
MATH. SCAND. 94 (2004), 75–108

RESIDUES AND HOMOLOGY FOR
PSEUDODIFFERENTIAL OPERATORS ON FOLIATIONS

M-T. BENAMEUR and V. NISTOR∗

Abstract

We study the Hochschild homology groups of the algebra of complete symbols on a foliated
manifold (M,F ). The first step is to relate these groups to the Poisson homology of (M,F ) and
of other related foliated manifolds. We then establish several general properties of the Poisson
homology groups of foliated manifolds. As an example, we completely determine these Hochschild
homology groups for the algebra of complete symbols on the irrational slope foliation of a torus
(under some diophantine approximation assumptions). We also use our calculations to determine
all residue traces on algebras of pseudodifferential operators along the leaves of a foliation.

Introduction

This paper is a continuation of [2] and [3]. In those papers we have determined
the Hochschild, cyclic, and periodic cyclic homology of certain algebras of
complete symbols defined using groupoids. Our results were complete for
periodic cyclic homology, these groups being given directly in terms of the
cohomology of the cosphere bundle of the algebroid associated to our groupoid
(this result is recalled in Theorem 5.2), for any differentiable groupoid.

The results for Hochschild homology groups (and hence also for cyclic
homology groups) strongly depend, however, on the particular structure of the
given groupoid. The previous two papers compute these groups for families
of groupoids whose Lie algebroids are rationally isomorphic to the tangent
bundle. This includes families of manifolds without boundary, families of b-
pseudodifferential operators. We also treated in [3] the case of families of
pseudodifferential operators on manifolds with corners.

In this paper, we study the Hochschild homology of algebras A (M,F )

of complete symbols on a foliated manifold (M,F ). These algebras can also
be defined using groupoids, although in this paper we choose to define them
directly (see Section 5). We again obtain a convergent spectral sequence relat-
ing the Hochschild homology groups of A (M,F ), denoted HHk(A (M,F )),
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k = 0, 1, . . ., to the Poisson homology of (M,F ) and to the Poisson homology
of various other foliations associated to (M,F ). This leads to a complete de-
termination of the traces of A (M,F ). These traces are usually called “residue
traces.” See [2], [3], [5], [11], [12], [14], [25], [26] for previous results of this
kind. A motivation for the study of residue traces is our desire to understand
an index theorem of Piazza for pseudodifferential operators on manifolds with
boundary [21]. See also .

For simplicity, we have restricted ourselves here to foliated manifolds
without boundary. In fact, the first three sections of this paper are devoted
to the study of the Poissson homology of foliated manifolds and to their rela-
tion to longitudinal de Rham cohomology, as follows. We begin by reviewing
some properties of de Rham cohomology groups for foliations in Section 1.
Then, we discuss in Section 2 a Gysin long exact sequence for sphere fibrations
of foliated manifolds following [22]. The homogeneous Poisson homology for
conic foliated manifolds is defined and studied in Section 3. These homogen-
eous Poisson homology groups turn out to be isomorphic to certain de Rham
cohomology groups, see Theorem 4.6. The corresponding result for non homo-
geneous homologies holds only for the longitudinal Poisson homology groups,
see Definition 18 and [24].

In Section 5, we introduce the algebra A (M,F ) of complete symbols on a
foliated manifold (M,F ). We then compute in the last section, Section 6, the
E2-term of a spectral sequence EHr that we prove to converge to the Hochschild
homology of longitudinal complete symbols. These computations show that if
p and q are, respectively, the dimension and the codimension of the foliation
(M,F ), then the groups

HHk(A (M,F )) = 0, if k > 2p + q.

When the spectral sequence collapses at E2, we get a complete computation.
More precisely, in this case, the Hochschild homology groups of longitudinal
complete symbols are given by (see Corollary 6.6):

HHk(A (M,F )) �
q⊕

j=0

H2p+j−k,j (S∗F × S1, F1),

where S∗F is the longitudinal cosphere bundle and F1 is the usual foliation on
the total space of the bundle S∗F ×S1 induced by F (with same codimension).

For the lowest and the highest possibly non-trivial Hochschild homology
groups, our results on the spectral sequence EHr , when combined with the
Gysin exact sequence mentioned above, show that

HH0(A (M,F )) � Hp,0(M,F )
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and HH2p+q(A (M,F )) � H0,q(M, F ), p ≥ 2.

(See Theorem 6.3.) As a consequence, we obtain a bijective correspondence
between residue traces and holonomy invariant transverse distributions, as
expected.

In the last section, we determine the groups HHk(A (M,F )) in the follow-
ing particular case. Let M = (S1)n be foliated by the one parameter subgroups
(e2πıα1t , e2πıα2t , . . . , e2πıαnt ). We assume that the following Diophantine con-
dition is satisfied: there exists C > 0 and N ∈ N such that

(1) |m1α1 +m2α2 + · · · +mnαn|−1 ≤ C(|m1| + |m2| + · · · + |mn|)N ,
for anym1, . . . , mn ∈ Z, not all zero. Then the Hochschild cohomology groups
of this algebra are given by

HHl(A (M,F )) ∼= �lCn+1 ⊗ C{±}.

Note that even in this simple example, the assumption of Equation (1) is neces-
sary for this determination to hold. In general, we need another formulation.
This is in sharp contrast with the behavior of periodic cyclic homology groups.

We use several types of cohomology groups in this paper. The most import-
ant ones are introduced as follows:

• the longitudinal de Rham cohomology groups Hr,s(M, F ), Hr,s(M, F )l ,
and Hr,s

c (M, F ) are introduced in Definition 1.2;

• the groups Hk(M, F ) are introduced using Equation (6);

• the definition of the Poisson homology groups Hδ
k(X) is recalled in Defin-

ition 3.2;

• the lth homogeneous Poisson homology groups Hδ
k(X)l and HδF

r,s(X,F )l
are introduced in Definition 4.2; and, finally,

• the groups HδF
k (X) are introduced using Equation (18).

We assume M to be compact for simplicity. Most of the following results and
constructions work for M non-compact by using cohomology with compact
support. The proof is the same but notationally more complicated. In particular,
the main computations of Hochschild homology, Theorems 6.2 and 6.3 remain
true by considering compactly supported cohomology groups.

Acknowledgements. We thank Robert Lauter, Sergiu Moroianu, Jean
Renault, Claude Roger, and Georges Skandalis for useful discussions. As we
completed our manuscript, we received the preprint [13], which deals with
some related questions.
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1. de Rham cohomology for foliations

Throughout this paper, we shall denote by (M,F ) a smooth manifold M of di-
mensionn equipped with a smooth foliationF . SoF is, by definition, a smooth,
integrable sub-bundle of the tangent bundle TM . The transverse bundle to the
foliation (M,F ) is the quotient vector bundle ν = TM/F . We denote by p

the dimension of F and by q the codimension of F . Thus n = p + q.
The sections of the longitudinal bundle F will be called longitudinal vector

fields. The sections of the exterior powers �rF ∗ of the dual vector bundle
F ∗ will be called longitudinal differential r-forms. The space of longitudinal
differential r-forms will be denoted by !r,0(M,F ) while !r(M) will denote,
as customary, the space of differential r-forms on the smooth manifold M .
Every longitudinal vector field on (M,F ) is also a vector field on M in the
usual sense, therefore, any differential form on M restricts to a longitudinal
differential form on (M,F ). This defines surjections

!r(M) −→ !r,0(M,F ).

More generally, a section of the bundle �rF ∗ ⊗�sν∗ will be called a differ-
ential form of bi-degree (r, s), or (r, s)-differential form, for short. We denote
the space of (r, s)-differential forms on M by !r,s(M, F ).

Any choice of a supplementary sub-bundleH toF in TM induces splittings

(2) #H : T ∗M ∼= F ∗ ⊕ ν∗ and !d(M) ∼=
⊕
r+s=d

!r,s(M, F ),

obtained from the induced embeddings

#H = #
r,s
H : !r,s(M, F ) −→ !r+s(M).

Note that ν∗ identifies canonically with a sub-bundle of T ∗M (more precisely,
with the annihilator of F ). The splitting (2) endows !∗(M) with a bi-grading
so that the de Rham differential decomposes as a sum of three bi-homogeneous
components

(3) d = dF + d⊥ + ∂

where dF is the (1, 0)-component, called the longitudinal differential, d⊥ is
the (0, 1)-component and ∂ is an additional map that can be shown to have
bi-degree (−1, 2) [23, page 35]. Moreover, dF does not depend on the choice
of the complement H to F in TM , as we shall prove shortly.

In applications, spaces of compactly supported functions are also needed.
Our constructions extend to this case with very few changes. For simplicity,
we shall not consider this case separately.
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Let Z ∈ '(ν) be a section of the bundle ν. We shall however denote by ZH

the vector field in '(H) that corresponds to Z under the isomorphism ν ∼= H .
Also, we shall denote by πF the projection TM → F with kernel H . Let θ be
the smooth section of F ⊗�2ν∗ given for Y,Z ∈ '(ν) by

θ(Y, Z) = πF ([YH ,ZH ]).

