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ON THE BOREL COHOMOLOGY OF FREE
LOOP SPACES

IVER OTTOSEN*

Abstract

Let X be aspace and let K = H*(X; F,) where p is an odd prime. We construct functors Qand ¢
which approximate cohomology of the free loop space A X as follows: There are homomorphisms
Q(K) - H*(AX;F,) and £(K) — H*(ET x1 AX; F},). These are isomorphisms when X is a
product of Eilenberg-MacLane spaces of type K (F,, n) forn > 1.

1. Introduction

Let X be a topological space and R a ring. The circle group T acts on the free
loop space A X by rotation of loops. The associated Borel cohomology groups
are called string cohomology of X [4]. We denote them as follows:

H(X;R) = H"(ET x1 AX; R).

String cohomology as well as non equivariant cohomology of free loop spaces
play a central role in geometry and topology. It is however often not possible
to compute such cohomology groups.

When R = F, = Z/2, M. Bokstedt and I found functors of H*(X) which
approximate H,(X) and H*(AX) [2]. The purpose of this paper is to gen-
eralize these functors to the case R = F, = Z/p where p is any of the odd
primes. Certain algebra generators in string cohomology are more difficult to
construct in the odd primary case. Hence method and strategy differs from [2]
at various places.

The following application of the functors Q and ¢ will appear in the near
future. There are two Bousfield cohomology spectral sequences. One conver-
ging to H*(AX) and the other converging to H (X). The E; term of the first
is isomorphic to the (non Abelian) derived functors of Q and the E, term of
the second is isomorphic to the derived functors of £.

*The author was supported by the European Union TMR network ERB FMRX CT-97-0107:
Algebraic K-theory, Linear Algebraic Groups and Related Structures.
Received January 15, 2002.
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NortATION. Fix an odd prime p. We use F,-coefficients everywhere unless
otherwise is specified. ./ denotes the mod p Steenrod algebra, % the category
of unstable .2/-modules and J7 the category of unstable 2/-algebras. We let
&/lg denote the following category. An object in &/lg is a non-negatively
graded F,-algebra A with the property thatif a € A and |a| = O thena = a”.
The category of differential graded F,-algebras is denoted DG A. For any
A € lg we defineo : A — F, by o(x) =1 for |x| odd and o (x) = O for
|x| even. We also define 6 : A — F, by 6(x) = 1 — o(x). The circle group
is denoted T.

2. The approximation functor €

In this section we define a functor Q : # — .&/lg which approximates the
cohomology ring H*(A X) when applied to H*X. Here & is a certain category
which lies between J and .¢/lg. The functor Q lifts to an endofunctor on
J¢ which is nothing but an explicit description of Lannes’ division functor
(— : H*(T)) 4 introduced in [5].

DEFINITION 2.1. Let & denote the following category. An object in & is
an object A € /g which is equipped with an F,-linear map A : A — A with
the following properties:

e [Ax|=p(x|—1)+ 1forall x € A.

e Ax = x when |x| = 1 and Ax = 0 when |x| is even.

e A(xy) = A(x)y? + xPA(y) forall x, y € A.

Furthermore A is equipped with an F,,-linear map 8 : A — A of degree 1 with
the following properties:

e Bopf=0.

o B(xy) = B(x)y + (—=D¥xB(y) forallx, y € A.
A morphism f : A — A’ in & is a morphism in &/Ig such that f(Ax) =
A f(x) and f(Bx) = B’ f(x).

REMARK 2.2. There are forgetful functors % — % and # — lg. For

an object K in 7 the map A : K — K is defined by Ax = P{*I=D/2x when
|x] is odd. The map g is the Bockstein operation.

We let A(v) denote the object H*(T) in J7. There is an associative and
commutative coproduct § : A(v) > AW) @ A(w); vi—> 1®@v+v®I1. It
comes from the product on T and has counit y : A(v) — F, coming from the
unit 1 — T.

Let L : 5 — J be the functor given by A — A(v) ® A. The coproduct
and counit above define natural transformations § : 1. — 1?andy : L — Id
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such that (L, 8, y) is acomonad. A | -coalgebra is an object K in J7" equipped
with a morphism f : K — L (K) such that the following diagrams commute:

K L 1(Kk) kK —— 1)
Nl
K 1(K) 2% 12(k).

Examples of 1 -coalgebras are cohomology of T-spaces.

