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EVERY POSITIVE INTEGER IS THE FROBENIUS
NUMBER OF A NUMERICAL SEMIGROUP WITH

THREE GENERATORS

J. C. ROSALES, P. A. GARCÍA-SÁNCHEZ and J. I. GARCÍA-GARCÍA∗

Introduction

Let n1, . . . , np be positive integers with greatest common divisor (gcd for
short) one. Then it is not hard to show that there are finitely many nonnegative
integers that cannot be expressed as a nonnegative integer linear combination of
n1, . . . , np. The largest nonnegative integer fulfilling this condition is usually
known as the Frobenius number of n1, . . . , np and it will be denoted through-
out this paper by F(n1, . . . , np). The problem of determining F(n1, . . . , np)

appears in the literature as the Frobenius coin-exchange problem (for a com-
plete survey on this problem see [5], [6]). For p = 2, Sylvester proved in [7]
that F(n1, n2) = n1n2 −n1 −n2. No general formula has been found so far for
the case p ≥ 3. Moreover, as Curtis shows in [1], there is no closed formula
of a certain type for p = 3. If we focus our attention on this case, then we
can think of F as a correspondence that maps three relatively prime integers
n1, n2, n3 to a nonnegative integer F(n1, n2, n3). In this paper we prove that
this map is surjective, that is, for every positive integer g there exist positive
integers n1, n2 and n3 such that F(n1, n2, n3) = g (Theorem 1.11). One easily
realizes that every odd positive integer g can be expressed as F(2, g + 2) (see
1.1 (i)). However no even positive integers can be expressed as the Frobenius
number associated to a pair of relatively prime numbers. This follows easily
from Sylvester’s formula given above, since this formula can be rewritten as
F(n1, n2) = (n1 − 1)(n2 − 1) − 1 and n1, n2 are coprime (in fact, it is well
known that every numerical semigroup generated by two elements is sym-
metric, see for instance [2], [4], and thus its Frobenius number must be odd).
Thus in order to express any nonnegative integer as the Frobenius number of a
sequence of positive integers, the sequences used should be at least of length
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three, and what we show here is that this minimum is achieved.
The main result in this paper is Theorem 1.11 and the key to prove it is

Proposition 1.9. However Proposition 1.9 leaves a finite number (some thou-
sands) of cases unattended. At first, we checked these cases by using a Haskell
script (see [3]) written by J. I. García-García. Then we proceeded to find a
direct proof for this fact by sieving these cases. This is performed in the results
labelled from 1.1 to 1.3 and collected in Proposition 1.4. Thus Theorem 1.11
simply glues Propositions 1.4 and 1.9 together.

1. Main result

Let n1, . . . , np be positive integers such that gcd{n1, . . . , np} = 1. Let

S = 〈n1, . . . , np〉 = {a1n1 + · · · + apnp | a1, . . . , ap ∈ N}.
Then S is a numerical semigroup, that is, S is closed under addition, 0 ∈ S

and N \ S has finitely many elements. Note that F(n1, . . . , np) is the largest
integer not belonging to S.

For n ∈ S \ {0}, the Apéry set of n in S is the set

Ap(S, n) = {x ∈ S | x − n �∈ S}.
Clearly Ap(S, n) = {0, w(1), . . . , w(n− 1)} where for all i ∈ {1, . . . , n− 1},
w(i) is the least integer in S congruent with i modulo n. It is well known and
easy to prove that F(n1, . . . , np) = (max Ap(S, n)) − n.

Lemma 1.1. Let g be a positive integer.

(i) If g is odd, then F(2, g + 2) = g.

(ii) If 3 � | g, then F(3, a, b) = g, where {a, b} = {x ∈ {g+1, g+2, g+3} |
3 � | x}.

(iii) If g is even and 4 � | g, then F(4, g/2 + 2, g/2 + 4) = g.

Proof. (i) Follows from the well known formula F(a, b) = ab − a − b.

(ii) Clearly 〈3, a, b〉 = 〈3, g + 1, g + 2, g + 3〉. Thus

F(3, a, b) = F(3, g + 1, g + 2, g + 3) = g.