Recall that ∂ is the contraction by θ , see [23] and also [8, page 267].
The equality d2 = 0 is then equivalent to

(4) d2
F = 0, ∂2 = 0, d2

⊥ + ∂dF + dF ∂ = 0,

dF d⊥ + d⊥dF = 0 and ∂d⊥ + d⊥∂ = 0.

Thus, for any s ∈ {0, . . . , q}, we get the complex

(5) 0 −→ !0,s(M, F )
dF−→ !1,s(M, F )

dF−→ · · · dF−→ !p,s(M,F ) −→ 0,

called the longitudinal de Rham complex. If M is endowed with a free action
of R∗+, we shall denote by

!r,s(M, F )l ⊂ !r,s(M, F )

the subspace of forms that are homogeneous of degree l with respect to the
action of R∗+. We can assume that the action of R∗+ preserves the bundle H ,
and hence that the isomorphism #H is invariant with respect to #H .

Lemma 1.1. The differential dF does not depend on the particular choice
of H .

Proof. Let H be the complement of F used to define dF . Denote by πν :
TM → ν � H the quotient projection. For any Y ∈ '(ν), let YH ∈ '(H) be
the lifting of Y to a vector field on M such that πν(Y

H ) = Y .
Then the differential dF is explicitly given by

dFω(X1, . . . , Xr+1;Y1, . . . , Ys)

=
r+1∑
j=1

(−1)s+j+1Xjω(X1, . . . , X̂j , . . . , Xr+1;Y1, . . . , Ys)

+
∑

1≤i<j≤r+1

ω([Xi,Xj ], X1, . . . , X̂i , . . . , X̂j , . . . , Xr+1;Y1, . . . , Ys)

+
s∑

i=1

r+1∑
j=1

(−1)s+j+iω(X1, . . . , X̂j , . . . , Xr+1;
πν[YH

i ,Xj ], Y1, . . . , Ŷi , . . . , Ys).
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where ω ∈ !r,s(M, F ), X1, . . . , Xr+1 ∈ '(F) and Y1, . . . , Ys ∈ '(ν).
Therefore, the only contribution of the splitting appears in the vector field
πν[YH

i ,Xj ]. But the projection πν[YH
i ,Xj ] actually does not depend on the

particular choice of H , because F is integrable. This completes the proof.

Definition 1.2. The rth cohomology space of the longitudinal de Rham
complex (5) will be denoted by Hr,s(M, F ). Similarly, we shall denote by
Hr,s(M, F )l the cohomology of the subcomplex of (5) consisting of l-homo-
geneous forms and by Hr,s

c (M, F ) the cohomology of the subcomplex of (5)
consisting of compactly supported forms.

We shall refer to all these groups as the longitudinal de Rham cohomology
groups.

We shall also need the global longitudinal de Rham complex:

(6) 0 −→ !0(M)
dF−→ !1(M)

dF−→ · · · dF−→ !n(M) −→ 0,

whose kth cohomology space is denoted Hk(M, F ). So, using the splitting (2),
we have:

(7) Hk(M, F ) �
⊕
r+s=k

Hr,s(M, F ).

The de Rham cohomology spaces of the smooth manifold M will be denoted
by Hk(M).

The homogeneity of dF , d⊥, and ∂ gives that

(8) dF (ω ∧ η) = dFω ∧ η + (−1)rω ∧ dFη,

where ω ∈ !r,s(M, F ) and η ∈ !r ′,s ′(M,F ). Since

#H(!r,s(M, F )) ∧#H(!r ′,s ′(M,F )) ⊂ #H(!r+r ′,s+s ′(M,F )),

we obtain a product

(9) Hr,s(M, F )⊗ Hr ′,s ′(M,F ) −→ Hr+r ′,s+s ′(M,F ).

We shall also need functoriality properties for the groups Hr,s(M, F ).

Proposition 1.3. Let f : (M,F ) → (M1, F1) be a C∞-map of foliated
manifolds such that there exists complements H and H1 of F , respectively F1,
with f∗(H) ⊂ H1. Then f induces a map

f ∗ : Hr,s(M1, F1) −→ Hr,s(M, F ).
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Proof. The assumption that f : (M,F ) → (M1, F1) is a smooth map
of foliated manifolds implies that f induces a vector bundle morphism f∗ :
TM → TM1 such that f∗(F ) ⊂ F1. The assumption that f∗(H) ⊂ H1 then
yields a map '(H ∗

1 ) → '(H ∗). Together with '(F ∗
1 ) → '(F ∗), these two

maps give rise to the map

f ∗
r,s : !r,s(M1, F1) −→ !r,s(M, F ).

Clearly #
r,s
H ◦f ∗

r,s = f ∗ ◦#r,s
H . Since f ∗ ◦ d = d ◦f ∗, by checking bi-degrees

we see that
dF ◦ f ∗

r,s = f ∗
r+1,s ◦ dF1 .

This shows that the maps f ∗
r,s define a morphism of complexes, and hence they

give rise to a map f ∗ : Hr,s(M1, F1)→ Hr,s(M, F ), as claimed.

Functoriality combine with the products (9) to define (external) products

(10) Hr,s(M, F )⊗ Hr ′,s ′(M1, F1)→ Hr+r ′,s+s ′(M ×M1, F × F1).

Note that H0,s(M, F ) coincides with the space !s
bas(M,F ) of differential

s-forms which are basic for the foliation, i.e. forms ω such that

iYω = 0 and LYω = 0, ∀Y ∈ '(F).

When restricted to differential forms of bi-degree (0, ∗), the de Rham differ-
ential d coincides with the sum dF + d⊥ so, using the equalities (4), we see
that d induces a well defined differential on H0,s(M, F ) that coincides with
the differential induced by d⊥. Thus the basic complex associated to (M,F )

is given by:

(11) 0 −→ H0,0(M,F )
d=d⊥−→ H0,1(M,F )

d⊥−→ · · · d⊥−→ H0,q(M, F ) −→ 0.

The cohomology of this complex will be called, as customary, the basic de
Rham cohomology of the foliated manifold (M,F ) and will be denoted by
H∗

bas(M,F ).
We shall use basic forms to study the behavior of the cohomology groups

Hr,s with respect to some fibrations of foliated manifolds. To this end, we shall
use a Leray spectral sequence with coefficients in the sheaf of germs of basic
forms and the following well known result of I. Vaisman [24].

Proposition 1.4. The sequence of sheaves

0 −→ !h
bas −→ !0,h dF−→ !1,h dF−→ · · · dF−→ !p,h −→ 0

is a fine resolution of the sheaf !h
bas of basic h-forms.
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Therefore, the space Hr,s(M, F ) can be identified with the rth cohomology
space of M with coefficients in the sheaf !s

bas.

Corollary 1.5. For 0 ≤ r ≤ p and 0 ≤ s ≤ q, we have

Hr,s(M, F ) ∼= Hr (M,!s
bas).

Similarly, Hr,s
c (M, F ) ∼= Hr

c(M,!s
bas).

2. A Gysin exact sequence

Let now π : E → M be a fiber bundle over the foliated manifold (M,F ). Let
FE be the integrable sub-bundle of the tangent bundle T E defined by

FE := Ker(p ◦ π∗)
where p : TM → TM/F . To compute the bi-degree (r, s) cohomology-
spaces of the foliated manifold (E, FE), we can use a Gysin spectral sequence
for the sheaf !s

bas over E.
TheE2 term of this spectral sequence is given byEu,v

2 =Hu(M,Rvπ∗(!h
bas)),

where the sheaf Rvπ∗(!h
bas) is defined by

(12) [Rvπ∗(!h
bas)](U) = Hv(π−1(U),!h

bas).

Let us now recall the following result from [22], whose proof we include for
the benefit of the reader.

Proposition 2.1 (Roger). Let π : E → M be any fibre bundle over M

with typical fiber a connected manifold Y . If H v denotes the locally constant
presheaf on M defined by H v(U) = Hv(π−1(U)) and h is arbitrary, but fixed,
then there exists a spectral sequence with

E
u,v
2

∼= Hu(M,!h
bas ⊗H v)

and convergent to Hu+v,h(E, FE).

Proof. Recall that a distinguished open covering of a foliated manifold
(M,F ) is a covering of M by open sets such that the induced foliation on each
of these open sets is a product foliation with contractable fibers and contractable
base. We can always find a distinguished open covering of the manifold M that
also trivializes the fibration π : E → M . But with respect to any distinguished
open setU ∼= W×T , T transversal, such thatπ−1(U) ∼= U×Y ∼= W×T ×Y ,
we have

!h
bas(W × T × Y ) � !h

bas(W × T )⊗ H0(Y ).
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This gives Hu(π−1(U),!h
bas) � ⊕u1+u2=u Hu1(W ×T ,!h

bas)⊗Hu2(Y,R). On
the other hand, we have: Hu1,h(W × T ) � 0 if u1 > 0, and

H0,h(W × T ) � !h
bas(W × T ) � !h(T ).

We thus obtain Hu(π−1(U),!h
bas) � !h

bas(W × T )⊗ Hu(Y,R). Our spectral
sequence is the spectral sequence associated to the covering by the open sets
U above, and hence

E
u,v
2 � Hu(M,!h

bas ⊗H v)

Now, let E
π→ M be an oriented bundle with fiber of dimension r . Denote

by π∗ the pull-back of differential forms and by π∗ integration along the fibres
of E → M . If H is a splitting in (M,F ) as in (2), then π∗(H) is a splitting
for (E, FE). We fix these splittings in what follows.