PropoSITION 2.3. If K isa L -coalgebrawith structuremap f : K — 1(K)
then K is a graded commutative DGA with degree —1 differential d given by
fX)=1®@x+v®dx, x € K.

Furthermore, d(P'x) = P'dx for each i > 0 and d(Bx) = —Bd(x). In
particular d(Ax) = (dx)? and d(B x) = O.

Proor. By the left of the above diagrams f may be expanded as stated.
By the right diagram d o d = 0. Since f is a morphism in J7" we see that d is
F,-linear, a derivation over the identity and that the stated relations hold.

PROPOSITION 2.4. Assume that the functor 1 : 5 — J has a left adjoint
T : H — K. Then there is a natural 1 -coalgebra structuren : T — LT
on T. For an object B € J{ the map np is the image of the identity under the
composite

Homy (T(B), T(B)) Homy, (T (B), LT(B))

;l |

Homy (B, L T(B)) LI Homy (B, L>T(B))

Prookr. This is formally the same as the proof of [11] Proposition 3.4.

DEFINITION 2.5. For A € & we define Q(A) as the quotient of the free
graded commutative and unital A-algebra on generators

dx for xe€ A

where |dx| = |x| — 1, by the ideal generated by the elements

(D dix+y)—dx —dy,
(2) d(xy) —d(x)y — (=D"xd(y),
3) d(Ax) — (dx)?,

4 d(Brx).
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Note that Q(A) is non-negatively graded since d(x”) = 0. We have defined
a functor Q : & — Alg.

PROPOSITION 2.6. The functor Q : F — sflg lifts to a functor Q :
H — . Explicitely the sf-action on Q(K) is given by 0(x) = 0x and
0(dx) = (=1)1P1d(6x) for x € K and 0 € < and the Cartan formula. The
differential d on Q(K) is graded s -linear.

PROOF. Letd K denote the graded F,-vector space givenby (dK)" = K"
We write dx for the element in d K corresponding to x in K hence d(x +y) =
dx + dy. We define an .«/-module structure on dK by P'dx = dP'x and
Bdx = —dBx. Let S(dK) denote the free graded commutative algebra on
the F,-vector space dK. By the Cartan formula S(dK) is an .«/-algebra and
the symmetric product K © S(dK) is an .&/-algebra. By definition Q(K) =
K © S(dK)/I where I is the ideal generated by

&) 1Odxy) —dx) Oy — (=Dx 0dy),
(6) 1O (d(Ax) — (dx)P),
(N 1 ©d(Brx).

We verity that o/ - I C [ such that Q(K) is an &/ -algebra. We have
P'"(10d(xy) —dx Oy — (-D"x 0 dy)

= Y (10d(P'@)PI(y) —dP'x © Ply — (~)* P'x 0 dPTy)

i+j=n
which is in I by (5) since the degree of P’ is even. Further
Bl Odxy) —dx©y— (—DMx 0 dy)
=—(10d(B®y) —dpx ©y — (=D px 0 dy)
— (=M1 ©d(xBy) —dx © By — (=) lx © dBy)

which is also in I by (5).

In any .o/-algebra one has P!(a”) = (P"/?a)? when i = 0 mod p and
zero otherwise, since this is a consequence of the Cartan formula alone. So by
Lemma 2.7 we have the following relation in S(d K) when i = 0 mod p:

Pi(d(\x) — (dx)?) = d(P'ax) — (PPdx)? = d(APPx) — (dP!/Px)P.

For i # 0 mod p we get zero. So P’ applied to an element of the form (6) lies
in /. If we apply B to such an element we also land in / by (7). Finally Lemma
2.7 shows that P(1 ® d(BAx)) € I and trivially B(1 © d(BAx)) € I.
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We verify that Q(K) € 9. We must show that Pidx = 0if 2i > |x| — 1.
This holds if 2i > |x| since K € %.If 2i = |x| we have Pidx = dP'x =
d(x?) = 0. We must also show that BP'dx = 0 when 2i + 1 > |x| — 1.
This holds if 2i + 1 > |x| since K € % and if 2i + 1 = |x| we have
BPidx = —dBP'x = —dBix = 0. Since the action on products are by the
Cartan formula we have shown that Q(K) € %.

Finally we check that Q(K) € 9. The Cartan formula holds by definition.
For |x| odd we have P!%*1/2(dx) = dix = (dx)” and the result follows.

