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NUCLEAR AND INTEGRAL POLYNOMIALS
ON C(I ), I UNCOUNTABLE

CHRISTOPHER BOYD

Abstract

We show that for I an uncountable index set and n ≥ 3 the spaces of all n-homogeneous poly-
nomials, all n-homogeneous integral polynomials and all n-homogeneous nuclear polynomials
on C(I ) are all different. Using this result we then show that the class of locally Asplund spaces
(see [10], [6] for definition) is not preserved under uncountable locally convex direct sums nor is
separably determined.

1. Introduction

Given an uncountable index set I we consider the locally convex direct sum
C(I ). Holomorphic functions on this space were first considered in [14] where
it is shown that C(I ) is not holomorphically Mackey. In [5] we investigated
holomorphic functions on C(I ) proving the three natural topologies, τ0, τω

and τδ , coincided on H (C(I )) if and only if I has cardinality less than the first
measurable cardinal. Holomorphic functions on the Cartesian product CI were
considered by Barroso and Nachbin, [3], who proved that the compact open and
Nachbin ported topologies differed on P(2CI ) for I uncountable. In this paper
we conclude our examination by showing that the space of n-homogeneous
polynomials, n-homogeneous integral polynomials and n-homogeneous nuc-
lear polynomials on C(I ) are all different when I is an uncountable set and
n ≥ 3.

Defant, [10], introduced and studied the concept of a space whose dual has
the local Radon Nikodým property as a locally convex generalisation of the
concept of Asplund Banach space. This property was renamed locally Asplund
in [6] and further studied in [7], [8]. In the final section we use our results
concerning polynomials on C(I ) to show that local Asplundness is neither
preserved under locally convex direct sums nor is separably determined. We
refer the reader to [15] for further information on homogeneous polynomials
on locally convex spaces.
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2. Nuclear and Integral polynomials on C(I )

In his thesis, [1], Alencar says that an n-homogeneous polynomial P on a loc-
ally convex space E is (Pietsch-)integral if there is an absolutely convex closed
neighbourhood of 0, U , and a finite regular measure µ on (U ◦, σ (E′, E)) so
that

P (x) =
∫

U ◦
φ(x)n dµ(φ)

for all x ∈ E. This definition generalises the concept of integral polyno-
mial on a Banach space introduced by Dineen, [13]. The space of all n-
homogeneous integral polynomials on E is denoted by PI (nE). Clearly we
have that PI (nE) = ⋃

U∈U PI (nÊU ). We make PI (nE) into a locally convex
space by giving it the topology, τI , defined by the locally convex inductive
limit

indU∈U(PI (nÊU ), ‖ . ‖(U,I ))

where
‖P ‖U,I = inf

{
‖µ‖U ◦ : P (x) =

∫
U ◦

φ(x)n dµ(φ)

}

is the integral norm on PI (nÊU ).
It can be shown, see [6], that the n-fold symmetric ε-tensor product,

⊗̂
s,n,εE,

is an inductive predual of (PI (nE), τI ), i.e.
(⊗̂

s,n,εE
)′

i
= (PI (nE), τI ).

An n-homogeneous polynomial P on a locally convex space E is said to
be nuclear if there is an absolutely convex closed neighbourhood of 0, U , in
E, (φk)k bounded in Ê′

U ◦ and (λk)k ∈ �1 so that

P (x) =
∞∑

k=1

λkφk(x)n

for all x in E. The space of all n-homogeneous nuclear polynomials on E is
denoted by PN (nE). For A an absolutely convex subset of E we let �A be the
semi-norm on PN (nE) defined by

�A(P ) = inf

{ ∞∑
i=1

|λi |‖φi‖n
A : P =

∞∑
i=1

λiφ
n
i

}

Since PN (nE) = ⋃
U∈U PN (nÊU ), we may define a topology �ω on PN (nE)

by
(PN (nE), �ω) = indU∈U(PN (nÊU ), �U ).

In general we have PN (nE) ⊆ PI (nE) ⊆ P(nE) for any locally convex space
E and any integer n.
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Let us show that for E = C(I ) with I uncountable these inclusions are strict.

Theorem 2.1. Let I be a set and n≥3. Then (PI (nC(I )), τI ) = (P(nC(I )), τω)

if and only if I is countable.