Lemma 2.2. (i) If dFE
is the longitudinal differential on the foliated manifold

(E, FE), then
dFE

◦ π∗ = π∗ ◦ dF .
(ii) Similarly, integration along the fibres π∗ satisfies

dF ◦ π∗ = π∗ ◦ dFE
.

Proof. (i) follows from Proposition 1.3.
(ii) In the same way, we deduce from the definition that π∗ is of bi-degree

(−r, 0), namely

π∗ : !k,h(E, FE)→ !k−r,h(M, F ).

Therefore, from the classical relation π∗ ◦ d = d ◦ π∗ we deduce again by
checking bi-degrees that dF ◦ π∗ = π∗ ◦ dFE

.

Remark 2.3. Assume that the fibers of π : E → M are diffeomorphic
to the sphere Sr and that the fibration E → M is oriented. The Euler class
e ∈ Hr+1(M) is then defined (see [15] for details). Moreover, it can be repres-
ented by an element of Hr+1,0(M,F ) (this actually follows from the proof of
Theorem 2.4). Therefore, we have for any α ∈ !k,h(M,F ) that

dF (α ∧ e) = dF (α) ∧ e.

In the sequel, in order to make our results more explicit, we shall need a
Gysin exact sequence for the (k, h)-cohomology groups. More precisely, we
have
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Theorem 2.4. Assume that π : E → M is an oriented sphere bundle with
fiber Sr and denote by e ∈ Hr+1,0(M) the Euler class of this bundle, then, for
any h in the range 0 ≤ h ≤ q, we have the following Gysin exact sequence

· · · π∗−→ Hk,h(E, FE)
π∗−→ Hk−r,h(M, F )

∧e−→ Hk+1,h(M, F )

π∗−→ Hk+1,h(E, FE)
π∗−→ · · ·

Proof. Because E is an oriented bundle, the presheaf H v has no mono-
dromy (that is, it is constant). Thus, we obtain

E
u,v
2

∼= Hu,h(M)⊗ Hv(Sr ).

Now since Hv(Sr ) = 0 if v �= 0 and v �= r , we get inclusionsEk−r,r∞ ↪→ E
k−r,r
2 ,

∀k ≥ 0. Therefore the following sequence is exact

0 −→ Ek−r,r
∞ ↪→ E

k−r,r
2

dr+1−−−→ E
k+1,0
2 −→ Ek+1,0

∞ −→ 0.

On the other hand we have an exact sequence

0 −→ Ek,0
∞ −→ Hk,h(E, FE) −→ Ek−r,r

∞ −→ 0.

But Ek−r,r
2 � Hk−r,h(M, F ) and E

k+1,0
2 � Hk+1,h(M, F ). As in the case of

the classical Gysin sequence, the above two short exact sequences yield a long
exact sequence,

· · · −→ Hk,h(E, FE) −→ Hk−r,h(M, F ) −→ Hk+1,h(M, F )

−→ Hk+1,h(E, FE) −→ Hk+1−r,h(M, F ) −→ · · ·
To end the proof, we must identify the maps involved in this exact sequence.
But this is again similar to the computation for the classical Gysin sequence.

From this theorem we obtain the following corollaries.

Corollary 2.5. We use the notation of Theorem 2.4.

(i) The map π∗ : Hk,h(M,F ) −→ Hk,h(E, FE) is an isomorphism for any
r ≥ 1 and 0 ≤ k ≤ r − 1.

(ii) The map π∗ : Hk,h(E, FE) −→ Hk−r,h(M, F ) is an isomorphism for
any k ≥ p + 1, p = dim(F ).

Proof. This is a corollary of the longitudinal Gysin exact sequence proved
in Theorem 2.4. More precisely, for k ≤ r − 1 we have Hk−r,h(M, F ) = 0.
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Therefore, we get:

· · · π∗−→ Hk−r−1,h(M, F ) = 0
∧e−→ Hk,h(M,F )

π∗−→ Hk,h(E, FE)
π∗−→ Hk−r,h(M, F ) = 0

∧e−→ · · ·
In the same way, if k ≥ p + 1, then Hk,h(M,F ) = 0, therefore we get:

· · · ∧e−→ Hk,h(M,F ) = 0
π∗−→ Hk,h(E, FE)

π∗−→ Hk−r,h(M, F )

∧e−→ Hk+1,h(M, F ) = 0
π∗−→ · · ·

In particular, for the productE = M×Sr , we get the following isomorphism
that will be used later on.

Corollary 2.6. If E = M × Sr , then

Hk,h(E, FE) � Hk,h(M,F )⊕ Hk−r,h(M, F ),

naturally.

Proof. The Euler class e vanishes because E is a product, and hence the
Gysin long exact sequence of Theorem 2.4 decomposes as a direct sum of short
exact sequences

0 −→ Hk,h(M,F ) −→ Hk,h(E, FE) −→ Hk−r,h(M, F ) −→ 0.

To complete the proof, it is enough to prove that the above sequence splits
naturally. To this end, let ωr be the generator of Hr (Sr ). We can pull this class
to a cohomology class in Hr,0(E, FE), denoted ηr . Then the product with ηr
defines the desired natural splitting Hk−r,h(M, F )→ Hk,h(E, FE).

For α > 0, the vector bundle |�|α(M) of α-densities over M is, by defin-
ition, the line bundle whose fiber at a point x is the 1-dimensional complex
vector space of maps ρ : �n(TxM)→ C that satisfy

∀λ ∈ R, ∀v ∈ �n(TxM), v �= 0, ρ(λv) = |λ|αρ(v).
This bundle admits nowhere vanishing sections and is, in fact, trivializable,
but not in a canonical way, in general. Denote by CM the complex orientation
bundle of TM , then we have

|�|1(M) ∼= �nT ∗M ⊗ CM.

Let nowE be a smooth (real) vector bundle overM . The space of compactly
supported smooth sections of E is then naturally endowed with a structure of
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a locally convex space. The space of generalized sections of the vector bundle
E is by definition the dual space of the space of compactly supported smooth
sections of the vector bundle E∗ ⊗ |�1|(M), where E∗ is the dual vector
bundle of E. Hence a distribution on M can also be viewed as a generalized
1-density. Some functorial properties of generalized sections are studied in
[10]. In particular, the pull-back of generalized sections is well defined for
fibrations (by integration along the fibers).

A k-current on M is a generalized section of the bundle �n−k(T ∗M)⊗CM .
So, a k-current on M is, by definition, a continuous linear form on the space

C∞
c (M,�n−k(TM)⊗ C∗M ⊗ |�1|(TM)).

But since,

|�1|(TM) ∼= �n(T ∗M)⊗CM and �n−k(TM)⊗�n(T ∗M) ∼= �k(T ∗M),

we get

�n−k(TM)⊗ C∗M ⊗ |�1|(TM) ∼= �k(T ∗M)⊗ C∗M ⊗ CM.

This shows that any k-current φ defines a linear map

φ : C∞
c (M,�kT ∗M) =: !k(M)→ C.

Denote, as before, by ν the transverse vector bundle ν = TM/F . We define
a (k, h)-current as a generalized section of the bundle

�p−k(F ∗)⊗�q−h(ν∗)⊗ CM.

We shall denote the space of (k, h)-currents by Ak,h(M,F ).

Lemma 2.7. By choosing a transverse distribution H , we can view any
(k, h)-current as a continuous linear form on the space of compactly supported
differential (k, h)-forms.

Proof. A (k, h)-current on M is by definition a continuous linear form on
the space

C∞
c (M,�p−k(F )⊗�q−h(ν)⊗ C∗M ⊗ |�1|(TM)).

The choice of H fixes an isomorphism TM ∼= F ⊕ ν so that

|�1|(TM) ∼= �n(T ∗M)⊗ CM
∼= �p(F ∗)⊗�q(ν∗)⊗ CM.

Using

�p−k(F )⊗�p(F ∗) ∼= �k(F ∗) and �q−h(ν)⊗�q(ν∗) ∼= �h(ν∗),
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we obtain that

�p−k(F )⊗�q−h(ν)⊗ C∗M ⊗ |�1|(TM) ∼= �k(F ∗)⊗�h(ν∗)⊗ C∗M ⊗ CM.

To finish the proof, we use that the bundle C∗M ⊗CM is canonically isomorphic
to the trivial line bundle.

The above lemma shows, in particular, that orientation-twisted (p− k, q −
h)-differential forms define a pairing with (k, h)-differential forms. This is, of
course, nothing but the Poincaré map.

For a fixed transverse distribution H , we define a longitudinal differential
on the space of (k, h)-currents, still denoted dF , satisfying d2

F = 0, which
again does not depend on the particular choice of H . This differential is dual
to the one defined above on smooth differential forms and we get in this way
longitudinal complexes (A∗,h(M, F ), dF )0≤h≤q of currents:

0 −→ Ap,h −→ Ap−1,h −→ · · · −→ A0,h −→ 0.

