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ON BOCHNER-KRALL ORTHOGONAL
POLYNOMIAL SYSTEMS

T. BERGKVIST, H. RULLGÅRD and B. SHAPIRO

Abstract

In this paper we address the classical question going back to S. Bochner and H. L. Krall to
describe all systems {pn(x)}∞n=0 of orthogonal polynomials (OPS) which are the eigenfunctions
of some finite order differential operator. Such systems of orthogonal polynomials are called
Bochner-Krall OPS (or BKS for short) and their spectral differential operators are accordingly
called Bochner-Krall operators (or BK-operators for short). We show that the leading coefficient
of a Nevai type BK-operator is of the form ((x − a)(x − b))N/2. This settles the special case of
the general conjecture 7.3 of [4] describing the leading terms of all BK-operators.

Summary

Consider a sequence of polynomials {pn}∞n=0 in a variable x, where degpn = n.
This sequence is orthogonal with respect to a measureµ if

∫
pn(x)pm(x) dµ(x)

is nonzero precisely when n = m. We are here concerned with polynomials
orthogonal with respect to a measure of the so-called Nevai class, see [11]
and below. Furthermore we say that {pn} is a sequence of eigenpolynomials
if there exists a differential operator � = ∑N

k=1 ak(x)(d/dx)
k where ak are

polynomials in x. Finally, {pn} is called a Bochner-Krall system if it is both
orthogonal and a system of eigenpolynomials. If it is orthogonal with respect
to a measure of Nevai class, we say that it is a Bochner-Krall system of Nevai
type.

It is an open problem to classify all Bochner-Krall systems. In [4] it is
conjectured that the leading coefficient aN for any Bochner-Krall system is a
power of a polynomial of degree at most 2. Our main result is an affirmative
answer to this conjecture for Bochner-Krall systems of Nevai type.

Main Theorem. Let {pn} be a compact type BKS, orthogonal with respect
to a measure µ and with differential operator �. If µ is of the Nevai class and
the convex hull of suppµ is the interval [a, b], then N is even and aN(x) is a
constant multiple of ((x − a)(x − b))N/2.

Received February 25, 2002; in revised form December 9, 2002.



on bochner-krall orthogonal polynomial systems 149

This result is obtained by combining the results on the asymptotic distribu-
tion of zeros from [1] and [11].

1. Introduction

Let PR and PC denote the spaces of all real and complex polynomials, respect-
ively, in a variable x. By a real (or complex) polynomial system we will mean a
sequence {pn}∞n=0 of polynomials inPR (orPC) such that degpn = n. By an or-
thogonal polynomial system (OPS) one understands a real polynomial system
{pn} such that 〈pn, pm〉 is nonzero precisely when n = m, where 〈 , 〉 is some
reasonable inner product on the linear space PR. If an orthogonal polynomial
system for a given inner product exists, the pn are unique, up to multiplication
by scalars.

Orthogonal polynomial systems have been studied in various degrees of
generality. Classically, one has considered inner products of the form

〈p, q〉 = σ(p · q)
where σ is a moment functional, that is a linear functional on PR. It is known
that all moment functionals can be represented by an integral

(1) σ (p) =
∫
p(x) dµ(x)

where µ is a (possibly signed) Borel measure on the real line. The most com-
plete theories have been obtained in the case where µ is positive with compact
support, and moreover belongs to the so-called Nevai class. If the density of
µ is a function ρ and log ρ is integrable on the smallest interval containing
suppµ, then µ is of the Nevai class, but this condition is not necessary. See
[11] for the precise definition of the Nevai class, denoted there byM(a, b). In
what follows we will mainly be concerned with orthogonal polynomial sys-
tems of this particular kind, which we will call orthogonal systems of Nevai
type. Recently, there has been interest in more general inner products called
Sobolev, which are of the form

〈p, q〉 =
M∑
k=0

σk(p
(k) · q(k))

where the σk are moment functionals. For the basics of the classical theory of
orthogonal polynomials see e.g. [12] and [3].

