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AFFINE-DISTANCE SYMMETRY SETS

P. J. GIBLIN and P. A. HOLTOM∗

Abstract
The affine distance symmetry set (ADSS) of a plane curve is an affinely invariant analogue of the
euclidean symmetry set (SS) [7], [6]. We list all transitions on the ADSS for generic 1-parameter
families of plane curves. We show that for generic convex curves the possible transitions coincide
with those for the SS but for generic non-convex curves, further transitions occur which are generic
in 1-parameter families of bifurcation sets, but are impossible in the euclidean case. For a non-
convex curve there are also additional local forms and transitions which do not fit into the generic
structure of bifurcation sets at all. We give computational and experimental details of these.

1. Introduction

Affine-invariant symmetry sets of planar curves were first introduced and stud-
ied by Giblin and Sapiro (see [11], [13]). The idea was to mimic several differ-
ent constructions of the euclidean symmetry set to produce analogous affine-
invariant symmetry sets for affine plane curves. Recall that the symmetry set
of a simple closed smooth plane curve γ can be constructed as the locus of
centres of circles tangent in two places to γ , together with limit points of this
locus, and that the medial axis of γ is the subset of the symmetry set where
we restrict to ‘maximal circles’, whose radius coincides with the minimum
distance from the centre to γ . The medial axis is also called the skeleton of
γ , or of the region enclosed by γ . The skeleton was first introduced by Blum
[3] in the context of biological shape. Since it is based on circles the skeleton
is, of course, a euclidean invariant. Other constructions are possible, for ex-
ample via envelopes of lines; see [14]. The medial axis is used extensively in
shape analysis; see for example the web-page [17]. It has also appeared as the
‘shock set’, as on the web-page just cited, and the ‘conflict set’ in the work of
D. Siersma [21].

One of the first, and most striking, results of an attempt to invent an affine
invariant symmetry set was that, although the different constructions for the
euclidean symmetry set led to identical sets, the affine-invariant analogues of
these constructions resulted in genuinely different sets. Thus there is no single
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affine-invariant symmetry set, but instead a number of affine-invariant sets
which individually capture some aspects of local affine symmetry.

In this article we consider one of the affine-invariant symmetry sets as
introduced in [11], [13], namely the Affine Distance Symmetry Set (ADSS),
defined by replacing euclidean distance with ‘affine distance to a curve’ in
the sense of Izumiya [16]. The local structure of the ADSS was classified in
these articles, on the assumption that the curve contained no inflexions. The
present article extends this to curves with inflexions and gives a complete
list of the transitions on the ADSS of generic 1-parameter families of curves,
following the analogous procedure given in [6] for the euclidean symmetry set.
We find that ovals (strictly convex smooth closed curves) behave very much as
do generic curves relative to the euclidean symmetry set. However, when we
allow non-ovals, several transitions which were barred in the euclidean case
become possible, and transitions directly involving inflexions are completely
new.

The paper is organised as follows. In §2 we introduce the basic notions of
affine plane differential geometry needed in the sequel. In §3 we recall the
definition of the ADSS, in §4 we describe the theoretically possible transitions
on symmetry sets and in §5 we show which of these can actually occur. In
§6 we describe the special, and apparently highly degererate (but generic!)
transitions which directly involve inflexions. Here we rely on computation
and experiment in the absence of a theoretical framework. Finally in §7 we
describe further directions for research.

Many of the results below are explored in greater detail in the second au-
thor’s PhD thesis [15] which is available on-line.

2. Planar affine differential geometry

Here we briefly present some basic concepts and definitions of planar affine
differential geometry. For more information, see for example [11], [19], [20].
Let γ (t): S1 → R2 be a simple closed smooth planar curve parametrized by t .
A reparametrization using the ‘affine arclength’ parameter s satisfying

(1) [γ ′(s), γ ′′(s)] = 1,

where ′ denotes derivative with respect to s and [∗, ∗] denotes the determinant
of the 2 × 2 matrix defined by two vectors in R2, is invariant under affine
transformations of determinant 1. (The symmetry set we define in §3 is invari-
ant under arbitrary affine transformations.) The vectors γ ′(s) and γ ′′(s) are
respectively the affine tangent and the affine normal to γ at γ (s).

Geometrically, the straight line in the direction of the affine normal at a
point of a curve γ is the locus of centres of conics having (at least) 4-point
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contact with γ at that point. Since (1) cannot hold at inflexion points of γ , this
means that affine differential geometry is not defined at these points: however,
since inflexions are affine-invariant, we circumvent this problem in practice
by segmenting the curve into convex portions. The limiting affine normal at
an inflexion is parallel to the tangent and of infinite length. Note also that for
an oval (a closed curve without inflexions) the condition [γ ′, γ ′′] = 1 forces
an anticlockwise orientation.

