
MATH. SCAND. 93 (2003), 275–296

TOEPLITZ OPERATORS IN SEGAL-BARGMANN
SPACES OF VECTOR-VALUED FUNCTIONS

DARIUSZ CICHOŃ and HAROLD S. SHAPIRO∗

Abstract

We discuss new results concerning unbounded Toeplitz operators defined in Segal-Bargmann
spaces of (vector-valued) functions, i.e. the space of all entire functions which are square summable
with respect to the Gaussian measure in Cn. The problem of finding adjoints of analytic Toeplitz
operators is solved in some cases. Closedness of the range of analytic Toeplitz operators is studied.
We indicate an example of an entire function inducing a Toeplitz operator, for which the space of
polynomials is not a core though it is contained in its domain.

1. Introduction

We begin by introducing basic definitions and notations. Let H be a complex
separable Hilbert space. ConsiderL2(µ)⊗H , the Hilbert space of all complex
Borel functions taking values in H which are square-integrable on Cn with
respect to the measure µ given by dµ(z) = π−ne−z·zdV (z), where V is the
Lebesgue measure in Cn and z·z = |z1|2+· · ·+|zn|2 for z = (z1, . . . , zn) ∈ Cn.
The inner product in L2(µ)⊗ H is given by

〈f, g〉(H ) =
∫

Cn
〈f (ζ ), g(ζ )〉H dµ(ζ ), f, g ∈ L2(µ)⊗ H ,

where 〈·, ·〉H stands for the inner product in H . The norm induced by the above
defined inner product is denoted by ‖·‖(H ) and in case H = CN by ‖·‖(N). The
Segal-Bargmann space Bn ⊗ H (abbreviated B ⊗ H ) is a closed subspace
of L2(µ)⊗ H composed of all entire functions belonging to L2(µ)⊗ H . By
P ⊗ IH we mean the orthogonal projection of L2(µ)⊗ H onto B ⊗ H . We
will use the following identifications: L2(µ) = L2(µ) ⊗ C, B = B ⊗ C,
〈·, ·〉 = 〈·, ·〉(1), ‖·‖ = ‖·‖(1) and P = P ⊗ IC. Observe that B ⊗ CN can be
identified with B ⊕ . . .⊕B (N -times), and following this we have B ⊗CN =
{(f1, . . . , fN) : f1, . . . , fN ∈ B} and ‖(f1, . . . , fN)‖2

(N) = ∫
Cn (|f1|2 + · · · +

|fN |2) dµ.
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Given f : Cn → C and h ∈ H we define (f ⊗ h)(z) := f (z)h, z ∈ Cn.
Put ea(z) := ez·a , where z · a := ∑n

k=1 zkak and a := (a1, . . . , an) for
a = (a1, . . . , an) ∈ Cn and z = (z1, . . . , zn) ∈ Cn. Denote by E (= En)
the linear span of the set of functions {ea : a ∈ Cn}. It can be checked that
〈f (z), h〉H = 〈f, ez ⊗ h〉(H ) for f ∈ B ⊗ H , h ∈ H and z ∈ Cn (cf. [4]),
which is referred to as the reproducing property for B ⊗ H . By P (= Pn) we
denote the space of all analytic polynomials in Cn. Both P and E are dense
subsets of B. The sequence fk(z) := zk/

√
k!, k ∈ Nn, z ∈ Cn, forms an

orthonormal basis for B, where according to the standard multiindex notation
zk := z

k1
1 · . . . · zknn , k! := k1! · . . . · kn! and |k| := k1 + . . . + kn for all

z = (z1, . . . , zn) ∈ Cn and k = (k1, . . . , kn) ∈ Nn (N = {0, 1, 2, . . .}).
A is called a linear operator in a complex Hilbert space H if its domain

D(A) is a linear subspace of H and A : D(A) → H is a linear mapping. As
usual, A∗, A, R(A) stand for the adjoint (provided it exists), the closure of
A and the range of A, respectively. We say that a linear subspace D ⊆ D(A)

is a core for a closable operator A if (A|D )− = A. All these notions are also
meaningful for linear operators acting between different Hilbert spaces. By
B(H ,K ) (H , K -Hilbert spaces) we denote the space of all bounded linear
operators A : H → K , and B(H ) := B(H ,H ). The graph norm ‖·‖A is
defined by ‖f ‖2

A = ‖f ‖2
H + ‖Af ‖2

H , f ∈ D(A).
Write P ⊗ H for the space of polynomials (in Cn) taking values in H , i.e.

the totality of functions of type
∑K

j=0 pj ⊗ hj , where pj ∈ Pn, hj ∈ H and
K ∈ N (in the case where H = CN the elements of this space are identified
withN -tuples of polynomials). Spaces E ⊗ H and P ⊗B(H ,K ) are defined
analogously. Observe that p ∈ P ⊗ B(CM,CN) can be written as a matrix
[pkl]

l=1,...,M
k=1,...,N with some polynomials pkl ∈ P . Given p ∈ P ⊗ B(H ,K ),

p(z) = ∑
|j |<K Ajzj , Aj ∈ B(H ,K ), z ∈ Cn, define p# ∈ P ⊗ B(K ,H )

via p#(z) = p(z)∗, z ∈ Cn, and a differential operator (p(D)F)(z) =∑
|j |<K AjDjF (z), z ∈ Cn, where F : Cn → H is an analytic function

(here Dj = ∂ |j |

∂z
j1
1 ...∂z

jn
n

for j = (j1, . . . , jn)). We will regard p(D) as an op-

erator in B ⊗ H and its domain is defined as D(p(D)) = {F ∈ B ⊗ H :
p(D)F ∈ B ⊗ K }.

Let ϕ : Cn → B(H ,K ) be an analytic function. Define ϕ#(z) := ϕ(z)∗,
which amounts to taking adjoints of all coefficients in the series expansion
of ϕ, and ϕ∗(z) := ϕ(z)∗ for z ∈ Cn. A Toeplitz operator1 with symbol ϕ
is defined by D(Tϕ) = {f ∈ B ⊗ H : ϕf ∈ B ⊗ K } and Tϕf = ϕf for
f ∈ D(Tϕ), where (ϕf )(z) = ϕ(z)f (z), z ∈ Cn. We need one more operator

1 What we have defined here is, in fact, an analytic Toeplitz operator, cf. [4] for the general
case.
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in B ⊗ H denoted by Πϕ∗ , which is defined via

Πϕ∗f (z) =
∫

Cn
ϕ∗(ζ )f (ζ )ez·ζ dµ(ζ ), z ∈ Cn,

and its domain consists of all f : Cn → K such that the above integral exists2

for all z ∈ Cn and the function in z defined by it lies in B ⊗ H . Since Πp∗ =
p#(D) for p ∈ P ⊗ B(H ,K ) (cf. [4]), we may regard Πϕ∗ as a generalized
differential operator. It is known that Πp∗ = (Tp|E ⊗H )

∗ = (Tp|P⊗H )
∗ (cf. [4,

Corollary 7.3]). The following abstract lemma reflects the connection between
Tp and Πp∗ .