Consider now a differential operator

(2) � =
N∑
k=1

ak(x)
dk

dxk
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where the coefficients ak(x) are polynomials in PC. We are interested in eigen-
polynomials of this operator, that is polynomials p ∈ PC satisfying �p = λp

for some constant λ. Already S. Bochner observed that the operator � has infin-
itely many linearly independent eigenpolynomials if and only if deg ak(x) ≤ k,
with equality for at least one k. In this case there is precisely one monic de-
gree n eigenpolynomial pn for all sufficiently large n. For generic ak(x), the
same is true for every n ≥ 0. If a complex polynomial system consists of
eigenpolynomials for an operator of the form (2), we will call it a system of
eigenpolynomials.

A Bochner-Krall system (BKS for short) is defined to be a real polynomial
system which is both orthogonal (with respect to some inner product 〈 , 〉) and
a system of eigenpolynomials (for some differential operator �). In this case
〈 , 〉 is called a Bochner-Krall inner product, and � is called a Bochner-Krall
operator. If a BKS is an orthogonal system of Nevai type, we will call it for
short a Nevai type BKS. The results we report in this note are valid for all
Nevai type BKS.

It is an open problem to classify all Bochner-Krall systems. A complete
classification is only known for Bochner-Krall operators � with N ≤ 4. The
corresponding BKS are various classical systems such as the Jacobi-type, the
Laguerre-type, the Legendre-type, the Bessel and the Hermite polynomials,
see [4], Th. 3.1. In general, it is not even known which differential operators are
Bochner-Krall operators for some BKS. In [4] it is conjectured that the leading
coefficient aN(x) of a Bochner-Krall operator is a power of a polynomial of
degree at most 2. Our main result is an affirmative answer to this conjecture
for Nevai type BKS.

Our results are obtained by studying the asymptotic distribution of zeros of a
polynomial system. To make this more precise, let {pn} be a polynomial system
and for fixed n ≥ 1, let α1, . . . , αn denote the (real or complex) zeros ofpn. Let
νn = 1

n

∑n
i=1 δ(x − αi) be the probability measure in the complex plane with

point masses at these zeros. We call the measures νn the root measures of the
polynomial system {pn}. If the sequence of root measures νn converges weakly
to a measure ν when n → ∞, we say that ν is the asymptotic distribution of
zeros of the polynomial system.

The following results, which characterize the asymptotic distribution of
zeros for Nevai type OPS and for systems of eigenpolynomials respectively,
are crucial to our treatment.

Suppose that a polynomial system {pn} is orthogonal with respect to a
positive measure µ, and that the convex hull of suppµ is a compact interval
[a, b]. It is well known (see [3]) that the zeros of every pn are contained in
the interval [a, b]. The following is a more precise result on the distribution of
zeros for orthogonal systems of Nevai type.
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Theorem A (see [11], Th. 3, p. 50). Let the polynomial system {pn} be
orthogonal with respect to a measure µ of Nevai class on R, and let the convex
hull of suppµ be [a, b]. Then the asymptotic distribution of zeros of {pn} is an
absolutely continuous measure ν which depends only on [a, b]. The support
of ν is precisely [a, b] and its density in this interval is given by

ρ(x) = 1

π
√
(b − x)(x − a) .

Next we describe the asymptotic distribution of zeros for a system of ei-
genpolynomials.

Theorem B (see [1] Th. 2 and 4). Let {pn} be a system of eigenpolyno-
mials for an operator � with aN(x) monic of degree N . Then the asymptotic
distribution of zeros of {pn} is a probability measure ν with the following
properties:

a) ν has compact support;

b) its Cauchy transform C(x) = ∫
dν(ζ )

x−ζ satisfies the equation C(x)N =
1/aN(x) for almost all x ∈ C.

These properties determine ν uniquely.

Note that the limiting measure ν is independent of all terms in (2) except
the leading term aN(x) d

N

dxN
.

To derive from these two results a statement about Nevai type BKS, we will
need the following.

Proposition 1. Let {pn} be a system of eigenpolynomials for a differential
operator �, and assume that all the zeros of pn are real. Then there exists a
compact set containing all the zeros of every pn if and only if deg aN(x) = N .

Now it is easy to derive the following

Main Theorem. Let {pn} be a Nevai type BKS, orthogonal with respect
to a measure µ and with differential operator �. If µ is of the Nevai class and
the convex hull of suppµ is the interval [a, b], then N is even and aN(x) is a
constant multiple of ((x − a)(x − b))N/2.