Proof. If I is countable then C(I ) is a DF N space and hence by [15,
Proposition 2.12] we have PN (nC(I )) = P(nC(I )) for all n. Assume now that
(PI (nC(I )), τI ) = (P(nC(I )), τω). We have that

(⊗̂
s,n,εC

(I )
)′

i
= (PI (nC(I )), τI )

and the equicontinuous subsets of
(⊗̂

s,n,εC
(I )

)′
correspond to the locally

bounded subsets of PI (nC(I )). Furthermore,
(⊗̂

s,n,π C(I )
)′

i
= (P(nC(I )), τω)

with the equicontinuous subsets of
(⊗̂

s,n,π C(I )
)′

corresponding to the locally
bounded subsets of P(nC(I )). This gives us that

⊗
s,n,ε C(I ) = ⊗

s,n,π C(I ).
Since C(I ) is stable, [2, Theorem 4.1] implies that

⊗
n,ε C(I ) = ⊗

n,π C(I ). If
n ≥ 3 then [19, Theorem] implies immediately that C(I ) is nuclear and hence
I is countable.

Theorem 2.2. Let I be a set. Then the n-homogeneous polynomial on C(I ),
P ((xi)i∈I ) = ∑

i∈I xn
i , is integral.

Proof. First we observe that the set DI = {(xi)i∈I : |xi | ≤ 1 all i} is
bounded in CI = (C(I ))′

b. As C(I ) is barrelled DI is an equicontinuous subset of
(C(I ))′. Furthermore, it follows from [17, Proposition 3.14.3] that σ(CI , C(I ))

induces the product topology on DI . For each i ∈ I we let µi be the Radon
measure on D = {z : |z| ≤ 1} such that∫

D

zk dµi(z) =
{

1 if k = n;

0 otherwise.

For each i ∈ I let πi denote the natural projection from DI onto the ith

coordinate. By [4, p. 112] (see also [23]) there is a (unique) Radon measure µ

on DI such that µ ◦ πi = µi for each i in I . Since∫
DI

φ(x)n dµ(φ) =
∑

(i1,...,in)∈I n

xi1 . . . xin

∫
DI

φi1 . . . φin dµ(φ) =
∑
i∈I

xn
i

for all x ∈ C(I ), P (x) = ∑
i∈I xn

i is integral.

Given a set I consider the Cartesian product CI . It is shown in [16, The-
orem 2.3.7], [22] and [21] that CI is separable if and only if I has cardinality
less than or equal to c. However, [20] (see also [9, Example 2.5.7]) show that
C(I ) with the topology induced from CI is separable if and only I is countable.

Lemma 2.3. Let I be uncountable and n ≥ 2. Then the n-homogeneous
polynomial on C(I ) P ((xi)i∈I ) = ∑

i∈I xn
i is not nuclear.
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Proof. For i ∈ I let ei be the element of C(I ) or CI which is 1 in the ith

coordinate and 0 in each other coordinate. Since P̌ (ei)
n−1 = nei we see that

P̌ (C(I ))n−1 is C(I ) with the topology induced from CI . Let us now suppose that
P is nuclear. Then we can find a sequence (φk)∞

k=1 in CI so that
∑∞

k=1 ‖φk‖n
U <

∞ for some neighbourhood of zero, U , in C(I ) and P (x) = ∑∞
k=1 φk(x)n for

all x ∈ C(I ). For each x ∈ C(I ), P̌ (x)n−1 ∈ CI , and is given by P̌ (x)n−1 =
n

∑∞
k=1 φk(x)n−1φk . Since this series converges in CI we see that P̌ (C(I ))n−1

is a separable subspace of CI . However, as we noted before the statement of
the Lemma, C(I ) with the topology induced from CI is not separable and our
assumption that P is nuclear is not true.

Corollary 2.4. Let I be uncountable and n ≥ 3. Then PN (C(I )) �=
PI (C(I )) �= P(C(I )).

Finally we observe that since every bounded subset of C(I ) is finite di-
mensional every homogeneous polynomial on C(I ) is weakly continuous on
bounded sets.