Lemma 1.1. Let A be a closed operator in H and V ⊆ D(A) be a dense
subspace of H . Then forB := (A|V )∗ the following conditions are equivalent:

(i) A∗ = B;

(ii) ker(I + AB) = {0};
(iii) AB is symmetric;

(iv) AB is non-negative;

(v) AB is selfadjoint;

(vi) V is a core for A.

Interchanging A and B in (i)–(v) gives another condition equivalent to (vi).

Proof. Observe that A∗ ⊆ B and B is closed. Both these facts are in
frequent use in the following proof. We begin with (i)⇔(ii). Let %(A) denote
the graph of A, i.e. the set {(x, y) : x ∈ D(A),Ax = y}. Then one can
easily show that %(B) � %(A∗) consists of all (x, y) such that x ∈ D(B),
y = Bx ∈ D(A) and x + Ay = 0, which immediately implies the desired
equivalence. Equivalence (i) ⇔ (vi) is implied by taking adjoints in (i). By
standard operator theory (i) implies (iii), (iv) and (v). Since each of (iv) and
(v) implies (iii) by definition, it suffices to prove implication (iii)⇒ (i). Observe
thatAA∗ is a selfadjoint operator contained inAB. Hence by (iii)AA∗ = AB,
which implies (ii) and, consequently, (i). So the equivalence of conditions
(i)–(vi) is established.

Condition (i) may be rewritten as A = B∗. Thus the last statement of the
assertion follows.

The adjointness hypothesis consists in equality T ∗
p = Πp∗ for p ∈ P ⊗

B(H ), which was proved in some cases, e.g. p ∈ Pn, cf. [10], or p ∈ P1 ⊗
B(H ) and its leading coefficient is surjective, cf. [4]. In the present paper we
present new results concerning the hypothesis.

2 i.e. it is weakly convergent, cf. [4]
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Toeplitz operators of type Tp as above, and their adjoints, play an im-
portant role in extending known results on partial differential operators and
convolution operators in the space of entire functions to the context of Segal-
Bargmann spaces. Suppose for simplicity we consider one-variable Segal-
Bargmann space B. In the classical theory of linear differential equations of
infinite order, with constant coefficients (one variable), one starts with a “sym-
bol function” ϕ, which is entire and of exponential type, and the thematic
problem is to show that every entire function u which satisfies the equation
ϕ(D)u = 0 is, in the sense of uniform approximation on compact sets, the limit
of a sequence each term of which is a finite linear combination of “monomial
exponential” solutions of this same equation, that is solutions of the form
m(z) = zr exp(wz), wherew ∈ C and r ∈ N. There are various ways, all equi-
valent, to define the operator ϕ(D), for example as an infinite order differential
operator, or as convolution with a certain compactly supported measure on C,
whose Fourier-Laplace transform is ϕ. This theory originated in the study of
difference and differential-difference equations, and there is a solid treatment
of this e.g. [6], for more modern versions see e.g. [5].

A more refined question (arising from Delsarte’s notion of mean periodic
functions, originally in the context of functions of a real variable but extended
to the holomorphic category by Laurent Schwartz and others) is this: Given u
entire such that its translates (equivalently its derivatives) fail to span Hol(C)
(the entire functions), which is equivalent to the existence of some nontrivial ϕ
of exponential type such that ϕ(D)u = 0, do those translates none the less span
enough monomial exponentials to, in turn, span (“synthesize”) u? This is the
spectral synthesis question for Hol(C). It is known that this question too has an
affirmative answer; in higher dimensions however there are counterexamples
to the spectral synthesis version, whereas the positive solution to the versions
in the preceding paragraph holds in all dimensions.

Using this as a guide, one can formulate analogous questions in other topo-
logical vector spaces of entire functions. For example, in B let us ask whether
the solutions to ϕ#(D)u = 0 are in the closure of the monomial exponential
solutions. Here we may take as our definition ofϕ#(D) the operatorΠϕ∗ . It is no
longer necessary to suppose ϕ of exponential type, we get a sensible problem
whenever the product of ϕ by each exponential is in B; however, to fix ideas
think first of the case where ϕ is of exponential type; even here the question
to be posed is still unsolved. The monomial exponentials in question consist
precisely of, for each zero w of ϕ, the functions zk exp(wz), k = 0, . . . , r − 1
where r is the multiplicity of the zero.

The question whether these span all solutions to ϕ#(D)u = 0 in the norm
topology of B, then translates, by duality, to this: suppose h in B is orthogonal
to the monomial exponentials belonging to ker ϕ#(D); this is equivalent to it
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vanishing on all zeros of ϕ, with the appropriate multiplicities, i.e. to the
assertion: h/ϕ is an entire function. We ask if h must then be orthogonal
to each u that is, in turn, orthogonal to all ϕ(z) exp(tz) with t ∈ C. Since
h = ϕF for some entire F , the question is whether ϕF is approximable in
B-norm by exponential multiples of ϕ. And this is just the question: do the
finite linear combinations of exponentials span every entire function, in the
metric of L2(|ϕ|2dµ)?

In [10] an affirmative solution was given for ϕ which are exponential poly-
nomials, and indeed in any number of variables. But, for other classes of entire
functions ϕ this is unsolved.

The counterexample of Borichev [1] (and our version of it below, in Sec-
tion 4) are a borderline case: they can be said to disprove spectral synthesis
for some “symbol function” ϕ of very large growth – so large, indeed, that the
equation ϕ#(D)u = 0 has to be interpreted in a generalized sense, namely u
(in B) is orthogonal to all the polynomial multiples of ϕ (this is all we have to
work with, since the exponential multiples, needed for the natural definition,
do not lie in B). So, it is of interest to know whether a corresponding counter-
example exists where ϕ is of smaller growth, at least multiplying exponentials
into B.

