Chap. V §5]: After

the preliminaries, we study in Section 2 the analytic continuation of the map
α �→ xα+(f ) = 1

�(α+1)

∫ ∞
0 f (x)xα dx. In Section 3 we use this to study the

maps α �→ rα(f ) = 1
�(α+1)

∫
Rn f (x)|x|α dx, and in Section 4 we introduce

Riesz potentials and establish the identity I−k(I kf ) = f . Finally, in Section 5,
we prove the two versions of the inversion formula.

The inversion formula in (1), expressed as it is in terms of Riesz potentials,
holds for k both odd and even. If k is even it is well-known, that a similar
inversion formula can be established using the Laplacian instead of Riesz
potentials (see e.g. [6, p. 29]. Section 6 contains a brief discussion of the
possible impact of the main result of the paper on the domain of this formula.
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1. Preliminaries

For each a > 0 and n ∈ N we make the following definitions:

Definition 1.1. Define the function space Ca(Rn) by

Ca(Rn) = {f ∈ C(Rn) | f (x) = O(|x|−a)}.

Definition 1.2. For each l ∈ N0 = N∪{0}, 0 < ε < 1 and x ∈ Rn define
the spaceCl+〈ε〉,x(Rn) as the set of functions f on Rn such that f isCl in some
neighborhood O of x with each l’th order derivative of f Hölder continuous
of index ε in that neighborhood, i.e.

(2) ∃M > 0∀x1, x2 ∈ O∀l ∈ Nn
0, |l| = l :

|(∂ lf )(x1)− (∂ lf )(x2)| ≤ M|x1 − x2|ε.
Put

• Cl+〈ε〉(Rn) = ⋂
x∈Rn C

l+〈ε〉,x(Rn) ⊂ Cl(Rn),

• Cl+(Rn) = ⋂
x∈Rn

⋃
ε>0 C

l+〈ε〉,x ⊂ Cl(Rn)

and

• C
l+〈ε〉,x
a (Rn) = Cl+〈ε〉,x(Rn) ∩ Ca(Rn),

• C
l+〈ε〉
a (Rn) = Cl+〈ε〉(Rn) ∩ Ca(Rn)

• Cl+a (Rn) = Cl+(Rn) ∩ Ca(Rn)
• Cla(R

n) = Cl(Rn) ∩ Ca(Rn)
Definition 1.3. Finally define for each k ∈ {1, . . . , n − 1} the space

C(k, n) as the set of functions f , such that f ∈ C0+
k+δ(Rn) for some δ > 0.

I.e. f ∈ C(k, n) exactly when f is O(|x|−k−δ) for some δ > 0, and there
for each x ∈ Rn exists a neighborhood O and an ε, 0 < ε < 1, such that
|f (x1)− f (x2)|/|x1 − x2|ε is bounded for x1, x2 ∈ O .

From now on, when the symbols a, n, l and ε are used, the assumption will
be a > 0, n ∈ N, l ∈ N0 and 0 < ε < 1, unless otherwise mentioned.

2. The map α �→ xα+(f )

Definition 2.1. For each α ∈ C with −1 < Re α < a − 1 define the map
xα+ : Ca(R) → C by

(3) xα+(f ) = 1

�(α + 1)

∫ ∞

0
f (x)xαdx.
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Remark 2.2. The map xα+ is well-defined since −1 < Re α and f ∈
C(R) makes the integrand integrable at 0, while Re α < a − 1 and f (x) =
O(|x|−a)makes it integrable at ∞. Note, that the�-function is a non-vanishing
meromorphic function with poles in −N0 and

(4) lim
α→k

(α − k)�(α) = (−1)−k

(−k)! , k ∈ −N0.

Proposition 2.3. Let f ∈ Cl+〈ε〉,0
a (R). Then the map α �→ xα+(f ), defined

on {α ∈ C | −1 < Re α < a − 1},
can be (uniquely) extended to a holomorphic map on

{α ∈ C | −l − ε − 1 < Re α < a − 1}.
This map will likewise be denoted α �→ xα+(f ). We have

(5) xα+(f ) = (−1)(−α−1)f (−α−1)(0), when α ∈ {−l − 1, . . . ,−1}.