From expression (1) it follows that for an arbitrary parametrization t ,

(2) ds = [γ̇ , γ̈ ]1/3dt,

where˙(dot) denotes derivative w.r.t. t . We also have the following relationship
between the affine tangent γ ′ and the Euclidean tangent T :

γ ′ = κ−1/3T .

Lemma 2.1. Two curves share the same affine tangent at a point if and
only if neither has an inflexion and they have (at least) 3-point contact there.
Two curves share the same affine tangent and normal at a point if and only if
neither has an inflexion and they have (at least) 4-point contact there.

Differentiating (1) w.r.t. s we obtain

[γ ′(s), γ ′′′(s)] = 1,

for all s, and therefore

(3) γ ′′′(s)+ µγ ′(s) = 0,

for some real function µ(s), the affine curvature) of γ : it is the simplest non-
trivial affine differential invariant, and defines a curve uniquely up to (equi-)
affine transformation (see [2]), just as the euclidean curvature defines a curve
up to euclidean transformation. Bracketing both sides of expression (3) with
γ ′′(s) gives us

(4) µ(s) = [γ ′′(s), γ ′′′(s)].

Curves of constant affine curvature are conics: µ < 0 for a hyperbola, µ = 0
for a parabola and µ > 0 for an ellipse. Two curves having 5-point contact at
a point have the same affine tangent, normal and curvature there. In particular
the osculating (5-point contact) conic at a non-inflexional point of a curve is a
hyperbola, parabola or ellipse according as µ <,=, > 0.

The centre of affine curvature at γ (s) is the centre of the osculating conic at
that point, that is, the point γ (s)+(1/µ(s))γ ′′(s), and the locus of these points
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is the affine evolute of γ , the affine-invariant analogue of the Euclidean evolute:
furthermore, with analogy to the Euclidean situation, the affine evolute is the
envelope of the affine normal lines to the curve. A point for which µ′(s) = 0
is called an affine vertex of a curve, or a sextactic point: at such a point there
exists a conic having 6-point contact with the curve. The centre of a sextactic
conic lies at a cusp of the evolute. There are at least six points on a closed
curve for which µ′(s) = 0 (see [2] for a proof of this; see also [9] for a short
exposition on the existence of sextactic points).

We now recall the definition of affine distance, which is based on area and
is invariant under equi-affine transformations.

Definition 2.2. Let x be a point in the plane, and γ (s) a planar curve
parametrized by affine-arclength s. The affine distance between x and a non-
inflexional point γ (s) on the curve is given by

(5) d(x, s) ≡ [x − γ (s), γ ′(s)].

In [16], it is shown that the affine evolute is the bifurcation set of the family
of affine-distance functions and this fact is used to study the local structure of
the affine evolute.

We shall use Arnold’s standard Ak notation for singularities of functions
of one variable. A function f (t) is said to have type Ak at t0 if, by a smooth
invertible change of parameter, f can be transformed to the form (t − t0)

k+1+
constant. We have:

Proposition 2.3 ([16]). Away from affine inflexion points of γ , the affine
distance function d defined on γ exhibits the following singularities:

A≥1 ⇐⇒ x − γ (s) is parallel to γ ′′(s): x is then on the affine normal line to
γ at γ (s).

A≥2 ⇐⇒ µ(s) = 0 and x = γ (s) + 1
µ(s)

γ ′′(s): x is then at the centre of
affine curvature of γ at γ (s), that is, on the affine evolute of γ .

A≥3 ⇐⇒ µ(s) = 0, x = γ (s) + 1
µ(s)

γ ′′(s) and µ′(s) = 0: x is then on the
affine evolute of γ at an affine vertex.

Proof. See [16].

Finally in this section we give some formulae which are useful in convert-
ing from arbitrary parametrizations to affine-invariant parametrizations. The
proofs are straightforward.

Suppose γ (t) is an arbitrary regular parametrization of a plane curve γ .
We will use˙(dot) for d/dt , ′ (prime) for derivative w.r.t. affine-arclength, and
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write k(t) = [γ̇ , γ̈ ]. We have

(6) γ ′(t) = k−1/3γ̇ (t), γ ′′ = k−2/3γ̈ − 1

3
k̇k−5/3γ̇ .

For a graph γ (x) = (x, f (x)) we have

γ ′′(x) = f̈ −5/3

(
−1

3

...
f (x), f̈ (x)2

)
.

Thus the affine normal vector is in direction( ...
f (x),−3f̈ (x)2

)
.

3. The affine distance symmetry set

Recall that the (euclidean) symmetry set of a simple closed plane curve γ is
the closure of the locus of centres of circles tangent to γ in two (or more)
places. The symmetry set together with the (euclidean) evolute constitute the
full bifurcation set of the family of distance-squared functions on γ (see [6]).