(iii) Let S = 〈4, g/2 + 2, g/2 + 4〉. If we show that Ap(S, 4) = {0, g/2 +
2, g/2 + 4, g + 4}, then we are done since F(4, g/2 + 2, g/2 + 4) =
(max Ap(S, 4))−4. As g/2+2, g/2+4 and g+4 belong to S, it suffices
to demonstrate that none of the integers g/2+2−4, g/2+4−4, g+4−4
is in S.
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• If g/2 − 2 ∈ S, then it must be a multiple of 4 and thus g/2 is a
multiple of 2, whence g is a multiple of 4, in contradiction with the
hypothesis.

• If g/2 ∈ S, then arguing as above we obtain that g must be a multiple
of 4, which is absurd.

• If g ∈ S, then g = a14 + a2(g/2 + 2) + a3(g/2 + 4) for some
nonnegative integers a1, a2, a3. Observe that this implies that 0 <

a2 + a3 (g is not a multiple of 4) and a2 + a3 ≤ 1. Hence either
g = a14 + (g/2 + 2) or g = a14 + (g/2 + 4). In both cases we get
that g/2 is even, contradicting once more that g is not a multiple of 4.

Proposition 1.2. Let g be a positive integer. If there exists a positive integer
m such that gcd(m, g) = 1, m − 1 | g and m(m − 1)(m − 3) < g, then there
exist n1, n2, n3 such that F(n1, n2, n3) = g.

Proof. Let S = 〈m, g/(m − 1) + m, g + m〉. We prove that

Ap(S, m) =
{

0,
g

m − 1
+ m, . . . , (m − 2)

(
g

m − 1
+ m

)
, g + m

}
.

It is clear that if n1 and n2 are positive integers such that gcd(n1, n2) = 1,
then

Ap(〈n1, n2〉, n1) = {0, n2, 2n2, . . . , (n1 − 1)n2}.
So, by setting n1 = m and n2 = g/(m − 1) + m, we have that

Ap

(〈
m,

g

m − 1
+ m

〉
, m

)

=
{

0,
g

m − 1
+ m, . . . , (m − 1)

(
g

m − 1
+ m

)}
.

Since (m− 2)(g/(m− 1)+m) < g +m whenever m(m− 1)(m− 3) < g, we
have that {0, g/(m−1)+m, . . . , (m−2)(g/(m−1)+m)} ⊂ Ap(S, m). Note
also that (m− 1)(g/(m− 1)+m) ≡ g +m(mod m) and that (m− 1)(g/(m−
1) + m) ≥ g + m, which means that g + m must be in Ap(S, m). Therefore

Ap(S, m) =
{

0,
g

m − 1
+ m, . . . , (m − 2)

(
g

m − 1
+ m

)
, g + m

}
.

Since (m−2)(g/(m−1)+m) < g +m, we have that (max Ap(S, m))−m =
g + m − m = g.

Corollary 1.3. Let g be a positive integer that is not a multiple of 5, 7 or
11. Then there exist positive integers n1, n2, n3 such that F(n1, n2, n3) = g.
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Proof. Assume that 5 � | g. From Lemma 1.1 (iii), we can assume that
4 | g. By applying Proposition 1.2 it suffices to prove the statement for g ≤
5 × 4 × 2 = 40. In view of Lemma 1.1 we can also assume that 3 | g. Thus
the only possible values left for g are multiples of 12 less than or equal to
40, that is, g ∈ {12, 24, 36}. Since F(5, 8, 9) = 12, F(5, 11, 18) = 24 and
F(5, 14, 27) = 36, we are done.

Now we study the case 7 � | g and 5 | g. By using Lemma 1.1, we can
assume that 3 × 4 × 5 = 60 | g. In particular 6 | g, which allows us to apply
Proposition 1.2, whence arguing as above it suffices to prove the statement for
g ≤ 7×6×4 = 168. As g is a multiple of 60, the only possible values left for
g are g = 60 and g = 120. Since F(7, 17, 33) = 60, and F(7, 27, 73) = 120,
these two cases are also covered.

Finally, suppose that 11 � | g, and that 5 and 7 divide g. By using this together
with Lemma 1.1, we can assume that 3×4×5×7 = 420 | g, whence 10 | g. By
Proposition 1.2 we can restrict ourselves to g ≤ 11×10×8 = 880. Since g is a
multiple of 420, it suffices to check that the cases g ∈ {420, 840}. We conclude
the proof by pointing out that F(8, 107, 109) = 420 and F(9, 143, 353) = 840.

Proposition 1.4. If g is a positive integer such that g < 4620, then there
exist positive integers n1, n2, n3 such that F(n1, n2, n3) = g.