The cohomology of this complex will be denoted H∗,h(M, F ). So we have
a duality map Hk,h(M,F ) → [Hk,h(M,F )]′, where Hk,h(M,F ) is endowed
with the quotient topology.

We include now some remarks that are useful for the reader interested in
relating the above constructions to transverse measures on foliations.

Definition 2.8. Let (M,F ) be a smooth foliated manifold of dimension
p and codimension q = n−p, as before, and let ν = TM/F be the transverse
vector bundle.

(i) A transverse current C on (M,F ) is a current of bi-degree (p, k) for
0 ≤ k ≤ q, i.e. a generalized section of the bundle �q−k(ν∗)⊗ CM .

(ii) An invariant current on (M,F ) is a currentC onM such that dF (C) = 0.

(iii) A current which is transverse and invariant is also called a basic current.

Note that a basic current of type (p, 0) is automatically closed in M . Note
also that invariant currents are are also sometimes called holonomy invariant
currents, see [1]. The simplest example of a transverse current is the Ruelle-
Sullivan current associated with any holonomy invariant transverse measure
on (M,F ). Recall that a transverse measure on (M,F ) is a σ -finite measure
on the disjoint union of submanifolds of M which are everywhere transverse
to the foliation. A transverse measure will be called an invariant transverse
measure if it is invariant under the action of the holonomy pseudogroup [20].
Given an invariant transverse measure µ, we canonically associate to µ an
element Cµ of C−∞(M,�q ⊗ Cν) = C−∞(M, |�1|(ν∗)) by using partitions
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of unity. Therefore, if the foliation is oriented, we have CM = Cν and µ gives
rise to a basic current of dimension q that is closed in M .

3. Canonical homology for foliations

We begin this section by recalling the Koszul-Brylinski complex [4] of a fo-
liated Poisson manifold and also some of its properties that will be needed in
the sequel. Let (M,F ) be a smooth foliation with dim(M) = n, dim(F ) = p,
and codim(F ) = q, as before. We are interested in the manifold X = F ∗ �M ,
the dual of F with the zero section (identified with M) removed. Then X ac-
quires a natural foliation F of dimension 2p and codimension q. Moreover,
X admits an additional structure, that of a “foliated Poisson manifold,” which
we proceed now to define. In the whole section (X,F ) will then be a foliated
manifold whose leaves have dimension 2p and codimension q. We shall insist
that X = F ∗ or some submanifold of F ∗ when necessary.

Definition 3.1. A foliated Poisson structure on (X,F ) is a (foliated) 2-
tensor G ∈ '(�2F ) ⊂ '(�2TM) over X such that the Schouten-Nijenhuis
bracket [G,G]SN is trivial, see [24].

A foliated Poisson structure G gives rise to a bilinear form {·,·} on the
algebra C∞(X) of smooth maps on X, called the Poisson bracket and defined
by the formula

(13) {f, g} = iG(df ∧ dg),

where d is the de Rham differential on the smooth manifold X and iG is
the interior product by the 2-tensor G. The condition [G,G]SN = 0 then
corresponds to the assumption that {·,·} defines a Lie algebra structure on
C∞(X). Since for any f ∈ C∞(X), the map g �→ {f, g} is a derivation of the
commutative ring underlying C∞(X), a foliated Poisson structure onX endows
it with the structure of a Poisson manifold. Note that the Hamiltonian vector
fields associated with a foliated Poisson structure are tangent to the leaves
of the foliation (X,F ). The symplectic leaves of a foliated Poisson manifold
(X,F ,G) are contained in the foliation F . When this foliation coincides with
the original foliation F , we say that the Poisson foliated manifold (X,F ,G)

is a longitudinally symplectic foliated manifold.
A Poisson manifold is a foliated Poisson manifold for any regular foliation

that contains the (singular in general) symplectic foliation. Foliated Poisson
manifolds are especially interesting when the symplectic foliation of a given
Poisson manifold can be embedded in a regular foliation of small dimension.
A regular Poisson manifold M , i.e. with a regular symplectic foliation, is a
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foliated Poisson manifold for the symplectic foliation itself, but also for any
other foliation that contains the symplectic one.

An important example for our purposes is that of the cotangent bundle of any
smooth foliation. More precisely, let (M,F ) be a smooth foliated manifold
and denote by πν : TM → TM/F =: ν the quotient map. Let X := F ∗
be the total space of the longitudinal cotangent bundle to (M,F ) and denote
by π : X → M the canonical projection. The kernel of the composite map
πν ◦ π∗ : TX → TM/F is then an integrable sub-bundle F of the tangent
bundle TX to X. The leaves of the resulting foliation F on X are exactly the
restrictions of the bundle F ∗ to the leaves of (M,F ) and so are symplectic
manifolds. By putting together the resulting symplectic 2-tensors, we obtain a
longitudinally symplectic foliated manifold (X,F ).

Let now (X,F ,G) be a general foliated Poisson manifold. The Poisson
differential δ, is defined as for any Poisson manifold by the formula [4]

δ := iG ◦ d − d ◦ iG : !k(X) −→ !k−1(X).

We now recall the definition of Poisson homology of the Poisson foliation
(X,F ).

Definition 3.2. We denote by Hδ
k(X) the Poisson homology of X, defined

by

Hδ
k(X) := Ker(δ : !k(X)→ !k−1(X))

δ(!k+1(X))
.

Assume that we have fixed a splitting #H as in (2) for the foliated manifold
(X,F ). This, in turn, fixes isomorphisms !k(X) � ⊕

r+s=k !
r,s(X,F ).

Lemma 3.3. [24] Let (X,F ,G) be a foliated Poisson manifold, then the
Koszul-Brylinski operator δ, has a canonical decomposition into two bi-homo-
geneous operators

δ = δF + δ−2,1,

where δF = [iG, dF ] is a component of bi-degree (−1, 0) with respect to
the splitting, called the longitudinal Poisson differential, and δ−2,1 is an extra
term with bi-degree (−2, 1) with respect to the bi-grading. Furthermore, if
d = dF +d⊥+ ∂ , as in Equation (3) with (X,F ) in place of (M,F ), we have

δ−2,1 = [iG, d⊥], δ2
F = 0, δ2

−2,1 = 0, and δF δ−2,1 + δ−2,1δF = 0.

Proof. Let H be a supplementary sub-bundle to F in TX and d = dF +
d⊥+∂ the corresponding decomposition of the de Rham operator d as recalled
in Section 1. Let us show that [iG, ∂] = 0. Let X ∈ '(F ) be a longitudinal
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vector field. Then, for any X1, . . . , Xk−1 ∈ '(F ), for any Y1, . . . , Yh+2 ∈
'(H) � '(ν), and for any ω ∈ !k+1,h(X,F ), we have:

∂(iXω)(X1, . . . , Xk−1;Y1, . . . , Yh+2) =
∑

1≤j<i≤h+2

(−1)i+j+hω(X, πF [Yj , Yi], X1, . . . , Xk−1;Y1, . . . , Ŷ
j , . . . , Ŷ i , . . . , Yh+2).

On the other hand:

iX(∂ω)(X1, . . . , Xk−1;Y1, . . . , Yh+2) =
∑

1≤j<i≤h+2

(−1)i+j+hω(πF [Yj , Yi], X,X1, . . . , Xk−1;Y1, . . . , Ŷ
j , . . . , Ŷ i , . . . , Yh+2).

Thus we deduce that iX ◦ ∂ + ∂ ◦ iX = 0 and hence

[iX∧Y , ∂] = iY (iX∂ + ∂iX)− (iY ∂ + ∂iY )iX = 0,

for any (X, Y ) ∈ '(F ). Therefore [iA, ∂] = 0, for all A ∈ '(�2F ). We
finish the proof by setting δ−2,1 = [iG, d⊥]. Finally the identity δ2 = 0 [4]
gives the claimed equalities by direct inspection of the bi-degrees. See also
[24, Proposition 4.13].

Remark 3.4. The contraction by G has bi-degree (−2, 0) and satisfies the
relation

iG(ω1 ∧ ω2) = iG(ω1) ∧ ω2, ∀ω1 ∈ '(�∗T ∗X) and ∀ω2 ∈ '(�∗H ∗).

Assume for the rest of this section that (X,F ) is a longitudinally symplectic
foliation with dim(F ) = 2p and codim(F ) = q.

If U is a distinguished chart for the foliation (X,F ), then δF restricts to
U and induces a well defined differential on the sheaf of germs of smooth
longitudinal differential forms. The action of δF on typical longitudinal forms
is similar to the classical one. More precisely:

Proposition 3.5. Let (X,F ,G) be a general foliated Poisson manifold.
Then the action of δF on typical longitudinal forms is given by

δF (f0dFf1 . . . dFfk) =
∑

1≤j≤k
(−1)j+1{f0, fj }dFf1 . . . d̂Ffj . . . dFfk

+
∑

1≤i<j≤k
(−1)i+j f0dF {fi, fj }dFf1 . . . d̂Ffi . . . d̂Ffj . . . dFfk,

for all f0, . . . , fk ∈ C∞(X).
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Proof. The computations carried out in [4, page 96] imply our proposition.
Recall that we have

δ(f0df1df2 . . . dfk) =
∑

1≤j≤k
(−1)j+1{f0, fj }df1 . . . d̂fj . . . dfk

+
∑

1≤i<j≤k
(−1)i+j f0d{fi, fj }df1 . . . d̂fi . . . d̂fj . . . dfk,

for all f0, f1, . . . , fk ∈ C∞(X). Hence taking the (k − 1, 0) component of
each side of the above equality gives exactly the allowed formula.