The analogous symmetry set in the affine case is the affine distance symmetry
set (ADSS): the closure of the locus of points x ∈ R2 on two affine normals
and affine-equidistant from the corresponding points on the curve. The ADSS
of γ is the closure of the set of points x which are the common centre of two
conics sharing the same affine radius and having 4-point contact with γ .

The ADSS, together with the affine evolute, form the full bifurcation set
of the family of affine distance functions on γ . Using this, we obtain the first
four parts of the following theorem, where for exampleA1A2 means an affine-
distance function with these two singularity types at two points of γ , and the
same value at these two points. Similarly A3

1 refers to three singularities of
type A1 for the affine-distance function, which has the same value at all the
corresponding curve points. In parts 5 and 6 of the theorem the affine-distance
function is not defined and the result is obtained only by a hands-on calculation
[15] with power series expansions. Nevertheless both these situations occur
generically as limiting points of theADSS. We do not know how to fit them into
the general theory of bifurcation sets. Some details of the required calculations
are given following the statement of the theorem.

Theorem 3.1. Locally, the affine distance symmetry set of a generic plane
curve γ a point x is as follows.

(1) Smooth when both conics have exactly 4-point contact with γ (A2
1).

(2) An ordinary cusp when one of the conics has 5-point contact with γ (x
is then on the affine evolute of γ too, at a smooth point of it) (A1A2).



252 p. j. giblin and p. a. holtom

(3) An endpoint when x is the centre of a 6-point contact conic, that is, a
conic tangent to γ at a sextactic point: the endpoint is then in a cusp of
the affine evolute (A3).

(4) A triple crossing when there are three conics centred at x having equal
affine radius and 4-point contact with γ (A3

1).

(5) An ordinary cusp at the intersection point of two inflexional tangents to
γ . This cusp does not lie on the affine evolute, in contrast to case 2 above.
In this case we can regard each conic as being a repeated inflexional
tangent line. In that case each conic has 6, rather than 4-point contact
with γ . See Figure 1.

(6) A (5, 6)-singularity (like x5 = y6) at the point where an inflexional
tangent cuts the curve again. In this case we can regard the two conics as
being repeated tangent lines, one inflexional tangent and one ordinary
tangent. The contacts are therefore 6 and 4, yet this gives a far more
degenerate singularity than the preceding case! See Figure 1.

A

B

C
E

D

Figure 1. Left: Inflexional tangents atA andB intersect atC, where theADSS
will have an ordinary cusp; at D and E the ADSS will have a singularity of
type (5,6). See Theorem 3.1, parts 5 and 6. Right: an actual example of a
curve γ (in grey) exhibiting these features on the ADSS (thinner black curve).
The affine evolute is also drawn (thicker black curve); it has inflexions at the
inflexions of γ and four cusps in the figure – at the right there is a crossing, not
a cusp, where the figure is clipped. The ADSS has endpoints in the four cusps
of the affine evolute (Theorem 3.1, part 3), two cusps on the affine evolute
(part 2), a cusp at the intersection of inflexional tangents of γ (part 5), and
two (5, 6) singularities where inflexional tangents of γ meet the curve again
(part 6).

In order to explain the calculations leading to parts 5 and 6 of the theorem
we shall need the following criterion and formula, from [11].
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Proposition 3.2 (ADSS Condition). Suppose γ (s) is a smooth, simple
closed curve. The necessary and sufficient condition for distinct s1, s2, with
neither of γ (s1), γ (s2) being an inflexion of the curve, to give a point of the
ADSS is

(7) γ (s1)− γ (s2) parallel to γ ′′(s1)− γ ′′(s2),

′ being derivative with respect to affine arc-length. In fact

γ (s1)− γ (s2) = d0
(
γ ′′(s1)− γ ′′(s2)

)
,

whered0 is the common affine distance from theADSS point toγ atγ (s1), γ (s2).
The corresponding point of the ADSS is

(8) γ (s1)+ [γ (s1)− γ (s2), γ
′′(s1)]

[γ ′′(s2), γ ′′(s1)]
γ ′′(s1).

We say that the condition (7) defines the pre-ADSS: the parameter pairs
which are needed to determine the ADSS itself. We do of course include lim-
iting points of (7) which lie on the diagonal s1 = s2; these give the end-points
of the ADSS itself. Some examples of the pre-ADSS are given in the figures
in §6.

Remark 3.3. It is interesting to note that smooth points of the pre-ADSS
where the curve is tangent (2-point contact) to a line s1 = constant or s2 =
constant correspond conveniently to cusps as in Theorem 3.1(2), except that
they also arise for pairs satisfying (7) when the tangent at γ (s1)meets the curve
again at γ (s2), or vice versa. This is a generic occurrence and happens, e.g.,
in Figure 6, left. Cusps of the type in Theorem 3.1(5) do not make themselves
evident on the pre-ADSS.

