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APPROXIMATION PROPERTIES FOR DUAL SPACES

VEGARD LIMA

Abstract

We prove that a Banach space X has the metric approximation property if and only if F (Y,X)
is an ideal in L (Y,X∗∗) for all Banach spaces Y . Furthermore, X∗ has the metric approximation
property if and only if for all Banach spaces Y and all Hahn-Banach extension operators φ :
X∗ → X∗∗∗ there exists a Hahn-Banach extension operator � : F (Y,X)∗ → L (Y,X∗∗)∗
such that �(x∗ ⊗ y∗∗) = (φx∗) ⊗ y∗∗ for all x∗ ∈ X∗ and all y∗∗ ∈ Y ∗∗. We also prove
that X∗ has the approximation property if and only if for all Banach spaces Y and all Hahn-
Banach extension operators φ : X∗ → X∗∗∗ there exists a Hahn-Banach extension operator
� : F (Y,X)∗ → W (Y,X∗∗)∗ such that �(x∗ ⊗ y∗∗) = (φx∗) ⊗ y∗∗ for all x∗ ∈ X∗ and all
y∗∗ ∈ Y ∗∗, which in turn is equivalent to F (Y, X̂) being an ideal in W (Y, X̂∗∗) for all Banach
spaces Y and all equivalent renormings X̂ of X.

1. Introduction

In [2] Godefroy, Kalton, and Saphar introduced and studied the notion of an
ideal. Recall that if X is a closed subspace of a Banach space Y , then X is
an ideal in Y if the annihilator of X in Y ∗, X⊥, is the kernel of a norm one
projection on Y ∗. If X is a subspace of a normed space Y , then we say that X
is an ideal in Y if the norm closure of X, X, is an ideal in Y .

A linear operator φ : X∗ → Y ∗ is called a Hahn-Banach extension operator
if (φx∗)(x) = x∗(x) and ‖φx∗‖ = ‖x∗‖ for all x ∈ X and x∗ ∈ X∗. The set of
norm-preserving extensions of x∗ ∈ X∗ is denoted HB(x∗), and we denote the
set of all Hahn-Banach extension operators φ : X∗ → Y ∗ by HB(X, Y ). It is
easy to see that X is an ideal in Y if and only if HB(X, Y ) 	= ∅. Indeed, if P is
a norm-one projection on Y ∗ such that X⊥ = ker P , and if i : X → Y is the
identity map, then P = φ ◦ i∗ for some φ ∈ HB(X, Y ).

In [9] (cf. Theorem 5.2) Lima, Nygaard, and Oja obtained the following
characterization of the metric approximation property for dual spaces.

Theorem. Let X be a Banach space. The following statements are equi-
valent.

(a) X∗ has the metric approximation property.

Received March 23, 2002; in revised form October 14, 2002.



298 vegard lima

(b) For all Banach spaces Y , there exists a � ∈ HB(F (X, Y ),L (X, Y ))
such that

�(y∗⊗ x∗∗)(T ) = (y∗⊗ x∗∗)(T )

for all x∗∗ ∈ X∗∗, y∗ ∈ Y ∗, and T ∈ L (X, Y ).

(c) There exists a � ∈ HB(F (X,X), span(F (X,X), {IX})) such that

�(x∗⊗ x∗∗)(T ) = (x∗⊗ x∗∗)(T )

for all x∗ ∈ X∗, x∗∗ ∈ X∗∗, and T ∈ span(F (X,X), {IX}).
In [14] Lima and Lima proved that a Banach space X has the metric ap-

proximation property if and only if F (Y,X) is an ideal in L (Y,X) for all
Banach spaces Y . In this paper we shall look for conditions on X that ensure
that F (Y,X) is an ideal in L (Y,X∗∗), resp. W (Y,X∗∗), for all Banach spaces
Y . In particular, we will be interested in associated Hahn-Banach extension
operators with “nice” properties as in the theorem above.

This paper consists of 4 sections. In Section 2 we study the metric approx-
imation property for a Banach space X and its relation to ideals of operators.
More specifically, we are interested in the space L (Y,X∗∗) and Hahn-Banach
extension operators from F (Y,X)∗ to L (Y,X∗∗)∗ for Banach spaces Y . We
show that the metric approximation property for X is equivalent to the ex-
istence of a φ ∈ HB(X,X∗∗) and a � ∈ HB(F (Y,X),L (Y,X∗∗)) such that
�(x∗⊗ y)(T ) = (φx∗⊗ y)(T ) for all x∗ ∈ X∗, y ∈ Y , and T ∈ L (Y,X∗∗)
(see Theorem 2.7).

In Section 3 we prove, in Theorem 3.10, that X∗ has the metric approxim-
ation property if and only if for all φ ∈ HB(X,X∗∗) and all Banach spaces Y
there exists a � ∈ HB(F (Y,X),L (Y,X∗∗)) such that

(#) �(x∗⊗ y∗∗)(T ) = (φx∗⊗ y∗∗)(T )

for all x∗ ∈ X∗, y∗∗ ∈ Y ∗∗, and all T ∈ L (Y,X∗∗). If we replace � ∈
HB(F (Y,X),L (Y,X∗∗)) above with � ∈ HB(F (Y,X),W (Y,X∗∗)), then
we get a property which is equivalent to the approximation property for X∗
(see Theorem 3.7).

