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REMARKS ON A CONSTRUCTION OF
DUISTERMAAT

ANTHONY SMALL∗

Abstract

A construction of Duistermaat’s, in which an auxiliary holomorphic curve in the line bundle O (4)

on P1 is associated to a minimal surface in R3, is described in a new way and generalised to
minimal surfaces in Rn. If the minimal surface is complete and has finite total curvature then the
auxiliary curve is algebraic.

1. Introduction

Suppose that φ : X −→ R3 is a branched minimal immersion of a Riemann
surface whose Gauss map to the unit 2-sphere at the origin is non-constant. In
[1], Duistermaat describes a lift of the Gauss map, away from its branch points,
to a holomorphic line bundle; using some elementary representation theory this
bundle is identified as being isomorphic to O (4) on P1. It is observed that there
exists a canonical holomorphic 1-form on the total space of the bundle, the
real part of which, when pulled back to X, integrates to return φ.

The encoding of the geometry of a minimal surface into the auxiliary curve
is explored. In particular, the branch points of the Gauss map, end structure,
branch points in the metric and total Gaussian curvature.

It is shown that if φ is finitely branched and induces a complete metric of
finite total Gaussian curvature then the auxiliary curve is part of an algebraic
curve on the compact complex surface P(O (4) ⊕ O ). A number of interesting
examples are discussed.

Our purpose in this note is to give an alternative description of Duistermaat’s
lift which generalises easily to the study of maps to Rn. It is shown, following
[1], how to associate algebraic curves to finitely branched complete minimal
immersions of finite total Gaussian curvature.
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2. Lifting the Gauss Map

Let Qn−2 ⊂ Pn−1 be the quadric hypersurface (z2
1+· · ·+z2

n = 0). Suppose that
X is a Riemann surface and φ : X −→ Rn is a branched minimal immersion.
The Gauss map γφ = [dφ/dξ ] : X −→ Qn−2 is holomorphic; see [5] and [6]
for further details.

Let J denote the restriction of the universal bundle on Pn−1 to Qn−2 and π2

be the map of J induced by projection to the second factor of Pn−1 × Cn.

Definition 2.1. Let E = T ′∗Qn−2 ⊗ J , and πE : E −→ Qn−2 be the
projection map. There is a canonical Cn-valued holomorphic 1-form �, on the
total space of E: for w ∈ T ′

qE, let �(w) = π2 ◦ q ◦ dπE(w).

Now fix a smooth curve G ⊂ Qn−2.

Definition 2.2. Let LG = T ′∗G ⊗J |G −→ G , and πL : LG −→ G be the
projection map. Observe that there is a canonical Cn-valued holomorphic 1-
form �G , on the total space of LG : for v ∈ T ′

r LG , let �G (w) = π2 ◦r ◦dπL(v).

Given a branched minimal immersion φ : X −→ Rn, such that its Gauss
map γφ is non-constant and takes values on G ⊂ Qn−2, we can define a
lift of γφ , away from Bγφ

= {ξ ; dγφ(ξ) = 0}, in the following way: for
ξ ∈ X \ Bφ , pick an inverse to γφ on a neighbourhood of γφ(ξ), which is such
that γ −1

φ (γφ(ξ)) = ξ .

�φ : X \ Bγφ
−→ LG is defined by: �φ(ξ) = d(φ ◦ γ −1

φ )γφ(ξ).

Proposition 2.3. �∗
φ �G = dφ

dξ
dξ .

Proof. For v ∈ TξX,

�G (d�φ(v)) = π2 ◦ �φ(ξ) ◦ dπL ◦ d�φ(v) = π2 ◦ �φ(ξ) ◦ dγφ(v)

= π2 ◦ dφ(v).

Now, unless we start with a curve in E, there is not, for n > 3, a canonical
way to lift the Gauss map to E. However, �G is related to � in the following
way.

Write the inclusion ι : G −→ Qn−2; this gives ι̃ : E|G −→ E, which
induces ι̃∗�E on E|G . Let πG : E|G −→ G , denote the restriction of πE to
E|G . There is a natural map θ : E|G −→ LG , namely θ(q) = q ◦ dι.

Proposition 2.4. On E|G : ι̃∗�E = θ∗�G .

Proof. First observe that πL ◦ θ = πG over E|G , and hence

(1) dπL ◦ dθ = dπG .
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Next note that πE ◦ ι̃ = ι ◦ πG and so

(2) dπE ◦ dι̃ = dι ◦ dπG .

For w ∈ T ′
q(E|G ),

θ∗�G (w) = π2 ◦ θ(q) ◦ dπL ◦ dθ(w).

Using the definition of θ(q) and (1) gives

θ∗�G (w) = π2 ◦ q ◦ dι ◦ dπG (w).

Applying (2) this gives

θ∗�G (w) = π2 ◦ q ◦ dπE ◦ dι̃(w)

= ι̃∗�E(w).

For n = 3, the above gives Duistermaat’s construction [1], described from
the dual point of view. Note in particular that in this case, E is isomorphic to
the line bundle O (−4) on P1.