Of course we cannot use (7) or (8) in a neighbourhood of an inflexion, since
γ ′′ is undefined there. In order to obtain results on the limiting behaviour of
the ADSS when one or both points of γ are inflexion points we have to resort
to ‘bare hands’, as follows. Take one segment of γ to be the curve γ1 with an
inflexion at the origin, say γ1(s) = (s, as3 +bs4 +· · ·). Take another segment
of γ to be parametrized by t say; of course s is not affine arclength, and we do
not need t to be either. We use (6) to write (7) in terms of s and t and multiply
up by k5/3

1 k
5/3
2 to clear denominators, where ki = [γ̇i , γ̈i], the dots referring

to differentiation with respect to s or t . It is then convenient to express k1 as a
power series in s, and hence to obtain

k
5/3
1 = (6a)5/3s5/3

(
1 + 10b

a
s + · · ·

)
.
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Writing γi = (Xi, Yi) we arrive at the pre-ADSS condition replacing (7) of
the form c1 = c2s

5/3, where

c1 = (X1 −X2)k
5/3
2

(
k1Ÿ1 − 1

3
k̇1Ẏ1

)
− (Y1 − Y2)k

5/3
2

(
k1Ẍ1 − 1

3
k̇1Ẋ1

)
,

c2 = (6a)5/3
(

1 + 10b

a
s + · · ·

) (
(X1 −X2)

(
k2Ÿ2 − 1

3
k̇2Ẏ2

))

− (Y1 − Y2)

(
k2Ẍ2 − 1

3
k̇2Ẋ2

)
.

Finally, to make the functions smooth everywhere we actually use for the
pre-ADSS condition

(9) c3
1 = c3

2s
5.

This can be expanded as a power series in s and t for computational purposes.
The result can be substituted in (8) to obtain a local power series expansion of
the ADSS. In this way we find the results 5 and 6 of Theorem 3.1. (The full
calculations are in [15].)

4. Transitions on bifurcation sets

In the study of 1-parameter families of Euclidean Symmetry Sets in [6], a full
list of all the possible transitions that may occur on the full bifurcation set of a
generic 2-parameter family of functions of one variable is obtained. We shall
reproduce here in Figure 2 only the list which is relevant to the current situation;
for the other cases (‘Morse’ transitions and those involving D singularities)
see [6].

A4
1(a)

A4
1(b)

A2
1A2(a)
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A2
1A2(b)

A1A3(a)

A1A3(b)

A2
1(a)

A2
2(b)

A4

Figure 2. Local transitions on symmetry sets in generic 1-parameter families of plane
curves, omitting the ‘Morse’ transitions and those related to D singularities.

In [6] it is shown that not all of these transitions may actually occur for the
euclidean symmetry set: the transitions A4

1(b), A
2
1A2(b), A1A3(b) are ruled

out by geometrical considerations, whereas the respective (a) transitions do
occur.

We now carry out a similar analysis of the transitions on 1-parameter fam-
ilies of affine distance symmetry sets, in order to classify the transitions which
may actually occur on the ADSS of a smooth plane curve as this curve is de-
formed through a 1-parameter family. In the next section we avoid inflexion
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points of the underlying curve γ . Nevertheless it will turn out that there is a
striking difference between the cases of oval and non-oval curves γ .

In §5 we illustrate the method with an example, that of theA1A3 transitions.
Similar procedures apply to the other transitions; the details are in [15].

In §6 we give some details of the strange transitions which occur when
we have inflexions on the curve γ , as in Theorem 3.1(5) and (6). At present
we are not able to predict the details of these transitions theoretically: as in
the theorem, we are forced to do bare-hands calculations and experiments
since the affine-distance function to which we wish to apply the techniques of
singularity theory is undefined at the relevant points. The transitions appear to
be, from the usual standpoint, highly degenerate, though in the present context
they are generic.

5. Transitions on the ADSS

We will now sketch proofs of the following two theorems, the main results of
this article. For this section we avoid inflexion points of the underlying curve
γ . (Compare §6.) The proofs proceed on a case-by-case basis and we illustrate
with a typical case below, that of A1A3.

Theorem 5.1. The transitions A4
1(a), A

2
1A2(a), A1A3(a), A2

2(a), A
2
2(b)

and A4 (as illustrated in Figure 2) occur on the Affine Distance Symmetry
Set of a generic family of ovals (examples exist), but the transitions A4

1(b),
A2

1A2(b), A1A3(b) cannot.