In Section 4 we show why there is no mention of the approximation property
in Section 2. We show that a result similar to Lemma 2.1 does not exist for the
approximation property.

Let us fix some notation. We let F (Y,X), K (Y,X), W (Y,X) and L (Y,X)

denote the Banach space of all finite rank, compact, weakly compact and
bounded operators, respectively, whenever X and Y are Banach spaces. IX
denotes the identity operator on X. If X is a Banach space then BX is the
closed unit ball of X and SX is the unit sphere of X. For a set Z ⊂ X, its
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norm closure is denoted by Z, its linear span by spanZ, and its convex hull
by convZ.

We consider only Banach spaces over the real field R.

2. Metric approximation property and ideals of operators

In [6, Lemma 1] Johnson proved that F (Y,X) is an ideal in L (Y,X) for all
Banach spaces Y whenever X has the metric approximation property. In [14]
it was proved that these two conditions are in fact equivalent.

Our first result is a slight improvement of the metric version of Johnson’s
result.

Lemma 2.1. Let X be a Banach space. If X has the metric approximation
property [resp. metric compact approximation property], then F (Y,X) [resp.
K (Y,X)] is an ideal in L (Y,X∗∗) for every Banach space Y .

Proof. We only show the implication for the metric approximation prop-
erty, the case with compact operators is similar.

AssumeX has the metric approximation property. Let (Tα) ⊆ F (X,X) be
a net such that supα ‖Tα‖ ≤ 1 and Tα → IX uniformly on compact subsets of
X.

Let Y be a Banach space. Define Uα : L (Y,X∗∗) → F (Y,X) by

Uα(T ) = T ∗∗
α ◦ T .

We have ‖Uα‖ ≤ ‖Tα‖ ≤ 1.
Let G ⊆ L (Y,X∗∗) be finite dimensional, and let F = G ∩ F (Y,X). Let

ε > 0, and let {Ti}ni=1 be an ε/3-net for BF . Letting

K =
n⋃

i=1

Ti(BY ),

we see that K is a compact subset of X. Choose α0 such that supx∈K ‖x −
Tα0x‖ < ε/3. Then ‖Ti − Uα0(Ti)‖ < ε/3 for i = 1, . . . , n, and thus ‖T −
Uα0(T )‖ < ε for all T ∈ BF . By the local formulation of ideals (see [1], or
f.ex. [7] or [8]) this implies that F (Y,X) is an ideal in L (Y,X∗∗).

Remark 2.2. Every Banach space X is an ideal in its bidual X∗∗, and
the natural embedding i : X∗ → X∗∗∗ is a Hahn-Banach extension operator,
i ∈ HB(X,X∗∗). Uα in the proof above may be written asUα(T ) = T ∗∗

α ◦i∗◦T ,
and it is clear that we may replace X∗∗ in the lemma above with any Banach
space containing X as an ideal.

Next we will extend some results from [14] in order to prove Theorem 2.7,
which says that a Banach space X has the metric approximation property if
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and only if there exists a φ ∈ HB(X,X∗∗) such that, for every Banach space
Y , there is a Hahn-Banach extension operator � ∈ HB(F (Y,X),L (Y,X∗∗))
satisfying (#) for all x∗ ∈ X∗, y ∈ Y , and T ∈ L (Y,X∗∗). We will prove the
next results for closed operator ideals A and B, in the sense of Pietsch [17].
Recall that, in particular, this means that F (Y,X) ⊆ A (Y,X) and A (Y,X)

is a closed subspace of L (Y,X).

Lemma 2.3. Let X and Y be Banach spaces, and let Z be a subspace
of Y such that the norm of Y is locally uniformly rotund at every point of
Z. Let A and B be closed operator ideals satisfying A ⊆ B. If � ∈
HB(A (Y,X),B(Y,X∗∗)), then there is a φ ∈ HB(X,X∗∗) such that

�(x∗⊗ z)(T ) = (φx∗⊗ z)(T )
for all x∗ ∈ X∗, z ∈ Z, and T ∈ B(Y,X∗∗).

Proof. Using the local uniform rotundity modulus of Y (see e.g. [16,
p. 460]) it is easy to show that every z ∈ SZ is is a weak∗-denting point
in BY ∗∗ . Thus we may use Lemma 3.1 in [11], and get that for all x∗ ∈ X∗ and
z ∈ Z
(1) HB(x∗⊗ z) = HB(x∗)⊗ {z}.
Given z ∈ Zwe choose a z∗ ∈ Y ∗ such that z∗(z) = 1. Using (1) we may define
a Hahn-Banach extension operator φz ∈ HB(X,X∗∗) by letting (φzx∗)(x∗∗) =
�(x∗ ⊗ z)(z∗ ⊗ x∗∗) for all x∗∗ ∈ X∗∗. Thus for all z ∈ Z there is a φz ∈
HB(X,X∗∗) such that

�(x∗⊗ z)(T ) = (φzx
∗⊗ z)(T )

for all x∗ ∈ X∗ and T ∈ B(Y,X∗∗).
Following [13], given� ∈ HB(A (Y,X),B(Y,X∗∗)) and φ ∈ HB(X,X∗∗),

we will write

Y�φ = {y ∈ Y : �(x∗⊗ y) = (φx∗⊗ y) for all x∗ ∈ X∗},
with equality for all T ∈ B(Y,X∗∗) as above. It is easily seen that each Y�φ is
a closed, possibly trivial, subspace of Y , and that ifψ ∈ HB(X,X∗∗) is another
Hahn-Banach extension operator and Y�φ ∩ Y�ψ 	= {0}, then ψ = φ.