2. Adjointness

In what follows -(w,R) ⊆ Cn stands for the open polydisk with radius R
centered at w. Let Pk : Cn → C, k = 1, . . . , n, denote projection onto the
k-axis, i.e. Pk(z) := zk for all z = (z1, . . . , zn) ∈ Cn.

Lemma 2.1. Let X be a Borel measurable set such that Pk(X) is bounded
for some k ∈ {1, . . . , n} and R := inf{r > 0 : Pk(X) is contained in -(w, r)
with some w}. Then there exists a constant C depending only on R such that

(2.1)
∫

Cn
|f |2dµ ≤ C

∫
Cn\X

|f |2dµ

for all entire functions f : Cn → C.

Proof. First consider the one-dimensional case. Fix R > 0, w ∈ C and
an entire function f defined on C. Put I (r) := ∫ 2π

0 |f (reit + w)|2 dt , r ≥ 0.
Since I (r) is increasing with respect to r we have

re−r2
I (r) ≤ (R + r)e3R2

e−(R+r)2I (R + r), r ∈ [0, R].

Both sides of this inequality are functions in r , so integrating over the interval
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[0, R] (with respect to the Lebesgue measure) yields

(2.2)
∫
-(w,R)

|f |2 dµ ≤ e3R2
∫
-(w,2R)\-(w,R)

|f |2 dµ.

Adding
∫

C\-(w,R) |f |2 dµ to both sides of (2.2) implies the assertion withX =
-(w,R) and C := e3R2 + 1.

We now proceed with the multi-dimensional case. Assume that X satisfies
the assumptions of the lemma with some k. Let R be the constant defined in
the statement of Lemma, then Pk(X) ⊆ -(w,R + 1) with some w ∈ C. Let
f : Cn → C be an entire function. Set Yk := {(z1, . . . , zn) ∈ Cn : |zk − w| >
R + 1}. An easy application of the one-dimensional case leads to

∫
Cn

|f |2 dµ ≤ C

∫
Yk

|f |2 dµ,

with C := e3(R+1)2 + 1. Since Yk ⊆ Cn \X the result follows.

Lemma 2.2. Given f ∈ B1, p ∈ P1 \ {0} and ε > 0 there exists a
polynomial q ∈ P1 such that ‖f − q‖ ≤ ε and f = q (mod p), i.e. there
exists h ∈ Hol(C) satisfying f − q = ph.

Proof. We first state the following auxiliary fact:

Lemma 2.3. Let p ∈ P1 \ {0} and let ρ > 0 be such that -(0, ρ) contains
all zeroes of p. Then there exists a constant C > 0 depending only on p and ρ
such that for every F ∈ Hol(-(0, ρ)) one can find a uniqueQ ∈ P1 such that

(i) degQ ≤ degp − 1,

(ii) F−Q
p

∈ Hol(-(0, ρ)),

(iii) supz∈-(0,ρ) |Q(z)| ≤ C supz∈-(0,ρ) |F(z)|.
To prove this suppose that z1, . . . , zr are distinct zeroes of p with multi-

plicities m1, . . . , mr (resp.). Observe that m := m1 + . . . mr = degp. By the
Cauchy inequality there exists C1 > 0 (depending on ρ) such that

|g(l)(zj )| ≤ C1 sup
z∈-(0,ρ)

|g(z)|, l = 1, . . . , mj ,

for every j ∈ {1, . . . , r} and g ∈ Hol(-(0, ρ)). We can find another constant
C2 > 0, which depends only on p and ρ, such that

sup
z∈-(0,ρ)

|h(z)| ≤ C2 max{|h(lj )(zj )| : lj = 1, . . . , mj and j = 1, . . . , r},
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for every h ∈ P1 with degh ≤ m − 1, because by the Lagrange-Hermite
interpolation the right-hand side of the above inequality defines a norm in the
space of polynomials of degree at most m− 1.

Choose arbitraryF ∈ Hol(-(0, ρ)). Applying the Lagrange-Hermite inter-
polation we infer that there exists a unique Q ∈ P1 of degree at most m − 1
such that

Q(l)(zj ) = F (l)(zj ), l = 1, . . . , mj .

for every j = 1, . . . , r . Hence Q satisfies (i) and (ii). By the choice of C1

and C2 we see that (iii) holds with C := C1C2. This completes the proof of
Lemma 2.3.

We now turn to the proof of Lemma 2.2. Fix f ∈ B1, p ∈ P1 and δ > 0.
Choose a polynomial g such that ‖f − g‖ ≤ δ and ρ > 0 such that -(0, ρ)
contains all zeroes of p. Set F := f − g. Then, by the reproducing property
for B, |F(z)| ≤ δe|z|2/2, z ∈ C, and, consequently,

|F(z)| ≤ δeρ
2/2, z ∈ -(0, ρ).

We can now apply Lemma 2.3 to obtain the polynomial Q, degQ ≤ m − 1
(here m := degp), such that F−Q

p
is analytic in -(0, ρ) (hence entire) and

|Q(z)| ≤ Cδeρ
2/2, z ∈ -(0, ρ),

with C > 0 depending only on p and ρ. This implies that

|Q(z)| ≤ Cδeρ
2/2 max

{( |z|
ρ

)m−1

, 1

}
, z ∈ C.

This inequality leads to ‖Q‖ ≤ C ′δ with a new constant C ′ > 0 depending
only on p and ρ. Setting q := g+Qwe obtain a polynomial, for which f −q

is divisible by p. Moreover,

‖f − q‖ = ‖f − g −Q‖ ≤ ‖f − g‖ + ‖Q‖ ≤ δ(1 + C ′).

Since δ can be made arbitrarily small, the result follows.

Theorem 2.4. Letp ∈ P1⊗B(CM,CN)withM > N ≥ 1 and f ∈ D(Tp).
Assume that p(z) is of maximal rank for at least one point z ∈ C. Suppose
that Tpf = 0. Then for any ε > 0 there exists q ∈ P1 ⊗ CM such that
‖f − q‖(M) ≤ ε and Tpq = 0.

Proof. We can represent p by means of the matrix [pkl]
l=1,...,M
k=1,...,N , where

pkl ∈ P1. Put p̃ := [pkl]
l=1,...,N
k=1,...,N . By assumption on the rank of p, rearranging

columns if necessary, we can assume that d(z) := det p̃(z) is not identically
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zero; moreover, it can be done so that deg d is maximal among degrees of all
possible minors of dimension N , which arise from the matrix representing p.