Proof. Note that 3 × 4 × 5 × 7 × 11 = 4620. Hence if g < 4620 there
exists p ∈ {3, 4, 5, 7, 11} such that p � | g. According to the value of p, by
applying one of the results presented so far we conclude in any case that there
exists n1, n2, n3 such that F(n1, n2, n3) = g.

Given a finite set A of integers, as usual, lcm A will denote the least common
multiple of them.

Lemma 1.5. Let g be a positive integer and let m be the least positive integer
such that m � | g. Then

(i) m is the power of a prime,

(ii) if gcd(m, g) = k, then gcd(m, (g + m)/k) = 1.

Proof.
(i) If m is not a power of a prime, then m = pq with gcd(p, q) = 1 and

p �= 1 �= q. As p < m and q < m we have that both p and q divide
g, whence m = lcm{p, q} = pq also divides g, in contradiction to the
hypothesis.

(ii) Assume that g = p
α1
1 · · · pαr

r for some primes p1, . . . , pr and positive
integers α1, . . . , αr . By (i), we deduce that either m is a prime not in
{p1, . . . , pr} or m = p

αi+1
i for some i ∈ {1, . . . , r}. Clearly if m is a
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prime not in {p1, . . . , pr}, then k = gcd(m, g) = 1 and

gcd(m, (g + m)/k) = gcd(m, g + m) = gcd(m, g) = 1.

If m = p
αi+1
i , for some i ∈ {1, . . . , r}, then k = gcd(m, g) = p

αi

i and
gcd(m, (g + m)/k) = gcd(p

αi+1
i , p

α1
1 · · · pαi−1

i−1 p
αi+1
i+1 · · · pαr

r + pi) = 1.

Lemma 1.6. Let a, b, m, k, s, t ∈ N be such that gcd(a, m) = 1 and
a + b = km. Then ta ≡ sb(mod m) if and only if t + s ≡ 0(mod m).

Proof. Note that ta ≡ sb ≡ s(km − a) ≡ −sa(mod m), whence ta ≡
sb(mod m) if and only if (t + s)a ≡ 0(mod m) and this is equivalent to
t + s ≡ 0(mod m).

Lemma 1.7. Let S be a numerical semigroup generated by {m, a, tm − a}
for some positive integers m, a, t such that gcd(m, a) = 1 and tm − a > m.
Then

Ap(S, m) = {0, a, 2a, . . . , λa, tm − a, 2(tm − a), . . . , µ(tm − a)},

for some λ, µ such that λ + µ = m − 1.

Proof. If x ∈ Ap(S, m), then x ∈ S and x − m �∈ S. Hence x = λa +
µ(tm − a) for some nonnegative integers λ and µ. If both λ and µ are not
equal to zero, then x = (a + tm − a) + (λ − 1)a + (µ − 1)(tm − a) =
tm + (λ − 1)a + (µ − 1)(tm − a), contradicting that x ∈ Ap(S, m). Hence
either λ or µ are equal to zero, meaning that either x is a multiple of a or x is
a multiple of tm − a. The rest of the proof follows by taking into account that
Ap(S, m) has exactly m − 1 nonzero elements.

Lemma 1.8. Let S be a numerical semigroup and let n be a nonzero element
of S. If s, t are elements in S such that s + t ∈ Ap(S, n), then s, t ∈ Ap(S, n).

Proof. Trivial.

Proposition 1.9. Let g be a positive integer, let m be the least positive
integer such that m � | g and set k = gcd(m, g). If m(m−k)(m−k−1) < g+m,
then there exist n1, n2, n3 such that F(n1, n2, n3) = g.

Proof. By Lemma 1.5 we know that gcd(m, (g + m)/k) = 1. Let

S =
〈
m,

g + m

k
,

⌈
g + m

k(m − k)

⌉
m − g + m

k

〉
.
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From Lemma 1.7 (from the hypothesis, it can be deduced that the condition
tm − a > m holds) we deduce that

Ap(S, m) =
{

0,
g + m

k
, . . . , λ

g + m

k
,

⌈
g + m

k(m − k)

⌉
m − g + m

k
, . . . , µ

(⌈
g + m

k(m − k)

⌉
m − g + m

k

)}
,

for some λ, µ ∈ N such that λ + µ = m − 1. Thus we only have to find the
exact values for λ and µ.