The crucial point to note about the above is that the proof is restricted to
ovals only: the proof depends fundamentally on the fact that we are restricting
the family of curves to ovals, and if we lose this restriction, then there is no
reason to rule out the A4

1(b), A
2
1A2(b), A1A3(b) transitions from occurring

on the ADSS. In fact, our arguments show, by finding explicit conditions on
curve segments (e.g. (10) below), that the other transitions do occur on families
of non-oval plane curves, and in fact by means of examples it is possible to
observe these ‘extra’ transitions occurring on the ADSS of a non-oval. (This
task is non-trivial due to the extremely complicated nature of the ADSS.) We
are able to conclude:

Theorem 5.2. The transitionsA4
1(a),A

4
1(b),A

2
1A2(a),A1A3(a),A1A3(b),

A2
1A2(b), A2

2(a), A
2
2(b) and A4 (as illustrated in Figure 2) all occur on the

ADSS of a generic family of plane curves.

Example. The A1A3 transitions

We follow the procedure as outlined in [6] in theA1A3 singularity case in order
to illustrate the methods by which we hope to classify the transitions that may
occur on 1-parameter families of Affine Distance Symmetry Sets.
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Consider the standard multi-versal unfolding of an A1A3 singularity. This
is a family containing all generic deformations of the A1A3 singularity, that is
all ‘nearby’ singularities. This is written as follows.

G: R(2) × R3 → R,

where R(2) denotes parameters t1, t2 (near zero), R3 denotes the space of un-
folding parameters y = (y1, y2, y3), and multi-versal unfolding G is given by
the two unfoldings

G1(t1, y) = t21 ,

G2(t2, y) = ±t42 + t22y1 + t2y2 + y3.

Note that there is a choice of sign in G2: this ambiguity will not effect our
calculations, and without loss of generality we will from now on take the
positive sign.

Step One. Finding the ‘Big Bifurcation Set’
The first task is to find the ‘Big Bifurcation Set’(BBS) of standard unfoldingG,
which sits in y-space: this object contains all the possible bifurcation sets in a
neighbourhood of theA1A3 singularity of whichG is a multi-versal unfolding.
TheA1A3-point itself sits at the origin in this space. The individual bifurcation
sets can be recovered as the level sets of a generic function on the BBS. The
BBS will comprise an A2

1-set (the ‘big symmetry set’) and a A2-set (the ‘big
evolute’), situated in Ry-space. The A2

1-set itself is in two parts: the first is the
‘swallowtail’ surface defined by

{
y2 = −4t32 − 2t2y1,

y3 = 3t42 + t22y1,

and the second is the half-plane {y1 ≤ 0, y2 = 0}. The A2-set is the cuspidal
edge in the y3-direction, with y1 ≤ 0, given by

y1 = −6t22
y2 = 8t32

y3 arbitrary




Figure 3(a) shows the BBS.
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(a) (b) a3 � 0

a1 � 0

Figure 3. (a) The Big Bifurcation Set for the standard unfolding of an A1A3

singularity. It consists of a swallowtail surface, a half-plane, and the ‘big evolute’
which is the cuspidal edge, shown dashed. (b) Each point in this RP 2 represents
a plane through the origin in y-space: the lines a1 = 0 and a3 = 0 represent
the set ! corresponding to the ‘bad directions’; these are the kernel directions of
non-generic linear functions on the BBS.

Step Two. Finding the ‘bad planes’
We call a plane through the origin in R3

y a bad plane if it contains the limit of
tangent spaces to a stratum of the BBS at smooth points tending to the origin.
Our task is to find all of these bad planes: it is precisely these planes which
we wish to avoid as kernel planes to generic linear functions on the BBS. Let
such a linear function be

h = a1y1 + a2y2 + a3y3,

Consideration of the limiting tangent planes shows that the only ‘bad’ planes
are those orthogonal to (1, 0, 0) and (0, 0, 1). We denote this set of bad planes
in RP 2 by !, shown in Figure 3(b). The components of RP 2 − ! represent
collections of normals to planes which, as kernels of dh(0), give stratified
C0-equivalent functions h: that is, each component in the region swept out by
normals to planes giving stratified C0-equivalent families of sections.

Remark 5.3. For relevant remarks on stratified C0 equivalence, and in
particular a discussion of why this is the correct equivalence to use here, see
[6, p. 199].

Step Three. Families of sections (level sets of generic functions)
We can distinguish between the regions of Figure 3(b) by considering the sign
of a1a3. We find:

Proposition 5.4 (A1A3 condition). A point (a1: a2: a3) is in a shaded/un-
shaded region of Figure 3(b) depending on whether

a1a3
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is positive/negative respectively, and the corresponding full bifurcation set
exhibits a transition of type A1A3(a)/A1A3(b) (see Figure 4).

A1A3(a)

a1a3 � 0

A1A3(b)

a1a3 � 0

Figure 4. The A1A3 transitions for a1a3 > 0 and a1a3 < 0.
The evolute (A2-set) is shown as a dashed line.

Step Four. Relating standard model to the ADSS
It remains to relate theA1A3 condition of Proposition 5.4, which distinguishes
between the occurrence of the two different A1A3 transitions on a generic
full bifurcation set, to the particular family of functions at hand, namely those
given by affine distance. The calculations are from now on specific to this case.