References and acknowledgements. There exists a really vast literature
devoted to the classification problem for OPS. Classification of BKS has also
attracted considerable attention, see e.g. [4] with its 100 references and [7],
[8], [9] and references therein. We are grateful to Dr. M. Shapiro and Professor
H. Shapiro for a number of discussions on the topic. We shold point out that
when a preliminary version of this note was shown to some of the experts in
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this field, we were sent a paper in preparation [6] containing results very much
in the same spirit as this note.

2. Proofs

We need to prove Proposition 1 and the main theorem (as its corollary). Since
the proof of Theorem B, in the situation where we will need it, follows easily
along the same lines, we will include such a proof for the convenience of the
reader.

Consider a polynomial system {pn} with the associated root measures νn.
Assume that the supports of the measures νn are all contained in the same
compact set, and that νn → ν in the weak topology. Let Cn(x) be the Cauchy
transform of νn and note that

Cn(x) =
∫
dνn(ζ )

x − ζ = p′
n(x)

npn(x)
.

If C(x) denotes the Cauchy transform of ν, it follows that

p′
n(x)

npn(x)
→ C(x)

for almost every x ∈ C.
Suppose now that {pn} is a system of eigenpolynomials for an operator

� and that supp νn are all contained in the same compact subset of the real
line. Then there exists at least a subsequence of the νn converging weakly to
some measure ν. Moreover, if we let ν(j)n denote the root measure of the j th
derivative of pn, then it follows from Rolle’s theorem that (a subsequence of)
ν
(j)
n converges weakly to ν for every j > 0. In particular,

p
(j+1)
n (x)

(n− j)p(j)n (x)
→ C(x)

for almost every x ∈ C, where C(x) is the Cauchy transform of ν. If we divide
both sides of the differential equation �pn = λnpn byn(n−1) . . . (n−N+1)pn
we obtain

aN(x)

N−1∏
j=0

p
(j+1)
n (x)

(n− j)p(j)n (x)
+ aN−1(x)

n−N + 1

N−2∏
j=0

p
(j+1)
n (x)

(n− j)p(j)n (x)
+ · · ·

= λn

n(n− 1) . . . (n−N + 1)
.
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When n→ ∞ all the terms on the left hand side but the first one tend to zero,
and so

aN(x)C(x)
N = lim

n→∞
λn

n(n− 1) . . . (n−N + 1)

for almost all x. But it can be seen (see [1]) that λn = ∑N
k=1 ckn(n−1) . . . (n−

k+1)where ck is the coefficient at xk in ak(x). In particular, if deg aN(x) < N
i.e. cN = 0, then λn/n(n − 1) . . . (n − N + 1) → 0 when n → ∞, and it
follows thatC(x) = 0 for almost all x. This implies that ν = 0, a contradiction.
This argument proves one of the implications in Proposition 1. For the other
implication we refer to [1], Lemma 9. Moreover, if aN(x) is monic of degreeN ,
then λn/n(n− 1) . . . (n−N + 1)→ 1, and it follows that C(x)N = 1/aN(x).

Suppose now that {pn} is a Nevai type BKS as in the main theorem. By
the remark preceeding Theorem A, the zeros of every pn(x) are contained in
the interval [a, b]. It follows from Proposition 1 that deg aN(x) = N , and we
might as well assume that aN(x) is monic. Hence the Cauchy transform C(x)
of the limit ν = limn→∞ νn satisfies C(x)N = 1/aN(x). On the other hand,
a direct computation of the Cauchy transform, using the expression for ν in
Theorem A, gives C(x)2 = 1/(x − a)(x − b). Comparing these results yields
aN(x) = ((x − a)(x − b))N/2.

3. Final remarks

Problem 1. The major problem in the context of this paper is whether every
BKS, orthogonal with respect to a positive mesure with compact support, is
a Jacobi-type OPS, compare [4], Conjecture 7.3. For the constant leading
coefficient the analogous fact was proved in [9].

Problem 2. Is there an analog of Theorem A on the asymptotic zero dis-
tribution for a signed measure µ with compact support? What is the situation
for a probability measure with a noncompact support as well as for Sobolev
orthogonal polynomial systems. (There exists a literature on this topic.)

Problem 3. Generalize the results of [1] to operators with deg aN(x) < N .
Preliminary computer experiments show that similar results on the asymptotic
distribution of zeros would hold for all operators (2).
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