Proof. The integral in (3) is not necessarily convergent in 0, when α ≤ −1.
But if we put

A(x) = f (x)−
l∑

k=0

f (k)(0)

k!
xk and B(α) =

l∑
k=0

f (k)(0)ρα+k+1

k!(α + k + 1)
.

then, by calculating the integrals, one realizes that

(6) xα+(f ) = 1

�(α + 1)

(∫ ρ

0
xαA(x) dx +

∫ ∞

ρ

xαf (x) dx + B(α)

)
,

is an extension, cf. [4, p. 57]. Here 0 < ρ < 1 fulfills B(0, ρ) ⊂ O , where O

is a neighborhood of 0 in which f (l) is Hölder continuous. This extension is
well-defined on

S = {α ∈ C \ −N | −l − ε − 1 < Re α < a − 1}.
To show this, only the first term needs thought. Since f ∈ Cl(O ), there exists,
according to Taylors theorem, for any x ∈ B(0, ρ) a y between 0 and x, such
that

(7) f (x) =
l∑

k=0

f (k)(0)

k!
xk + f (l)(y)− f (l)(0)

l!
xl.
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Because f (l) is Hölder continuous of index ε in O we therefore have

(8)
∫ ρ

0
|xαA(x)| dx ≤ const

∫ ρ

0
xRe α+l+ε dx < ∞

since Re α + l + ε > −l − ε − 1 + l + ε = −1.
Let α0 ∈ S be given. To show that α �→ xα+(f ) is holomorphic in α0, choose

δ > 0 such that

B(α0, δ) ⊂ {α ∈ C \ −N | −l − ε − 1 + δ < Re α < a − 1 − δ}.
Clearly α �→ B(α) is holomorphic in α0. Thus we only need to show, that the
two integrals in (6) are holomorphic inα0. This will follow from the theorems of
Cauchy and Morera, if it can be shown, that for any closed curve γ in B(α0, δ)

the two integrals in each of the following expressions can be interchanged:∫
γ

∫ ρ

0
xαA(x) and

∫
γ

∫ ∞

ρ

xαf (x).

But for x ∈ ]0, ρ[

sup
α∈B(α0,δ)

|xαA(x)| ≤ |A(x)|x−l−ε−1+δ,

and this function is, as in (8), integrable over ]0, ρ[. For x ∈ ]ρ,∞[ we have
the existence of a constant c independent of x, such that

sup
α∈B(α0,δ)

|xαf (x)| ≤ c xa−1−δ−a = c x−1−δ.

Now, let m ∈ {−l − 1, . . . ,−1} be given. Choose δ′ > 0 such that

B(m, δ′) \ {m} ⊂ {α ∈ C \ −N | −l − ε − 1 + δ′ < Re α < a − 1 − δ′}.
As before we have for α ∈ B(m, δ′), that

(9)

∣∣∣∣
∫ ρ

0
xαA(x) dx

∣∣∣∣ ≤ C < ∞ and

∣∣∣∣
∫ ∞

ρ

xαf (x) dx

∣∣∣∣ ≤ K < ∞,

where the constants C and K are independent of α. Thus for α → m we have

(α −m)

∫ ρ

0
xαA(x) dx → 0 and (α −m)

∫ ∞

ρ

xαf (x) dx → 0.

Now (5) follows from (6) and (4).
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Remark 2.4. With the Hölder continuity condition on the derivatives of f
replaced by ordinary continuity, the inequality in (8) changes to∫ ρ

0
|xαA(x)| dx ≤ const

∫ ρ

0
xRe α+l dx.

Thus when f ∈ Cla(R), the extension of α → xα+(f ) still exists but only on

{α ∈ C| − l − 1 < Re α < a − 1}.

3. The map α �→ rα(f )

Definition 3.1. For each α ∈ C with −n < Re α < a − n define the map
rα : Ca(Rn) → C by

(10) rα(f ) = 1

�(α + n)

∫
Rn

|x|αf (x) dx.

Remark 3.2. As in Remark 2.2 it is seen, that rα is well-defined.

We will express rα by xα+. To this end we introduce the mean value function:

Definition 3.3. For any f ∈ C(Rn) let Mf : R → C denote the mean
value function of f around 0 defined by

(11) Mf (t) = 1

*n

∫
Sn−1

f (tω) dω.

Remark 3.4. Notice, that t �→ Mf (t) is even, and that Mf (0) = f (0).

Lemma 3.5. When f is in Cl+〈ε〉,0
a (Rn) then Mf is in Cl+〈ε〉,0

a (R).

Proof. Standard arguments.

Remark 3.6. Transition to polar coordinates in the defining expression
(10) for rα now gives rα(f ) in terms of xα+:

(12) rα(f ) = *nx
α+n−1
+ (Mf ),

when −1 < Re α + n− 1 < a − 1, i.e. −n < Re α < a − n.

