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BOUNDED DISTRIBUTIVE LATTICE EXPANSIONS

MAI GEHRKE and BJARNI JÓNSSON

Abstract
A new notion of a canonical extension Aσ is introduced that applies to arbitrary bounded dis-
tributive lattice expansions (DLEs) A. The new definition agrees with the earlier ones whenever
they apply. In particular, for a bounded distributive lattice A, Aσ has the same meaning as before.

A novel feature is the introduction of several topologies on the universe of the canonical
extension of a DL. One of these topologies is used to define the canonical extension f σ: Aσ → Bσ

of an arbitrary map f : A → B between DLs, and hence to define the canonical extension Aσ of an
arbitrary DLE A. Together the topologies form a powerful tool for showing that many properties
of DLEs are preserved by canonical extensions.

1. Introduction

The usefulness of the notion of canonical extension was demonstrated in [15],
[16] and [13]. In [15], and [16] it was shown, among other things, that every
relation algebra can be embedded in a complete and atomic relation algebra,
and that every closure algebra can be embedded in the complex algebra of a
partially ordered set. The principal result in [13] is an algebraic proof of an
important theorem from modal logic. However, in light of the present interest
in lattice ordered algebras and in non-standard propositional logics, the class
of algebras to which the original notion of canonical extensions applies is too
narrow. In [8], a modest step was taken towards correcting this by dropping the
requirement of complementation, i.e., by considering distributive lattices with
operators. A much larger step was taken in [9], where the auxiliary operations
were not required to be operators. In fact, the only requirement was that, as a
function of any one of its arguments, each function be either isotone or antitone.
We now drop even this condition and consider algebras A = (A0, ω

A, ω ∈
�) consisting of a bounded distributive lattice A0 = (A,∨,∧, 0, 1) with
completely arbitrary auxiliary operations. Such algebras will be referred to as
bounded distributive lattice expansions, or DLEs for short. Our new definition
of the canonical extension Aσ of a DLE A agrees with the earlier ones whenever
they apply.

For a DL A = (A,∨,∧, 0, 1), the canonical extension Aσ = (Aσ,∨,∧, 0, 1)
is, as before, a doubly algebraic distributive lattice that contains A as a (1)
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separating and (2) compact sublattice. To say that A is separating in Aσ means
that every nonempty interval [p, u] in Aσ with p completely join irreducible
and u completely meet irreducible contains a member of A, and A is said to
be compact in Aσ if, for every inequality

∧
X ≤ ∨

Y with X, Y ⊆ A, there
exist finite sets F ⊆ X andG ⊆ Y with

∧
F ≤ ∨

G. Together, the properties
(1) and (2) characterize Aσ up to equivalence as an extension of A.

For a DLE A = (A0, ω
A, ω ∈ �) we also have to extend the additional

operations. To this end notice that if ωA is an n-ary operation – a map fromAn

intoA – thenωAσ needs to be a map fromAσn toAσ . However, since the latices
Anσ0 and Aσn0 are isomorphic the setsAσn andAnσ may harmlessly be identified.
Thus we may just consider the problem of extending maps f : A → B between
bounded distributive lattices and then take Aσ to be (Aσ0 , (ω

A)σ , ω ∈ �).
The definition of the canonical extension f σ : Aσ → Bσ of a map

f : A → B between bounded distributive lattices that we give in this paper
differs fundamentally from the earlier ones, allowing us to consider completely
arbitrary maps. We make f σ (x) depend only on the values of f at points of
A that are “near” x. This can be made precise, by introducing a topology on
Aσ . Following earlier terminology, elements of Aσ that are meets and joins of
subsets of A are said to be closed and open, respectively. We now define σ , or
σ(Aσ ), to be the topology having as a basis all intervals [p, u] with p closed
and u open. From the compactness property it follows that each of the basic
open intervals [p, u] contains a member of A, so A is dense in Aσ . We can
therefore define f σ (x) to be the limit inferior of f (a) for a ∈ A near x; more
precisely,

f σ (x) =
∨ {∧

f (X ∩ A) : x ∈ X ∈ σ
}
.

To see that f σ is in fact an extension of f , note that, for a ∈ A, {a} = [a, a]
is one of the basic open intervals of σ , and a is therefore an isolated point of
Aσ .

This new definition of the canonical extension f σ of a DL map f can be
made without any reference to topology. However the topology makes the
intuitive idea behind the definition clearer. And, more importantly, the topo-
logical approach allows us to develop a more transparent and powerful theory
of canonical extensions. For one thing, it becomes possible to characterize the
extension of maps abstractly in the topological setting. This characterization
is in terms of continuity of the extension. Even though the topology used on
the domain is the one described above, the characterization in terms of con-
tinuity requires a different topology on the codomain. This asymmetry, it turns
out, gives the theory of canonical extensions its particular flavor, and it is also
responsible for its complexity. Typically, the preservation of an identity by
canonical extensions is proved by showing that in certain situations canonical
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extensions commute with the composition of maps. In the topological ap-
proach, this normally involves showing that the composition of the canonical
extensions is continuous. This is where the presence of different topologies
creates complications, for we cannot simply appeal to the elementary fact that
the composition of two continuous maps is continuous. Of course this is not
a defect in the present technique, but simply reflects the fact that identities
are not always preserved. In fact, the several topologies provide an effective
tool for analyzing which properties of the maps imply that the identities are
preserved – and this in a very general setting. An unexpected dividend is that,
even where the earlier definitions apply, the new approach sometimes yields
fresh insights, simpler arguments, and even new results.

Canonical extensions will be defined more carefully in the next section.
There we also introduce the topologies, and investigate the relationship be-
tween topological and algebraic properties of maps and operations. Sections 3
and 4 are devoted to the fundamental problems of showing that, under some
general conditions, the canonical extension of a homomorphism is a homo-
morphism, and that certain classes of DLEs are closed under canonical ex-
tensions. The Epilogue briefly mentions possible generalizations of the results
and other related issues.

2. Topologies on canonical extensions

2.1. Canonical extensions of bounded distributive lattices

The canonical extension of a bounded distributive lattice (DL) is a doubly
algebraic distributive lattice (DL+) in which the original lattice is embedded
in a very special manner. We list here some basic facts about this concept,
referring the reader to [8] for a more detailed account.

A complete lattice A is said to be doubly algebraic if both A and its (al-
gebraic) dual Aα are algebraic. For distributive lattices, this is a very strong
property, as the next theorem shows. For a complete lattice A, denote byJ∞(A)
the set of all completely join irreducible elements of A, and byM∞(A) the set
of all completely meet irreducible elements of A. We also introduce here some
related notation that will be used later. By J∞

ω (A) andM∞
ω (A) we denote the

sets consisting, respectively, of all finite joins of elements of J∞(A) and of all
finite meets of elements of M∞(A). Observe that 0 is a member of J∞

ω (A),
but not of J∞(A), and that 1 is a member ofM∞

ω (A), but not ofM∞(A). For
convenience we set J∞

1 (A) = J∞(A) ∪ {0} andM∞
1 (A) = M∞(A) ∪ {1}.

Theorem 2.1. Suppose A is a complete DL. The following conditions are
equivalent:

(i) A is doubly algebraic.
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(ii) A is algebraic, and every element of A is a join of completely join
irreducible elements.

(iii) A is completely distributive, and every element of A is the join of com-
pletely join irreducible elements.

(iv) For some poset P , A is isomorphic to the lattice of all isotone maps from
P into the two element chain C2.

(v) A is isomorphic to the lattice of all isotone maps from J∞(A) into C2.

Proof. See [8].

Since the notion of a doubly algebraic distributive lattice is selfdual, the
duals of (ii) and (iii) also characterize these lattices.

From the fact that a DL+ A is completely distributive it follows that the
completely join irreducible elements of A are completely join prime, and the
completely meet irreducible elements are completely meet prime. This in turn
implies that there is a natural isomorphism between the posets J∞(A) and
M∞(A). For future reference, we fix here the notation for this isomorphism.

Definition 2.2. Given a DL+ A, we define κ(p) = ∨
(A− ↑p) for all

p ∈ J∞(A),

Theorem 2.3. For any DL+ A,

κ : (J∞(A),≤) � (M∞(A),≤)
and the inverse κ−1 of κ is its dual, i.e., κ−1(u) = ∧

(A− ↓u) for all u ∈
M∞(A).

Note that, for p ∈ J∞(A), κ(p) is the largest element x ∈ A with p �≤ x,
and for u ∈ M∞(A), κ−1(u) is the smallest element y ∈ A with y �≤ u.
Another useful observation about the isomorphism κ is that, for p ∈ J∞(A),
the sets ↑p and ↓κ(p) form a partitioning of A, and that every partitioning of
A into a principal filter and a principal ideal is of this form. The pairs ↑p and
↓κ(p) are therefore precisely the preimagesh−1(1) andh−1(0) under complete
homomorphisms h from A onto the two element lattice.

The canonical extension of a DL was described in [8]. Briefly, two dualities
between categories are involved, one, A �−→ Aδ and S �−→ Sδ , between DLs
and Priestley spaces, the other, A �−→ A∗ and P �−→ P∗ between DL+s and
posets. The forgetful functor that sends each Priestley space S = (S, τ,≤) into
its poset reduct S� = (S,≤) connects the two pairs. Any DL A is isomorphic
to its second dual (Aδ)δ , which is a sublattice of the DL+(Aδ)�∗. By definition,
Aσ is the extension of A, unique up to equivalence, for which there exists a
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commutative diagram
A � (Aδ)δ

↓ ↓
Aσ � (Aδ)�∗

The canonical extension Aσ of a DL A is defined up to equivalence by
the condition that the natural isomorphism A � (Aδ)δ can be extended to an
isomorphism Aσ � (Aδ)�∗. However, in working with this concept, we will
usually make use of two abstract properties that characterize these extensions,
rather than going back to details of the construction. It is useful to have names
for these properties.