Given ε0 > 0 by Lemma 2.2 we can find polynomials qN+1, . . . , qM ∈
P1 such that fj = qj (mod d) and ‖fj − qj‖ < ε0, j = N + 1, . . . ,M .
By the Cramer formulas there exist rational functions q1, . . . , qN such that
Tp(q1, . . . , qM) = 0. Thus every qj , j = 1, . . . , N , can be expressed by
qN+1, . . . , qM via
(2.3)

qj = d−1 det



p11 . . . p1 j−1 − ∑M

l=N+1 p1lql p1 j+1 . . . p1N

...
...

...
...

...

pN1 . . . pN j−1 − ∑M
l=N+1 pNlql pN j+1 . . . pNN




for j = 1, . . . , N .
Observe that all qj ’s are polynomials! Indeed, one can verify that the differ-

ence fj−qj is an entire function. To see this it suffices to check that the formula
(2.3) holds if qj is replaced by fj , j = 1, . . . ,M , in both members of (2.3).
Then it turns out that for each j ∈ {1, . . . , N} function fj −qj is a linear com-
bination with polynomial coefficients of fl−ql , l = N+1, . . . ,M , divided by
d. By the choice of qj the difference fl−ql is divisible by d, l = N+1, . . . ,M .
Thus fj −qj is entire and, consequently, qj is entire. Since every entire rational
function has to be a polynomial, we deduce that every qj is a polynomial.

It remains to estimate the norm of fj − qj for j = 1, . . . , N . Note that by
(2.3) for fixed j ∈ {1, . . . , N} we get

fj − qj =
M∑

l=N+1

αl
Ml

d
(fl − ql),

where Ml is a properly chosen minor of dimension N in p (obviously, Ml

depends on j , which has been omitted in the notation) and αl is equal to 1 or
−1. Choose R > 0 such that all zeros of d lie in -R (= -(0, R)). By the
assumption on deg d we infer that every quotient Ml

d
is bounded outside -R .

Set c̃l = sup
{∣∣Ml(z)

d(z)

∣∣ : z ∈ C \-R

}
. Then

|fj (z)− qj (z)| ≤
M∑

l=N+1

c̃l|fl(z)− ql(z)|, z ∈ C \-R.

Taking squares, integrating over C \-R and applying Lemma 2.1 yield

‖fj − qj‖2 ≤ CR ε
2
0 (M −N)

M∑
l=N+1

c̃2
l ,
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where CR is some positive constant. If ε0 is small enough, then polynomial
q := (q1, . . . , qM) satisfies all the required conditions.

Note. The authors thank John McCarthy for a valuable suggestion in
connection with the proof of Theorem 2.4.

Theorem 2.5. Let p ∈ P1 ⊗ B(CM,CN). Then T ∗
p = Πp∗ .

Proof. It suffices to check the density of P1 ⊗ CM in D(Tp) with respect
to the graph norm ‖·‖Tp . Choose f ∈ D(Tp). We are going to show that
there exists q ∈ P1 ⊗ CM such that ‖f − q‖Tp is arbitrarily small. Define
p̃ ∈ P1 ⊗ B(CM+N,CN) by p̃(z) = [p(z),−IN ], where IN stands for the
identity matrix of dimension N . It is easily seen that p̃ satisfies the assump-
tions of Theorem 2.4. Since Tp̃(f, Tpf ) = 0, given ε > 0 we can find q̃ =
(q1, . . . , qM+N) ∈ P1 ⊗CM+N such that Tp̃q̃ = 0 and ‖(f, Tpf )− q̃‖(M+N) ≤
ε. Setting q := (q1, . . . , qN) we see that Tpq = (qN+1, . . . , qN+M), as a con-
sequence of the equalityTp̃q̃ = 0, and‖f−q‖2

Tp
= ‖(f, Tpf )−q̃‖2

(M+N) ≤ ε2.

It seems that the case of homogeneous polynomials is much easier to deal
with, even in the case of several complex variables and values being operators
on (possibly) infinite-dimensional Hilbert space H .

Proposition 2.6. If p ∈ P ⊗ B(H ) is a homogeneous polynomial then
T ∗
p = Πp∗ .

Proof. The main idea of the proof is to write B ⊗H as an orthogonal sum
of subspaces reducing p#(D)Tp to a non-negative operator. Let Fk ⊆ P ⊗ H

denote the space of homogeneous polynomials of degree k (with the zero
polynomial included). Obviously, B ⊗ H = ⊕∞

k=0 Fk . It is easily seen that
p#(D)Tp(Fk) ⊆ Fk for all k ≥ 0. Hence, each Fk reduces p#(D)Tp. Pick
arbitrary f ∈ Fk and compute

〈p#(D)Tpf, f 〉(H ) =
∫

Cn
〈p#(D)(pf )(z), f (z)〉H dµ(z)

=
∫

Cn

∫
Cn

〈p(ζ )∗p(ζ )f (ζ ), f (z)〉H e
z·ζ̄ dµ(ζ ) dµ(z).

The last equality follows from [4, Lemma 2.3], but the reader may obtain it
applying the theorem on differentiating under the integral sign. We may now
change the order of integration, which is allowed because the function under
the integral sign is summable with respect to µ⊗ µ. Then it suffices to apply
the reproducing property for B ⊗ H to see that

〈p#(D)Tpf, f 〉(H ) = 〈p∗pf, f 〉(H ) ≥ 0.
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Since3 p#(D)Tp = ⊕∞
k=0 p

#(D)Tp|Fk
we infer that p#(D)Tp is non-negative,

so by Lemma 1.1 the assertion follows.

Remark 2.7. The above prove works also for the wider class of t-homo-
geneous polynomials (cf. [9]).

Proposition 2.8. Assume that p = [pkl]k,l=1,...,N ∈ P ⊗ B(CN) is such
that all pkl are homogeneous. If degpkl depends only on l, then T ∗

p = Πp∗ .

Proof. (Based on an idea of J. Janas.) We are going to prove that Tpp#(D)

is non-negative. Let Fk,j ⊆ P ⊗ Cj denote the space of homogeneous poly-
nomials of degree k for k ≥ 0. Observe that B ⊗CN = ⊕∞

k=0 Fk,N . We claim
that each Fk,N is invariant under Tpp#(D) (hence reducing for this operator).
Operator Tpp#(D)|Fk,N

: Fk,N → B ⊗ CN may be written as an operator
matrix [Akl]k,l=1,...,N , where

Akl =
N∑
j=0

Tpkj p
#
lj (D), D(Akl) = Fk,1.