Let us also mention, for completeness, the following result.

Proposition 3.6.
(i) If ω ∈ '(�kF ∗) and ω′ ∈ '(�k′H ∗), then we have

δ−2,1(ω ∧ ω′) = δ−2,1(ω) ∧ ω′.

(ii) For any X1, . . . , Xr ∈ '(F ), for any Z ∈ '(H), and for any ω ∈
!r+2,0(X,F ),

δ−2,1ω(X1, . . . , Xr, Z) = i[G,Z]SN ω(X1, . . . , Xr).

Proof. (i) For any ω ∈ '(�kF ∗) and any ω′ ∈ '(�k′H ∗), we have

d⊥(ω ∧ ω′) = d⊥(ω) ∧ ω′ + (−1)kω ∧ d⊥(ω′).

Therefore

[iG, d⊥](ω ∧ ω′) = iG(d⊥ω ∧ ω′)− d⊥(iG(ω)) ∧ ω′ = [iG, d⊥](ω) ∧ ω′.

(ii) Let Y1, Y2, X1, . . . , Xr ∈ '(F ), Z ∈ '(H), and ω ∈ !r+2,0(X,F ) be
arbitrary. Using a simple computation, we obtain

([iY1∧Y2 , d⊥]ω)(X1, . . . , Xr, Z)

= ω(πF [Z, Y1], Y2, X1, . . . , Xr)− ω(πF [Z, Y2], Y1, X1, . . . , Xr),

where πF is the projection onto F along H . Therefore, we get:

[iY1∧Y2 , d⊥] = iπF [Z,Y1]∧Y2−πF [Z,Y2]∧Y1 .

By direct inspection from the definition of the Schouten-Nijenhuis bracket, we
deduce that

[iY1∧Y2 , d⊥] = iπ�2F ([Y1∧Y2,Z]SN ),
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where π�2F is the projection onto the space of longitudinal (2, 0)-vectors. But
since ω ∈ !r+2,0(X,F ), this completes the proof.

We continue to assume for the rest of this section that (X,F ) is a longitud-
inally symplectic foliation with dim(F ) = 2p and codim(F ) = q. For any
leaf L of the foliation F of X, let ωL be the symplectic two form of L. Then
there exists longitudinal 2-forms on X that restrict on each leaf L to ωL. If we
use the splitting (2) then we can choose in a unique way a differential 2-form
ω ∈ !2,0(X,F ) that restricts to ωL on each leaf L. The form ω will be called
the longitudinal symplectic form of (X,F ). It depends on the splitting (2).

Using the longitudinal symplectic form ω we can recover the longitudinal
volume form associated with the symplectic orientation by setting:

(14) volF (X) := 1

p!
ωp.

We then define the longitudinal symplectic Hodge operator∗F : !r,0(X,F )→
!2p−r,0(X,F ) by the equality:

(15) β ∧ (∗Fα) = (β, α)ω volF (X), ∀α, β ∈ !r,0(X,F ),

where (·,·)ω is the bilinear form induced by the symplectic form on longitudinal
differential forms.

Remark 3.7. For any f ∈ C∞(X) we have by the definition of ∗F :

(16) ∗F (f α) = f ∗F α.

Recall now (Definition 1.2) that Hr,s(X,F ) denotes the rth cohomology
group of the longitudinal complex
(17)

0 −→ !0,s(X,F )
dF−→ !1,s(X,F )

dF−→ · · · dF−→ !2p,s(X,F ) −→ 0,

and HδF
r,s (X,F ) is the longitudinal Poisson homology of (X,F ), that is, the

rth-cohomology group of the complex
(18)

0 −→ !2p,s(X,F )
δF−→ !2p−1,s(X,F )

δF−→ · · · δF−→ !0,s(X,F ) −→ 0.

The cohomology HδF∗ (X,F ) of the global complex (!k(X))0≤k≤2p+q with
respect to the operator δF is hence given by

HδF

k (X,F ) �
⊕
r+s=k

HδF
r,s (X,F ).
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We hope the reader will be able to easily tell apart all these cohomology groups
and distinguish for instance the groups HδF∗ (X,F ) from the Poisson homology
groups of X that are denoted Hδ

∗(X), (see the end of the introduction for a list
of references to the definitions of the main cohomology groups).

When the foliation (X,F ) is longitudinally symplectic, the longitudinal
symplectic Hodge operator extends to a well defined operator, still denoted
∗F , ∗F : !r,s(X,F )→ !2p−r,s(X,F ), ∀s ∈ {0, . . . , q}.
defined by ∗F (α ∧ β) := ∗F (α) ∧ β,

for any α ∈ !r,0(X,F ) and any β ∈ !0,s(X,F ). This is a consequence of
the relation (16) and the splitting (2). We then see that ∗2

F = 1.
We point out that the longitudinal Poisson differential δF also satisfies a

similar relation, namely

δF (α ∧ β) := δF (α) ∧ β,

which follows from the formula given for δF in Proposition 3.5 using the same
method as in [3].

Proposition 3.8 (Vaisman). Let (X,F ) be a longitudinally symplectic
foliated manifold with leaves of dimension 2p.

(1) We have (−1)r+1 ∗F ◦dF ◦ ∗F = δF , on !r,s(X,F ).

(2) The cohomology of X with respect to δF is given by

HδF
r,s (X,F ) ∼= H2p−r,s(X,F ),

and hence HδF

k (X,F ) ∼= ⊕0≤j≤k H2p−j,k−j (X,F ).

Proof. The proof of (1) is in [24, page 80]. It can also be derived easily
from the properties listed above.

(2) We have HδF

k (X,F ) � ⊕
k=r+s HδF

r,s (X,F ). The above result (2),
shows that ∗F induces an isomorphism HδF

r,s (X,F ) � H2p−r,s(X,F ), extend-

ing the case s = 0. This proves that HδF

k (X,F ) � ⊕k
j=0 H2p−j,k−j (X,F ), as

claimed. See [24] again.

4. Conic foliations and their cohomology

We now introduce the action of R∗+ into the picture.

Definition 4.1. Let (X,F ,G) be a longitudinally symplectic foliation.
The triple (X,F ,G) will be called a longitudinally symplectic conic foliation
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if there exists a free smooth action of the group R∗+ on X by leaf-preserving
diffeomorphisms (αt )t>0 such that (αt )∗(G) = G/t .

This definition means that each leaf is a conic symplectic manifold in the
sense of [5] and that the global action α is smooth. For l ∈ Z, recall that a
differential form ω ∈ !k(X) is l-homogeneous if

(19) (αt )
∗(ω) = t lω, ∀t > 0.

We shall denote as before by !k(X)l the space of l-homogeneous differential
k-forms on X. From the definition of a longitudinally symplectic conic foli-
ation, we deduce that the longitudinally symplectic form corresponding to the
bivector G belongs to !2(X)1.

Since the action of R∗+ on the longitudinally symplectic conic foliation
(X,F ) is free, we can choose the complementH toF inTX to be R∗+ invariant.
The bi-grading on forms is also R∗+-equivariant and we shall denote, as before,
by !r,s(X,F )l the smooth l-homogeneous sections of �rF ∗ ⊗�sν∗.

Let now (M,F ) be a smooth foliated manifold and take X = F ∗ � M .
We are interested in the foliated manifold (X,F ), where F is the foliation
defined on the total space F ∗ of the longitudinal cotangent bundle to (M,F ) as
before and then restricted to X = F ∗ �M . The radial action of R∗+ allows us to
consider l-homogeneous forms !k(X)l and !r,s(X,F )l . As we have already
observed, the foliated manifold (X,F ) is then longitudinally symplectic. The
Poisson differential δ associated with the Poisson structure of X sends !k(X)l
to !k−1(X)l−1. The same holds for the operators δF and δ−2,1 defined in the
previous section.

Definition 4.2. We denote by Hδ
k(X)l the l-homogeneous Poisson homo-

logy of X, defined by

Hδ
k(X)l := Ker(δ : !k(X)l → !k−1(X)l−1)

δ(!k+1(X)l+1)
.

In the same way, using again the splitting (2), we set

HδF
r,s (X,F )l := Ker(δF : !r,s(X,F )l → !r−1,s(X,F )l−1)

δF (!r+1,s(X,F )l+1)

and

HδF

k (X,F )l := Ker(δF : !k(X)l → !k−1(X)l−1)

δF (!k+1(X)l+1)
.

The homogeneous Poisson complex (!∗(X)∗, δ) splits into a direct sum of
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finite homogeneous subcomplexes (P k)k∈Z defined by:

(20) P k : 0 −→ P k
2p+q−k

δ−→ P k
2p+q−k−1

δ−→ · · · δ−→ P k
−k −→ 0,

where P k
l := !k+l(X)l . Therefore we have:

Hδ
k+l(X)l = Ker(δ : P k

l → P k
l−1)

δ(P k
l+1)

.