Thus far we have shown that for every z ∈ Z there is a φz ∈ HB(X,X∗∗)
such that z ∈ Y�φz . Let us note that Lemma 1.1 in [13] remains true if we use
it on

Z�φ = Z ∩ Y�φ.
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If {φi : i ∈ I } is a subset of HB(X,X∗∗), with all φi different, and if zi ∈ Z�φi
are such that

∑
i∈I zi = 0 and

∑
i∈I ‖zi‖ < ∞, then zi = 0 for all i ∈ I by

Lemma 1.1 in [13].
Assume for contradiction that φ1, φ2 ∈ HB(X,X∗∗) are different with Z�φ1

and Z�φ2 both non-trivial. Now pick zi ∈ Z�φi , i = 1, 2, with zi 	= 0,
i = 1, 2. Let z3 = −(z1 + z2). From the first part of the proof we see that
there exists a φ3 ∈ HB(X,X∗∗) such that z3 ∈ Z�φ3 . If φ3 	= φi , i = 1, 2,
then z1 = z2 = z3 = 0, a contradiction. If φ3 = φi , say i = 1, then z2 =
−(z3 + z1) ∈ Z�φ1 ∩ Z�φ2 = {0}, so that z2 = 0, again a contradiction.

This shows that all φz, with z ∈ Z and Z�φz non-trivial, are equal.

The next theorem is a generalization of Theorem 3.3 in [14].

Theorem 2.4. LetX and Y be Banach spaces, and let A and B be closed
operator ideals satisfying A ⊆ B. If A (Ŷ , X) is an ideal in B(Ŷ , X∗∗) for
all equivalent renormed versions Ŷ of Y , then there exist a φ ∈ HB(X,X∗∗)
and a � ∈ HB(A (Y,X),B(Y,X∗∗)) such that

�(x∗⊗ y)(T ) = (φx∗⊗ y)(T )
for all x∗ ∈ X∗, y ∈ Y and T ∈ B(Y,X∗∗).

Proof. Let Z be a separable subspace of Y . Proceeding as in the proof of
Theorem 3.1 in [14], using Lemma 2.3, we find a� ∈ HB(A (Y,X),B(Y,X∗∗))
and a ψ ∈ HB(X,X∗∗) such that

�(x∗⊗ z)(T ) = (ψx∗⊗ z)(T )
for all x∗ ∈ X∗, z ∈ Z and T ∈ B(Y,X∗∗). Note that the proof of Theorem 3.1
in [14] refers in large parts to the proof of Theorem 2.3 from [13].

Arguing as in Lemma 3.2 in [14], we find that the set

KZ = {(�,ψ) ∈ HB(A (Y,X),B(Y,X∗∗))× HB(X,X∗∗) :

�(x∗⊗ z)(T ) = (ψx∗⊗ z)(T )
for all x∗ ∈ X∗, z ∈ Z, and T ∈ B(Y,X∗∗)}

is a subset of ((B(Y,X∗∗) ⊗̂π A (Y,X)∗)∗ × (X∗∗ ⊗̂π X
∗)∗)which is compact

in the product weak*-topology. From the proof of Theorem 3.3 in [14] it is now
clear that there exist a φ ∈ HB(X,X∗∗) and a � ∈ HB(A (Y,X),B(Y,X∗∗))
such that

�(x∗⊗ y)(T ) = (φx∗⊗ y)(T )
for all x∗ ∈ X∗, y ∈ Y , and T ∈ B(Y,X∗∗).
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We will now show, given a Banach space X, that if A (Y,X) is an ideal
in B(Y,X∗∗) for all Banach spaces Y , then there is a φ ∈ HB(X,X∗∗) which
works for all Y . We shall soon make this precise (see Theorem 2.5), but first
we introduce some notation. For each Banach space Y , let

FY = {φ ∈ HB(X,X∗∗) : there exists a � ∈ HB(A (Y,X),B(Y,X∗∗))

with �(x∗⊗ y)(T ) = (φx∗⊗ y)(T )
for all x∗ ∈ X∗, y ∈ Y, and T ∈ B(Y,X∗∗)}.

FY is subset of L (X∗, X∗∗∗) = (X∗∗⊗̂π X
∗)∗. Theorem 2.4 shows that each

FY is nonempty whenever A (Y,X) is an ideal in B(Y,X∗∗) for all Banach
spaces Y . Theorem 2.3 in [13] shows that FY is weak∗-compact. The idea is
now to show that the set {FY : Y Banach space} has the finite intersection
property.