By assumption on p we see that if f is homogeneous of degree k then so is
Aklf .

It now remains to show that Tpp#(D)|Fk,N
is non-negative. Note first that

P ⊗ ICN (p
∗f )(z) =

∫
Cn
p∗(ζ )f (ζ )ez·ζ̄ dµ(ζ )

= p#(D)f (z)

, z ∈ Cn, f ∈ Fk,N ,

for all k ≥ 0 (cf. [4, Lemma 2.3]). Thus

〈Tpp#(D)f, f 〉(H ) = 〈pp#(D)f, f 〉(H ) = 〈p#(D)f, P ⊗ ICN (p
∗f )〉(H ) ≥ 0

for all f ∈ Fk,N and k ≥ 0. Applying Lemma 1.1 completes the proof.

One of the natural questions which arise when studying the adjointness
hypothesis is whether it is possible to find the solution to this problem only
by means of coefficients of p. This idea is presented in the following theorem.
The set of operators A ⊆ B(H ) is called jointly subnormal if there exists a
set A ′ ⊆ B(K ) of commuting normal operators defined on a larger Hilbert
space containing H as a closed subspace such that for every A ∈ A there
exists A′ ∈ A ′ satisfying A = A′|H .

3 Note that p#(D)Tp is closed.
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Theorem 2.9. Suppose that p = ∑N
k=0 pk⊗Ak ∈ P ⊗B(H )with pk ∈ P

andAk ∈ B(H ). If the sequence {Ak}Nk=0 is jointly subnormal, then T ∗
p = Πp∗ .

The proof of this theorem requires the following lemma

Lemma 2.10. Suppose that q ∈ P ⊗B(H ) takes values only among normal
operators, f ∈ D(Tq) and g ∈ B ⊗ H . Then the function

Cn × Cn � (z, w) → 〈g(w), q(w)f (z)〉ez·w ∈ C

is summable with respect to the measure µ⊗ µ in Cn × Cn.

Proof. We begin with a change of variables w = z+ ζ , which yields
∫

Cn

∣∣〈g(w), q(w)f (z)〉ez·w∣∣ dµ(w)=
∫

Cn

∣∣〈g(z+ζ ), q(z+ζ )f (z)〉e−z·ζ ∣∣ dµ(ζ )
Thus

J :=
∫

Cn

∫
Cn

∣∣〈g(w), q(w)f (z)〉ez·w∣∣ dµ(w) dµ(z)

≤
∫

Cn
‖g(· + ζ )e−ζ‖(H )‖q(· + ζ )f ‖(H ) dµ(ζ ).

But ‖g(· + ζ )e−ζ‖(H ) = e
1
2 ‖ζ‖2‖g‖(H ), which together with the normality of

q(z) for all z ∈ Cn implies that

J ≤ ‖g‖(H )

∫
Cn

‖q(· + ζ )∗f ‖(H )e
1
2 ‖ζ‖2

dµ(ζ ).

Applying the isometry theorem (cf. [10], [4]), which states that4

‖p∗h‖2
(H ) =

∑
j≥0

1

j !

∥∥(Djp#)(D)h
∥∥2
(H )

, p ∈ P ⊗ B(H ), h ∈ B ⊗ H ,

we infer that ‖q(· + ζ )∗f ‖(H ) is of polynomial growth, so J < ∞.

Proof of Theorem 2.9. Let q(z) := ∑N
j=0 pj ⊗ Bj , where {Bk}Nk=0 is

the sequence of commuting normal operators defined on a larger Hilbert space
K such that Ak = Bk|H , k = 0, . . . , N . Thus q takes its values only among
normal operators and, consequently, T ∗

q = q#(D), according to [4, Theorem

4 The symbol “
∑

j≥0” should be read “sum over all multiindices j”. In the following equality

we put ‖F‖(H ) = ∞ whenever F /∈ L2(µ)⊗ H



286 dariusz cichoń and harold s. shapiro

7.8]. We will show that 〈p#(D)Tpf, f 〉(H ) ≥ 0 for every f ∈ D(p#(D)Tp).
Observe that

〈p#(D)Tpf, f 〉(H ) =
∫

Cn
〈p#(D)(pf )(z), f (z)〉 dµ(z)

=
∫

Cn
〈q#(D)(pf )(z), f (z)〉 dµ(z)

=
∫

Cn

∫
Cn

〈q(w)∗p(w)f (w), f (z)〉ez·wdµ(w) dµ(z)(2.4).

We know that pf ∈ B ⊗ H , which implies that qf ∈ B ⊗ K , because
p(z) = q(z)|H for all z ∈ Cn. By Lemma 2.10 we are allowed to change the
order of integration in (2.4). So we arrive at

〈p#(D)Tpf, f 〉(H ) =
∫

Cn

∫
Cn

〈q(w)∗p(w)f (w), f (z)〉ez·w dµ(z) dµ(w)

=
∫

Cn
〈q(w)∗p(w)f (w), f (w)〉 dµ(w)

=
∫

Cn
‖p(w)f (w)‖2 dµ(w) ≥ 0.

Thus ker(IH + p#(D)Tp) = {0}, which implies that T ∗
p = p#(D).

Remark 2.11. If the property T ∗
p = Πp∗ is proved for all polynomials,

whose coefficients commute, then it can easily be shown for arbitrary poly-
nomial p. To see this pick arbitrary p ∈ P ⊗ B(H ) and define polynomial
q ∈ P ⊗ B(H ⊕ H ) via

q(z) =
[

0 0

p(z) 0

]
, z ∈ Cn.

Note that q(z) can be written as
∑

|j |≤N Bjzj , z ∈ Cn, where Bj ∈ B(H ⊕ H )

and BjBk = 0 for all admissible j and k. Suppose that Tq = q#(D). Then for
any g ∈ D(Tq) one can find a sequence {hj }∞j=0 in P ⊗ (H ⊕ H ) such that
hj → g and qhj → qg. One can readily check that ‖q(z)(f ⊕g)‖ = ‖p(z)f ‖
for all z ∈ Cn and f, g ∈ H .

Pick arbitrary f ∈ D(Tp). Then f ⊕ 0 belongs to the domain of Tq . Let
{hj }∞j=0 ⊆ P ⊗ (H ⊕ H ) be the sequence chosen so that hj → f ⊕ 0 and
qhj → q(f⊕0). LetPH ⊕0 be the orthogonal projection of H ⊕H onto H ⊕0.
By the choice of q it is apparent that the sequence {PH ⊕0hj }∞j=0 ⊆ P ⊗H tends
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to f in the graph norm of Tp. Thus P ⊗ H is a core for Tp and, consequently,
T ∗
p = p#(D).