In view of Lemma 1.6, k g+m

k
∈ Ap(S, m) if k

g+m

k
≤ (m−k)

(⌈
g+m

k(m−k)

⌉
m−

g+m

k

)
, and this holds since k

g+m

k
= (m− k)

(
g+m

k(m−k)
m− g+m

k

)
. Hence k

g+m

k
=

g + m ∈ Ap(S, m). By Lemma 1.8,
{
0,

g+m

k
, . . . , (k − 1)

g+m

k
, g + m

} ⊆
Ap(S, m). Using the same argument, (m − k − 1)

(⌈
g+m

k(m−k)

⌉
m − g+m

k

) ∈
Ap(S, m) if (m−k−1)

(⌈
g+m

k(m−k)

⌉
m− g+m

k

)
is less than or equal to (k+1)

g+m

k
.

But

(1) (m − k − 1)

(⌈
g + m

k(m − k)

⌉
m − g + m

k

)

≤ (m − k − 1)

((
g + m

k(m − k)
+ 1

)
m − g + m

k

)

≤ g + m ≤ (k + 1)
g + m

k
,

and thus (m − k − 1)
(⌈

g+m

k(m−k)

⌉
m − g+m

k

) ∈ Ap(S, m). Applying once more

Lemma 1.8, we obtain that
{
0,

⌈
g+m

k(m−k)

⌉
m− g+m

k
, . . . , (m−k−1)

(⌈
g+m

k(m−k)

⌉
m−

g+m

k

)} ⊆ Ap(S, m). Since k + (m − k − 1) = m − 1, we have that

Ap(S, m) =
{

0,
g + m

k
, . . . , k

g + m

k
= g + m,

⌈
g + m

k(m − k)

⌉
m − g + m

k
, . . . , (m − k − 1)

(⌈
g + m

k(m − k)

⌉
m − g + m

k

)}
.

By (1), we have that max Ap(S, m) = g + m and therefore

F

(
m,

g + m

k
,

⌈
g + m

k(m − k)

⌉
m − g + m

k

)
= g + m − m = g.

Lemma 1.10. Let g be a positive integer and let m be the least positive
integer such that m � | g. If m ≥ 13, then m(m − 1)(m − 2) < g.
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Proof. Since g is a multiple of m − 4, m − 3, m − 2 and m − 1, we have
that

g ≥ lcm{m − 1, m − 2, m − 3, m − 4}.
Assume that p1 = 2 < p2 = 3 < p3 < · · · < pr are primes such that

lcm{m − 1, m − 2, m − 3, m − 4} = p
e1
1 · · · per

r

and
(m − 1)(m − 2)(m − 3)(m − 4) = p

f1
1 · · · pfr

r

for some nonnegative integers e1, . . . , er , f1, . . . , fr . If p is a prime greater
than 4 then it can divide at most one element in {m − 1, m − 2, m − 3, m − 4}
and thus from the definition of lcm we deduce that ei = fi for i ≥ 3. Note also
that in the set {m−1, m−2, m−3, m−4} there are always two even numbers
and one of them is divisible by 4. This means that e1 = f1 − 1. Moreover,
there are at most two elements in {m − 1, m − 2, m − 3, m − 4} that can be
divided by 3 (and at most one of them is divisible by 9). This leads to either
e2 = f2 or e2 = f2 − 1. In any case

lcm{(m−1), (m−2), (m−3), (m−4)} ≥ ((m−1)(m−2)(m−3)(m−4))/6.

Now, ((m − 1)(m − 2)(m − 3)(m − 4))/6 > m(m − 1)(m − 2) if and only if
6m < (m−3)(m−4), or equivalently m2 −13m+12 = (m−1)(m−12) > 0.
This in particular implies that g > m(m − 1)(m − 2) for m ≥ 13.

Theorem 1.11. Let g be a positive integer. Then there exist positive integers
n1, n2, n3 such that

F(n1, n2, n3) = g.

Proof. Let m be the least positive integer such that m � | g. If m(m −
1)(m − 2) < g, by Proposition 1.9 we deduce that there exist n1, n2, n3 for
which F(n1, n2, n3) = g. If to the contrary m(m − 1)(m − 2) ≥ g, then by
Lemma 1.10, m ≤ 12 and thus g ≤ 12 × 11 × 10 = 1320 < 4620. From
Proposition 1.4 we obtain the desired result.
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