The proof of our next theorem follows exactly along the lines of the proof
of Theorem 2.4 in [13], which is similar, so we will not include it here.

Theorem 2.5. Let X be a Banach space, and let A and B be closed
operator ideals satisfying A ⊆ B. If A (Z,X) is an ideal in B(Z,X∗∗) for
all Banach spaces Z, then there exists a φ ∈ HB(X,X∗∗) such that, for every
Banach space Y , there exists a � ∈ HB(A (Y,X),B(Y,X∗∗)) with

�(x∗⊗ y)(T ) = (φx∗⊗ y)(T )

for all x∗ ∈ X∗, y ∈ Y , and T ∈ B(Y,X∗∗).

Remark 2.6. It is clear, from the proofs and from [13], that in Lemma 2.3,
Theorem 2.4, and Theorem 2.5 we may replace X∗∗ with any Banach space
containing X as a closed subspace.

We conclude this section with the main result so far.

Theorem 2.7. Let X be a Banach space. The following statements are
equivalent.

(a) X has the metric approximation property.
(b) There exists a φ ∈ HB(X,X∗∗) such that, for every Banach space Y ,

there exists a � ∈ HB(F (Y,X),L (Y,X∗∗)) satisfying

�(x∗⊗ y)(T ) = (φx∗⊗ y)(T )

for all x∗ ∈ X∗, y ∈ Y , and T ∈ L (Y,X∗∗).
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(c) There exists a � ∈ HB(F (X,X), span(F (X,X), {IX})) such that

�(x∗⊗ x)(T ) = (x∗⊗ x)(T )
for all x ∈ X, x∗ ∈ X∗, and T ∈ span(F (X,X), {IX}).

Proof. Combining Lemma 2.1 and Theorem 2.5 we see that (a) ⇒ (b). (b)
⇒ (c) is trivial. (c) ⇒ (a) is proved in [9] (cf. Theorem 5.4).

Remark 2.8. Theorem 2.7 remain valid for the metric compact approx-
imation property if one replaces F (Y,X) with K (Y,X) and F (X,X) with
K (X,X) (this is clear from the proof).

3. Approximation properties for dual spaces

In this section we prove that if we in Theorem 2.7 replace “there exists φ ∈
HB(X,X∗∗) such that. . . ” with “for all φ ∈ HB(X,X∗∗) . . .” and require that
the equality in Theorem 2.7 (b) holds for all y∗∗ ∈ Y ∗∗, not just all y ∈ Y , then
we get a property which is equivalent to X∗ having the metric approximation
property (see Theorem 3.10). We also obtain a similar “for all” characterization
of the approximation property for X∗ (see Theorem 3.7).

In [12] (cf. Theorem 3.2) Lima and Oja obtained the following character-
ization of the approximation property for dual spaces.

Theorem 3.1. Let X be a Banach space. The following statements are
equivalent.

(a) X∗ has the approximation property.

(b) For all φ ∈ HB(X,X∗∗), all Banach spaces Y , and all T ∈ W (Y,X∗∗)
there exists a net (Tα) ⊆ F (Y,X) with supα ‖Tα‖ ≤ ‖T ‖ such that
T ∗
α x

∗ → T ∗(φx∗) for all x∗ ∈ X∗.

(c) For all reflexive Banach spaces Y and all T ∈ K (Y,X∗∗) there exists
a net (Tα) ⊆ F (Y,X) with supα ‖Tα‖ ≤ ‖T ‖ such that T ∗

α x
∗ → T ∗x∗

for all x∗ ∈ X∗.

Remark 3.2. Theorem 3.2 in [12] also states and proves that X∗∗ in The-
orem 3.1 may be replaced by any Banach space which contains X as an ideal.

In [11] (cf. Theorem 4.6) it was proved that for a Banach spaceX, F (Y,X)

is an ideal in W (Y,X∗∗) with “nice” Hahn-Banach extension operators for
all reflexive Banach spaces Y whenever X∗ has the approximation property.
We shall now remove this reflexivity condition using (b) in Theorem 3.1 to
construct “nice” Hahn-Banach extension operators also for general Y .
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The next lemma shows that if (b) in Theorem 3.1 holds, then F (Y,X) is
locally 1-complemented in W (Y,X∗∗) in a way that resembles the principle
of local reflexivity.

Lemma 3.3. Let X and Y be Banach spaces and let φ ∈ HB(X,X∗∗).
Let G be a finite dimensional subspace of W (Y,X∗∗), and let H be a finite
dimensional subspace of F (Y,X)∗. If for any Banach space Z and any T ∈
W (Z,X∗∗) there exists a net (Tα) ⊆ F (Z,X) with supα ‖Tα‖ ≤ ‖T ‖ such
that T ∗

α x
∗ → T ∗(φx∗) for all x∗ ∈ X∗, then for any ε > 0 there exists a linear

contraction U : G → F (Y,X) such that

• ‖U(T )− T ‖ < ε‖T ‖ for all T ∈ G ∩ F (Y,X), and

• |(x∗⊗y∗∗)(U(T ))−(φx∗⊗y∗∗)(T )| ≤ ε‖x∗⊗y∗∗‖‖T ‖ for all x∗⊗y∗∗ ∈
H and all T ∈ G.