Proposition 3.7. Let f ∈ Cl+〈ε〉,0
a (Rn). Then the map α �→ rα(f ), defined

on
{α ∈ C | −n < Re α < a − n},
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can be (uniquely) extended to a holomorphic map on

A = {α ∈ C | −l − ε − n < Re α < a − n}.
This map will likewise be denoted α → rα(f ), and it satisfies (12). In specific

(13) rα(f ) = *n(−1)−α−nM(−α−n)
f (0), when α ∈ {−l−n, . . . ,−n}.

Proof. Use (12) as definition and apply Proposition 2.3 using Lemma 3.5.

4. Riesz Potentials

Definition 4.1. The meromorphic function Hn on C is defined by

Hn(α) = 2απ
n
2
�

(
α
2

)
�

(
n−α

2

) .
Remark 4.2. Note that Hn has simple poles at each α ∈ −2N0 and a zero

in each α ∈ n+ 2N0.

Definition 4.3. We put Cn = C \ (n+ 2N0).

Definition 4.4. For each x ∈ Rn, f ∈ Ca(Rn), and α ∈ Cn with 0 <

Re α < a the αth Riesz potential, Iα , of f at x is defined as

(14) (I αf )(x) = 1

Hn(α)

∫
Rn
f (y)|x − y|α−n dy

= 1

Hn(α)

∫
Rn
f (x − y)|y|α−n dy.

Remark 4.5. As in Remark 2.2 it is seen, that Iαf (x) is well-defined.
Comparing with the defining expression (10) for rα we see, that

(15) (I αf )(x) = �(α)

Hn(α)
rα−n(τxf )

where τxf (y) = f (x − y).

Proposition 4.6. Let x ∈ Rn be given. Assume that f ∈ Cl+〈ε〉,x
a (Rn). Then

the map α �→ (I αf )(x), defined on the set

{α ∈ Cn | 0 < Re α < a},
can be (uniquely) extended to a meromorphic map on

B = {α ∈ C | −l − ε < Re α < a}.
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This map will likewise be denoted α → (I αf )(x). It satisfies (15) for α ∈
B \ ((−N0) ∪ (n+ 2N0)). The poles, which are all simple, are in

(n+ 2N0) ∪ B.

Proof. Use (15) as definition and apply Proposition 3.7 to obtain a (unique)
meromorphic extension to {α ∈ C | −l − ε < Re α < a}. The possible poles
are those of �(α)

Hn(α)
= 1

2π
− n+1

2 �
(
n−α

2

)
�

(
α+1

2

)
. They are α ∈ 2N0 + n and

α ∈ −2N0 − 1, all simple. When α ∈ (−2N0 − 1) ∩ B it follows from (13),
that

rα−n(f ) = *n(−1)−αM(−α)
f (0) = 0,

since Mf in an even function. Thus α is a removable singularity.

Lemma 4.7. Let f ∈ C0+
a . Then x �→ (I 0f )(x) is defined on all of Rn and

I 0f = f.

Proof. It follows from Proposition 4.6, that x �→ (I 0f )(x) is defined on
all of Rn. Since

lim
α→0

αHn(α) = 2π
n
2

�
(
n
2

) = *n,

it follows from Proposition 4.6, (13), (4) and Remark 3.4, that

(16) (I 0f )(x) = lim
α→0

α�(α)

αHn(α)
rα−n(τxf ) = Mτxf (0) = f (x).

Lemma 4.8. Let f ∈ Ca(Rn). Let α ∈ C with 0 < Re α < min(a, n) be
given. Then

Iαf ∈ Cb−Re α(Rn),

for anybwith Re α < b ≤ min(a, n) ifa 	= n, and for anybwith Re α < b < n

if a = n.

Proof. See [6, Prop. V.5.8.] with natural modifications to the proof in case
a = n.

Proposition 4.9. Let f ∈ Ca(Rn). For any pair α, β ∈ C satisfying

Re α > 0 and Re β > 0 and Re(α + β) < min(a, n)

we have

(17) I αIβf = Iα+βf.
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Remark 4.10. Refer to e.g. [7, p. 43ff] or [8, Satz 9] in order to see how,
when dealing with Riesz potentials as distributions, (17) can be expressed as
a convolution of distributions. The distribution approach can prove Proposi-
tion 4.9 for a smaller class of functions.

Proof. That 0 < Re β < min(a, n) implies two things. First we get from
Remark 4.5, that Iβf is well-defined and given by

(I βf )(z) = 1

Hn(β)

∫
Rn
f (y)|z− y|β−n dy.