Definition 2.4. Suppose A is a (bounded) sublattice of a DL+ A′. We say
that

(i) A is separating in A′ if, for all p, q ∈ J∞(A′) with p �≤ q there exists
a ∈ A such that q ≤ a and p �≤ a.

(ii) A is compact in A′ if, for all S, T ⊆ A with
∧
S ≤ ∨

T in A′, there
exist finite sets F ⊆ S and G ⊆ T such that

∧
F ≤ ∨

G.

Theorem 2.5. Suppose A is a DL.

(i) Aσ is a DL+ containing A as a separating, compact sublattice.

(ii) For any DL+ A′ containing A as a separating, compact sublattice, there
exists a unique isomorphism h : Aσ � A′ sending each member of A
into itself.

Proof. See [8].

Again suppose the DL A is a sublattice of a DL+ A′. If the element x ∈ A′
is the meet of a subset of A, then we say that x is closed and write x ∈
K(A′), but if x is the join of a subset of A, then we say that x is open and
write x ∈ O(A′). We say that x is clopen if x is both closed and open. The
condition that A be separating in A′ holds if and only if J∞(A′) ⊆ K(A′),
or equivalently, J∞

ω (A
′) ⊆ K(A′). These conditions are in turn equivalent to

their duals,M∞(A′) ⊆ O(A′) andM∞
ω (A

′) ⊆ O(A′).

2.2. Six topologies

We want to extend a map between DLs (briefly, a DL map) f : A → B to
a map f σ : Aσ → Bσ in a way that preserves important properties of the
original map. The idea is to define f σ (x) as a limit of values of f at elements
of A “near” x. To make this precise, we need a topology on Aσ . Of the six
topologies defined below, the strongest one, σ , will be used for this purpose,
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but the other five will also be useful in proving preservation properties for
canonical extensions.

Definition 2.6. Suppose A is a DL. We denote by σ , σ ↑ and σ ↓ the
topologies on Aσ having as bases, respectively, the sets of the forms ↑p ∩ ↓u,
↑p and ↓u, with p ∈ K(Aσ ) and u ∈ O(Aσ ).

When necessary, we write σ(Aσ ) for σ , and similarly for the other topolo-
gies just defined, as well as for the three topologies defined below. Unlike the
three topologies above, the ones defined below are intrinsic to Aσ ; that is, they
do not depend on A. In fact, they can be defined on an arbitrary doubly algeb-
raic distributive lattice B, using the set J∞

ω (B) of finite joins of completely join
irreducible elements, and the set M∞

ω (B) of finite meets of completely meet
irreducible elements. Observe that the members of J∞

ω (B) are the compact
elements, in the sense of lattice theory, while the members ofM∞

ω (B) are the
dually compact elements.

Definition 2.7. Suppose B is a doubly algebraic distributive lattice. We
denote by ι, ι↑ and ι↓ the topologies on B having as bases, respectively, the
sets of the forms ↑p ∩ ↓u, ↑p and ↓u, with p ∈ J∞

ω (B) and u ∈ M∞
ω (B).

Obviously, the topology σ is the join of σ ↑ and σ ↓, and ι is the join of ι↑
and ι↓. For any DL A, the topologies ι, ι↑ and ι↓ on Aσ are weaker than σ , σ ↑
and σ ↓, respectively, because J∞

ω (A
σ ) ⊆ K(Aσ ) andM∞

ω (A
σ ) ⊆ O(Aσ ).

It should be noted that ι, ι↑ and ι↓ are special cases of topologies that
have been defined on arbitrary partially ordered sets. In fact, when defined
on a DL+ B, both the lower topology and the Scott topology coincide with
ι↑. The interval topology (the join of the lower topology and its dual), and
the biScott topology (the join of the Scott topology and its dual) therefore
both coincide with ι in this case. For information about these more general
topologies see [11]. However, with one exception, no reference will be made
to the general theory, for the special cases used here are so much simpler that
it is easier to develop the results needed independently.

The connection between the topologies σ and ι and the algebraic structures
on the underlying sets is described in part in the next theorem. Part (i) of this
theorem is known. In fact, it is shown in [19] that, for any DL+ B, the interval
topology is the unique topology that turns (B,≤) into a Priestley space.

Theorem 2.8.
(i) For any DL+ B, (B, ι,≤) is a Priestley space.

(ii) For any DL A, (Aσ , σ,≤) is totally order disconnected, the set A is
dense inAσ , and the members ofA are exactly the isolated points ofAσ .
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Proof. (i) Given x, y ∈ B with x �≤ y, there exists p ∈ J∞(B) with
p ≤ x and p �≤ y. The filter ↑p and the ideal ↓κ(p) are open sets that form a
partitioning of B. Since x is in the filter and y is in the ideal, this shows that
the space is totally order disconnected. That (B, ι) is compact, follows from
the fact that the Lawson space of any continuous lattice is compact, see [11,
Theorem III.1.10].

(ii) By (i), (Aσ , ι,≤) is totally order disconnected, and since the topology σ
is stronger than ι, it follows that (Aσ , σ,≤) is also totally order disconnected.
To show that A is dense in Aσ , it suffices to show that each of the basic
intervals [p, u] with p ≤ u, p closed and u open, contains a member of A.
The closed element p and the open element u have representations p = ∧

X

and u = ∨
Y , with X, Y ⊆ A. From the inclusion

∧
X ≤ ∨

Y it follows
that

∧
F ≤ ∨

G for some finite subsets F of X and G of Y . Taking a to
be either

∧
F or

∨
G, we conclude that a is a member of A that belongs to

[p, u]. Finally, for a ∈ A, the interval [a, a] = {a} is open, and a is therefore
isolated. On the other hand, since A is dense in (Aσ , σ ), it follows that if {x}
is open then x ∈ A.

For a DL A = (A,∨,∧, 0, 1), let Aα denote the dual lattice, obtained
by reversing the underlying order. That is Aα = (A,∧,∨, 1, 0). Since we
will often have to change our perspective by replacing a DL by its dual, it is
important to realize what effect this has on various derived concepts. Obviously
A and Aα have the same universe. Since the characterization of canonical
extensions is selfdual, we may also identify Aασ with Aσα , and this leads to
several other identifications. We list some important ones. The operation α

• leaves the universe unchanged: Aα = A.

• commutes with σ : Aασ = Aσα , or equivalently, Aασα = Aσ .

• interchanges open elements and closed elements: K(Aασ ) = O(Aσ )
and O(Aασ ) = K(Aσ ).

• leaves the topologiesσ and ιunchanged: σ(Aασ ) = σ(Aσ ) and ι(Aασ ) =
ι(Aσ ).

• interchanges the topologies σ ↑ and σ ↓ as well as ι↑ and ι↓: σ ↑(Aασ ) =
σ ↓(Aσ ), σ ↓(Aασ ) = σ ↑(Aσ ), ι↑(Aασ ) = ι↓(Aσ ), and ι↓(Aασ ) =
ι↑(Aσ ).

Direct products give rise to similar identifications:

• (A × B)σ = Aσ × Bσ .

• K((A × B)σ ) = K(Aσ )×K(Bσ ) andO(A × B)σ = O(Aσ )×O(Bσ ).
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• σ((A × B)σ ) = σ(Aσ )× σ(Bσ )), where σ(Aσ )× σ(Bσ ) is the product
topology generated by the two topologies. Similarly for the other five
topologies.

As the next theorem shows, it is rather exceptional for the space (Aσ , σ (Aσ ))
to be compact.

Theorem 2.9. For any DL A, the following conditions are equivalent:

(i) The space (Aσ , σ (Aσ )) is compact.

(ii) σ(Aσ ) = ι(Aσ ).
(iii) K(Aσ ) = J∞

ω (A
σ ) and O(Aσ ) = M∞

ω (A
σ ).

Proof. Obviously (ii) implies (i) and (iii) implies (ii).
It is known that, in the poset of all Hausdorff topologies on a setX, the com-

pact topologies are minimal (see for example [5, Corollary 3.1.14]). Hence, if
ι(Aσ ) < σ(Aσ ), then σ(Aσ ) cannot be compact. Thus (i) and (ii) are equival-
ent.

If (ii) holds, then for all p ∈ K(Aσ ), the filter ↑p is the union of basic
open sets for the ι-topology. These sets can be taken to be filters ↑q, with q
running through some setQ ⊆ J∞

ω (A
σ ). For each q ∈ Q, we have ↑q ⊆ ↑p,

hence p ≤ q, This inclusion cannot be strict for all q ∈ Q, for then p would
not belong to the union of the filters ↑q. Hence p ∈ Q ⊆ J∞

ω (A
σ ). Similarly,

every member of O(Aσ ) belongs toM∞
ω (A

σ ). Thus (ii) implies (iii).
The three conditions are therefore equivalent.

When a topology is presented by specifying a basis B of open sets, then the
isolated points are precisely the points p with {p} ∈ B. In Theorem 2.8 this
was used to show that the members of A are exactly the isolated points in the
σ -topology on Aσ . For the ι-topology this shows that the isolated points are
the elements that are both joins of finitely many completely join irreducible
elements and meets of finitely many completely meet irreducible elements. In
general, this will not include all the members of A.