Remark 3.4. As we will see from the proof we may replace F (Y,X)with
K (Y,X) and W (Y,X∗∗) with L (Y,X∗∗). We may also replace X∗∗ with any
Banach space containing X as an ideal.

Proof. LetKG = conv{T (BY ) : T ∈ BG}. ThenKG is a closed absolutely
convex subset of BX∗∗ . Use the uniform isometric version of the Davis-Figiel-
Johnson-Pełczyński factorization [9, Lemma 1.1] on KG to find a Banach
space Z, a norm one operator J : Z → X∗∗, and a linear isometry � : G →
W (Y, Z) such that T = J ◦�(T ) for all T ∈ G (see Theorem 2.3 in [9]).

By assumption there exists a net (Jα) ⊆ F (Z,X) with supα ‖Jα‖ ≤ ‖J‖
such that

J ∗
α x

∗ −→ J ∗(φx∗)

for all x∗ ∈ X∗.
For T ∈ G, define Tα = Jα ◦�(T ). Then we have

lim
α
(x∗⊗ y∗∗)(Tα) = lim

α

〈
J ∗
α x

∗, �(T )∗∗y∗∗〉 = 〈
J ∗(φx∗),�(T )∗∗y∗∗〉

= 〈
φx∗, T ∗∗y∗∗〉 = (φx∗⊗ y∗∗)(T )

for all y∗∗ ∈ Y ∗∗, x∗ ∈ X∗, and T ∈ G.
Let F = G ∩ F (Y,X) and define

KF = conv {T (BY ) : T ∈ BF }.
Note that KF is norm compact in X and in Z (see Lemma 2.1 in [9]). If
x ∈ X ∩ Z, then we get

〈
Jαx, x

∗〉 = 〈
x, J ∗

α x
∗〉 →α

〈
x, J ∗(φx∗)

〉 = 〈
Jx, φx∗〉 = 〈

Jx, x∗〉 ,
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which means that Jα
∣∣
X∩Z → J

∣∣
X∩Z in the weak operator topology. By choos-

ing a new net, still denoted (Jα), of convex combination of (Jα)we may assume
that Jα

∣∣
X∩Z → J

∣∣
X∩Z in the strong operator topology. Since (Jα) is bounded,

Jα → J uniformly on KF .
Choosing α0 large enough and defining U(T ) = Jα0 ◦ �(T ) for T ∈ G,

we get the desired operator.

Using the Lindenstrauss compactness principle with ideas from [4] (see
also [5]) we will now construct a Hahn-Banach extension operator with nice
properties from the “locally nice” extensions in Lemma 3.3.

Lemma 3.5. Let X and Y be Banach spaces, and let φ ∈ HB(X,X∗∗).
If for every pair of finite dimensional subspaces G ⊆ W (Y,X∗∗) and H ⊆
F (Y,X)∗ and every ε > 0 there exists a linear contractionU as in Lemma 3.3
then there exists a � ∈ HB(F (Y,X),W (Y,X∗∗)) such that

�(x∗⊗ y∗∗)(T ) = (φx∗⊗ y∗∗)(T )

for all y∗∗ ∈ Y ∗∗, x∗ ∈ X∗, and T ∈ W (Y,X∗∗).

Proof. Let H ⊆ F (Y,X)∗ be a finite dimensional subspace. For each
finite dimensional subspace G ⊆ W (Y,X∗∗), let ε = 1/ dimG and choose a
contractive operator UG : G → F (Y,X) such that

• ‖UG(T )− T ‖ < ε‖T ‖ for all T ∈ G ∩ F (Y,X), and

• |(x∗ ⊗ y∗∗)(UG(T )) − (φx∗ ⊗ y∗∗)(T )| ≤ ε‖x∗ ⊗ y∗∗‖‖T ‖ for all
x∗⊗ y∗∗ ∈ H and all T ∈ G.

Note that |ψ(UG(T )) − ψ(T )| < ε‖ψ‖‖T ‖ for all ψ ∈ H and all T ∈
G ∩ F (Y,X).

Extend UG : W (Y,X∗∗) → F (Y,X) by letting UG(T ) = 0 if T /∈ G.
Define

�H =
∏

T ∈W (Y,X∗∗)

BF (Y,X)/H⊥(0, ‖T ‖).