If we define in the same way P
r,s
l := !r+l,s(X,F )l , then we get a further

splitting:
P k

l �
⊕
r+s=k

P
r,s
l .

With respect to this splitting, the differential δF preserves P r,s := ⊕l∈ZP
r,s
l

and sends P
r,s
l to P

r,s
l−1. Thus, to compute the homogeneous homology of the

longitudinal Poisson differential δF , we can restrict ourselves to P r,s . Note
though that the extra differential δ−2,1 does not preserve P r,s and sends it to
P r−1,s+1.

Our next result is that, in order to compute homogeneous Poisson homology,
we can get rid of the extra term δ−2,1.

Proposition 4.3. Let (X,F ) be a longitudinally symplectic conic foliation.
Then

Hδ
k+l(X)l ∼= HδF

k+l(X,F )l .

Proof. Recall that we have:

δ = δF + δ−2,1 and δF δ−2,1 + δ−2,1δF = 0.

Thus, for any fixed k, we use the decomposition P k ∼= ⊕
i+j=k P i,j into a

finite double complex. We set for any fixed k ∈ Z,

Kj,l := P
k−j,j

l−j ,

so that

δF : Kj,l −→ Kj,l−1 and δ−2,1 : Kj,l −→ Kj+1,l .

To compute the homogeneous δ-homology ofX, we use that the complex splits
into the subcomplexes (P k, δ). Therefore, we can fix the integer k ∈ Z and
define a filtration of the above bicomplex Kj,l by setting

Fh :=
⊕

l∈Z,j≤h
Kj,l .
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This yields a spectral sequence (Er)r≥1 which converges to the δ-homology
because it comes from a filtration that is bounded both below and above. The
E1 term of this spectral sequence is computed by a de Rham cohomology
group

E1
u,v � H2p−v−k+u,u(X,F )p−k+u,

the isomorphism being implemented by the leafwise symplectic duality op-
erator ∗F . We now observe that the homogeneous longitudinal de Rham co-
homology space H2p−v−k+u,u(X,F )p−k+u is trivial unless u = k − p, by the
homotopy invariance of de Rham cohomology. Therefore, we get

E1
u,v = 0 if v �= −k − p.

Hence for any r ≥ 1, we see that dr = 0 and the spectral sequence collapses
at E1. The proof is thus complete since the spectral sequences considered are
convergent.

Corollary 4.4. Let (X,F ) be a longitudinally symplectic conic foliation
with leaves of dimension 2p. Then HδF

r,s (X,F )l ∼= H2p−r,s(X,F )l+p−r , and
hence

HδF

k (X,F )l ∼=
⊕

0≤j≤k
H2p−j,k−j (X,F )l+p−j .

Proof. This is a consequence of Proposition 3.8. Note that we have:

HδF

k (X,F )l �
⊕
r+s=k

HδF
r,s (X,F )l .

But by definition of the operator ∗F , we see that it sends l-homogeneous forms
of bi-degree (r, s) to (l+p− r)-homogeneous forms of bi-degree (2p− r, s).

In the case of trivial foliations by 2-planes, that is, when X = R2 ×Rq foli-
ated by the symplectic planes R2×{pt}, if we denote by (x, ξ) the symplectic
coordinates along the leaves and (y1, . . . , yq) the transverse coordinates, we
have the following easy generalizations of some equations in [4]. Namely, for
any f, g, h ∈ C∞(X) :

∗F (f ) = f dxdξ, ∗F (f dx + gdξ) = −(f dx + gdξ),

∗F (hdyi) = hdxdξdyi and ∗F (f dx ∗ dξ) = f.

In the same way we have

∗F (f dxdyi1dyi2 . . . dyik ) = −(f dxdyi1dyi2 . . . dyik ),

∗F (f dξdyi1dyi2 . . . dyik ) = −(f dξdyi1dyi2 . . . dyik ),
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∗F (f dyi1dyi2 . . . dyik ) = f dxdξdyi1dyi2 . . . dyik

and ∗F (f dxdξdyi1dyi2 . . . dyik ) = f dyi1dyi2 . . . dyik .

On the other hand,
{f, g} = ∂f

∂ξ

∂g

∂x
− ∂f

∂x

∂g

∂ξ
.

Hence Propositions 3.8 and 4.4 can also be proved by reducing to the above
trivial case, as in [4], for example.

Remark 4.5. The operator δ−2,1 gives rise to a new differential

(21) d2,1 = (−1)r+1 ∗F ◦δ−2,1 ◦ ∗F

on !r,s(X,F ) whose bi-degree is (2, 1) and which satisfies

(22) d2
2,1 = 0, d2,1dF + dFd2,1 = 0.

We are now in position to compute the homogeneous Poisson homology of
a longitudinally symplectic conic foliation. The homogeneous Poisson homo-
logy spaces Hδ

k(X)l were defined in Definition 4.2.

Theorem 4.6. Let (X,F ) be a longitudinally symplectic conic foliation.
We denote dim(F ) = 2p and codim(F ) = q, as before. Then

Hδ
k(X)l ∼= Hp−l,k−l−p(X,F )0

for 0 ≤ k ≤ 2p + q and |l| ≤ p. For the other values of k and l we have
Hδ

k(X)l = 0.

Proof. We use Proposition 4.3 to conclude that Hδ
k+l(X)l � HδF

k+l(X,F )l .
By Proposition 4.4,

HδF

k (X,F )l ∼= ⊕0≤j≤k H2p−j,k−j (X,F )l+p−j .

By the homotopy invariance of de Rham cohomology, only the groups for
which l+p− j = 0, are non-zero. The result is obtained then by substituting
j = p + l. The other groups vanish for dimension reasons.

Let now X = F ∗ �M be the dual of the foliation F of M with the zero
section removed and with the induced structure of a longitudinal symplectic
conic foliation. Let S∗F = X/R∗+ be the cosphere bundle of F and F1 be the
induced foliation on S∗F ×S1 with leaves of dimension 2p (each copy of S1 is
completely contained in a leaf). The above theorem then gives the following
result.
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Corollary 4.7. Let (M,F ) be a foliated manifold and X = F ∗ �
M , S∗F = X/R∗+, and F1 be as in the paragraph above. We denote p =
dim(F1)/2 = dim(F ) and q = codim(F1) = codim(F ). Then

Hδ
k(X)l ∼= Hp−l,k−l−p(S∗F × S1, F1)

∼= Hp−l,k−l−p(S∗F, S∗F ∩ F1)⊕ Hp−l−1,k−l−p(S∗F, S∗F ∩ F1)

for 0 ≤ k ≤ 2p + q and |l| ≤ p. For the other values of k and l, we have
Hδ

k(X)l = 0.

Proof. The proof is exactly as in the case when the foliation F is trivial
(with just one leaf) [2], [3], [5], [14]. The crucial ingredient of the proof is to
choose a function r �= 0 homogeneous of degree one. Then identify r−1dr with
ω1, the generator ofH 1(S1). This leads to the isomorphism Hp−l,k−l−p(X,F )0∼= Hp−l,k−l−p(S∗F × S1, F1). The second isomorphism follows from Corol-
lary 2.6.

We are ready now to handle an explicit example.

Example 4.8. Let us consider M = (S1)n, foliated by the one parameter
subgroups (e2πıα1t , e2πıα2t , . . . , e2πıαnt ), not all of αi’s equal to zero. Thus
p = 1 and q = n− 1. Then

F = M × R, X = M × (R � {0}), S∗F × S1 � M × {±} × S1,

with leaves L× {ε} × S1, where L ⊂ M is a leaf of M and ε = + or ε = −.
Then the second isomorphism in Corollary 4.7 gives

Hk,h(S∗F × S1, F1) ∼=
(

Hk,h(M,F )⊕ Hk−1,h(M, F )
)⊗C{±}.

(C{±} is the complex vector space with basis+ and−.) To obtain more precise
results (which happen to also be finite dimensional spaces), we shall assume
now that there exists C > 0 and N ∈ N such that

(23) |m1α1 +m2α2 + · · · +mnαn|−1 ≤ C(|m1| + |m2| + · · · + |mn|)N ,
for any m1, . . . , mn ∈ Z, not all zero. (When n = 2, this can be achieved by
choosing α2/α1 to be an irrational algebraic number, for example.)

Trivialize the normal bundle to F using the standard metric on M . Let s(Zn)

be the space of rapidly decreasing functions on Zn. The Fourier transform then
establishes isomorphisms

!k,h(M,F ) ∼= s(Zn)⊗�hCn−1, for k = 0, 1,
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and !k,h(M,F ) = 0 otherwise. Under these isomorphisms, the differential

dF : !0,h(M, F )→ !1,h(M, F )

becomes multiplication by m1α1 + m2α2 + . . . + mnαn. The assumption
of Equation (23) then implies Hk,h(M,F ) ∼= �hCn−1, for k = 0, 1, and
Hk,h(M,F ) = 0 otherwise. Thus Hk,h(M,F ) ∼= �kC ⊗ �hCn−1, for any k

and h.
Putting all thes calculations together we obtain

(24)
Hk,h(S∗F × S1, F1) ∼= (�kC⊕�k−1C)⊗�hCn−1 ⊗ C{±}

∼= �kC2 ⊗�hCn−1 ⊗ C{±}.