Secondly, we get the usage of Lemma 4.8 from which follows, that

Iβf ∈ Cb−Re β(Rn),

where b is chosen such that Re(α + β) < b < min(a, n). Thus, because
0 < Re α < b − Re β, Iα(I βf ) is well-defined and given by

Iα(I βf )(x) = 1

Hn(α)

∫
Rn
(I βf )(z)|x − z|α−n dz

= 1

Hn(α)

1

Hn(β)

∫
Rn

∫
Rn
f (y)|z− y|β−n dy|x − z|α−n dz.(18)

To show, that the order of integration can be interchanged, consider the ex-
pression

(19)
∫

Rn
|f (y)|

∫
Rn

|z− y|Re β−n|x − z|Re α−n dz dy.

By substituting v = x−z
|x−y| in the inner integral and using the rotation invariance

of the Lebesgue measure, this expression is rewritten as∫
Rn

|f (y)||x − y|Re α+Re β−n dy
∫

Rn
|e − v|Re β−n|v|Re α−n dv,

where e is an arbitrary fixed unit vector. Now 0 < Re(α + β) < a makes
the y-integral convergent. That the v-integral is convergent can be seen easily.
Finally, it can be shown, e.g. using Fourier transform as in [13, p. 117–118],
that ∫

Rn
|e − v|β−n|v|α−n dv = Hn(α)Hn(β)

Hn(α + β)
.
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Remark 4.11. Let x0 ∈ Rn be given. In what follows, we will often
decompose a given function f on Rn as f = f1 + f2, where f1 = (1 − χ)f

and f2 = χf for some compactly supported C∞-function χ with χ(x) = 1 in
some neighborhood of x0. Note that f1 and f2 have the same regularity as f ,
but f1 is 0 in the neighborhood of x0 and f2 has compact support.

Lemma 4.12. Let f ∈ Cla(Rn). Let α ∈ Cn with 0 < Re α < a and x0 ∈ Rn

be given. Write f = f1 + f2 as in Remark 4.11. Then Iαf1 is smooth at x0,
and Iαf2 ∈ Cl(Rn) with ∂p(I αf2) = Iα(∂pf2) for any p ∈ Nn

0 with |p| ≤ l.

Proof. Assume p ∈ Nn
0 to be given. Choose δ > 0 such that f1 = 1 in

B(x0, 2δ) ⊂ U. Then for any x ∈ B(x0, δ)

|f1(y)∂
p
x |x − y|α−n| ≤ c|f1(y)||x − y|Re α−n−|p|

≤ c′1Rn\B(x0,2δ)(y)(|y| + 1)−a|y − x0|Re α−n−|p|,

since 1
2 |x0 − y| ≤ |x − y| ≤ 2|x0 − y| for y /∈ B(x0, 2δ). Here c′ does not

depend on x. Since −a + Re α − n− |p| < −a + a − n = −n, this gives us
an integrable majorant of ∂p

x (f1(y)|x − y|α−n) and it is independent of x.
To deal with Iαf2 assume |p| ≤ l and let N be any bounded subset of Rn.

Let x ∈ N . Then

|∂p
x (f2(x − y)|y|α−n)| = |(∂pf2)(x − y)||y|Re α−n|

≤ sup |∂pf2| 1N +(−K )(y)|y|Re α−n, ∀y ∈ Rn.(20)

Since Re α > 0 this is an integrable majorant of ∂p
x (f2(x − y)|y|α−n) and it is

independent of x. Thus ∂p(I αf2) exists in N , N arbitrary, and thus in all of
Rn, and we see from (20) that ∂p(I αf2) = Iα(∂pf2).

Lemma 4.13. Let f ∈ Cla(R
n). Let α ∈ Cn with 0 < Re α < a be given.

Then

(21) I αf ∈ Cl(Rn)
and for any x ∈ Rn and 0 < ε < 1

(22) f ∈ Cl+〈ε〉,x(Rn) ⇒ Iαf ∈ Cl+〈ε〉,x(Rn).

Proof. Let x0 ∈ Rn be given. Write f = f1 + f2 as in Remark 4.11. From
the preceeding lemma Iαf1 is smooth at x0 and Iαf2 ∈ Cl(Rn). Thus (21)
holds.

Assume now, that f ∈ Cl+〈ε〉,x0(Rn). Let l ∈ Nn
0 with |l| = l be given. To

show the Hölder continuity of ∂ l(I αf2) (= Iα(∂ lf2) according to Lemma 4.12),
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let K be a compact neighborhood of x0 in which ∂ lf is Hölder continuous of
index ε and assume χ in the decomposition f = f1 + f2 = (1 − χ)f + χf

to have K as its support. Then ∂ lf2 is Hölder continuous of index ε in all of
Rn, so for any bounded neighborhood N of x0 and any x1, x2 ∈ N

|∂ l(I αf2)(x1)− ∂ l(I αf2)(x2)|
≤ 1

Hn(α)

∫
N +(−K )

|∂ lf2(x1 − y)− ∂ lf2(x2 − y)||y|Re α−n dy ≤ M ′|x1 − x2|ε

for some M ′ > 0.