F (Y,X)/H⊥ is finite dimensional so �H is a compact Hausdorff space when
equipped with the product topology. Let qH : F (Y,X) → F (Y,X)/H⊥ be
the quotient mapping and define a net in �H by (qHUG(T ))G (ordered by
inclusion). By compactness we may find a convergent subnet, still denoted
(qHUG(T ))G. Define

QH : W (Y,X∗∗) −→ F (Y,X)/H⊥

by QH(T ) = limG qHUG(T ). QH is linear and has norm one, and using the
assumptions on UG we get

QH(T ) = lim
G
qHUG(T ) = qH (T )
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for all T ∈ F (Y,X). This last equality can be written qH = QH ◦ i, where
i : F (Y,X) → W (Y,X∗∗) is the natural inclusion. From this we see that
i∗◦Q∗

H = q∗
H , so that Q∗

H : H → W (Y,X∗∗)∗ is a Hahn-Banach extension
operator. Furthermore, if ψ = x∗⊗ y∗∗ ∈ H and T ∈ W (Y,X∗∗), then

(Q∗
Hψ)(T ) = ψ(QH(T )) = lim

G
ψ(qHUG(T ))

= lim
G
(q∗
Hψ)(UG(T )) = lim

G
(x∗⊗ y∗∗)(UG(T ))

= (φx∗⊗ y∗∗)(T )

since limG |(x∗⊗ y∗∗)(UGT )− (φx∗⊗ y∗∗)(T )| = 0.
Extend Q∗

H : F (Y,X)∗ → W (Y,X∗∗)∗ by letting Q∗
H (ψ) = 0 if ψ /∈ H .

Let
� =

∏

ψ∈F (Y,X)∗
BW (Y,X∗∗)∗(0, ‖ψ‖).

� is compact and Hausdorff when equipped with the product weak∗ topology.
(Q∗

Hψ)H is a net in � (ordered by inclusion), so it has a subnet converging to
a Hahn-Banach extension operator � : F (Y,X)∗ → W (Y,X∗∗)∗ such that

�(x∗⊗ y∗∗)(T ) = lim
H
(Q∗

Hψ)(T ) = (x∗⊗ y∗∗)(T ).

Remark 3.6. The above lemma still holds if we replace F and W with
any pair of operator ideals A and B, such that A ⊆ B. We may also replace
X∗∗ with any Banach space containing X as an ideal.

Combining Theorem 3.1 with Lemmas 3.3 and 3.5 gives the following
characterization of the approximation property for dual spaces in terms of
“nice” Hahn-Banach extension operators.

Theorem 3.7. Let X be a Banach space. The following statements are
equivalent.

(a) X∗ has the approximation property.
(b) For all φ ∈ HB(X,X∗∗) and all Banach spaces Y there exists a � ∈

HB(F (Y,X),W (Y,X∗∗)) such that

�(x∗⊗ y∗∗)(T ) = (φx∗⊗ y∗∗)(T )

for all x∗ ∈ X∗, y∗∗ ∈ Y ∗∗, and T ∈ W (Y,X∗∗).
(c) For all reflexive Banach spacesY there is a�∈ HB(F (Y ,X),K (Y ,X∗∗))

such that
�(x∗⊗ y)(T ) = (x∗⊗ y)(T )
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for all x∗ ∈ X∗, y ∈ Y , and T ∈ K (Y,X∗∗).

Proof. (a) ⇒ (b). Assume that X∗ has the approximation property. From
Theorem 3.1 (b) we see that the assumption of Lemma 3.3 is fulfilled. The
assumption in Lemma 3.5 is the conclusion of Lemma 3.3 and the conclusion
of Lemma 3.5 is (b).

(b) ⇒ (c) is trivial.
(c) ⇒ (a). Proceeding as in Lemma 1.4 in [9], we define a projection P

by P = � ◦ i∗, where i : F (Y,X) → K (Y,X∗∗) is the natural embedding.
For every T ∈ K (Y,X∗∗) we have P ∗(T ) ∈ F (Y,X)⊥⊥, so there is a net
(Tα) ⊆ F (Y,X) converging weak∗ to P ∗(T ) from below. It is easily seen that
this implies condition (c) in Theorem 3.1.

Remark 3.8. From Remarks 3.2, 3.4, and 3.6 we see that in the above
theorem X∗∗ may be replaced by any Banach space containing X as an ideal.

As the following example shows, the “for all φ”-part in Theorem 3.7 is
necessary. Although we work with a concrete space in the example the essential
ingredient is the existence of a Banach spaceX with the metric approximation
property such that X∗ does not have the approximation property.

Example 3.9. Let X = $2 ⊗̂π $2. The Banach space X satisfies the fol-
lowing.

(i) There exists a φ ∈ HB(X,X∗∗) with the property that for every Banach
space Y there exists a � ∈ HB(F (Y,X),W (Y,X∗∗)) such that

�(x∗⊗ y)(T ) = (φx∗⊗ y)(T )
for all x∗ ∈ X∗, y ∈ Y , and T ∈ W (Y,X∗∗).

(ii) (i) is not satisfied for every φ ∈ HB(X,X∗∗). In particular, φ cannot be
the natural embedding of X∗ into X∗∗∗.

Proof. It is well-known that X has the metric approximation property
(X = ($2 ⊗̂ε $2)

∗ is a dual space with a basis).
By Theorem 2.7, there exists a φ ∈ HB(X,X∗∗) satisfying (i). Theorem 3.7

above says thatX∗ has the approximation property if and only if such a� exists
for all φ ∈ HB(X,X∗∗) or just for the natural embedding. However, in [18]
Szankowski showed that X∗ = L ($2, $2) does not have the approximation
property, and thus we have (ii).