2.3. Continuous extensions of maps

In defining and investigating extensions of maps f : A → B between DLs to
maps between their canonical extensions, we make use of the various topolo-
gies on Aσ and Bσ . Since several topologies have been defined on each set, it
is often necessary to specify which ones are under consideration. In general, if
τ and µ are topologies on the setsX and Y , and if the map f : X → Y is con-
tinuous relative to τ onX andµ on Y , then we say that f is (τ, µ)-continuous,
or that f : (X, τ)→ (Y, µ) is continuous.
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Definition 2.10. Suppose (X, τ) is a topological space, X′ is a dense
subset of X, and C is a DL+. For any map f : X′ → C, and for all x ∈ X, we
define

limτ f (x) =
∨ {∧

f (U ∩X′) : x ∈ U ∈ τ
}
,

limτ f (x) =
∧ {∨

f (U ∩X′) : x ∈ U ∈ τ
}
.

When the intended topology is clear from the context, the subscript τ will
usually be omitted.

In the above definition,U runs through all open neighborhoods of x, but we
can instead take the values ofU to be the members of some fixed neighborhood
basis. This observation will be used frequently below.

Theorem 2.11. Let (X, τ), X′, C and f be as in the preceding definition.
The following statements hold.

(i) limf : (X, τ)→ (C, ι↑) is continuous.

(ii) limf : (X, τ)→ (C, ι↓) is continuous.

(iii) limf ≤ limf .

(iv) limf � X′ ≤ f ≤ limf � X′.
(v) For allx ∈ X′, limf (x) = f (x) if and only iff : (X′, τ � X′)→ (C, ι↑)

is continuous at x.

(vi) For allx ∈ X′, limf (x) = f (x) if and only iff : (X′, τ � X′)→ (C, ι↓)
is continuous at x.

(vii) Suppose g : X → C is (τ, ι↑)-continuous at x and g(x) ≤ f (x).
Then g(x) ≤ limf (x). In particular, limf is the largest continuous map
g : (X, τ)→ (C, ι↑) with g � X′ ≤ f .

(viii) Suppose g : X → C is (τ, ι↓)-continuous at x and g(x) ≥ f (x). Then
g(x) ≥ limf (x). In particular, limf is the smallest continuous map
g : (X, τ)→ (C, ι↓) with g � X′ ≥ f .

(ix) For all x ∈ X, limf (x) = limf (x) if and only if limf is (τ, ι↓)-
continuous at x, if and only if limf is (τ, ι↑)-continuous at x.

Proof. To prove (i) it suffices to show that, for every p ∈ J∞(C), the
inverse image of the filter ↑p under limf is open. Now, for any x ∈ X, if
limf (x) ∈ ↑p, then

p ≤
∨ {∧

f (U ∩X′) : x ∈ U ∈ τ
}
.

Since p ∈ J∞(C), there is U0 ∈ τ with x ∈ U0 and p ≤ ∧
f (U0 ∩ X′), but

from this it readily follows that limf sends the whole neighborhood U0 of x
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into ↑p. Statement (ii) follows by duality, and (iii) and (iv) are clear from the
definitions of limf and limf .

To say thatf : (X′, τ�X′)→ (C, ι↑) is continuous atxmeans that, for every
p ∈ J∞(C) below f (x), f sends some τ�X′-neighborhood of x into ↑p, but
this holds if and only if limf (x) ≥ f (x). Since the inequality limf (x) ≤ f (x)
holds for all x ∈ X′, this proves (v), and (vi) follows by duality.

To prove (vii), we consider a function g : X → C and x ∈ X with
g(x) ≤ f (x) and g (τ, ι↑)-continuous at x, and show that g(x) ≤ limf (x).
Given p ∈ J∞(C) with p ≤ g(x), it follows from the continuity of g that g
takes some neighborhoodU of x into ↑p. Hence f takesU∩X′ into ↑p, which
implies that p ≤ limf (x). This proves (vii), and (viii) follows by duality.

Statement (ix) now readily follows. In general, limf ≤ limf . If limf is
(τ, ι↓)-continuous at x, then we apply (vii) with g = limf to infer that the
two limits agree at x. The converse holds because limf is (τ, ι↓)-continuous.
The argument with the two limits interchanged is similar.

Theorem 2.12. Suppose A is a DL and C is a DL+. For any map f : A→
C, the maps limσ f, limσ f : Aσ → C are, respectively, the largest (σ, ι↑)-
continuous extension of f and the smallest (σ, ι↓)-continuous extension of
f .

Proof. Recall that every element a of A is an isolated point of Aσ , so that
{a} ∈ σ(Aσ ). Hence limf and limf restricted toA are both (σ, τ )-continuous
for any τ , and limf (a) and limf (a) are both equal to f (a). Thus limf and
limf are both extensions of f . The theorem now follows readily from parts
(vii) and (viii) of the preceding theorem.

2.4. Canonical extensions as continuous extensions

We now define canonical extensions of arbitrary maps between DLs.

Definition 2.13. For any DL map f : A → B, we define

f σ = limσ f, f π = limσ f.

Theorem 2.14. For any DL map f : A → B, and for all x ∈ Aσ ,

f σ (x) =
∨ {∧

f ([p, u] ∩ A) : p ∈ K(Aσ ), u ∈ O(Aσ ), and p ≤ x ≤ u
}
,

f π (x) =
∧ {∨

f ([p, u] ∩ A) : p ∈ K(Aσ ), u ∈ O(Aσ ), and p ≤ x ≤ u
}
.

The following special case of Theorem 2.12 will play an important role.
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Theorem 2.15. For any DL map f : A → B, f σ and f π are extensions of
f . In fact, f σ is the largest (σ, ι↑)-continuous extension of f to Aσ , and f π

is the smallest (σ, ι↓)-continuous extension of f to Aσ .

As may be expected, the theory behaves well for maps whose two canonical
extensions coincide. We give a name to such maps.

Definition 2.16. A DL map f : A → B is said to be smooth if f σ = f π .

Corollary 2.17. If the DL map f : A → B is smooth, then the extension
f σ = f π of f is (σ, ι)-continuous. Conversely, if f has a (σ, ι)-continuous
extension g : Aσ → Bσ , then f is smooth and f σ = f π = g.

Proof. If f σ and f π are equal to the same map g, then by Theorem 2.15,
g is both the largest (σ, ι↑)-continuous extension of f and the smallest (σ, ι↓)-
continuous extension of f . It follows that g is (σ, ι)-continuous, and is the
only extension of f with that property.

Conversely, suppose g : Aσ → Bσ is a (σ, ι)-continuous extension of f .
Then, by Theorem 2.15, g ≤ f σ and f π ≤ g, so all three maps are equal.

For isotone maps, the new definition of canonical extension agrees with the
earlier one.

Corollary 2.18. If the DL map f : A → B is isotone, then for all x ∈ Aσ ,

f σ (x) =
∨ {∧

f (↑p ∩ A) : x ≥ p ∈ K(Aσ )
}
,

f π (x) =
∧ {∨

f (↓u ∩ A) : x ≤ u ∈ O(Aσ )
}
.

Proof. This follows from the fact that in this case
∧
f ([p, u] ∩ A) =∧

f (↑p ∩ A) and
∨
f ([p, u] ∩ A) = ∨

f (↓u ∩ A) for p ∈ K(Aσ ) and
u ∈ O(Aσ ) with p ≤ u.

Theorem 2.19. If the DL map f : A → B is isotone, then

(i) f σ (p) =
∧

{f (a) : a ∈ ↑p ∩ A} for all p ∈ K(Aσ ),
(ii) f π(u) =

∨
{f (a); a ∈ ↓u ∩ A} for all u ∈ O(Aσ ),

(iii) f σ (x) =
∨

{f σ (p) : p ∈ ↓x ∩K(Aσ )} for all x ∈ Aσ ,

(iv) f π(x) =
∧

{f π(u) : u ∈ ↑x ∩O(Aσ )} for all x ∈ Aσ .

Proof. The first two formulas follow from the preceding corollary and the
fact that ↑p is the smallest filter containing p and ↓u is the smallest ideal
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containing u. Formulas three and four follow from the preceding corollary and
the first two formulas.

Theorem 2.20. For any isotone DL map f : A → B,

(i) f σ (x) = f π(x) for all x ∈ K(Aσ ) ∪O(Aσ ).
(ii) f σ and f π take closed elements into closed elements and open elements

into open elements.

(iii) f σ and f π are (σ, ι)-continuous at every point of K(Aσ ) ∪O(Aσ ).
Proof. If p ∈ K(Aσ ), then f π(p) is the meet of all f π(u) with p ≤ u ∈

O(Aσ ). For each such element u, there exists a ∈ A with p ≤ a ≤ u, and
hence f π(p) ≤ f (a) ≤ f π(u). Therefore, f π(p) = ∧

f (↑p∩A) = f σ (p).
Dually, f σ and f π agree on the open elements. Thus (i) holds.

By the preceding theorem, f σ sends closed elements into closed elements,
and f π sends open elements into open elements. Since f σ and f π agree on
the closed elements and on the open elements, (ii) follows.

Finally, consider an element x ∈ K(Aσ ) ∪ O(Aσ ). Then f σ (x) = f π(x)

and, byTheorem 2.12, f σ is (σ, ι↑)-continuous atx. For anyu ∈ M∞(Aσ )with
f σ (x) = f π(x) ≤ u there is a σ -neighborhoodU of x such that f π(U) ⊆ ↓u.
Since f σ ≤ f π it follows that f σ (U) ⊆ ↓u and thus f σ is (σ, ι↓)-continuous
at x. We have shown that f σ is (σ, ι)-continuous at x. By duality f π is (σ, ι)-
continuous at x as well.

A DL map f : A → B is said to be join preserving, or to preserve joins,
if it preserves all binary joins, and hence all nonempty finite joins. Assuming
that A and B are complete, f is said to be completely join preserving if it
preserves all nonempty joins. Observe that it is not required that f preserve
the empty join, i.e., that f (0) = 0. The corresponding notions for meets are
defined dually. A map that is (completely) join and meet preserving is called a
(complete) lattice homomorphism, while a (complete) DL homomorphism is
also required to take 0 to 0 and 1 to 1.