3. Application to Locally Asplund spaces

In modern Banach space theory the Radon-Nikodým property plays a central
role. There are many equivalent ways in which this concept can be introduced.
For example, a Banach space has the Radon-Nikodým property if and only
if every closed nonempty convex bounded set is the closed convex hull of
its strongly exposed points. Alternatively, a Banach space E has the Radon-
Nikodým property if and only if every integral operator with values in E

is nuclear. The Radon-Nikodým property is dual to another Banach space
property – Asplundness. Again there are many equivalent definitions of an
Asplund Banach space. For example, a Banach space E is Asplund if and only
if every separable subspace of E has a separable dual or equivalently if every
integral operator on E is nuclear. We refer the reader to [12] for more details.
In [10] Defant defined what is meant for a locally convex space to have dual
with the locally Radon-Nikodým property. A Banach space has dual with the
local Radon-Nikodým property if and only if it is Asplund. In [7] this property
was renamed locally Asplund. Locally Asplund spaces have good stability
properties. It is shown in [10] that the class of locally Asplund spaces is closed
under the formation of subspaces, quotients, arbitrary projective limits and
countable locally convex inductive limits. In [7] it is shown that this class is
also closed under Schwartz ε-products. In this section we show that the locally
convex space C(I ), with I uncountable is not locally Asplund. This will prove
that the class of locally Asplund locally convex spaces is not closed under the
formation of uncountable direct sums and, contrary to the Banach space case,
is not separably determined.
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Given E and F locally convex spaces we let L��E; F ′�� denote the space of
all linear maps from E into F ′ transforming some neighbourhood of zero into
an equicontinuous set. Therefore T ∈ L��E; F ′�� if and only if there exists an
absolutely convex closed neighbourhood of zero V in F such that T factors
continuously through the Banach space F ′

V ◦ .
Let ((, ), µ) be a finite measure space and X be a Banach space. An

operator T : L1(µ) → X is said to be representable, [12], if there is a Bochner-
integrable f ∈ L∞(µ; X) such that

T φ =
∫

φf dµ

for all φ ∈ L1(µ).
Given a locally convex space E an operator T ∈ L��L1(µ); E′�� is said

to be locally representable if there is a neighbourhood of zero V in E and a
representable operator T̂ ∈ L(L1(µ); E′

V ◦) such that the following diagram
commutes

L1(µ) T−−−−−−−−−−→ E′

❅↘T̂

Ê′
V ◦

Defant, [10], says that a locally convex space E has a dual with the local
Radon-Nikodým property if for every finite measure space ((, ), µ) all op-
erators in L��L1(µ); E′�� are locally representable. As in [7] we rename this
property and from this point on say that E is locally Asplund. It is shown in
[10] that a locally convex space E is locally Asplund if and only if for every ab-
solutely convex neighbourhood U of 0 in E and every positive Radon measure
ν on (U ◦, σ (E′, E)) there is V an absolutely convex neighbourhood of 0 in E,
V ⊆ U , such that the embedding (U ◦, σ (E′, E)) ↪→ ��V ◦�� is ν-measurable.

Defant [10] proceeds to give many reformalizations of the concept of a
locally Asplund spaces. Among these is that a locally convex space E is locally
Asplund if and only if given any locally convex space F every integral bilinear
form on E × F is nuclear. In [6] the author proved that if E is a locally
Asplund locally convex space for any positive integer n the locally convex
space (PI (nE), τI ) is isomorphic to the locally convex space (PN (nE), �ω).

Proposition 3.1. If I is an uncountable set then C(I ) is not locally Asplund.

Proof. Apply [6, Theorem 3], Theorem 2.2 and Lemma 2.3.

In contrast to the Banach space case we get:
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Corollary 3.2. Local Asplundness is not separably determined.

Proof. Every separable subspace of C(I ) is either isomorphic to C(N) or Cn

which is a DF N space and hence is locally Asplund.

We can also obtain the following result.

Proposition 3.3. If I is an uncountable set then the bilinear form B: C(I ) ×
C(I ) → C, B((xi)i∈I , (yi)i∈I ) = ∑

i∈I xiyi is integral but not nuclear.

Given locally convex spaces E and F we say that z ∈ E
⊗̂

π F has a series
representation if there is a sequence (λn)n ∈ �1 and bounded sequence (xn)n

and (yn)n in E and F respectively so that z = ∑∞
n=1 λnxn ⊗ yn. From [11,

§4 Remark] we get:

Proposition 3.4. There is an L∞ Banach space F and z ∈ CI
⊗̂

π F which
does not admit a series representation.
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