5. Complete symbols on foliations

We shall use the results of the previous sections to study the Hochschild homo-
logy of the algebra A (M,F ) of complete symbols of longitudinal, classical
pseudodifferential operators along the leaves of a foliation (M,F ). We begin
by defining the algebra A (M,F ). We assume M to be compact for simplicity.
Most of the following results and constructions work for M non-compact, but
become notationally more complicated. In particular, the main computations
of Hochschild homology, Theorems 6.2 and 6.3 remain true by considering
compactly supported cohomology groups. In this section n does not denote
the dimension of M .

If (M,F ) is the foliation defined by the fibers of a fibration M → B, then
ψ∞(M,F ) denotes the space of smooth families of pseudodifferential operat-
ors along the fibers of M → B and we define A (M,F ) := ψ∞(M,F )/ψ−∞
(M,F ).

To construct the algebra A (M,F ) in general, consider a covering M =
∪Uα of M with distinguished open subsets. Then

(25) A (M,F ) =
∑

A (Uα, F |Uα
),

where the sum is taken in the space
∏

L ψ∞(L)/ψ−∞(L), with L ranging
through all leaves of (M,F ). Note that it still makes sense to talk about com-
plete symbols of order (at most) m in A (M,F ), which provides us with a
natural filtration FmA (M,F ) of A (M,F ). (In fact, we can define the algebra
ψ∞(M,F ) similarly [6], [16], and then FmA (M,F ) = ψm(M,F)/ψ−∞
(M,F ).)

Let Sm(F ∗) be the space of classical (compactly supported in the base
variable) symbols on the vector bundle F ∗. Using standard procedures, one
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can define a quantization map [19]:

(26) q : S∞(F ∗) := ∪m∈ZS
m(F ∗) −→ ψ∞(M,F ),

which maps the subspace Sm(F ∗) of classical symbols of order m to
FmA (M,F ) and satisfies σm(q(a)) ∈ a + Sm−1(F ∗) if a ∈ Sm(F ∗). (In
fact one could define a quantization map q : S∞(F ∗) := ∪m∈ZS

m(F ∗) →
ψ∞(M,F ) descending to our quantization map, but we shall not need this.)
We can construct q using a covering of M by distinguished open sets and a
partition of unity. Or one can use the results of [19]. Our quantization map
induces a filtration preserving bijection

(27) S∞(F ∗)/S−∞(F ∗) −→ A (M,F )

Denote now by G the holonomy Lie groupoid associated with the foliation
(M,F ). The algebra A (M,F ) then coincides with the algebra of complete
symbols on G as defined in [19]. Note that A (M,F ) is not a topological algebra
but it satisfies the axioms of a topologically filtered algebra, see [2, Proposition
3]. Recall that an algebra A with a given topology, is a topologically filtered
algebra if there exists an increasing multi-filtration Fm

n,lA ⊂ A ,

Fm
n,lA ⊂ Fm′

n′,l′A , if n ≤ n′, l ≤ l′, and m ≤ m′,

by closed, complemented subspaces, satisfying the following properties:

(1) A = ∪n,l,mF
m
n,lA ;

(2) The union An := ∪m,lF
m
n,lA is a closed subspace such that

Fm
n,lA = An ∩

(∪jF
m
j,lA

);
(3) Multiplication maps Fm

n,lA ⊗ Fm
n′,l′A to Fm

n+n′,l+l′A ;

(4) The maps

Fm
n,lA/Fm

n−j,lA ⊗ Fm
n′,l′A/Fm

n′−j,l′A −→ Fm
n+n′,l+l′A/Fm

n+n′−j,l+l′A

induced by multiplication are continuous;

(5) The quotient Fm
n,lA/Fm

n−j,lA is a nuclear Frechet space in the induced
topology;

(6) The natural map

Fm
n,lA −→ lim← Fm

n,l/F
m
n−j,lA , j →∞

is a homeomorphism; and



residues and homology for pseudodifferential operators . . . 101

(7) The topology on A is the strict inductive limit of the subspaces Fn
n,nA ,

as n→∞ (recall that Fn
n,nA is assumed to be closed in Fn+1

n+1,n+1A ).

(The above definition corrects a typo in [2], where n−1 was written instead
of n− j in condition (4) of the above definition.)

We have

Proposition 5.1. Let (M,F ) be a smooth, compact foliated manifold. The
algebra A (M,F ) is a topologically filtered algebra such thatFm

n,lA (M,F ) =
FnA (M,F ) := ψn(M,F)/ψ−∞(M,F ), is, in particular, independent of l
and m.

Proof. The algebra A (M,F ) coincides with the algebra of complete sym-
bols A (G) on the holonomy Lie groupoid G as studied in [2] and [3]. Thus
we get the result by applying Proposition 3 in [2].

The Hochschild, cyclic, and periodic cyclic homology of the algebra
A (M,F ) must be defined by taking into account the fact that it is a topo-
logically filtered algebra. This is done in [2] and also in [3]. Fix a metric on F

and let P be a pseudodifferential operator of order one such that σ1(P ) ≡ r

(modulo lower order symbols), where r ∈ C∞(F ∗) is a distance function to the
origin as defined in the previous section. The graded algebra Gr(A (M,F ))

associated to A (M,F ) is commutative, more precisely

Gr(A (M,F )) � C∞(S∗F)⊗ C[r, r−1],

with grading given by the powers of r .
The tensor products appearing in the Hochschild complex are completed

projective tensor products such that FkHn(A )/Fk+1Hn(A ) is a direct sum of
spaces isomorphic to C∞(S∗F × S∗F × · · · × S∗F) and such that the natural
map

FkHn(A ) −→ lim← FkHn(A )/Fk−jHn(A ), j →∞,

is an isomorphism. (This last property together with Hn(A ) = ∪kFkHn(A )

give, by definition, the asymptotic completeness of our Hochschild complex,
see [2]).

Periodic cyclic homology for algebras of complete symbols associated with
almost differentiable groupoids was computed in [2]. These results include the
case of the holonomy groupoid considered in the present paper. For the sake
of completeness, let us state the explicit result for foliations.

Theorem 5.2. Let (M,F ) be a smooth, compact foliated manifold as
before. Then the periodic cyclic homology of the algebra A (M,F ) of complete
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longitudinal symbols on (M,F ) is given by:

HPk(A (M,F )) �
⊕
j∈Z

Hk+2j (S∗F × S1), k = 0, 1.

In the same way, the periodic cyclic homology of the algebra A0(M,F ) of
longitudinal complete symbols of order ≤ 0 is:

HPk(A0(M,F )) �
⊕
j∈Z

Hk+2j (S∗F), k = 0, 1.

6. Homology of complete symbols

We now return to the study of the Hochschild homology of A (M,F ). Recall
that (M,F ) is a foliated smooth compact manifold with dim(M) = n and
dim(F ) = p. The codimension of the foliation will be denoted by q so n =
p + q.

The canonical filtration of the Hochschild complex defined above (following
[2]) gives rise to a spectral sequence EHr

k,h, by general results about filtered
complexes. This spectral sequence has the EH1-term given by

EH1
k,h = HHk+h(Gr(A (M,F )))k,

by [2, Lemma 1]. The Hochschild homology of Gr(A (M,F )) is identified
using a combination of the Hochschild-Kostand-Rosenberg (HKR) isomorph-
ism and a result of Connes, which is the analog of the HKR-isomorphism for
algebras of smooth functions. We denote by!r(F ∗�M)s the set of differential
r−forms on the manifold F ∗ �M which are positively s-homogeneous in the
radial direction. Then we have:

HHl(Gr(A ))d � !l(S∗F)rd ⊕!l−1(S∗F)rd−1dr,

the isomorphism being obtained via the Hochschild-Kostant-Rosenberg-Con-
nes map

χ(a0, . . . , al) = 1

l!
a0da1 . . . dal.

Let X := F ∗ �M , as above. It will be convenient to identify

!l(S∗F)rd ⊕!l−1(S∗F)rd−1dr

with the subspace !l(X)d ⊂ !l(X) consisting of d-homogeneous l-forms on
the manifold X = F ∗ �M . Also, we endow X with the foliation F ⊂ TX

whose leaves are the cotangent bundles to the leaves of (M,F ) with the zero
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section removed, as we did in Sections 1 and 3. More precisely, ifπ : F ∗ → M

is the projection and TvF
∗ = ker π∗ is the vertical tangent bundle to the

fibration F ∗ → M , then F is the restriction to X of the bundle π∗(F )+TvF
∗.

Recall that X = F ∗ �M admits a Poisson structure induced by the natural
symplectic structure of the leaves of F . Moreover (X,F ) is then a conic
symplectic foliation in the sense of Definition 4.1. We introduced in Section
3, a Poisson differential δ = δF + δ−2,1 : !l(X) → !l−1(X), such that
δ
(
!l(X)k

) ⊂ !l−1(X)k−1. We denote as in Section 3 by

Hδ
l (X)d = ker(δ : !l(X)d → !l−1(X)d−1)

δ(!l+1(X)d+1)

the homogeneous Poisson homology groups of X = F ∗ �M .