LEMMA 2.7. For any unstable <f-algebra K and x € K the following
equations hold.

. AP i =0 mod
®) piax = | MP70, =0 modp
0, otherwise
BA(Prx), i=0 modp
©) P'Brx =1 (8P x)?, i=1 mod p
0, otherwise

PrROOF. We just prove (8) since the proof of (9) is similar. When |x| is even
both sides in the equation are zero. Assume that |x| is odd. By the instability
condition P'’Ax = 0 when 2i > p(]x| — 1) + 1. When i is divisible by p
this inequality implies 2i > p(|x| — 1) + p or 2l > |x| and since |x| is odd

. . »
z—p’ > |x]. So Pi/Px = 0 and the equation holds in this case. If 2i = p(|x| — 1)

then Pidx = A\2x = A(P!/Px).
Finally assume that 2i < p(|x| —1). Then we can apply the Adem relation:

[5] Ix]

P —1
P"P‘z'sz(—l)”’Cp_l)( 2 _t)_l)P"“'z"P’x.

=0 1 — pt

The instability condition shows that P’ +E- -1 pix = Qunlessi < pt. But the
binomial coefficient is zero when i < pt. So we get zero when i # 0 mod p
and the term corresponding to ¢t = i/p when i = 0 mod p.

PROPOSITION 2.8. The functor Q@ : K — K is left adjointto L : H — K ;
B — H*(T)® B. Thus there is an equivalence of functors Q= (—: H*M)y.
The differential d : Q(A) — Q(A), associated to the natural L -coalgebra
structure, is given by d(x) = dx for x € A.
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PrROOF. We can define natural maps as follows where x € A:

F : Homy (Q(A), B) 2 Homg (A, L(B)): G
F(HHx) =1Q f(x) +v® f(dx),
G(g)(x) =y og(x), G(g)dx) = (¢ ®1)og(x)

where « : A(v) — F, is the additive map of degree —1 given by v > 1 and
1 — 0. Itis easy to verify that F o G = id and G o F = id. The description of
d follows by using these explicit adjunction formulas in the composite defining
n in Proposition 2.4.

PROPOSITION 2.9. For any space X there is a morphismin 7 (andin DGA)
e: QH*X) »> H*(AX); e(x) = evy(x); e(dx) = devj(x)

where evy : AX — X; o +— w(1). This morphism is natural in X and it is
an isomorphism if X = K(F,, n) withn > 0. If H.X is of finite type and Y is
any space then there is a commutative diagram

QUH*X) ® QH*Y) —— Q(H*X ® H*Y)
H*(AX) ® H*(AY) —— H*(A(X x Y))
where the lower horizontal map is the Kiinneth isomorphism.
ProoF. The proof of Proposition 3.9 in [11] goes through with the obvious
changes. Thus the isomorphism statement is a consequence of [5] 1.11.
3. The approximation functor ¢

In this section we describe the functor £ : % — .&f/lg which gives an approx-
imation to H*(ET x1 AX) when applied to H*X. We also define a natural
transformation Q : £ — € which corresponds to the map H*(ET x1 AX) —
H*(AX) induced by the quotient. We do however not go into the topological
interpretations here.

DEFINITION 3.1. For A € & we define £(A) as the free graded commutative
F,-algebra on generators ¢ (x), g(x), (x) for x € A and u of degrees

o) = plx| —a(x)(p = 1), lg() = plx| =1 =0o@)(p —3),
16 = [x] =1, lul =2
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modulo the ideal generated by

p—2
(10)  Pr+y)—p(x) — ¢ +0(x) Y (=1'8C) 80" > 8(xy),

i=0
(D) 8 +y) —8(x) —8(y),

p—1

1 . .

(12) g+ —g(0) =g +6@x) Y (D' =8(:!y"™),

i=1

(13)  (=D7I8@8(be) + (=175 (b)s (ca)

+ (=17 P5()8 (ab).
(14)  ¢(ab) = (—u"")y" " P (@)p (),
(15 qab) = (—u"")" 7P Vg (b) + (—w)” P (@)q (b)),
(16)  q(x)” —u""'q(hx) — $(pix),
(17) 8(a)p(b) — 8(ab?) — 8(arb) + 8(ab)s(b)P !,
(18)  8(a)q(b) — 5(ab""1)s(b) — S(apib),

(19) §(x)u,
(20) q(BAx),
(21) 3(xP)

where a, b, c,x,y € K and |x| = |y|.