Let x = (x1, x2) ∈ R2, and denote by x0 theA1A3-point on the ADSS. Then
the family of affine distance functions on the family of curve segments will be

F : R × R × R2, (0, 0, x0) → R,

given by

Fi(ti , u, x) = [x − γu,i(ti), γ
′
u,i(ti)] =

∣∣∣∣∣
x1 −Xu,i(ti) X′

u,i(ti)

x2 − Yu,i(ti) Y ′
u,i(ti)

∣∣∣∣∣
for i = 1, 2, where ′ (prime) will always denote ∂/∂ti , and ti is assumed to be
the affine-arclength parameter along the corresponding curve segment γi . We
are able to show that

a1 ≡ ∂B1

∂y1

∣∣∣∣
y=0

anda3 ≡ ∂B1

∂y3

∣∣∣∣
y=0

whereB1 is equivalent to the map h on the standardA1A3-set. We then deduce
that

I3 =




∂2

∂t2

(
∂F2
∂u

)
∂2

∂t2

(
∂F2
∂x1

)
∂2

∂t2

(
∂F2
∂x2

)
∂
∂t

(
∂F2
∂u

)
∂
∂t

(
∂F2
∂x1

)
∂
∂t

(
∂F2
∂x2

)
∂F2
∂u

− ∂F1
∂u

∂F2
∂x1

− ∂F1
∂x1

∂F2
∂x2

− ∂F1
∂x2




∣∣∣∣∣∣∣∣
(A(t,0),x0)

×




∂B1
∂y1

∂B1
∂y2

∂B1
∂y3

∂B2
∂y1

∂B2
∂y2

∂B2
∂y3

∂B3
∂y1

∂B3
∂y2

∂B3
∂y3




∣∣∣∣∣∣∣∣
y=0
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where I3 is the (3 × 3) identity matrix. We will denote by JB the matrix of
partial derivatives of B1, B2 and B3, evaluated at y = 0. We will not need the
∂F2/∂u components, since we only require terms from the top row of JB,
which are given as cofactors in the matrix of partial derivatives of F1, F2. If
we write

A(t, 0) ≡ α1t + α2t
2 + · · ·

for coefficients αi ∈ R (α1 = 0), then the system becomes
 1 0 0

0 1 0

0 0 1




=



∗ α2Y
′′
2 + α2

1Y
′′′
2 −α2X

′′
2 − α2

1X
′′′
2

∗ α1Y
′′
2 −α1X

′′
2

∗ Y ′
2 − Y ′

1 −X′
2 +X′

1


 ×




∂B1
∂y1

∂B1
∂y2

∂B1
∂y3

∂B2
∂y1

∂B2
∂y2

∂B2
∂y3

∂B3
∂y1

∂B3
∂y2

∂B3
∂y3




∣∣∣∣∣∣∣∣
y=0

This tells us that

∂B1

∂y1

∣∣∣∣
y=0

=
∣∣∣∣ α1Y

′′
2 −α1X

′′
2

Y ′
2 − Y ′

1 −X′
2 +X′

1

∣∣∣∣ ,
= −α1[γ ′

2 − γ ′
1, γ

′′
2 ],

∂B1

∂y3

∣∣∣∣
y=0

= −α3
1[γ ′′

2 , γ
′′′
2 ].

Thus
a1a3 = α4

1[γ ′
2 − γ ′

1, γ
′′
2 ] · [γ ′′

2 , γ
′′′
2 ],

is the expression that we wish to interpret. Now as usual we denote the affine
curvature of γ2 at t2 = 0 by µ2 ≡ [γ ′′

2 , γ
′′′
2 ], and thus we have:

Theorem 5.5 (A1A3 condition for the ADSS). The ADSS at anA1A3-point
exhibits a transition of type A1A3(a)/A1A3(b) depending upon whether

(10) −µ2[γ ′
1 − γ ′

2, γ
′′
2 ]

is positive/negative respectively.

In what follows we interpret this condition for ovals, showing that the ex-
pression (10) can take only one sign for ovals. Then we disregard the condition
that the curves are ovals and show that this expression can take both negative
and positive signs for generic plane curves.
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Interpretation of A1A3 condition for ovals
We will assume that our curve points γ1 and γ2 lie on the same oval, with cor-
responding affine tangents γ ′

1, γ
′
2. We use the following result, which follows

from the fact that affine arclength forces an anticlockwise orientation on an
oval.

Lemma 5.6 (Oval Condition). If γi , γj are two distinct points on an oval
parametrized by affine-arclength, then

[γi − γj , γ
′
i ] > 0,

where as usual ′ (prime) denotes derivative w.r.t. affine-arclength.