Lemma 4.14. Let f ∈ Ca(Rn). Let α ∈ Cn with Re α = 1 be given. If a > 1
then

f ∈ Cl+〈ε〉,x(Rn) ⇒ ∀ε′, 0 < ε′ < ε : Iαf ∈ C(l+1)+〈ε′〉,x(Rn)

for any x ∈ Rn and 0 < ε < 1.

Proof. Let x0 ∈ Rn be given. Write f = f1 + f2 as in Remark 4.11. Then
from Lemma 4.12 Iαf1 is smooth at x0, so only Iαf2 needs thought.

Pick p ∈ Nn
0 with |p| = l+1. Write p = l+ei for some l ∈ Nn

0 with |l| = l,
and some ei = (0, . . . , 0, 1, 0, . . . , 0). Let K be a compact neighborhood of
x0 in which ∂lf is Hölder continuous and assume χ in the decomposition
f = f1 +f2 = (1−χ)f +χf to have K as its support. Put g = ∂ lf2. Then g
is Hölder continuous of index ε in all of Rn and has support in K . What needs
to be shown is, that ∂p(I αf2) = ∂i∂

l(I αf2) = ∂i(I
αg) (Lemma 4.12) exists

and is Hölder continuous in a neighborhood of x0.
Let B be a symmetric, bounded neighborhood of 0 such that K ⊂ B+x =

Bx for all x in some bounded, open neighborhood O of x0. Let β ∈ C with
1 < Re β < 2 be given. Then for any x ∈ O

∂iI
βg(x) = cn(β)

∫
Bx

g(y)(xi − yi)|x − y|β−n−2 dy

= cn(β)

∫
B

g(x − y)yi |y|β−n−2 dy(23)

where cn(β) = β−n
Hn(β)

and where the integral exists since Re β > 1 and B is
bounded. Furthermore, using the Hölder continuity of g

∫
B

|(g(x − y)− g(x))yi |y|α−n−2| dy ≤ M

∫
B

|y|−n+ε dy < ∞,
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i.e. the integral
∫
B
(g(x−y)−g(x))yi |y|α−n−2 dy exists. Using the symmetry

of B we get

(24)

∣∣∣∣ 1

cn(β)
∂iI

βg(x)−
∫
B

(g(x − y)− g(x))yi |y|α−n−2 dy

∣∣∣∣
≤

∫
B

|(g(x−y)−g(x))yi(|y|β−n−2−|y|α−n−2)| dy+|g(x)
∫
B

yi |y|β−n−2 dy|

≤ c′
∫
B

||y|β−n−1+ε − |y|α−n−1+ε| dy

for some c′ > 0. Now notice that when n = 1, then cn has a removable
singularity at β = 1, so that for any value of n ∈ N, cn is bounded and
bounded away from 0 in a small enough neighborhood of α, i.e. limβ→α

1
cn(β)

exists and is not 0. Thus (24) shows that in the limit where Re β > 1

lim
β→α

∂iI
βg(x) = cn(α)

∫
B

(g(x − y)− g(x))yi |y|α−n−2 dy

uniformly on O . So ∂iI αg does exist and

∂iI
αg = cn(α)

∫
B

(g(x − y)− g(x))yi |y|α−n−2 dy

in all of O . Given 0 < ε′ < ε put s = ε′
ε

and t = 1 − s. We then have for any
x1, x2 ∈ O , that

|∂iI αg(x1)− ∂iI
αg(x2)|

= cn(α)|
∫
B

(g(x1 − y)− g(x1)− (g(x2 − y)− g(x2)))yi |y|α−n−2 dy

≤ cn(α)

∫
B

|(g(x1 − y)− g(x1))− (g(x2 − y)− g(x2))|t

|(g(x1 − y)− g(x2 − y))− (g(x1)− g(x2))|s |y|−n dy
≤ cn(α)

∫
B

(2M|y|ε)t (2M|x1 − x2|ε)s |y|−n dy

= cn(α)|x1 − x2|εs2M
∫
B

|y|εt−n dy = M ′|x1 − x2|ε′

for some constant M ′ > 0.

Corollary 4.15. Let f ∈ Ca(Rn). Let α ∈ C with 0 < Re α < min(a, n)
be given. Then

f ∈ Cl+〈ε〉,x(Rn) ⇒ ∀ε′, 0 < ε′ < ε : Iαf ∈ C(l+[Re α])+〈ε′〉,x(Rn)
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for any x ∈ Rn and 0 < ε < 1. Here [Re α] denotes the integer part of Re α.