3. Closedness of range

Let p ∈ P ⊗B(CN). In what follows, det p stands for the polynomial defined
in the natural way as (det p)(z) = det(p(z)), and pkl ∈ B(CN−1) originates
from p by removing the k-th row and the l-th column.

Theorem 3.1. Assume that p ∈ P1 ⊗ B(CN), p �= 0. Then Tp is bounded
below if and only if deg det p ≥ maxk,l=1,...,N deg det pkl ≥ 0.

Proof. The “only if” part of assertion was proved in [4, Proposition 8.6].
It remains to consider the “if” part. Suppose that p = [pkl]k,l=1,...,N with
pkl ∈ P1 and Tp(f1, . . . , fN) = (g1, . . . , gN) for (f1, . . . , fN) ∈ D(Tp),
which means that 


p11 . . . p1N
...

...

pN1 . . . pNN






f1
...

fN


 =



g1
...

gN


 .

Note that by assumption det p is not identically 0, so the above equation may
be solved for f1, . . . , fN . Choose R > 0 such that all zeroes of det p lie in
-(0, R). Hence, by the Cramer formulas, we infer that

|fj (z)| ≤ sup

{∣∣∣∣det pkl(ζ )

det p(ζ )

∣∣∣∣ : k, l = 1, . . . , N, |ζ | ≥ R

}
(|g1(z)|+. . . |gN(z)|)

for all j = 1, . . . N and z ∈ C \-(0, R). Let M denote the supremum in the
above inequality. Then it follows that

∫
C\-(0,R)

N∑
j=1

|fj |2 dµ ≤ MN

N∑
j=1

‖gj‖2.

Applying Lemma 2.1 yields

‖Tp(f1, . . . , fN)‖(N) = ‖(g1, . . . , gN)‖(N) ≥ C‖(f1, . . . , fN)‖(N)
with an appropriate constant C > 0 depending only on p and R. This means
that Tp is bounded below.

Theorem 3.1 is the one variable refinement of [4, Proposition 8.6], which
gives the necessary condition for boundedness below of Tp in the multivariable
case. Although it does not seem likely one can obtain the multivariable version
of the above theorem we have not been able to give any counterexample.
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The following proposition deals with non-injective operators with closed
range.

Proposition 3.2. Let p ∈ P1 ⊗ B(CN,C). Then R(Tp) is closed.

Proof. Assume that p = [p1, . . . , pN ] and q is the greatest common di-
visor of all pj ’s, j = 1, . . . , N . We may choose p such that pN �= 0, which
involves no loss of generality. We are going to establish the following descrip-
tion of the range:

R(Tp) =
{
g ∈ B1 :

g

q
extends to an entire function

}
.

Since Tp(f1, . . . , fN) = ∑N
j=1 pjfj the inclusion “⊆” is obvious. To prove the

reverse inclusion pick g ∈ B1 such that g
q

is entire. By easy algebra there exist

polynomials q1, . . . , qj such that
∑N

j=1 qjpj = qr , where r is a polynomial
chosen so that g−qr

pN
is entire (use the interpolation property). Put

fj := qj for j = 1, . . . , N − 1, and fN := g − qr

pN
+ qN .

It is easily seen that fN ∈ B1 and Tp(f1, . . . , fN) = g, thus g ∈ R(Tp).
Observe that R(Tp) = R(Tq), where Tq is Toeplitz operator defined in B1.

By the Newman-Shapiro Isometry Theorem [10], [4] operator Tq is bounded
below, hence R(Tq) is closed.

We now turn to an example showing that the above proposition is not true
in the multivariable case.

Example 3.3. R(Tp) need not be closed even in case of homogeneous
polynomials. Define p = [p1 p2 ], where p1(z, w, ζ ) = z3w3 − ζ 6 and
p2(z, w, ζ ) = w6, (z, w, ζ ) ∈ C3. Observe that R(Tp) contains all functions
of type w3ζ 6q, where q is an arbitrary polynomial depending only on z. This
follows from Tp(−w3q, z3q) = w3ζ 6q. Suppose R(Tp) is closed. Then it
follows that the closure of {w3ζ 6q : q is a polynomial depending only on z} is
contained in R(Tp). But this closure is equal to {w3ζ 6f : f ∈ B3, f depends
only on z}, which is an immediate consequence of ‖w3ζ 6q‖2 = 3!6!‖q‖2, with
q depending only on z. Put f0(z) = (ez

2/2 − 1)(z − z1)
−1(z − z2)

−1, where
z1, z2 are two different zeroes of function ez

2/2 − 1. Observe that f0 ∈ B1.
Hence, there are f, g ∈ B3 such that Tp(f, g)(z, w, ζ ) = w3ζ 6f0(z), or more
explicitly

(z3w3 −ζ 6)f (z,w, ζ )+w6g(z,w, ζ ) = w3ζ 6 ez
2/2 − 1

(z− z1)(z− z2)
, z, w, ζ ∈ C.
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Fix arbitrary x > 0. Substituting z := x, w := 1
x

and ζ := 1 we get

g

(
x,

1

x
, 1

)
= x3 ex

2/2 − 1

(x − z1)(x − z2)
, x > 0.

This leads to a contradiction, because the left hand side of the above equality
can be estimated from above by ‖g‖ exp

(
x2

2 + 1
2x2 + 1

2

)
, x > 0, whereas this

is impossible for the right hand side. So we have proved that the range of Tp
is not closed.

By a similar argument one can show that the range of operator Tq with
q(z,w, ζ ) = [q1 q2], q1(z, w, ζ ) = z3w3 − ζ 6, q2(z, w, ζ ) = w4, (z, w, ζ ) ∈
C3, is not closed. Observe that deg q1 �= deg q2 in opposition to the previous
example. Hence, if we drop the assumption on equality of degrees of coordinate
polynomials, then it does not follow that the range of Tp is closed in case of
several complex variables.

4. The non-density example

Below we show an example of an analytic function ϕ for which polynomials
do not form a core for the operator Tϕ though they are contained in its domain.
In other words: we will indicate an analytic ϕ for which the space of all entire
functions square-integrable with respect to the measure (1+|ϕ|2) dµ contains
polynomials as a non-dense subset. Before we go into details we need the
following theorem, which is of independent interest.