We will be considering canonical extensions of n-ary operations on a DL A,
i.e., maps f : An → A. It is convenient to consider, more generally, maps

(2.1) f : A0 × A1 × · · · × An−1 → B

where A0,A1, . . . ,An−1 and B are DLs. With the obvious identification

(A0 × A1 × · · · × An−1)
σ = Aσ0 × Aσ1 × · · · × Aσn−1,

the canonical extension of f may be viewed as a map

f σ : Aσ0 × Aσ1 × · · · × Aσn−1 → Bσ .
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In particular, the canonical extension of an n-ary operation on a DL A becomes
an n-ary operation on Aσ .

In [15], an operation on a Boolean algebra was called an operator if it
preserves binary joins in each of its coordinates, and in [8] this terminology
was extended to operations on DLs. We now extend this terminology to maps
of the form (2.1). As before, the operator is said to be complete if the DLs
are complete and the operator preserves all nonempty joins in each of its
coordinates. The basic result that the canonical extension of an operator is
a complete operator, Theorem 2.4 in [15], carries over to this more general
setting.

Theorem 2.21. The canonical extension of an operator is a complete
operator. In particular, the canonical extension of a join preserving map is
completely join preserving.

The proof in [15] applies with no significant modifications. However, we
give here a shorter proof that yields a somewhat more general result.

Lemma 2.22. For any isotone DL map

f : A0 × A1 → B,

if f preserves joins in the first coordinate, then

f σ : Aσ0 × Aσ1 → Bσ

preserves arbitrary nonempty joins in the first coordinate.

Proof. It suffices to show that, for any x0 ∈ Aσ0 and x1 ∈ Aσ1 , and for any
p ∈ J∞(Bσ ),

(2.2) p ≤ f σ (x0, x1) implies (∃q ∈ Q) p ≤ f σ (q, x1),

whereQ = {q ∈ J∞
1 (A

σ
0 ) : q ≤ x0}. From the fact that f is isotone it follows

that f σ (x0, x1) is the join of all the elements f σ (y0, y1)with xi ≥ yi ∈ K(Ai )
for i = 0, 1. We may therefore assume that x0 and x1 are closed.

Assume now that (2.2) fails. Then there exist, for each q ∈ Q, elements
aq,0 ≥ q and aq,1 ≥ x1 in A such that p �≤ f (aq,0, aq,1). We have x0 =∨
Q ≤ ∨{aq,0 : q ∈ Q}, and hence x0 ≤ ∨{aq,0 : q ∈ F } for some finite

F ⊆ Q. The join a0 of the elements aq,0 with q ∈ F , and the meet a1 of the
corresponding elements aq,1 are inA. Clearly p �≤ f (aq,0, a1) for each q ∈ F .
Since f preserves joins in its first coordinate, it follows that p �≤ f (a0, a1)

and hence p �≤ f σ (x0, x1).

A map f : C → D between complete lattices is said to be upper continuous
if f (

∨
S) = ∨

f (S) for every updirected set S ⊆ C. If C and D are DL+s,
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then this holds if and only if, for all x ∈ C and p ∈ J∞(D) with f (x) ≥ p,
there exists q ∈ J∞

ω (C) such that q ≤ x and f (q) ≥ p. In other words, a DL+
map is upper continuous if and only if it is (ι↑, ι↑)-continuous.

Theorem 2.23. If C0,C1, . . . ,Cn−1 and D are DL+s, then every complete
operator f : C0 × C1 × · · · × Cn−1 → D is upper continuous.

Proof. Given x = (x0, x1, . . . , xn−1) ∈ C0 × C1 × · · · × Cn−1 and p ∈
J∞(D) with f (x) ≥ p, we can always pick q = (q0, q1, . . . , qn−1) with
xi ≥ qi ∈ J∞

1 (Ci ) for i < n and f (q) ≥ p.

The canonical extension f σ of an arbitrary DL map f : A → B has been
shown to be (σ, ι↑)-continuous. When more is known about f , more can often
be said about the continuity of f σ . The facts listed in the next theorem will
be used extensively. Many other such results suggest themselves; we only list
those that will be needed below.

Theorem 2.24. For every DL map f : A → B, f σ is (σ, ι↑)-continuous.
Furthermore,

(i) If f is isotone, then f σ is (σ ↑, ι↑)-continuous;

(ii) If f is an operator, then f σ is (ι↑, ι↑)-continuous;

(iii) If f is join preserving, then f σ is (σ ↓, σ ↓)-continuous;

(iv) If f is join and meet preserving, then f σ is (σ, σ )-continuous.

Proof. The first conclusion holds by Theorem 2.15. To prove (i), we simply
note that every isotone map g : Aσ → Bσ that is (σ, ι↑)-continuous is (σ ↑, ι↑)-
continuous. This is so because the counterimage under g of any basic open
set ↑p is an order filter, and since it is σ -open, it must be σ ↑-open. If f
is an operator, then f σ is upper continuous, which is true just in case it is
(ι↑, ι↑)-continuous.

For (iii), suppose f is join preserving. Then by Theorem 2.22, f σ is com-
pletely join preserving. Hence the counterimage of a principal ideal ↓v in Bσ

is either empty, or else it is a principal ideal ↓u in Aσ . It suffices to show that
if v is open, then so is u. To prove this, consider a closed element p ≤ u. Then∧
f (↑p∩A) = f σ (p) ≤ v. Hence

∧
f (F ) ≤ v for some finiteF ⊆ ↓p∩A.

Letting ap = ∧
F , we infer that ap is a member of A, and that p ≤ ap ≤ u.

The element u is therefore the join of all the elements ap with p closed and
p ≤ u, and is therefore open.

Suppose f is join and meet preserving. By (iii), f σ is (σ ↓, σ ↓)-continuous.
Of course, f σ is also (σ, ι↑)-continuous, so it is (σ, ι)-continuous, which in
turn entails that f is smooth. Also, from the fact that f is meet preserving and
smooth it follows by the dual of (iii) that f σ = f π is (σ ↑, σ ↑)-continuous.
Hence f σ is (σ, σ )-continuous.
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Corollary 2.25. If the DL map f : A → B is either join preserving or
meet preserving, then f is smooth.

Proof. Supposef is join preserving. By Theorem 2.24(iii), f σ is (σ ↓, σ ↓)-
continuous and hence also (σ, ι↓)-continuous. Like all canonical extensions,
f σ is (σ, ι↑)-continuous. Hence f σ is (σ, ι)-continuous. I.e., f is smooth. The
case when f is meet preserving follows by duality.

We conclude this subsection with two examples.

Example 2.26. A join preserving dual operator need not have a (σ, σ )-
continuous canonical extension. Our counterexample is the join operator itself.
In any DL A, ∨A is a join preserving dual operator (although it is not meet
preserving) and it is easy to see that (∨A)σ = ∨Aσ . Now let x, y ∈ Aσ be
complementary nonmembers of A; such elements will exist, e.g., if A is an
infinite Boolean algebra. Then x ∨ y = 1, but since x and y cannot both be
closed, there are no closed elements p ≤ x and q ≤ y with p ∨ q = 1. Hence
the preimage of the σ -open set {1} is not σ -open.

Example 2.27. The canonical extension of a join preserving map need not
be (ι, ι)-continuous.

Let A be any infinite Boolean algebra, and let f (0) = 0, and f (x) = 1
whenever 0 �= x ∈ A. Then f σ (0) = 0, and f σ (x) = 1 whenever 0 �= x ∈
Aσ . Obviously, f is join preserving, but f σ is not (ι, ι)-continuous, for if u is
any coatom of Aσ , then ↓u is an ι-open set whose preimage {0} is not ι-open.

2.5. Composition and canonical extensions

In many cases, properties can be shown to be preserved by canonical exten-
sions by showing that the commutativity of certain diagrams is preserved. The
following question is therefore important: Consider the diagrams

A f−−−−→ B

↓f ′ ↓g
B′ g′−−−−→ C

Aσ f σ−−−−→ Bσ

↓f ′σ ↓gσ
B′σ g′σ−−−−→ Cσ

Given that the first diagram commutes, under what conditions does it follow
that the second diagram also commutes? The property (PH) of preservation of
homomorphisms can be formulated in this manner. Similarly, the preservation
of identities reduces to problems of this nature.

An obvious way to try to prove that commutativity of diagrams is preserved
is to show that

gσf σ = (gf )σ = (g′f ′)σ = f ′σ g′σ .
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Here the second equality holds by hypothesis. The question is therefore, when
canonical extensions distribute over composition, i.e., under what conditions
it is the case that (gf )σ = gσf σ .

As we know from [15] and [8], the inequality (gf )σ ≤ gσf σ holds for an
important class of maps.

Theorem 2.28 (Ribeiro [21]). For any DL maps f : A → B and g : B →
C, if f and g are isotone then (gf )σ ≤ gσf σ .

Proof. Looking at the formulas

(gf )σ (x) =
∨ {∧

gf (↑p ∩ A) : x ≥ p ∈ K(Aσ )
}
,

gσ f σ (x) =
∨ {∧

g(↑q ∩ B) : f σ (x) ≥ q ∈ K(Bσ )
}
,

all we need to do is to observe that each of the joinands
∧
gf (↑p ∩ A) in

the first formula is below the joinand
∧
g(↑f σ (p) ∩ B) in the second. It

therefore suffices to show that, for every element b ∈ ↑f σ (p) ∩ B, we can
find a ∈ ↑p∩Awith f (a) ≤ b. Now f σ (p) = ∧

f (↑p∩A), so the condition
b ∈ ↑f σ (p) ∩ B implies that, for some finite set F ⊆ ↑p ∩ A,

∧
f (F ) ≤ b,

and
∧
F is our required element a.