REMARK 3.2. We have some immediate consequences of these relations:
By (10), (11) and (20) we have ¢ (0) = g(0) = §(0) = 0. By (14) and (15) we
have g(a") = n¢(a)"~'q(a) such that g(a”) = 0. By (21) we have §(1) = 0
so by (21) and (17) we find 6(Ab) = §(b)?. By (18) and §(1) = O we have
8(BAb) = 0. By (14), (15) and (17) the algebra £(A) is unital with unit ¢ (1).

Since §(x?) = g(x?) = 0 we see that £(A) is non-negatively graded. We
have defined a functor ¢ : # — lg.

LEMMA 3.3. Let K € & and x,y € K with |x| = |y| = n. The following
relations hold in Q(K):

p—1
a1 . .
_1\i+l i p—i
(22) ;:1( DT —d@y™™)

=@+ dx +y) —xPldx — yPdy, n even
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p—2

(23) Y (=1 (dx)! dy)P > d(xy)
ST PN+ y) — @x)"x = dy)P'y,  nodd.

PrOOF. We verify (22) and omit the proof of (23) which is similar. Since d
is a derivation we have

=l p—l
E (—1)l+ll—_d(xlyp_l) — E (_1)l+1(xl—1yp—1dx _ xlyp—l—ldy)'
i=1 i=1

By splitting the sum in two at the minus sign and substituting j =i — 1 in the
first of the resulting sums we see that the above equals the following:

p—2 p—1
Z(—l)jxjypfjfldx + Z(—l)ixiypfifldy
j=0 i=1

p—1

(=D)'x"y?7" VN dx + dy) — xP"'dx — y?~ldy.

~
Il
=)

For 0 <t < p — 1 we have that ¢! is invertible in F, and also

—1
(pt )t!:(p—1)(p—2)...(p—z):(—1)fr! mod p.

Thus we have (P :1) = (—1)". Substituting this in the above and using the
binomial formula the result follows.

PROPOSITION 3.4. For A € & there is a natural morphism in g as
follows:

0:lA) — Q(A); ¢(x) — xP + Ax —x(dx)P*l,
§(x) > dx, q(x)+— x""ldx + Brx, ur> 0.

Furthermore, Im(Q) C ker(d : Q(A) — Q(A)).

ProOF. We check that the formulas for Q map the relations (10)-(21) to
zero. Formula (23) and the additivity of x + x? shows that (10) is mapped
to zero. It is trivial that (11) is mapped to zero. By (22) and the additivity of
x +— BAx it follows that (12) is mapped to zero.
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Taking the derivative of products and permuting factors we find the follow-
ing equations:

d(a)d(bc) = d(a)d(b)c + (—=1)°Pd(a)bd(c),

d(b)d(ca) = (=) @WCOTDqq(p)d(c)
+ (_1)U(C)+5(a)(3(b)+0(c'))d(a)d(b)c’

d(c)d(ab) = (=1)?©OCOT O g(a)bd(c)
+ (—l)G(QH&(C)(U(a)+&(b))ad(c)d(b).
After some reductions (13) follows from these.
One easily checks that (14) and (15) are mapped to zero in each of the cases

o(a) =0(b) =0,0(a) =o() =1and o(a) = ¢ (b) = 1. It also follows
by small direct computations that (16)—(21) are mapped to zero.

4. The morphism Q and cohomology of 2(A)

In this section we define an additive transformation 7 : & — ¢ which corres-
ponds to the T-transfer from H*(AX) to H*(ET xt AX). The map Q gives
a morphism from £(A)/(u) to the cycles in (A). Via this a map ® similar to
the Cartier map [3] is defined. It turns out that £(A)/(u) = ker(d) when ® is
an isomorphism. Parts of the material presented here correspond to section 8
in [2]. We let A denote an object in &.

DEFINITION 4.1. Let I5(A) € £(A) denote the ideal I5(A) = (6(x) | x € A).

PROPOSITION 4.2. There is an F,-linear map of degree —1 as follows
7:Q(A) = L(A); apday ...da, — 8(ap)s(ay)...8(a,), ap+—> 8(ap)
where a; € A for each i. It has the following properties:

7(Q(e)B)=(—D)at(B) for « € L(A), B € Q(A), Qotr=d, 7o Q=0.
Note that T od = 0 and Im(t) = I5(A).