Theorem 4.1. Let {zk}∞k=1 ⊆ C be a sequence of non-zero numbers satis-
fying

∣∣ zk+1

zk

∣∣ ≥ λ for all k ∈ N with some λ > 1. Then the formula

ψ(z) :=
∞∏
k=1

(
1 − z

zk

)
, z ∈ C,

defines an entire function for which there exists c > 0 such that ‖Tψf ‖ ≥ c‖f ‖
for all f ∈ D(Tψ).

Proof. Since we want to impose some additional conditions on the given
sequence {zk}∞k=1 ⊆ C, we will show that it suffices to deal only with a modi-
fication of this sequence obtained by removing a few initial terms. Indeed, if
the theorem is proved for ψ1(z) := ∏∞

k=1

(
1 − z

zk+j

)
with some integer j ≥ 0,

then applying the boundedness below of Tp with the polynomial p := ψ

ψ1
we

get ‖Tψf ‖ = ‖Tpψ1f ‖ ≥ c1‖ψ1f ‖, f ∈ D(Tψ),

where c1 is a positive constant. Thus if Tψ1 is bounded below, then so is Tψ .
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From now on we are going to assume that |z1| ≥ 1,

(4.5) λ ≥ 3

|zk| + 1, k = 1, 2, . . . ,

and

(4.6) |zk − zj | > 4, k �= j,

which can be easily obtained by omitting a suitable number of initial terms in
the sequence {zk}∞k=1.

Denote by-(w, r) the open disk with radius r centered atw ∈ C. We claim
that there exists a positive constant a such that

(4.7) |ψ(z)| ≥ a for z ∈ C \
∞⋃
k=1

-(zk, 1).

To prove this we first show that there exists a > 0 such that

(4.8) |ψ(zk + ζ )| ≥ a whenever |ζ | = 1 and k = 1, 2, . . . .

By assumption (4.6) the unit disks centered at the zk’s are disjoint so

min{|ψ(zk + ζ )| : k = 1, 2, |ζ | = 1} > 0.

Fix k ≥ 3 and observe that

ψ(zk + ζ ) =
(

1 − zk + ζ

z1

) k−1∏
j=2

(
1 − zk + ζ

zj

) (
− ζ

zk

) ∞∏
j=k+1

(
1 − zk + ζ

zj

)

We are going to find uniform (in k) estimates for terms appearing in the above
equality. We have

∣∣∣∣
(

1 − zk + ζ

z1

) (
− ζ

zk

)∣∣∣∣ ≥ |zk| − |z1| − 1

|z1zk|
≥ 1

|z1| − 1

|z2| − 1

|z1z2|
> 0.
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The next term is estimated as follows

∣∣∣∣
k−1∏
j=2

(
1 − zk + ζ

zj

)∣∣∣∣ =
∣∣∣∣
k−2∏
j=1

(
1 − zk

zk−j
− ζ

zk−j

)∣∣∣∣

≥
k−2∏
j=1

(∣∣∣∣ zk

zk−j

∣∣∣∣ − 1

|zk−j | − 1

)

≥
k−2∏
j=1

(
λj − 1

|z1| − 1

)
.

The last term tends to infinity as k → ∞. By (4.5) we see that it is always
positive, so there exists a uniform positive lower bound for all k’s. We now
turn to the remaining part:

∣∣∣∣
∞∏

j=k+1

(
1 − zk + ζ

zj

)∣∣∣∣ =
∞∏
j=1

∣∣∣∣1 − zk + ζ

zk+j

∣∣∣∣

≥
∞∏
j=1

(
1 − |zk| + 1

λj |zk|
)

=
j0∏
j=1

(
1 − |zk| + 1

λj |zk|
) ∞∏
j=j0+1

(
1 − |zk| + 1

λj |zk|
)
,

where j0 is the minimal integer for which 1 − 2
λj
> 0 for j ≥ j0. Hence

∞∏
j=j0+1

(
1 − |zk| + 1

λj |zk|
)

≥
∞∏

j=j0+1

(
1 − 2

λj

)
> 0.

To complete the proof of (4.8) we proceed to show that

(4.9) 1 − |zk| + 1

λj |zk| > c̃, j = 1, . . . , j0,

with some c̃ > 0. Indeed,

1 − |zk| + 1

λj |zk| ≥ 1 − |zk| + 1

λ|zk| = 1 − 1

λ
− 1

λ|zk| ≥ 1 − 1

λ
− 1

λ|z2| ,

which implies (4.9). So we have proved (4.8).
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To deduce (4.7) from (4.8) we need to apply the Wiman theorem stating that
for an entire function f : C → C of sufficiently small growth (i.e. dominated
by eα|z|β with some α > 0 and β ∈ (0, 1

2 )) there exists a strictly increasing
sequence of radii {Rj }∞j=1 such thatRj → ∞ and min{|f (z)| : |z| = Rj } → ∞
when j → ∞ (cf. [2, Thm 3.1.1]). In particular, we are able to find a sequence
{Rj }∞j=1 satisfying min{|ψ(z)| : |z| = Rj , j ≥ 1} ≥ a, where a is a constant
appearing in (4.8). In order to prove (4.7) it suffices to notice that

|ψ(z)| ≥ a, z ∈ -(0, Rj ) \
∞⋃
k=1

-(zk, 1)

for each j ≥ 1. This in turn follows from the minimum principle applied to ψ
restricted to the interior of -(0, Rj ) \ ⋃∞

k=1 -(zk, 1). So the property (4.7) is
proved.

Having established (4.7) we are in a position to finish the proof. Suppose
that F : C → C is entire and chosen so that F

ψ
is again entire. Applying (2.2)

and (4.7) we obtain

∫
C

∣∣∣∣Fψ
∣∣∣∣
2

dµ =
∫

C\⋃∞
k=1 -(zk,1)

∣∣∣∣Fψ
∣∣∣∣
2

dµ+
∞∑
k=1

∫
-(zk,1)

∣∣∣∣Fψ
∣∣∣∣
2

dµ

≤
∫

C\⋃∞
k=1 -(zk,1)

∣∣∣∣Fψ
∣∣∣∣
2

dµ+ e3
∞∑
k=1

∫
-(zk,2)\-(zk,1)

∣∣∣∣Fψ
∣∣∣∣
2

dµ

≤ 1

a2

∫
C\⋃∞

k=1 -(zk,1)
|F |2 dµ+ e3

a2

∞∑
k=1

∫
-(zk,2)\-(zk,1)

|F |2 dµ

= 1

a2

∫
C\⋃∞

k=1 -(zk,1)
|F |2 dµ+ e3

a2

∫
⋃∞

k=1 -(zk,2)\-(zk,1)
|F |2 dµ

≤ e3 + 1

a2

∫
C
|F |2 dµ.