Proposition 6.1. Let χ : HHl(Gr(A))d → !l(F ∗ � M)d be the HKR
isomorphism, and let d1 : E1

k,h → E1
k−1,h be the first differential of the spectral

sequence associated to A (M,F ) as in [2]. Then

χ ◦ d1 ◦ χ−1 = −√−1δ,

and hence EH2
k,h � Hδ

k+h(F
∗ �M)k .

Proof. We apply Theorem 3.1.1 in [4, page 107]. More precisely, if σ ∈
Am/Am−1, σ ′ ∈ Aq/Aq−1 then there exist

P ∈ ψm(M,F) and P ′ ∈ ψq(M,F)

such that [P ] = σ and [P ′] = σ ′ (with obvious notations). One needs the
expansion ofP ◦P ′−P ′◦P into homogeneous terms. Since the quatization map
can be chosen with values operators with support small enough, the symbol
expansion of the commutator is obtained in the same way as in the classical
case, see [9] and [6], [7] for the corresponding results for foliations.

LetF1 = π∗(F )+Tv(S∗F) ⊂ T (S∗F) be the integrable sub-bundle defined
using F , as above, but for the cosphere bundle. (By abuse of notation, we
shall sometimes denote F1 also the integrable sub-bundles defined similarly
by F on the fibrations F ∗ → M , on F ∗ �M → M , on S∗F → M , or on
S∗F × S1 → M . So on F ∗ �M for instance F1 coincides with the foliation
F defined in the previous sections.) Now we gather the results of the previous
sections and deduce the following theorem.

Theorem 6.2. Let (M,F ) be a smooth, compact foliated manifold and
denote by p the dimension of the leaves of (M,F ). Let (EHr , dr)r≥1 be the
spectral sequence associated to the canonical filtration of the Hochschild com-
plex of the algebra A (M,F ) := ψ∞(M,F )/ψ−∞(M,F ), then this spectral
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sequence converges to the Hochschild homology of A (M,F ) and its E2 term
is given by

EH2
k,h � Hp−k,h−p(S∗F × S1, F1).

Proof. First we have an isomorphism EH2
k,h
∼= Hδ

k+h(F
∗ �M)k given by

Proposition 6.1. By Theorem 4.6 we have

Hδ
k+h(F

∗ �M,F1)k ∼= Hp−k,h−p(F ∗ �M,F1)0.

But this last group coincides with Hp−k,h−p(S∗F ×S1, F1), as we have already
checked in the proof of Corollary 4.7.

The convergence of the spectral sequence is then a consequence of [2,
Lemma 3] by taking a = 2 in that lemma.

Theorem 6.3. Let (M,F ) be a smooth, compact foliated manifold with
dim(F ) = p. Then the space HH0(A (M,F )) is given by:

HH0(A (M,F )) � H2p,0(S∗F × S1, F1).

Moreover, when p ≥ 2, we have

HH0(A (M,F )) � Hp,0(M,F ).

Proof. Using the previous results, we need to show that the differentials
dr coming into and out of EHr

k,h are trivial if k + h = 0. But the E2
k,h term

vanishes unless −p ≤ k ≤ p and p ≤ h ≤ p+ q where q is the codimension
of the foliation. Thus the only termE2

−k,k that may be different from 0 isE2−p,p.
All differentials coming into and out of E2−p,p are seen to vanish because of
the geometry of this spectral sequence. More precisely, recall on that d2 :
EH2

k,h → EH2
k−2,h+1 while EH2

k,h is only non trivial when −p ≤ k ≤ p and
p ≤ h ≤ p + q. Thus

d2|EH2−p,p
is trivial,

and the range of d2 does not intersect EH2
−p,p. In the same way,

dr : EHr
k,h → EHr

k−r,h+r−1,

thus it is trivial when k = −p and h = p, and its range is never of the form
EHr

−p,p. A recursive argument then finishes the proof. By Corollary 2.5(ii),
when 2p − 1 ≥ p + 1, we have

H2p,0(S∗F × S1, F1) � Hp,0(M,F ).

Thus the proof is complete.
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Remark6.4. The above restrictionp ≥ 2 corresponds to the connectedness
of the total manifold of the bundle S∗F and is similar to the restriction on the
uniqueness of the Wodzicki trace in the non foliated situation.

Remark 6.5. A similar argument enables to obtain that

HH2p+q(A (M,F )) � H0,q(M, F ).

This follows from the Gysin exact sequence, Theorem 2.4.

It was proved in [3] that the above spectral sequence collapses at E2 when
the given foliation is a smooth fibration. It would be interesting to establish
this result in general, because of the following corollary.

Corollary 6.6. Let (M,F ) be a smooth, compact foliated manifold with
dim(F ) = p. Assume that the spectral sequence associated with Hochschild
homology collapses at E2, then the Hochschild homology of the algebra of
complete longitudinal pseudodifferential symbols on (M,F ) is given by:

HHk(A (M,F )) �
q⊕

j=0

H2p+j−k,j (S∗F × S1, F1).

Proof. We have

HHk(A (M,F )) � ⊕l EH2
k−l,l � ⊕l Hp−k+l,l−p(F ∗ �M,F1)0

� ⊕q

j=0 H2p+j−k,j (F ∗ �M,F1)0.

Using Corollary 4.7, it remains to show the convergence of the above spectral
sequence, but this was checked in Theorem 6.2.

Let us now formulate the corresponding results for Hochschild cohomology.
First, to define Hochschild cohomology, we just dualize the constructions
(inductive and projective limits, but keeping the projective limits first) used to
define the Hochschild homology complex in [2]. In particular, all cocycles φ in
the definition of Hochschild complex are such thatφ(a0, . . . , ak) = 0 if the sum
of the orders of a0, a1, . . . , ak is less than some fixed number N , that is fixed
for each φ. The same theorems on the convergence of the associated spectral
sequences then hold for Hochschild cohomology (with the same proof).

Theorem 6.7. Let (M,F ) be a smooth, compact foliated manifold with
dim(F ) = p. Let F1 be the foliation of S∗F ×S1 induced by F and of the same
codimension asF , as above. Then the spectral sequence EHk,h

r associated with
the Hochschild cohomology of A (M,F ) converges to Hochschild cohomology
and has the EH2-term given by EHk,h

2 � Hp−k,h−p(S
∗F × S1, F1).
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In particular, HH0(A (M,F )) � H2p,0(S
∗F × S1, F1).

Thus traces are constructed out of (2p, 0)-invariant currents on (S∗F ×
S1, F1). But for p ≥ 2, we have a homological identification, similar to the
cohomological one obtained in Theorem 2.4:

H2p,0(S
∗F × S1, F1) � Hp,0(M,F ).

The space Hp,0(M,F ) is the space of closed holonomy invariant p-currents,
see [1].

Example 6.8. Let us take a closer look at the foliation of the Example 4.8.
By duality, we obtain

(28) Hk,h(S
∗F × S1, F1) ∼= �kC2 ⊗�hCn−1 ⊗ C{±}.

This gives us a canonical basis, τ+ and τ−, for HH0(A (M,F )). It also gives
that the dimension of HHl(A (M,F )) is at most the dimension of the space
�l(Cn+1)⊗C2, and that these dimensions are equal if, and only if, the spectral
sequence EHr collapses at EH2.

Chose a subtorus of codimension 1 in M that is transverse to the foli-
ation. This gives rise to n − 1 one-parameter groups of automorphisms of
A (M,F ), and hence to n − 1-derivations δ1, . . . , δn−1 of this algebra. Let
δ be the derivation given by translation along the leaves of the foliation and
δr(T ) = [logQ,T ], where Q is a positive operator of order 1 with principal
symbol r , as in [14]. Then each of these derivations acts on the Hochschild
complex of A (M,F ).

If D is a derivation and φ is a l-cocycle on A (M,F ), then

(29) (iDφ)(a0, a1, . . . , al+1) := φ(a0D(a1), a2, . . . , al+1)

will be a (l + 1)-cocycle on A (M,F ). We have iDiD′ = −iD′ iD , for all
D,D′ ∈ {δ1, . . . , δn−1, δ, δr}, because all these derivations commute.

A counting argument gives then that there are as many l-cocycles of the form
iD1 . . . iDl

τ±, with D1, . . . , Dl distinct elements in the set {δ1, . . . , δn−1, δ, δr}
as the maximum possible dimension of HHl(A (M,F )) established above (that
is, the dimension of �lCn+1 ⊗ C2.

The algebra A (M,F ) splits canonically as a direct sum

A (M,F ) ∼= A (M,F )+ ⊕A (M,F )−,

because the contangent sphere bundle S∗F is disconnected. We next use the
inclusion C∞(M) ⊂ A (M,F ) and the fact that iDr

induces a morphism of
the Hochschild complexes to prove that all the cocycles in Equation (29) are
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distinct. This shows that the spectral sequence EHr degenerates at EH2. It also
gives an explicit determination of a basis of the groups HHl(A (M,F )) for
this foliation. In particular

HHl(A (M,F )) ∼= �lCn+1 ⊗ C{±}.
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