We conclude this section with a metric version of Theorems 3.1 and 3.7
complementing Theorem 2.7. The next theorem should also be compared with
the version of Theorem 5.2 in [9] cited in the Introduction.
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Theorem 3.10. Let X be a Banach space. The following statements are
equivalent.

(a) X∗ has the metric approximation property

(b) For all Banach spaces Y and all φ ∈ HB(X,X∗∗) there exists a � ∈
HB(F (Y,X),L (Y,X∗∗)) such that

�(x∗⊗ y∗∗)(T ) = (φx∗⊗ y∗∗)(T )

for all x∗ ∈ X∗, y∗∗ ∈ Y ∗∗, and T ∈ L (Y,X∗∗).
(c) For all Banach spaces Y there exists a � ∈ HB(F (Y,X),L (Y,X∗∗))

such that
�(x∗⊗ y∗∗)(T ) = (x∗⊗ y∗∗)(T )

for all x∗ ∈ X∗, y∗∗ ∈ Y ∗∗, and T ∈ L (Y,X∗∗).
(d) For all Banach spaces Y , all φ ∈ HB(X,X∗∗), and all T ∈ L (Y,X∗∗)

there exists a net (Tα) ⊆ F (Y,X) with supα ‖Tα‖ ≤ ‖T ‖ such that
T ∗
α x

∗ → T ∗(φx∗) for all x∗ ∈ X∗.

(e) For all Banach spaces Y and all T ∈ L (Y,X∗∗) there exists a net
(Tα) ⊆ F (Y,X) with supα ‖Tα‖ ≤ ‖T ‖ such that T ∗

α x
∗ → T ∗x∗ for all

x∗ ∈ X∗.

Proof. (a) ⇒ (d). Let (Sα) ⊆ F (X,X) with supα ‖Sα‖ = 1 such that
S∗
αx

∗ → x∗ for all x∗ ∈ X∗. Let φ ∈ HB(X,X∗∗) and T ∈ L (Y,X∗∗), then
φ∗◦ T ∈ L (Y,X∗∗). Define Tα = Sα ◦ φ∗◦ T . For x∗ ∈ X∗ we get

T ∗
α x

∗ = (φ∗T )∗S∗
αx

∗ −→ (φ∗T )∗x∗ = T ∗(φx∗).

(b) ⇒ (c) and (d) ⇒ (e) are trivial.
(e) ⇒ (a). Let Y = X and T = (I ∗

X∗)
∣∣
X

. Then there exists a net (Tα) ⊆
F (X,X) with supα ‖Tα‖ ≤ ‖T ‖ = 1 such that

T ∗
α x

∗ −→ T ∗x∗ = x∗.

(c) ⇒ (e). Argue as in the proof of (c) ⇒ (a) in Theorem 3.7.
Finally, to show (d) ⇒ (b) we use Lemmas 3.3 and 3.5 (see also Remarks 3.4

and 3.6).

Remark 3.11. Replacing F (Y,X) with K (Y,X) in the above theorem
we get a characterization of the metric compact approximation property with
conjugate operators for dual spaces.

It should be noted that thanks to the principle of local reflexivity the metric
approximation property and the metric approximation property with conjugate
operators are equivalent.
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Remark 3.12. A Banach space X is said to have the unique extension
property if HB(X,X∗∗) = {i}, where i is the natural embedding i : X∗ → X∗∗∗.
In [3] Godefroy and Saphar proved that ifX has the unique extension property
and the metric approximation property, then X∗ has the metric approximation
property. This result should be compared with Theorems 2.7 and 3.10, but it
is, however, not implied by these two theorems.

4. Renorming and extension operators

It was shown in [9], relying on [10], that a Banach space X has the approxim-
ation property if and only if F (Y,X) is an ideal in W (Y,X) for every Banach
space Y . In Theorem 4.5 we will prove that X∗ has the approximation prop-
erty if and only if F (Y, X̂) is an ideal in W (Y, X̂∗∗) for all Banach spaces
Y and all equivalent renormings X̂ of X. It follows that a result similar to
Lemma 2.1 cannot be true for the approximation property. That is, X has the
approximation property does not imply that F (Y,X) is an ideal in W (Y,X∗∗)
for every Banach space Y . If it did, then the fact that X does not loose the
approximation property under an equivalent norm together with Theorem 4.5
would imply that X∗ had the approximation property. This is not the case (see
e.g. Theorem 1.e.7(b) in [15]).

To show the above characterization of the approximation property for dual
spaces we will be using ideas from [14]. As in Theorem 3.7 above we want
to know what the Hahn-Banach extensions of simple tensors look like. This
next lemma is a crucial step toward this goal, and it is actually a special case
of Lemma 3.1 in [11].

Lemma 4.1. Let X and Y be Banach spaces, and let A and B, where
A ⊆ B, be a pair of closed operator ideals. If the norm on X∗ is locally
uniformly rotund at x∗ ∈ X∗ and y∗∗ ∈ Y ∗∗, then x∗⊗ y∗∗ ∈ A (Y,X)∗ has a
unique extension to B(Y,X∗∗), i.e.

HB(x∗⊗ y∗∗) = {x∗⊗ y∗∗}.