Corollary 2.29. For any isotone DL maps f : A → B and g : B → C,

(gf )σ ≤ gσf σ ≤
{
gσf π

gπf σ

}
≤ gπf π ≤ (gf )π

with equality holding on K(Aσ ) ∪O(Aσ ).
Proof. The first inclusion holds by the preceding theorem, and the last

one follows by duality. The remaining inclusions follow from the fact that,
by Theorem 2.11(iii), f σ ≤ f π for an arbitrary DL map f , and the obvious
observation that the canonical extension of an isotone map is isotone. Applying
Theorem 2.20 to the map gf , we see that (gf )σ and (gf )π agree onK(Aσ )∪
O(Aσ ), whence all six functions agree there.

Theorem 2.30. For any DL maps f : A → B and g : B → C:

(i) The inequality gσf σ≤ (gf )σ holds whenever gσf σ is (σ, ι↑)-continuous.

(ii) The inequality gσf σ≥ (gf )σ holds whenever gσf σ is (σ, ι↓)-continuous.

(iii) The equation gσf σ= (gf )σ holds whenever gσf σ is (σ, ι)-continuous.

Proof. By Theorem 2.15, (gf )σ is the largest (σ, ι↑)-continuous extension
of gf . Hence, if the extension gσf σ of gf is also (σ, ι↑)-continuous, then
gσf σ ≤ (gf )σ . This proves (i). For the proof of (ii) we use the fact that (gf )π
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is the smallest (σ, ι↓)-continuous extension of gf . Therefore, if gσf σ is also
(σ, ι↓)-continuous , then (gf )σ ≥ (gf )π ≥ gσf σ . Statement (iii) is just the
conjunction of (i) and (ii).

We now make use of the fact that the composition of continuous maps is
continuous.

Corollary 2.31. For any DL maps f : A → B and g : B → C:

(i) If, for some topology τ on Bσ , f σ is (σ, τ )-continuous and g is (τ, ι↑)-
continuous, then gσf σ ≤ (gf )σ . In particular, this holds when f σ is
(σ, σ )-continuous, and when gσ is (ι↑, ι↑)-continuous.

(ii) If, for some topology τ on Bσ , f σ is (σ, τ )-continuous and gσ is (τ, ι↓)-
continuous, then (gf )σ ≤ gσf σ . In particular, this holds when f σ is
(σ, σ )-continuous and g is smooth, when f is smooth and gσ is (ι, ι↓)-
continuous, and when gσ is (ι↑, ι↓)-continuous.

(iii) If, for some topology τ on Bσ , f σ is (σ, τ )-continuous and g is (τ, ι)-
continuous, then (gf )σ = gσf σ . In particular, this holds whenever f σ

is (σ, σ )-continuous and g is smooth, and when f is smooth and gσ is
(ι, ι)-continuous.

Corollary 2.32. For any DL maps f : A → B and g : B → C, the
equality (gf )σ = gσf σ holds if f and g are isotone and either f σ is (σ, σ )-
continuous or g is (ι↑, ι↑)-continuous. It also holds whenever gσf σ (σ, ι)-
continuous, and hence in particular when either f σ is (σ, σ )-continuous and
gσ is (σ, ι)-continuous or f σ is (σ, ι)-continuous and gσ is (ι, ι)-continuous.

Theorem 2.33. For any isotone DL maps f : A → B and g : B → C, the
equality (gf )σ = gσf σ holds if gσ is upper continuous, hence in particular
if g is an operator.

Proof. By Theorem 2.30.

Example 2.34. The inequality in part (i) of Theorem 2.30 may be strict.

Let B be a bounded chain that is dense in itself, with A a dense subchain
of B, containing 0 and 1, such that B − A is also a dense subset of B. Let
f : A → B be the inclusion map, and g : B → B the map that sends each
element in A to 1 and each element in B − A to 0. Then (gf )(x) = 1 for
all x ∈ A, and hence (gf )σ (x) = 1 for all x ∈ Aσ . On the other hand,
gσf σ (x) = 0 for all x ∈ Aσ − A. This will be proved by showing that the
following two claims hold.

Claim 1. f σ sends Aσ − A into Bσ − B.

Claim 2. gσ sends Bσ − B into 0.
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In proving the first claim, we use the fact that f preserves both joins and
meets, and is therefore (σ, σ )-continuous. For b ∈ B, the set (f σ )−1(b)

is therefore open and has a dense subset consisting of elements of A. But
(f σ )−1(b) contains at most one member of A; therefore it contains no mem-
ber of Aσ − A.

The second claim follows from the observation that if y ∈ Bσ − B, then
every basic σ -neighborhood U of y contains at least two members of B, and
therefore contains a member of B − A, so that

∧
g(U ∩ B) = 0.

Example 2.35. The inequality in part (ii) of Theorem 2.30 may be strict.

This example combines the operation of Example 2.26 and the dual of the
operation in Example 2.27. Let f : B × B → B be the lattice join, and let
g : B → B be the map such that g(1) = 1 and g(z) = 0 for 0 �= z ∈ B. Then,
for x, y ∈ Bσ , gσf σ (x, y) = 1 if and only if f σ (x, y) = 1, if and only if
x∨y = 1. On the other hand, (gf )σ (x, y) = 1 if and only if there exist closed
elements p ≤ x and q ≤ y such that p ∨ q = 1. Hence, if we take B to be an
infinite Boolean algebra, and take x and y to be complementary elements of
Bσ that are not in B, then (gf )σ (x, y) = 0 < 1 = gσf σ (x, y).

3. Preservation of homomorphisms

3.1. Canonical extensions of homomorphisms

Definition 3.1. For a DLE A = (A0, ω
A, ω ∈ �) we define the canonical

extension of A and the dual canonical extension of A to be the DLEs

Aσ = (Aσ0 , (ωA)σ , ω ∈ �),
Aπ = (Aσ0 , (ωA)π , ω ∈ �),

respectively.

Observe that if we define the dual of a DLE A = (A0, ω
A, σ ∈ �) to be the

DLE Aα = (Aα0 , ωA, σ ∈ �), then Aπ = Aασα .
Many properties are not preserved by canonical extensions. A striking case

will be provided in Example 3.8: a DLE homomorphism h : A → B whose
canonical extension h : A → B is not a homomorphism. It is the objective of
this section to show that, under some quite general conditions, homomorphisms
are preserved.

Every DL homomorphismh : A → B is preserved by canonical extensions.
Even more is true, hσ : Aσ → Bσ is always a complete homomorphism. In
fact, hσ is smooth by Corollary 2.25, and using Theorem 2.21 and its dual we
infer that hσ is completely join and meet preserving. The maps A �→ Aσ and
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h �→ hσ therefore form a functor from the category of all DLs and their homo-
morphisms into the category of all DL+s and their complete homomorphisms.
We need some more information about this functor.

Theorem 3.2. The maps A �−→ Aσ and h �−→ hσ form a functor from
the category of all DLs and their homomorphisms into the category of all
DL+s and their complete homomorphisms. This functor preserves injectivity
and surjectivity of homomorphisms.

Proof. We have just observed that homomorphisms go into complete ho-
momorphisms, and we know that the identity homomorphism from A to
A is sent into the identity homomorphism from Aσ to Aσ . Furthermore, if
h : A → B and h′ : B → C are DL homomorphism, then h′σ hσ = (h′h)σ .
This shows that the maps form a functor.

Now we prove that σ preserves surjectivity and injectivity of homomorph-
isms. If the DL homomorphism h : A → B is surjective, then the range S of
hσ contains B, and since S is closed under arbitrary joins and meets, it follows
that S = Bσ . That is, hσ is surjective. Finally we assume that h is injective,
and show that hσ is also injective. It suffices to show that, for x, y ∈ Aσ ,
hσ (x) ≤ hσ (y) implies x ≤ y. In fact, since hσ is completely join and meet
preserving, we only need to prove this implication for the special case when
x ∈ J∞(Aσ ) and y ∈ M∞(Aσ ). In this case, hσ (x) = ∧

h(↑x ∩ A) and
hσ (y) = ∨

h(↓y ∩ A), so that
∧
h(↑x ∩ A) ≤ ∨

h(↓y ∩ A). Using the
compactness property and the fact that the set h(↑x ∩ A) is down-directed
and h(↓y ∩A) is up-directed, we conclude that there exist a, b ∈ A such that
x ≤ a, b ≤ y and h(a) ≤ h(b). Since h is injective, the last inclusion implies
that a ≤ b, and hence x ≤ y.

The assertion that a DLE map h : A → B is a homomorphism means
that, for corresponding basic operations f of A and g of B, say of arity n, the
equation hf = gh[n] holds, and to say that the induced map hσ : Aσ → Bσ

is a homomorphism means that the equation hσf σ = gσhσ [n] holds. In order
to show that the first equation implies the second, one might try to prove the
string of equalities

hσf σ = (hf )σ = (gh[n])σ = gσh[n]σ = gσhσ [n].

The second equality obviously holds and the fourth is easy to verify. It will
be shown that the first equality also holds, as does the inequality gσh[n]σ ≤
(gh[n])σ . The problem of determining which homomorphisms are preserved
by canonical extensions therefore reduces to finding out under what conditions
the inequality (gh[n])σ ≤ gσh[n]σ holds.
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Lemma 3.3. For any DLE maps f : A → B and h : B → C, if h is join
and meet preserving, then hσf σ = (hf )σ .

Proof. Using the fact that hσ preserves all non-empty joins and meets, we
compute

hσf σ (x) = hσ
(∨ {∧

f (U ∩ A) : x ∈ U ∈ σ(Aσ )
})

=
∨ {∧

hf (U ∩ A) : x ∈ U ∈ σ(Aσ )
}

= (hf )σ (x).