Proof. Write α = β + [Re α]. Then 0 ≤ Re β < 1. From Proposition 4.9
combined with Lemma 4.8

Iαf = Iβ(I 1(I 1(. . . (I 1f ) . . .))),

I 1 applied [Re α] times. The claim now follows from Lemma 4.14 and Lem-
ma 4.13.

Proposition 4.16. Let k ∈ {1, . . . , n− 1} and f ∈ C(k, n). Then

I−k(I kf ) = f.

Proof. Let x ∈ Rn be given and choose δ, 0 < δ < 1, such that f ∈
Ck+δ(Rn). From Proposition 4.6 it follows, that there exists an δ′, 0 < δ′ < 1,
such that the map

α �→ (I α+kf )(x)

is holomorphic in {α ∈ C | −k − δ′ < Re α < δ}. Since Lemma 4.8 and
Corollary 4.15 with a = b = k + δ ensures, that

I kf ∈ Ck+δ (Rn),

we likewise get from Proposition 4.6, that there exists a δ′′, 0 < δ′′ < 1, such
that the map

α �→ (I α(I kf ))(x)

is well-defined and holomorphic in {α ∈ C | −k − δ′′ < Re α < δ}. Proposi-
tion 4.9 gives us, that

IαI kf (x) = Iα+kf (x),

when α ∈ {α ∈ C | 0 < Re α < δ}. By analytic continuation this identity then
holds on all of {α ∈ C | −k − min(δ′, δ′′) < Re α < δ}. In particular, using
Lemma 4.7 with a = k + δ

I−kI kf (x) = I 0f (x) = f (x).

5. The Inversion Formula for the Radon Transform

Let k ∈ {1, . . . , n − 1} be given. Let f ∈ Ca(Rn) for some a > k. For the
k-plane transform one arrives, by calculating, at

(25) (f̂ )ˇ(x) = (4π)
k
2
�

(
n
2

)
�

(
n−k

2

) (I kf )(x),
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cf. [3] or [6, p. 29]. This will be used in what follows.

Theorem 5.1. Let k ∈ {1, . . . , n− 1}. Assume, that f ∈ C(k, n). Then f
can be recovered from its k-plane transform by

f = (4π)−
k
2
�

(
n−k

2

)
�

(
n
2

) I−k(f̂ ) .̌

Proof. The claim follows from (25) by means of Proposition 4.16.

Remark 5.2. Any differentiable function will also be locally Hölder con-
tinuous (but the inverse implication is not true). Thus the Hölder condition
could in the entire paper have been replaced by demanding all functions to
be one more time continuously differentiable. E.g. Theorem 5.1 is true for all
f ∈ C1(Rn) with f (x) = O(|x|−k−δ) for some δ > 0.

An even lower regularity requirement on f can be bought at a small price:

Theorem 5.3. Let k ∈ {1, . . . , n − 1}. Assume, that f ∈ Ck+δ for some
δ > 0. Then f can be recovered from its k-plane transform by

f = (4π)−
k
2
�

(
n−k

2

)
�

(
n
2

) lim
s→−k+

I s(f̂ ) .̌

We will need the following lemma pointed out to me by Boris Rubin (cf.
[12, Thm. I.2.6]):

Lemma 5.4. Let f ∈ Ca(R). Then

lim
s→−1+

xs+(f ) = f (0).

Proof. Let ε > 0 be given and choose δ, 0 < δ < 1, such that |f (x) −
f (0)| ≤ ε when |x| ≤ δ. Write

xs+(f )

= 1

�(s + 1)

[∫ δ

0
(f (x)− f (0))xs dx +

∫ ∞

δ

f (x)xs dx +
∫ δ

0
f (0)xs dx

]
.

Since (when s > −1),∣∣∣∣ 1

�(s + 1)

∫ δ

0
(f (x)− f (0))xs dx

∣∣∣∣ ≤ ε

�(s + 2)
δs+1
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and (when s − a < −1)∣∣∣∣ 1

�(s + 1)

∫ ∞

δ

f (x)xs dx

∣∣∣∣ ≤ c

�(s + 1)|s − a + 1|δ
s−a+1

for some constant c > 0 and∣∣∣∣ 1

�(s + 1)

∫ δ

0
f (0)xs dx − f (0)

∣∣∣∣ ≤
∣∣∣∣f (0)

(
δs+1

�(s + 2)
− 1

)∣∣∣∣,
|xs+(f )−f (0)| can be estimated by e.g. some multiple of εwhen s is sufficiently
close to −1.