Proof. The local uniform rotundity of the norm of X∗ at x∗ ∈ SX∗ implies
that x∗ is a weak∗-denting point in BX∗ , so we may use Lemma 3.1 in [11].

Theorem 4.2. Let X and Y be Banach spaces and assume that A (Y, X̂)

is an ideal in B(Y, X̂∗∗) for all equivalent renormings X̂ of X. If F is a finite
dimensional subspace ofX∗, then there exists a� ∈ HB(A (Y,X),B(Y,X∗∗))
such that

�(x∗⊗ y∗∗)(T ) = (x∗⊗ y∗∗)(T )

for all x∗ ∈ F , y∗∗ ∈ Y ∗∗ and T ∈ B(Y,X∗∗).
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Proof. Let F be a finite dimensional subspace of X∗. For all ε ∈ (0, 1]
there exists an equivalent norm ‖ · ‖ε on X such that the dual norm on X∗ is
locally uniformly rotund at every point x∗ in F and such that

BX(0, 1) ⊆ B(X,‖·‖ε)(0, 1) ⊆ BX(0, 1 + ε),
by Lemma 2.4 in [14]. Let Xε = (X, ‖ · ‖ε).

By assumption A (Y,Xε) is an ideal in B(Y,X∗∗
ε ) so there exists a Hahn-

Banach extension operator�ε : A (Y,Xε)
∗ → B(Y,X∗∗

ε )
∗. From Lemma 4.1

we get
�ε(x

∗⊗ y∗∗)(T ) = (x∗⊗ y∗∗)(T )

for all x∗ ∈ Fε, y∗∗ ∈ Y ∗∗, and T ∈ B(Y,X∗∗
ε ).

Let Iε : Xε → X denote the identity mapping. Then ‖I−1
ε ‖ = 1 and

‖Iε‖ → 1 as ε → 0. Define �ε ∈ L (A (Y,X)∗,B(Y,X∗∗)∗) by

(�εg)(T ) = (�εgε)((I
∗∗
ε )

−1 ◦ T )
for g ∈ A (Y,X)∗ and T ∈ B(Y,X∗∗), and where gε ∈ A (Y,Xε)

∗ is defined
by

gε(S) = g(Iε ◦ S)
for S ∈ A (Y,Xε). We may now proceed as in [13, Theorem 2.3] to show that
(�ε)ε∈(0,1] has a subnet which converges weak∗ to the desired �.

Lemma 4.3. LetX andY be Banach spaces and letF be a finite dimensional
subspace of X∗. The subset

KF = {
� ∈ HB(A (Y,X),B(Y,X∗∗)) : �(x∗⊗ y∗∗)(T ) = (x∗⊗ y∗∗)(T ),

for all x∗ ∈ F, y∗∗ ∈ Y ∗∗, T ∈ B(Y,X∗∗)
}

of (B(Y,X∗∗) ⊗̂π A (Y,X)∗)∗ is weak∗-compact.

Proof. The proof is similar to the proof of Lemma 4.2 in [14].

Theorem 4.4. Let X and Y be Banach spaces. If A (Y, X̂) is an ideal
in B(Y, X̂∗∗) for all equivalent renormings X̂ of X then there exists a � ∈
HB(A (Y,X),B(Y,X∗∗)) such that

�(x∗⊗ y∗∗)(T ) = (x∗⊗ y∗∗)(T )

for all x∗ ∈ X∗, y∗∗ ∈ Y ∗∗, and T ∈ B(Y,X∗∗).

Proof. The proof is similar to the proof of Theorem 4.3 in [14].

Theorem 4.5. Let X be a Banach space. The following statements are
equivalent.
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(a) X∗ has the approximation property.

(b) For all Banach spacesY and all equivalent renormings X̂ ofX, F (Y, X̂)

is an ideal in W (Y, X̂∗∗).
(c) For all reflexive Banach spaces Y and all equivalent renormings X̂ of

X, F (Y, X̂) is an ideal in K (Y, X̂∗∗).

Proof. (a) ⇒ (b). If X∗ has the approximation property, then X̂∗ has the
approximation property for every equivalent renorming X̂ of X. Using Corol-
lary 4.7 in [11], we get that F (Y, X̂) is an ideal in W (Y, X̂∗∗) for all Banach
spaces Y .

(b) ⇒ (c) is trivial. Combining Theorems 3.7 and 4.4 we see that (c) ⇒ (a).

Remark 4.6. We have already noted that a result similar to Lemma 2.1
cannot be true for the approximation property. There are Banach spaces X
with the metric approximation property such that their duals do not have the
approximation property, Example 3.9 provides one example of such a space.
Thus it follows that the property “F (Y,X) is an ideal in W (Y,X∗∗) for all
Banach spaces Y ” is strictly between “X has the approximation property” and
“X∗ has the approximation property”.

It should also be noted that Example 4.1 in [12] shows that F (Y,X) being an
ideal in K (Y,X∗∗) for all Banach spaces Y does not imply the approximation
property forX∗. However, ifX has the unique extension property then the two
are in fact equivalent (cf. [12, Corollary 4.2]).
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