Lemma 3.4. For any DL maps h : A → B and g : B → C, if h is join and
meet preserving, then gσhσ ≤ (gh)σ .

Proof. By Theorem 2.24(iv), hσ is (σ, σ )-continuous, Hence gσhσ ≤
(gh)σ by Corollary 2.31(i).

Theorem 3.5. For any DLE homomorphism h : A → B, the map hσ :
Aσ → Bσ is a homomorphism if and only if, for every auxiliary operation g
of B, (gh[n])σ ≤ gσh[n]σ , where n is the arity of g.

Proof. By the preceding two lemmas.

Lemma 3.6. For any DL maps h : A → B and g : B → C, with h join and
meet preserving, if h is surjective, then (gh)σ = gσhσ .

Proof. For x ∈ Aσ we have

(gh)σ (x) =
∨ {∧

gh(U ∩ A) : x ∈ U ∈ σ(Aσ )
}
,

gσhσ (x) =
∨ {∧

g(V ∩ B) : hσ (x) ∈ V ∈ σ(Bσ )
}
.

It will be shown that each of the joinands
∧
gh(U ∩ A) in the first formula

is equal to the joinand
∧
g(V ∩ B) in the second with V = hσ (U). First we

need to show that hσ sends open sets into open sets. It is sufficient to do this
for the case of a basic open set U = [p, u]. From the fact that h is isotone, it
follows that hσ (U) ⊆ [hσ (p), hσ (u)]. To prove that equality holds, consider
any y ∈ [hσ (p), hσ (u)]. By Theorem 3.2, y = hσ (x) for some x ∈ Aσ , and
hence y = hσ ((x ∧ u) ∨ p) ∈ hσ (U).

Our set V = hσ (U) is therefore open. We next show that

(3.1) h(U ∩ A) = V ∩ B
Obviously, h(U ∩ A) ⊆ hσ (U) ∩ h(A) = V ∩ B. On the other hand, if
b ∈ V ∩B, then b is an isolated point, and the set U0 = (hσ )−1(b) is therefore



bounded distributive lattice expansions 33

open. Also, b = hσ (x) for some x ∈ U , so that U and U0 are not disjoint. In
other words, the open set U ∩ U0 is not empty, and therefore contains a point
a ∈ A. Therefore, b = h(a) ∈ h(U ∩ A). This completes the proof of (3.1),
and it readily follows that

∧
gh(U ∩ A) = ∧

g(V ∩ B).
Thus (gh)σ ≤ gσhσ . The opposite inequality holds without the assumption

that h be surjective.

Theorem 3.7. Every surjective DLE homomorphism is preserved by ca-
nonical extensions.

Proof. By the preceding theorem.

At this point one may wonder whether homomorphisms are always pre-
served by canonical extensions. Since surjective ones always are, and since
any homomorphism splits into a surjective, and an injective one, there must
be an injective counterexample if there is one at all.

Example 3.8. This is an example of a DL B = (B0, g) and a subalgebra
A = (A0, f ) such that gσh[n]σ < (gh[n])σ , where h : A → B is the injection
homomorphism and n is the arity of g.

Essentially, this algebra was already constructed in Example 2.34, except
that we need to do some renaming: We denote by B0 the DL called B there.
Set B = (B0, g), and let A = (A0, f ) be the subalgebra of B with universe
A. The injective homomorphism h is then the map previously called f . As the
calculations carried out there show, gσhσ < (gh)σ .

3.2. The property (PH)

The fact that surjective homomorphisms always are preserved by canonical
extension, and thus that preservation of homomorphisms, when it goes wrong,
goes wrong also for an injective homomorphism with the same codomain,
allows us to consider preservation of homomorphisms as a property of the
codomain (and thus of a single algebra) rather than as a property of maps. We
make the following definition:

Definition 3.9.
(i) A DLE B is said to have the property (PH) if every homomorphism
h : A → B from a DLE A into B is preserved by homomorphisms.

(ii) A class � of DLEs is said to have the property (PH) if every member of
� has this property.

We make the comment that precedes this definition precise:

Theorem 3.10. A DLE B has the property (PH) if and only if every injective
homomorphism h : A → B is preserved by canonical extension.
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Proof. An arbitrary homomorphism h : A → B can be factored into a
surjective homomorphism h′ : A → A′ onto the subalgebra A′ = h(A) of B
and the injection h′′ : A′ → B. Given an n-ary basic operation g of B, we
apply Lemma 3.6 to the maps h′[n] : An → A′n and gh′′A′n → B to infer that
(gh[n])σ = (gh′′[n])σ h′[n]σ . Since we are assuming that (gh′′[n])σ ≤ gσh′′[n]σ ,
this yields (gh[n])σ ≤ gσh′′[n]σ h′[n]σ = gσh[n]σ .

Our notation contains an ambiguity that is harmless in most situations, but
can be misleading. A DLE homomorphism h : A → B may also be regarded
as a homomorphism h : A → C, where C is an extension of B. However, the
canonical extension hσ depends not only on the map h but also on the source
algebra and the target algebra. In fact, it may happen that hσ : Aσ → Bσ is a
homomorphism but hσ : Aσ → Cσ is not. The next theorem says essentially
that if the second map is a homomorphism, then so is the first.

A DLE of similarity type µ will be referred to as a DLEµ.

Theorem 3.11. Let � be the class of all DLEµs with the property (PH).
Then S(�) = �.

Proof. Consider injective homomorphisms

A h−−→ B′ g−−→ B.

If B has the property (PH), then gσ and (gh)σ = gσhσ are homomorphisms.
Since gσ is injective, it follows that hσ is a homomorphism.

Theorem 3.12. Let � be the class of all DLEµs with the property (PH).
Then H(�) = �.

Proof. Suppose hb : B1 → B is a surjective DLE homomorphism and B1

has the property (PH). We need to show that B also has the property (PH).
That is, given an injective homomorphism h : A → B, we need to show
that hσ : Aσ → Bσ is also a homomorphism. Let A1 = h−1

b h(A), and let
h1 : A1 → B1 be the injective homomorphism of the subalgebra A1 of B1 into
B1. Also let ha : A1 → A be the unique map that makes the diagram

A1
ha−−−−→ A

↓h1 ↓h
B1

hb−−−−→ B

commute. Then ha is a surjective homomorphism. Noting that (hha)σ = hσhσa
and (hbh1)

σ = hσb hσ1 , because h and hb are join and meet preserving, we infer
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that the diagram
Aσ1

hσa−−−−→ Aσ

↓hσ1 ↓hσ
Bσ1

hσb−−−−→ Bσ

also commutes. Now hσa and hσb are homomorphisms because ha and hb are
surjective, and hσ1 is a homomorphism because B1 has the property (PH). Thus
hσhσa = hσb h

σ
1 is a homomorphism. Since hσa is a surjective homomorphism,

it follows that hσ is a homomorphism.

So the class of all DLEµs with the property (PH) is closed both under
the formation of homomorphic images and subalgebras. It is now natural to
wonder whether it is closed under the formation of direct products.

Example 3.13. The direct product of finite DLEµs need not have the
property (PH).

Let B = (B0, g) be as in Example 3.8. This algebra is locally finite; indeed,
every subset of B containing the elements 0 and 1 is the universe of a subal-
gebra. Therefore B is isomorphic to a homomorphic image of a subalgebra of
the direct product B′ of all the finite subalgebras of B. Since B does not have
the property (PH), neither does B′. Finally, finite algebras clearly have (PH),
as for an injective homomorphism h : A → B with B finite, hσ = h.

3.3. Boolean products and (PH)

As already noted, the canonical extension of the direct product of finitely
many DLEs is (or can be identified with) the direct product of the canonical
extensions of the factors. This is not true for products with infinitely many
factors. In fact, the proper generalization of this result is that the canonical
extension of a Boolean product of DLEs is the direct product of the canonical
extensions of the factors. To apply this to direct products, we must therefore
represent the direct product as a Boolean product by adding more factors, and
then take canonical extensions of the factors.

We begin by recalling some basic facts about Boolean products. For a more
comprehensive treatment see [4].

Definition 3.14. By a weak Boolean product of algebras Cx , x ∈ X,
where X is a Boolean space, we mean a subdirect product B of the algebras
Cx such that

(i) For all a, b ∈ B, the set [a = b] = {x ∈ X : a(x) = b(x)} is open;

(ii) (The Patching Property) For all a, b ∈ B and Y ⊆ X clopen, we have
(a � Y ) ∪ (b � (X − Y )) ∈ B;
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(iii) The set {x ∈ X : |Cx | > 1} is dense in X.

If, in place of the first condition, the stronger condition

(i’) For all a, b ∈ B, the set [a = b] = {x ∈ X : a(x) = b(x)} is clopen;

holds, then B is said to be a Boolean product of the algebras Cx .
An isomorphism from an algebra B onto a (weak) Boolean product is called

a (weak) Boolean decomposition of B.

The following theorem is an algebraic version of the corresponding theorem
for Stone spaces given in [6].

Theorem 3.15. Suppose

g : B → 0x∈XCx

is a weak Boolean decomposition of the DLE B. If all the induced homomorph-
isms gx : B → Cx are preserved by canonical extensions, then

g′ : Bσ � 0x∈XCσx

where, for all b ∈ B and x ∈ X, g′(b)(x) = gσx (b).
Proof. By hypothesis, the maps gσx : Bσ → Cσx are homomorphisms, and

the induced map g′ is therefore a homomorphism. Also, since the homomorph-
isms gσx are complete, so is g′. To complete the proof, we have to show that g′
is bijective. This will not involve the auxiliary operations, so we may assume
that the algebras are DLs.

Let C = g(B) and C′ = 0x∈XCσx . From Theorem 2.1(iii) we see that C′ is
a DL+.