We also use the ADSS Condition of Proposition 3.2. Now since we have
an A3 singularity of the affine distance function at γ2, we know that the A1A3

ADSS point x0 can be expressed as

x0 ≡ γ2 + 1

µ2
γ ′′

2 ,

(see Proposition 2.3), and the fact that γ1 and γ2 must be the same affine
distance d0 from x0 implies that d0 = −1/µ2, and therefore

x0 ≡ γ1 + 1

µ2
γ ′′

1 .

We substitute this into the Oval Condition [γ1 − γ2, γ
′
1] > 0 to get[

1

µ2
(γ ′′

2 − γ ′′
1 ), γ

′
1

]
> 0,

⇐⇒ 1

µ2
([γ ′′

2 , γ
′
1] + 1) > 0,

⇐⇒ 1

µ2
(1 − [γ ′

1, γ
′′
2 ]) > 0,

⇐⇒ 1

µ2
([γ ′

2 − γ ′
1, γ

′′
2 ]) > 0, since [γ ′

2, γ
′′
2 ] = 1,

which proves that the expression (10) takes only positive values for ovals. Thus
the transition A1A3(b) will not occur on the ADSS of a family of ovals. The
transition A1A3(a) occurs, and indeed explicit examples can be constructed
([15]).

Proposition 5.7. The transition A1A3(a) occurs generically on the ADSS
of a family of ovals, but the transition A1A3(b) does not occur at all.
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Interpretation of A1A3 condition for non-ovals
We will now show that, if we disregard the assumption that the points γ1 and
γ2 lie on the same oval, then the expression (10) can take negative values.
It is possible to construct two situations in turn, one with µ2 > 0 and the
other with µ2 < 0, and show that (10) is positive and negative respectively.
However we shall concentrate here on the µ2 < 0 condition, which gives the
new phenomenon for non-ovals.

The following proposition from [11] will be useful.

Proposition 5.8 (Concurrent Tangents Condition). Suppose two points
γ (s1), γ (s2) contribute point x to the ADSS of a curve γ , parametrized by
affine-arclength s. (As usual, we use ′ (prime) to denote derivative w.r.t. s.)
Then the tangent line to the ADSS at x is

• in the direction γ ′(s1)− γ ′(s2), and

• concurrent with the corresponding tangent lines at γ (s1), γ (s2).

x0

v12
g2�

g2

g1

g1

g2�

x0

g2�

g2 g2�

g2�

g1�

(a) (b)

Figure 5. (a) Fix γ2, γ ′
2, x0, γ1 and the tangent direction at γ1. Then

we can deduce γ ′′
2 , and we see that µ2 < 0. (b) It then follows that

γ ′
1 is as shown, and hence we can deduce v12. It is then clear that

[v12, γ
′′
2 ] < 0.

Now assume that µ2 < 0. Consider Figure 5(a), where without loss of gener-
ality we have fixed γ2, γ ′

2 and x0, and also the point γ1 and the corresponding
tangent line through this point. Since [γ ′

2, γ
′′
2 ] = 1, we can deduce the direc-

tion and length of γ ′′
2 as shown. Then, since the γ2 point corresponds with the

A3 singularity of the affine distance function, we know that

x0 ≡ γ2 + 1

µ2
γ ′′

2 ,

and hence µ2 < 0. Also, since x0 must be the same affine distance from γ1

as it is from γ2, we can deduce that γ ′
1 has direction and length as shown in
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Figure 5(b), and from this it follows that v12 ≡ γ ′
1 − γ ′

2 has orientation as
shown. (The Concurrent Tangent Condition tells us the direction of v12.) Thus

[v12, γ
′′
2 ] < 0,

and therefore
−µ2[v12, γ

′′
2 ] < 0.

Remark 5.9. In this case, γ1 and γ2 cannot lie on the same oval with
corresponding affine tangent vectors γ ′

1 and γ ′
2.

Proposition 5.10. The ADSS of a generic family of plane curves exhibits
transitions of both types A1A3(a) and A1A3(b).

It is now possible to take two polynomial branches of a smooth curve γ
and calculate the condition on the coefficients which separates the two cases.
Explicit families can now be constructed which exhibit the transitions. This is
done in [15]. This concludes the discussion of A1A3.

For the other cases, here are the conditions which determine which of the
two alternative transitions occur. In all of these, dropping the oval condition
permits both signs of the expression to be realised. The details of calculations
are in [15]. As with theA1A3 transition, the crucial point is that, for non-ovals,
both signs can occur so that both transitions are possible. The notation is that
of Figure 2.

Proposition 5.11.
(1) A4

1 (a) or (b) according as

[γ ′
1 − γ ′

2, γ
′
2 − γ ′

3][γ ′
2 − γ ′

3, γ
′
3 − γ ′

4][γ ′
3 − γ ′

4, γ
′
4 − γ ′

1][γ ′
4 − γ ′

1, γ
′
1 − γ ′

2]

is positive or negative.