3. Relationship with the Lie Correspondence

Let Spé O (2) be the étalé space of O (2); classical osculation duality determ-
ines a canonical null holomorphic map � : Spé O (2) −→ H0(P1, O (2)),
given by: �([f ]ζ ) = (

1
2 (1 − ζ 2)f ′′(ζ ) + ζf ′(ζ ) − f (ζ ), 1

2 i(1 + ζ 2)f ′′(ζ ) −
iζf ′(ζ ) + if (ζ ), ζf ′′(ζ ) − f ′(ζ )

)
. Every non-planar minimal surface in R3

can be understood in terms of this map.
The correspondence was first found by Lie and rediscovered by Hitchin,

see [7] for further details and references. In 2.6 of [1], Duistermaat asks after
the relationship between the Lie correspondence and the construction of his
paper; we describe it here. Analogous statements apply to O (n).

If ω = 1/ζ on P1, and f̃ (ω) = −ω2f (1/ω), then f̃ ′′′(ω) = ω−4f ′′′(1/ω).

�([f ]ζ ) := d�

dζ
dζ = 1

2

(
(1 − ζ 2), i(1 + ζ 2), 2ζ

)
f ′′′(ζ ) dζ,

is a canonical H0(P1, O (2))-valued holomorphic 1-form on Spé O (2).
Any null curve ψ : X −→ H0(P1, O (2)), whose Gauss map γψ is non-

constant, has a Gauss transform �ψ : X −→ O (2); this lifts, away from the
branch points of γψ , to �̃ψ : X∗ −→ Spé O (2), and ψ |X∗ = � ◦ �̃ψ , [7]. It is
easy to show that

ψ =
∫

�̃∗
ψ�.
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4. Finite Total Curvature

Suppose that φ : X −→ Rn is a complete, finitely branched minimal immer-
sion which induces a branched metric of finite total Gaussian curvature. Chern
and Osserman showed that X is conformally equivalent to Y \ {ξ1, . . . , ξr},
where Y is compact and moreover the Gauss map of φ extends over the ends
{ξ1, . . . , ξr} to give a holomorphic map γφ : Y −→ Qn−2. C(φ), the total
Gaussian curvature over Y , equals a constant times the homology degree of
γφ ; see [5], [6].

Recall that the line bundle LG over G has a natural compactification to the
ruled surface P(LG ⊕ O ), in which a copy of G , denoted G∞, is added so
that each fibre is completed to a copy of P1, see [2]. The image of the zero
section in P(LG ⊕ O ), is denoted by G0. C denotes a fibre of the bundle map
P(LG ⊕ O ) −→ G .

The following is a generalisation from the n = 3 case of results in [1]:
(i) follows immediately from local considerations; (ii) follows from Chow’s
theorem; (iii) follows immediately from standard results, cf. [3], [5]. The rest
is obvious.

Proposition 4.1. Suppose that φ : Y \ {ξ1, . . . , ξr} −→ Rn is a complete,
finitely branched minimal immersion which induces a branched metric of non-
zero finite total curvature. Moreover, suppose that γφ takes values on a smooth
curve G ⊂ Qn−2. Then:

(i) �φ extends to give a holomorphic map �φ : Y −→ P(LG ⊕ O ).

(ii) Ŷ = �φ(Y ) is an algebraic curve on P(LG ⊕ O ).

(iii) C(φ) = −2π(Ŷ · C) deg(G).

(iv) Ŷ · G0 equals the total branching in the metric induced by φ, counted
with multiplicity.

(v) �φ(Bγφ
) ⊂ G∞. Every other point in Ŷ ∩ G∞ corresponds to an end of

the minimal surface.

Remarks. (i) In (v), there are possibly both finite and infinite branch points
of the Gauss map; the latter will give ends with ‘spin’, cf. [1].

(ii) For an algebraic curve on P(LG ⊕ O ), other than G∞, there is a finitely
punctured part in LG . Integrating �G over that part, for non-fibres, and taking
the real component will give a minimal surface of the type described in 3.1,
provided any periods are purely imaginary, cf. [1].

(iii) If G is a rational normal curve in Pn−1, then G ∼= P1 and P(LG ⊕ O )

is isomorphic to the rational normal scroll that has a curve of self-intersection
number −(n + 1), cf. [2]. On this surface there is the linear equivalence G0 ∼
G∞ −(n+1)C. In view of the existence of simple analogues of the Weierstrass
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formula for such surfaces, [7], it appears to be straightforward in this case to
define the analogue of ‘total spin at infinity’ and obtain analogues of 3.12 in
[1].

5. Remarks on Another Formulation

Proposition 4.1 is attractive but requires the image of the Gauss map to be
smooth to be so formulated. We could formulate things over the desingularisa-
tion of the image but if that is necessary we might as well use the domain Y , i.e.
pull the data back over Y . Thus, to φ : Y \{ξ1, . . . , ξr} −→ Rn, as in 4.1, there is
associated a global mermorphic section η ∈ M(T ′∗Y ⊗γ ∗

φ J |Qn−2). Notice that
there is a canonical Cn-valued 1-form on the total space of T ′∗Y ⊗ γ ∗

φ J |Qn−2 ,
analogous to � above.

The number of zeros and poles, counted with multiplicity, of a meromorphic
section η, is related to the degree of the line bundle through the classical
formula:

(η)0 − (η)∞ = deg(T ′∗Y ⊗ γ ∗
φ J |Qn−2).

This leads immediately to a well-known refinement, which takes into account
both the ‘end multiplicity’and branch points structure, of the Chern-Osserman
inequality: C(φ) ≤ 2π(χ(Y ) − 2r), cf. [4], [5].

The point here is that in Duistermaat’s approach one considers T ′∗Y ⊗
γ ∗

φ J |Qn−2 , a line bundle over Y .
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