ProOOF. We must show that 7 is well defined. The relations arising from
(1), (3) and (4) are respected since we have the same relations in £(K) with d
replaced by §. We must verify that the following relation is respected:

apday ...da;_d(a;a;y1)da;,s .. .da,
= (—*+e@otad g g, day .. .da;da;y, .. .day,

+ (=)@ goaiday ... da;_ida;, . . .day,
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where k = |day . ..da;_;]. It suffices to check that
xd(yz) = (=17 xzd(y) + (=1)°Pxyd(z)

is respected. This follows by (13) after some work with the signs.

By definition we have Q o t = 0. By direct computations one sees that
1(Q@)B) = (—D)at(B) when « equals ¢(x), g(x) or §(x) and B equals
apda, . ..da, or ay. The general case follows from this. In particularto Q = 0
since (1) = 0.

DEFINITION 4.3. Let £ (A) = €(A)/(u) and Q(A) = Z(A)/I5(A). Ex-
plicitely, ©2(A) is the free graded commutative F,-algebra on generators ¢ (x),
q(x) for x € A of degrees ¢ (x)| = plx| — o (x)(p — 1), lg(x)] = plx| — 1 —
o (p — 3) modulo the relations that ¢ and ¢ are additive and

(24) ¢(ab) = (1 —o(a)o(b)p(a)¢(b),

(25) q(ab) =6 (b)q(a)p(b) + 6 (a)p(a)q(b),
(26) P (BAx) = q(x)”,

27) q(Brx) =0.

Since Q(I5(A)) € dQ(A) we may define an F,-algebra map & by the follow-
ing diagram where P denotes the canonical projection:

LA —L—~ Q)
o o
Q(A) —— Q(A)/dQ(A)
Since d o Q = 0 we have in fact defined a morphism ¢ : Q(A) — H*(Q(A)).

REMARK 4.4. Since T o d = 0 we can define t as a map on Q(A)/dS_Z(A).
We have a commutative diagram as follows:

QA) —2 > Q(A)/dQUA) —— F(A) —L—  Q(A)
I o| |
QA —L— QA —— Q(A)/dQUA)
where the composite T o @ vanishes and ker(P) = Im(7).

THEOREM 4.5. Assume that the map ® :_ﬁ(A) - H*(Q(A)) is an iso-
morphism. Then so is Q : L (A) — ker(d : Q(A) — Q(A)).
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PrOOF. The diagram is formally the same as the one above Theorem 8.5 of
[2]. So the same diagram chase gives the result.

There is a filtration £(A) D uf(A) D u?£(A) D ... with associated graded
object Gr,(A) given by Gril(A) = u'€(A)/u'*'€(A). Consider the follow-
ing composite of surjective maps:

0A) —“ 5 wie(A) —— Grit(A), i>1

The ideal I5(A)+ul(A) < €(A) is send to zero so we get a surjective F,-linear
map u'- : QA) — Gril(A).

PROPOSITION 4.6. For each i > 1 there is a unique F,-linear map ®; such
that the following diagram commutes:

QA) —“ s Grie(A)
o o
H*(Q(A) —“8= 5 ui @ H*(Q(A))
Ifo: §(A) — H*(Q(A)) is an isomorphism then

Grol(A) Zker(d) ® (u® QA S U2 @A) D ---.

Proor. The following elements generate the F,-vector space Gr;£(A):

(28) W) . d)gngr) - qngm) +u' ' E(A)

where n,m > 0 and x; € A forall j. (If n or m equals zero we have an empty
product which equals 1 by definition.) We can describe the relations among
these generators. Firstly they are additive in each variable x;. Secondly there
is a relation corresponding to each of the relations (24)—(27) for example

ud(xr)...o(x)) ... (g Xns1) . g (Xngm)
=1 - Nu'd(x1)...0NGE)) ... dX)GXnt1) -+ g Xngm)

modulo u’+t1£(A). If the map ®; exists such that the diagram commutes it must
send (28) to

u' @ ®(P(x1) ... p(x)g(Xnt1) - - - G Xngm))-

But this formula gives a well defined map by the above identification of the
relations among the generators.
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The map u’ ® — is an isomorphism so if ® is also an isomorphism we see
that u’- is injective. By definition u'- is always surjective so the result follows.