Claim 1. C is a separating sublattice of C′. The members of J∞(C′) are
the elements p ∈ C ′ such that, for some x ∈ X, px ∈ J∞(Cσx ) while py = 0
for all other y ∈ X. Consider p, q ∈ J∞(C′) with p �≤ q, and let x and y be
the members of X with px �= 0 and qy �= 0. We need an element c ∈ C with
q ≤ c and p �≤ c. If x = y, then we pick an element d ∈ Bx with qx ≤ d

and px �≤ d, and using the fact that C is a subdirect product of the algebras
Cx , take c to be a member of C with cx = d. If x �= y, then we pick a clopen
subset Y of X that contains y as a member, but not x, and using the patching
property, take c to be the member of C with cz = 1 for z ∈ Y and cz = 0 for
z ∈ X − Y .

Claim 2. C is compact in C′. Consider sets S, T ⊆ C with
∧
S ≤ ∨

T (in
C′). For each x ∈ X we then have (

∧
S)x ≤ (

∨
T )x , and hence (

∧
Fx)x ≤

(
∨
Gx)x for some finite sets Fx ⊆ S and Gx ⊆ T . For x ∈ X let Nx = {y ∈

X : (
∧
Fx)y ≤ (∨Gx)y}. These sets are open, and they cover X. Hence X is

covered by some finite sequence of sets Nxi , i = 0, 1, . . . , n− 1. Taking F to
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be the union of the sets Fxi andG to be the union of the setsGxi , we easily see
that

∧
F ≤ ∨

G.
Having shown that C is a separating and compact sublattice of C′, we

conclude by Theorem 2.5 that g can be extended to an isomorphism g′′ : Bσ0 �
C′

0 of the underlying lattices.
Returning to the general case, we have on the one hand a complete homo-

morphism g′ : Bσ → C′, and on the other hand an isomorphism g′′ : Bσ0 � C′
0.

From the fact that the two maps agree on B, and that both of them preserve all
joins and meets, it follows that the underlying set maps are in fact equal. Thus
g′ : Bσ � C′.

Theorem 3.16. The class of all DLEµs with the property (PH) is closed
under the formation of weak Boolean products.

Proof. Consider a DLE B that has a weak Boolean decomposition g :
B → 0x∈XCx such that all the factors Cx have the property (PH). Given an
injective homomorphism h : A → B, we need to show that hσ : Aσ → Bσ is
a homomorphism.

In the notation of the preceding theorem, g′ : Bσ � C′. Also, from the fact
that the algebras Cx have the property (PH) it follows that the homomorphisms
gxh : A → Cx are preserved by canonical extensions. That is, (gxh)σ =
gσx h

σ : Aσ → Cσx is a homomorphism for every x ∈ X. Consequently, the
induced map g′′ : Aσ → C′ is a homomorphism, but this is just the map g′hσ .
Since g′ is an isomorphism, we conclude that hσ is a homomorphism.

3.4. Direct products and (PH)

The theorem about canonical extensions of Boolean products will now be used
to describe canonical extensions of direct products.

Theorem 3.17. Given a direct decomposition

h : A � 0i∈IBi

of an algebra A, with each factor Bi nontrivial, let X be the Boolean space of
all ultrafilters on I , and for x ∈ X let Cx = 0i∈IBi/x. For a ∈ A and x ∈ X,
let h′(a)(x) = h(a)/x. Then the map

h′ : A → 0x∈XCx

is a Boolean decomposition of A.

Proof. It is easy to see that h′ is an injective homomorphism. We show
that h′(A) is a Boolean product. For a, b ∈ A,

[h′(a) = h′(b)] = {x ∈ X : [h(a) = h(b)] ∈ x},
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which is a clopen subset of X.
In proving the patching property, we use the fact that the principal ultrafilters

are isolated points of X, and that they form a dense subset of X. Given a, b ∈
A, and a clopen subset Y of X, let J be the set of all i ∈ I such that the
corresponding ultrafilter x(i) = {J ⊆ I : i ∈ J } is in Y , and let c be the
member of A such that h(c) agrees with h(a) on J and with h(b) on I − J .
Then h′(c) agrees with h′(a) on a dense subset of Y , and the two therefore
agree on Y . Similarly, h′(c) agrees with h′(b) on X − Y . Finally, since the
factors Bi are non-trivial, so are the ultraproducts Cx . Thus h′ is a Boolean
decomposition of A.

Usually, the details of the construction of the Boolean decomposition are
not needed. We therefore give an abbreviated version of the last theorem.

Theorem 3.18. If the algebra A has a direct decomposition

A � 0i∈IAi .

then A has a Boolean decomposition

A → 0x∈XBx,

where each Bx is an ultraproduct of the algebras Ai .

Theorem 3.19. If the DLE A has a direct decomposition A � 0i∈Bi , then
Aσ has a direct decomposition Aσ � 0x∈XCσx , where each of the factors Cx
is an ultraproduct of the algebras Bi .

Theorem 3.20. The direct product of DLEµs Bi , i ∈ I , has the property
(PH) if and only if every ultraproduct 0i∈IBi/x has the property (PH).

Theorem 3.21. For any class � of DLEµs, if Pu(�) has the property (PH),
then so does V(�).

Proof. If Pu(�) has the property (PH), then by the preceding theorem,
so does P(�), and by Theorems 3.11 and 3.12, the same is true of V(�) =
HSP(�).

3.5. Some varieties with the property (PH)

Using Theorem 3.21, we can give numerous examples of varieties having the
property (PH).

Theorem 3.22. Every finitely generated variety of DLEµs has the property
(PH).
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Proof. If � is a finite set of finite DLEµs, then every ultraproduct of mem-
bers of � is (isomorphic to) a member of �.

Definition 3.23.
(i) A DL operation f : B0 ×B1 ×· · ·×Bn−1 → C is said to be monotone if,

for each i < n, the functions obtained by fixing all its arguments except
the ith one are either all isotone or all antitone.

(ii) A DLE A = (A0, ω
A, ω ∈ �) is said to be monotone (or to be a DLM)

if each of the operations ωA is monotone.

(iii) A DLE A = (A0, ω
A, ω ∈ �) is said to be smooth (or to be a DLS) if

each of the operations ωA is smooth.

A monotone DL operation f : B0 ×B1 ×· · ·×Bn−1 → C may be regarded
as an isotone operation by replacing some of the factors Bi by their duals Bαi . In
greater detail, we treat f as an isotone map f : Bε(0)0 ×Bε(1)1 ×· · ·×Bε(n−1)

n−1 →
C, where for each i < n, ε(i) is either 1 or α, depending on whether f is
isotone or antitone as a function of its ith coordinate. This sequence ε will be
referred to as the monotonicity type of f . For brevity we sometimes write Bε

for Bε(0)0 × Bε(1)1 × · · · × Bε(n−1)
n−1 . It is important to note that this change of

perspective does not change the canonical extension. This is so because, for a
DL B, the topologies σ(Bσ ) and σ(Bασ ) are identical.

Lemma 3.24. Every DLM has the property (PH).

Proof. Suppose B is a DLM. As observed above, each of the basic opera-
tions g of arity n may be regarded as an isotone map g : Bε → B, where ε is
the monotonicity type of g. Hence, for any DLE homomorphism h : A → B,
(gh[n])σ ≤ gσh[n]σ by Theorem 2.28. Therefore B has the property (PH) by
Theorem 3.10.

Theorem 3.25. The variety generated by the class of all DLMµs has the
property (PH).

Proof. Let � be the class of all DLMµs B = (B0, ω
B, ω ∈ �). By the

preceding lemma, � has the property (PH). Fixing ω ∈ �, we can partition �
into finitely many classes �i in such a way that, for two members B and B′
of the same class �i , the operations ωB and ωB′

have the same monotonicity
type. From this it follows that, for any ultraproduct B of members of �, the
operation ωB is monotone. Since this is true for every ω ∈ �, we infer that �
is closed under ultraproducts. Hence by Theorem 3.21, V(�) has the property
(PH).

Theorem 3.26. The class of all DLSs has the property (PH).
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Proof. Given a DLS-homomorphism h : A → B, we need to show that
hσ : Aσ → Bσ is also a homomorphism. Let g be a basic operation of B of
arity n. Then (gh[n])σ ≤ gσh[n]σ by Corollary 2.31(ii) since h[n] is (σ, σ )-
continuous and g is smooth. Thus, by Theorem 3.5 hσ is a homomorphism
and B has the property (PH).

It is not hard to show that the class � of all DLSµs is closed under the
formation of subalgebras and homomorphic images, but it is not closed under
the formation of direct products. In fact, V(�) does not have the property
(PH). This follows from Example 3.13 and the obvious fact that finite DLEs
are smooth.

Theorem 3.27. If the varieties �0 and �1 of DLEµs have the property
(PH), then so does �0 ∨ �1.

Proof. We need only observe that any ultraproduct of members of �0 ∪�1

belongs to either �0 or �1.

4. Canonical varieties

Having seen that preservation of homomorphisms by canonical extensions is
a rather common phenomenon, we now consider classes of DLEµs with this
property, and ask which properties of the individual algebras are preserved.

Definition 4.1. A class � of DLEµs is said to be canonical if � has the
property (PH) and is closed under canonical extensions.

4.1. Test algebras

Theorem 4.2. Suppose � is a variety of DLEs with the property (PH), and �
is a class that generates �. If Aσ ∈ � for all A ∈ Pu(�), then � is canonical.