This implies that ‖Tψf ‖2 ≥ a2(e3 + 1)−1‖f ‖2 for f ∈ D(Tψ). The proof is
complete.

We now proceed with the example described in the beginning of this section.
Let {zk}∞k=1 be any sequence satisfying assumptions of Theorem 4.1 and such
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that ez
2
k/2 = 1, k ≥ 1. Define the entire function ϕ by

ϕ(z) := ez
2/2 − 1∏∞

k=1(1 − z
zk
)
.

In the next proposition we list some properties of the operator Tϕ .

Proposition 4.2.

(i) P ⊆ D(Tϕ).

(ii) P is not dense in D(Tϕ) with respect to the graph norm of Tϕ .

(iii) E �⊆ D(Tϕ).

Proof. Throughout the proof we will use the notation: r(z) := z and
ψj(z) := ∏∞

k=j
(
1 − z

zk

)
, j ≥ 1, z ∈ C.

(i) Given arbitrary j ≥ 1 we show that rjϕ ∈ B. First observe that
∣∣∣∣∣
zj (ez

2/2 − 1)∏j+2
k=1

(
1 − z

zk

)
∣∣∣∣∣≤ C

e|z|2/2

(|z| + 1)2
, z ∈ C,

with a properly chosen C > 0. Since the right hand side of this inequality is
square summable with respect toµwe infer that the function rjϕψj+3 belongs
to B. Applying Theorem 4.1 to ψj+3 yields

‖rjϕψj+3‖ ≥ c‖rjϕ‖
with some c > 0. So rj ∈ D(Tϕ).

(ii) We claim that the function g(z) := e−z2/4 belongs to the domain of
Tϕ but it cannot be approximated by polynomials with respect to the induced
graph norm. Indeed, g ∈ D(Tϕ), because (gϕψ1)(z) = ez

2/4 − e−z2/4 belongs
to B and

‖gϕψ1‖ ≥ c‖gϕ‖
with some c > 0 obtained in virtue of Theorem 4.1.

We are now going to disprove the possibility of approximating g by poly-
nomials in the graph norm of Tϕ . Suppose, contrary to our claim, that one can
find a sequence {pk}∞k=1 such that pk → g and pkϕ → gϕ, k → ∞. We have

|pk(z)ϕ(z)| = |〈pkϕ, ez〉| ≤ ‖pkϕ‖‖ez‖, z ∈ C, k ≥ 1.

Since the sequence {pkϕ}∞k=1 is bounded in B, we deduce that

|pk(z)ϕ(z)| ≤ De|z|2/2, z ∈ C, k ≥ 1,
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with some constant D > 0. Taking z = x ∈ R we get

|pk(x)ϕ(x)| ≤ Dex
2/2, x ∈ R, k ≥ 1,

which together with uniform boundedness of the sequence {pk}∞k=1 near the
origin (this follows from convergence in B of the sequence) implies that

|pk(x)| ≤ D1|ψ1(x)|, x ∈ R, k ≥ 1.

with a new constant D1 > 0. Consider the function hk(z) := pk(z)e
− 4√z

defined in {z ∈ C : Im z ≥ 0}, where the branch is chosen so that 4
√
z ∈ [0,∞)

for z ∈ [0,∞) and 4
√
z ∈ {a(1 + i) : a ∈ [0,∞)} for z ∈ (−∞, 0]. Observe

that every hk is bounded on the real line. Indeed, this is a consequence of the
following inequality

|hk(x)| ≤ D1e
− 4√|x|/2|ψ1(x)|, x ∈ R, k ≥ 1,

and the fact that ψ1(z) is dominated by every function of the form eA|z|α with
A > 0 and α ∈ (0, 1). Since hk is continuous in {z ∈ C : Im z ≥ 0}, analytic
in the interior of this set and bounded by eA

√|z| with some A > 0, we can
apply the Phragmen-Lindelöf principle (cf. [2, Thm. 6.2.4]) to deduce that

|hk(z)| ≤ D2, Im z > 0, k ≥ 1,

where D2 := sup
{
D1e

− 4√|x|/2|ψ1(x)| : x ∈ R
}
. This means that

|pk(z)| ≤ D2

∣∣e 4√z∣∣, Im z > 0, k ≥ 1,

which is in contradiction with the convergence pk(z) → e−z2/4, k → ∞.
(iii) We will check that ea /∈ D(Tϕ) when Re a > 0. Suppose that ea ∈

D(Tϕ), then

|ea(z)ϕ(z)| = |〈eaϕ, ez〉| ≤ ‖eaϕ‖e|z|2/2, z ∈ C.

It follows that

|exā(ex2/2 − 1)| ≤ ‖eaϕ‖ex2/2|ψ1(x)|, x ∈ R,

which is a contradiction, since |ψ1(x)| is dominated by e
√|x| on the real axis.

The proof is complete.

Remark 4.3. It is known that if P is any polynomial satisfying

|P(x)| ≤ M(x), x ∈ R,
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where

(4.10)
∫ +∞

−∞
log+ M(x)

1 + x2
dx < +∞,

then a majorant of exponential growth in |z| can be given for |P(z)| in the
whole complex plane (the condition (4.10) is sharp). However, instead of just
quoting this theorem, we preferred to give an ad hoc proof for (ii), for the
reader’s convenience.

The above example was found by the second named author as an attempt
to find a “constructive” approach to a result published in [3] (Theorem 2.2),
proof of which required existence of an entire function ϕ such that it belongs
to B with all polynomial multiples, yet some exponential multiple does not
belong to B. Later on, it occurred that this function is also a good example for
disproving the polynomial approximation property as it is stated in Proposition
4.2(ii). This in turn may be regarded as a contribution to the topic of paper
[1], which deals with polynomial approximation in the Segal-Bargmann type
spaces. However, it would be far more significant to establish whether there
exists an entire function ϕ satisfying conditions (i) and (ii) of Proposition 4.2
together with E ⊆ D(Tϕ). In this way we would get the answer to the following
open problem: is?ϕ always adjoint to Tϕ with ϕ : C → C entire and such that
ϕez ∈ B for all z ∈ C?
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