(2) A2
1A2 (a) or (b) according as [γ ′

1 − γ ′
2, γ

′′
1 ][γ ′

1 − γ ′
3, γ

′′
1 ] is positive or

negative. Here γ1 is the branch contributing the A2 singularity.

(3) A2A2 (a) or (b) according asµ′
1µ

′
2 is positive or negative. Hereµ is the

affine curvature. In the situation of the Euclidean symmetry set both cases
occur and are distinguished by the signs of the derivative of Euclidean
curvature.

(4) The single A4 transition also occurs generically on the ADSS.

6. Transitions involving inflexions

In this section we present some experimental results which show how the
ADSS transforms when inflexions on the curve γ are involved. We do not as
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yet know how to fit these transitions into the framework of singularity theory.
We shall briefly consider the four possible generic cases:

(1) Two inflexions merging locally in a higher inflexion cause an ordinary
cusp at the intersection of the inflexional tangents, as in Theorem 3.1(5),
to disappear. See Figure 6.

(2) Two inflexions merging in a higher inflexion cause two ordinary cusps,
at the intersection with another fixed inflexional tangent, as in The-
orem 3.1(5), to interact. See Figure 7.

(3) The inflexional tangent at γ (s1) meets the curve γ again in two points
which come into coincidence; as in Theorem 3.1(6) two (5, 6) singular-
ities on the ADSS then merge. See Figure 8.

(4) Two inflexions merging cause two (5, 6) singularities to merge since
the inflexional tangents meet γ in two further points which come into
coincidence. See Figure 9.

Figure 6. Left: a curve with two nearby inflexions. The ADSS has a single cusp at
the intersection of the two inflexional tangents (Theorem 3.1(5)). Below is drawn
the pre-ADSS, plus the diagonal. The cusp on the ADSS is not evident on the
pre-ADSS. See Remark 3.3. Centre: the moment where the two inflexions merge.
The pre-ADSS (below) has become highly singular: even ignoring the diagonal
part there are three branches through the singular point. The right-hand diagram
shows the curve, now having no inflexions locally, together with the ADSS – three
branches with endpoints – and also for good measure the affine evolute (drawn
heavily), which can be seen to have cusps at the endpoints of the ADSS.

7. Conclusion and further research

We have considered the affine distance symmetry set (ADSS) of a plane curve,
which is defined in a way closely analogous to the euclidean symmetry set.
For the case of oval curves the transitions occurring on the ADSS in a generic
1-parameter family of curves are in fact identical with those occurring on
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Figure 7. Left: One branch of γ has two inflexions which are very close together.
The tangents to γ there meet the tangent to the other inflexional branch of γ ,
creating two cusps on the ADSS. The pre-ADSS is shown below. As the two
inflexions on the first branch of γ merge (centre) the pre-ADSS undergoes a
transition reminiscent of a Morse transition. After the two inflexions on the first
branch have disappeared (right) there are still two cusps on the ADSS, caused now
by the two horizontal tangents of the pre-ADSS.

Figure 8. An inflexional tangent meets the curve again in two points which
come into coincidence. The two (5, 6) singularities predicted by Theorem 3.1(6)
(left) merge (centre) into a nonsingular branch of the ADSS (right).

the euclidean symmetry set of a generic family of curves. When we come to
consider curves with inflexions, two things happen. Firstly other transitions,
barred in the case of euclidean symmetry sets and ADSS for ovals, now occur.
Secondly, there are transitions which involve inflexions directly, and these do
not resemble those of the euclidean symmetry set at all. It would clearly be
desirable to embrace these, and the anomalous structures of the ADSS, in the
same framework of bifurcation sets which allows us to analyse the more regular
cases.

In the euclidean case, there is a subset of the symmetry set called the ‘medial
axis’, which is obtained by restricting the bitangent circles to ones whose
radius equals the minimum distance from their centre to the curve γ (‘maximal
circles’). A similar restriction is possible to turn the ADSS into the affine
distance medial axis, and some preliminary work has been done on this in [12].

There are several other promising candidates for the role of an affinely in-
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Figure 9. Here, γ consists of a curve segment γ1 with two inflexions very
close together, and another segment γ2 without inflexions which intersects
the two inflexional tangents transversely. At these two intersection points the
ADSS will have (5, 6) singularities, as in Theorem 3.1(6). The segment γ1

will be off the picture, and γ2 is not shown, but it goes roughly horizontally
through the two fairly obvious kinks in the ADSS in the left hand figure. The
pre-ADSS is shown above. After the inflexions have merged and disappeared
the ADSS is left with two ordinary cusps, as in the right-hand figure.

variant symmetry set. Some of these are explored in [13], [1] but the transitions
which occur in 1-parameter families have not been investigated.
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