Proof. First consider A ∈ P(�). Then A � 0i∈IAi , with Ai ∈ � for
all i ∈ I . Consequently A has a Boolean decomposition h : A → 0x∈XBx ,
where each Bx ∈ Pu(�). This implies that Aσ � 0x∈XBσx and that each
Bσx ∈ �, so Aσ ∈ P(�) = �. Next consider A ∈ SP(�). Then there exists an
injective homomorphism h : A → B ∈ P(�). Now � has the property (PH),
so hσ : Aσ → Bσ is also an injective homomorphism. Therefore, Aσ ∈ �.
Finally, consider an arbitrary member A of �. Then there exists a surjective
homomorphism h : B → A with B ∈ SP(�). By Theorem 3.7 hσ : Bσ → Aσ

is also a surjective homomorphism, and hence Aσ ∈ �.

We digress to observe that this result throws a new light on the celebrated
Fine-van Benthem-Goldblatt theorem from modal logic which, in Goldblatt’s
algebraic formulation states that if a class � of structures is closed under
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ultraproducts, then the variety generated by the complex algebras of structures
in � is canonical. We prove below that the class � consisting of the complex
algebras of all the members of � and the variety � generated by � satisfy the
hypothesis of the preceding theorem, and thus give a new proof of the Fine-
van Benthem-Goldblatt theorem. However, it would not be correct to say that
we have discovered a simple proof of this important result, for our argument
makes use of some difficult results from Goldblatt’s paper [12].

Following Goldblatt, we denote the complex algebra of a structure S by S+,
and let �+ = {S+ : S ∈ �}.
Theorem 4.3. If � is a class of structures closed under ultraproducts, then

the variety � generated by the class � = �+ is canonical.

Proof. The variety � has the property (PH), as it is a variety of BAOs
and thus of DLMs. Furthermore, for every ultraproduct A = (∏

i∞ Ai
)
/x =(∏

i∈I S+
i

)
/x of members of � there exists by Lemma 3.6.5 in [12] an em-

bedding A ↪→ T+ where T is the ultraproduct of the structures Si , modulo
the same ultrafilter x, Thus there is an embedding Aσ ↪→ (T+)σ . By The-
orem 3.6.1 in [12], (T+)σ can be embedded in U+ for some ultrapower Uµ of
T. Thus Aσ ∈ �, Theorem 4.2 therefore applies, and � is canonical.

After this digression, we note some immediate, but important consequences
of Theorem 4.2.

Corollary 4.4. Suppose � is an elementary class of DLEs with the prop-
erty (PH). If � is canonical, then so is V(�).

Corollary 4.5. If �1 and �2 are canonical varieties, then so is �1 ∨ �2.

Proof. Given canonical varieties �1 and �2, apply Theorem 4.2 with � =
�1 ∪ �2, noting that �1 ∨ �2 has the property (PH) by Theorem 3.27.

Corollary 4.6. Every finitely generated variety of DLEs is canonical.

Proof. Given a variety � generated by a finite DLE A, apply Theorem 4.2
with � = {A}, noting that � has the property (PH) by Theorem 3.22.

Many of the varieties of DLEs that arise as the semantic equivalents of
propositional logics are finitely generated and, as H. Priestley has pointed out
to us, so are the varieties mainly studied in natural duality theory. This result
therefore has many potential applications that have yet to be explored.

Corollary 4.7. Suppose � is a variety of DLEs with (PH), and suppose
Si(�) is an elementary class. If Si(�) is canonical, then so is �.
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For a simple application of this corollary, consider the variety � of all
pseudocomplemented distributive lattices. (See [1].) The subdirectly irredu-
cible members are the algebras B ⊕ 1, consisting of a Boolean algebra B,
with a new top element added. Hence Si(�) is an elementary class. Also,
(B ⊕ 1)σ = Bσ ⊕ 1, and Si(�) is therefore canonical. Hence � is canonical.
Incidentally, all the proper subvarieties of � are also canonical, for each of
them is generated by a single finite algebra B ⊕ 1.

4.2. Stable, expanding, and contracting terms

An obvious way to try to prove that an identity s ≈ t is preserved by canonical
extensions is to attempt to show that sAσ = (sA)σ and tA

σ = (tA)σ . If these
equalities hold, then we say that the terms s and t are stable on the algebra
A, or on the class of algebras A. Similarly, to prove that an inequality s ≤ t

is preserved, it suffices to show that sAσ ≤ (sA)σ and tA
σ ≥ (tA)σ . If these

inequalities hold, then we say that s is contracting and that t is expanding.
The property of stability played an essential role in [15], although it was not
explicitly mentioned there. All three properties were used in [13].

We now have a new way of showing that certain terms have these properties.

Theorem 4.8. Suppose A is a DLEµ and t is a µ-term,

(i) If, for every operation symbol ω that occurs in t , ωAσ is (ι↑, ι↑)-continu-
ous, then t is contracting on A.

(ii) If, for every operation symbol ω that occurs in t , ωA is isotone, then t is
expanding on A.

(iii) If, for every operation symbolω that occurs in t ,ωAσ is (ι, ι)-continuous,
then t is stable on A.

Proof. (i) From the fact that continuity is preserved by composition we
infer that tA

σ

is (ι↑, ι↑)-continuous. In particular, tA is (σ, ι↑)-continuous.
Hence tA

σ ≤ (tA) by Theorem 2.15, t is contracting on A.
(ii) By Theorem 2.33.
(iii) In this case, tA is (i, i)-continuous, and it is therefore both (σ, ι↑)-

continuous and (σ, ι↓)-continuous. We conclude as before that t is contracting
on A. Also, by Theorem 2.15, tA

σ ≥ tAπ = (tA)π ≥ (tA)σ , so t is expanding
on A. Therefore t is stable on A.

These observations provide a surprisingly powerful tool for proving canon-
icity. Two simple examples follow. The first example is the principal theorem
of [8].

Theorem 4.9. Every variety of DLOs is canonical.
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Proof. In any DLO A, all the basic operations ωA are of course isotone,
and by Theorem 2.23, ωAσ is (ι↑, ι↑)-continuous. Hence, by the preceding
theorem, every term is stable on A.

An Ockham algebra is a DLE A = (A0, f ) with f a lattice anti-endomor-
phism. Observe that f is not required to take 0 into 1 and 1 into 0. Since
lattice isomorphisms are (i, i)-continuous, so are lattice anti-endomorphisms.
Hence every variety of Ockham algebras is canonical. This can be generalized
by considering DLEs with several unary operations, each of which is either a
lattice endomorphism or a lattice anti-endomorphism. Let us call such algebras
generalized Ockham algebras.

Theorem4.10. Every variety of generalized Ockham algebras is canonical.

4.3. The Chang MV-algebra

In [17], R. Kramer and R. Maddux give a particularly striking example of the
failure of canonicity, a relation algebra A with the property that no complete
extension of A is in the variety generated by A. We will show that the well-
known Chang MV-algebra also has this property. This is a stronger version of
a result in [10] which states that the canonical extension of the Chang MV-
algebra is not an MV-algegbra.

Information about MV-algebras in general and about the Chang MV-algebra
in particular can be found e.g. in [10], but actually the facts that we need are
few and simple. MV-algebras are DLEs with a binary operation → that is
isotone in its second argument, with x → y = 1 whenever x ≤ y. They also
satisfy the identity

(x → y)→ y = x ∨ y.
The only fact about the Chang MV-algebra that will be used is that it contains
an infinite descending sequence 1 = a0 > a1 > · · · with am → an = an�m
for all m, n ∈ ω, where � is trunkated subtraction.

Assuming now that the Chang algebra has a complete MV-extension, let
a∞ = ∧

n∈ω an. For a fixed m ∈ ω we have am → a∞ ≤ an�m for all n ∈ ω,
and hence am → a∞ ≤ a∞. Consequently

(am → a∞)→ a∞ = 1

while am ∨ a∞ = am < 1 form > 0. This contradicts our assumption that the
extension is an MV-algebra.



44 mai gehrke and bjarni jónsson

5. Epilogue

The broader definition of the notion of a canonical extension introduced in this
paper makes this concept available for the study of many interesting classes of
algebras that did not fall within the scope of the earlier definitions. Rather than
investigating individual classes in detail, we have tried to develop techniques
that apply in many different settings. The fact that the broader concepts have
not resulted in a weaker or a more complex theory, but have instead led to
powerful new techniques, suggests that we are on the right track.

Looking briefly at what might be ahead, we will also focus on questions
of general nature. There will be still further generalizations of the notion of a
canonical extension. The most obvious one is that the requirement of bounded-
ness will be dropped. In fact, many potential applications involve residuated
lattices, and in many cases these are not bounded. Other possible generaliza-
tions consist in taking more general underlying posets. The lattice ordered case
has already been investigated some, see [7], but the topologies, for instance,
have not been investigated in this setting.

We may wonder whether the present notion of canonical extension is “the
right one” or “the best one”. This is an imprecise question that does not possess
a definitive answer. In the case of DLs, there is a rather convincing interpret-
ation supporting the present definition: Think of the universe A of a DL A
as a set of properties, closed under finite disjunction and conjunction, and of
the universe Aσ , of Aσ as the closure of A under infinitary disjunctions and
conjunction, In the presence of auxiliary operations f = ωA, the situation
is less clear. If we think of f as a new logical connective, then f σ and f π

are different infinitary connectives. Which one should we use, and why? We
have mostly worked with f σ , noting that any result we obtained could be du-
alized to provide a corresponding result for f π . However, canonicity and dual
canonicity are not equivalent. E.g., the variety of all Heyting algebras is not
canonical, but it is dually canonical. Of course this means that the variety of all
dual Heyting algebras is canonical. There are other cases where, in order to stay
within a given variety, one must use “mixed” extensions,taking the canonical
extensions of some of the basic operations and the dual canonical extensions
of others. Even worse, in some cases both extensions must be used (at different
spots in the equations defining the variety) in order to ensure canonicity. This
shows that our present notion can sometimes be improved upon, but there are
situations where no choice within the given type setting is “right”.
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