Also a parallel of Corollary 4.15 and thus of Lemma 4.14 for functions
with the Hölder continuity of the derivatives replaced by ordinary continuity
is needed:

Lemma 5.5. Let f ∈ Cla(Rn). Let α ∈ Cn with Re α = 1 be given. If a > 1,
then

Iαf ∈ Cl+〈ε〉(Rn)

for any 0 < ε < 1.

Proof. Let x ∈ Rn and 0 < ε < 1 be given. Decompose f = f1 + f2 as
in Remark 4.11. Then Iαf1 is smooth at x according to Lemma 4.12, so only
Iαf2 needs thought.

From Lemma 4.12 Iαf2 is in Cl(Rn) with ∂ lIαf2 = Iα∂ lf2 for any l ∈ Nn
0

with |l| = l. The claim is, that these derivatives are Hölder continuous of index
ε at x. Therfore pick O , a bounded neighborhood of x, and x1, x2 ∈ O . Since
f2 has compact support K , there exists c > 0 such that

|∂ lIαf2(x1)− ∂ lIαf2(x2)| ≤ c

∫
K

∣∣|x1 − y|α−n − |x2 − y|α−n∣∣ dy.
Thus it suffices to prove the existence of a constant C > 0 (independent of x1

and x2) such that

(26)
∫

K

∣∣|x1 − y|α−n − |x2 − y|α−n∣∣ dy ≤ C|x1 − x2|ε.

Put

B1 = B

(
x1,

2

3
|x1 − x2|

)
B2 = B

(
x2,

2

3
|x1 − x2|

)
A = K \ (B1 ∪ B2).
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Then K ⊂ B1 ∪ B2 ∪ A, so (26) holds if it can be proved with K replaced
by each of the three sets B1, B2 and A. But since |x2 − y| > 1

3 |x1 − x2| when
y ∈ B1∫

B1

∣∣|x1 − y|α−n − |x2 − y|α−n∣∣ dy
≤

∫
B1

|x1 − y|1−n dy +
∫
B1

|x2 − y|1−n dy

≤
∫
B(0, 2

3 |x1−x2|)
|y|1−n dy +

∫
B(0, 2

3 |x1−x2|)

(
1

3
|x1 − x2|

)1−n
dy

≤ C1|x1 − x2|.
An equivalent calculation can be done for the integral on B2. Thus we turn to
the integral on A.

First let y ∈ A with |x1 − y| 	= |x2 − y| be given. Apply the mean value
theorem to the function t �→ Re tα−n on the interval with endpoints |x1 − y|
and |x2 − y| to obtain the existence of an s1 ∈ ]0, 1[ such that∣∣Re |x1 − y|α−n − Re |x2 − y|α−n∣∣

≤ c′(s1|x1 − y| + (1 − s1)|x2 − y|)−n∣∣|x1 − y| − |x2 − y|∣∣.
Then apply the mean value theorem to the function t �→ Im tα−n to obtain an
s2 and a similar evaluation of | Im |x1 − y|α−n − Im |x2 − y|α−n|. Conclude
from this that for any y ∈ A∣∣|x1 − y|α−n − |x2 − y|α−n∣∣ ≤ c′′(min(|x1 − y|, |x2 − y|))−n|x1 − x2|.
Choose K > 0 such that B(y1,K) ∩ B(y2,K) ⊃ A for all y1, y2 ∈ O . Then
K is independent of x1 and x2 and∫

A

(min(|x1 − y|, |x2 − y|))−n dy

≤
∫
B(x1,K)\B1

|x1 − y|−n dy +
∫
B(x2,K)\B2

|x2 − y|−n dy

≤ 2*n

(
logK − log

(
2

3
|x1 − x2|

))
≤ C ′(1 + |x1 − x2|ε−1),

whereC ′ is independent of x1 and x2. The last evaluation holds because ε−1 <
0.
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Corollary 5.6. Let f ∈ Cla(R
n). Let α ∈ C with 1 ≤ Re α < min(a, n)

be given. Then
Iαf ∈ C(l+[Re α]−1)+〈ε〉(Rn)

for any 0 < ε < 1.

Proof. Let 0 < ε < 1 be given. If Re α = 1 the claim is the previous
lemma. If Re α > 1 write α = β + 1. From Proposition 4.9

Iαf = Iβ(I 1f ).

According to the previous lemma I 1f ∈ Cl+〈ε〉(Rn), so the claim follows from
Corollary 4.15.

Proof of Theorem 5.3. Use Remark 2.4 to modify the conclusions of
Proposition 3.7 and 4.6 regarding the set of definition of the extension when
the Hölder continuity on the derivatives of f is replaced by ordinary continuity.
Use this in following the lines of the proof of Proposition 4.16: Let x ∈ Rn be
given. The map

α �→ (I α+kf )(x)

is holomorphic in {α ∈ C| − k < Re α < δ}. Since Lemma 4.8 and Corol-
lary 5.6 ensures, that

I kf ∈ C(k−1)+〈ε〉
δ (Rn)

for all 0 < ε < 1, the map

α �→ (I α(I kf ))(x)

is holomorphic in⋃
0<ε<1

{α ∈ C| − (k − 1 + ε) < Re α < δ} = {α ∈ C| − k < Re α < δ}.

Thus by Proposition 4.9 and analytic extension

(27) I α(I kf )(x) = Iα+kf (x),

when −k < Re α < δ. The last step of the proof of Proposition 4.16 requires
Lemma 4.7 the conclusion of which does not hold for an arbitrary f ∈ Ca(Rn)
(I 0(f ) does not necessarily exist). But we can use Lemma 5.4 to replace
Lemma 4.7 by (see (16))

lim
s→0+

(I sf )(x) = lim
s→0+

�(s)

Hn(s)
rs−n(τxf )

= lim
s→−1+

xs+(Mτxf ) = Mτxf (0) = f (x).



224 sine r. jensen

Thus, using (27), we have that

lim
s→−k+

I s(I kf (x)) = f.

This in connection with (25) proves the theorem.

6. The Inversion Formula in Terms of the Laplacian

It is known, cf. [6], that if k is even, the inversion formula can be stated by
means of the Laplacian, 5, instead of the more complicated Riesz potentials.
In fact

Theorem 6.1. When k is even, and f ∈ C2(Rn), and f and all its first and
second order derivatives are O(|x|−k−ε) for some ε > 0, then

(28) f = (4π)−
k
2
�

(
n−k

2

)
�

(
n
2

) (−5)k2 (f̂ ) .̌

Proof. Follow the lines of [6, p. 16–17]: First notice that it suffices for f
to be continuous and O(|x|−k−ε) for some ε > 0 in order to have formula [6,
(34)] for the k-plane transform; that is,

(29) (f̂ )ˇ(x) = *k

∫ ∞

0
F(r, x)rk−1 dr,

for any x ∈ Rn, where F(r, x) = 1
*n

∫
Sn−1 f (x + rω) dω. Here dω is the Haar

measure on the unit sphere Sn−1 in Rn with total mass*n = 2π
n
2

�( n2 )
. Then notice,

that the demands on the decay of the derivatives of f allows us to apply the
Laplacian (with respect to x) on (29) by interchanging it with the integration.
By means of Darboux’s equation, it can now be seen, as in [6, p. 16–17], that

5((f̂ )ˇ)(x) =
{ −*k(n− k)f (x) k = 2

−*k(n− k)(k − 2)
∫ ∞

0 F(r, x)rk−3 dr k 	= 2
.

When k = 2 this is (28). For k 	= 2 the expression is similar to (29) - the power
of r in the integral has just been reduced and it is still larger than -1. Thus the
Laplacian can be applied once more without inducing further demands on f or
its derivatives. Continued iteration proves (28).

Can the Theorem 5.1 be used to enlarge the class of functions for which
(28) holds? Not much, I think. Some relevant thoughts are the following: Let
α0 ∈ C be given. Using Definition 4.4 and Green’s formula it is not hard to
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see, that for ϕ ∈ C2(Rn) with sufficient decay of ϕ and all it’s first and second
order derivatives (O(|x|−2−ε) for some ε > 0 is enough),

(30) I α5ϕ = −Iα−2ϕ

in some strip {α ∈ C|2 < Re α < 2+δ}. If furthermore ϕ ∈ Cl+(Rn) for some
integer l ≥ − Re α0 + 2, Proposition 4.6 can be used to extend both sides of
(30) holomorphically to α0 and thus prove (30) for α = α0.

Iterating (30) and then using Lemma 4.7 proves that when k is even and
positive, and h ∈ Ck+(Rn), and h and all it’s derivatives of order less than or
equal to k have a certain decay (O(|x|−2−ε) for some ε > 0 is enough), then

(−5)k2 h = I−kh.

Thus we see from Theorem 5.1 that (28) holds also for f ∈ C(k, n) when, in
stead of decay demands on derivatives of f , we demand a certain decay of (f̂ )ˇ
and all it’s derivatives of order less than or equal to k (O(|x|−2−ε) is enough).
Notice, that since (f̂ )ˇ is proportional to I kf the derivatives of (f̂ )ˇdo exist
according to Corollary 4.15.
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