DEFINITION 4.7. Let nF, denote the category of non-negatively graded F -
vector spaces. Define the free functor Sz : nF, — & to be the left adjoint of
the forgetful functor # — nF,,.

REMARK 4.8. Wehave Sz(VAW) = S%(V)® S%(W). Furthermore there
is an explicit description as follows

Sj?(V) — S.ﬂlg(‘/ ® ﬁv*zl ® @ ﬂv)ui (ﬂveven,*z2 D Vodd,*>2))

i>1,v€{0,1)
where S, denotes the left adjoint of the forgetful functor /lg — nF,,.

THEOREM 4.9. The map @ : §(A) — H*(Q(A)) is an isomorphism when
A is a free object in &.

ProOF. By the results in the appendix section 10 it suffices to show that
® is an isomorphism when A = F,, = S#(V,), n > 0 where V,, is the free
F,-vector space on one single generator x,, of degree n.

‘We have Fo = F,[xol/ (x0 — xo) and Q(Fy) = F, with zero differential
such that H* (Q(Fo)) = Fy. On the other hand Q(Fo) = Fy with generator
¢ (xp). So @ is an isomorphism since P (¢ (xp)) = xo = Xg.

Further, F; = A(x;) ® F,[Bx;] with Ax; = x;. Since (dx,)” = dx; we
can use the idempotents from Remark 4.11 below to get a splitting

QF) = P eaQF).

ieF,

For each i we have de; = 0 and (dx;)e; = ie;. Also dﬂx] = dBix; = 0. Thus
d(xy (Bx1)"e;) = €i(Bx1)"e;. It follows that H*(e;Q(F)) = 0fori # 0 and
H*(eoQ(F))) = F; such that H*(Q(F})) = F). Since ®(¢(x1)) = x1e9 and
®(g(x1)) = Bx; we see that ® is surjective. The relations ¢ (Bx;) = q(x1)?
and g(Bx;) = 0 shows that ¢(x;) and ¢g(x;) generate §(K) so & is also
injective.

Assume that n is even and n > 2. In the following we write [—] for the
functor which takes a set to the vector space it generates. We have

F, = Sﬂlg[xna ,an’ )\iﬂxn» ﬂ)\iﬁxn | i >1]

and we find that S_Z(F,,) = F, ® Sqigldx,, dBx,]. We change basis such that
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the differential becomes easier to describe:
QF,) = Sagln, dxa] ® Serig[ B, dBx,]
® SastglA Bxn — (A~ Ba)? T N T B, BN v | i = 11,
By the Kiinneth formula we find that H *(Q(F,)) equals
Seniglxl) s xb ™ dx 1 ® Sayig [ Bxy — ('™ Bxa)? ™ AT By, BA By i = 11,

The algebra Q(Fn) is generated by the classes ¢ (x,), ¢ (A Bx,), q(x,)
and g(A' Bx,) where i > 0. We see that ® maps these generators to the free
generators for the cohomology of Q(F,). Hence @ is an isomorphism. The
case where n is odd and n > 3 is similar.

LEMMA 4.10. There is an isomorphism of rings as follows
a: Fylx]/(x? —x) = (F,)7; x—(0,1,2,...,p—1)

where F,[x] is the polynomial ring in one variable x of degree zero and (F),)?
is the p-fold Cartesian product of F,, by itself.

Proor. Use the factorization x? — x = ]_[ner (x — n) and the Chinese
remainder theorem.

REMARK 4.11. Lete, =« 1(0,...,0,1,0,...,0) with the 1 on the nth
place for n € F,. Clearly e,e,, = 0 forn # m, e =e¢,and Y e, = 1. Also
xe, = ne,. Finding eigenvectors for x f (x) = nf (x) and normalizing one gets
the following:

p—1 .
X 1
= 1 - p_l’ m = — <_) bl 0'
€o X e igzl m #

5. Steenrod diagonal elements

In this section we use the functor R, of [6] to define a functor R : 7 — J.
We need R for a description of £ given in the next section. Let K denote an
unstable o/-algebra and consider F,[u] with |u] = 2 an object in J¢ by the
isomorphism F,[u] = H*(BT).

DEFINITION 5.1. For x € K and € = 0, 1 we define St.(x) € F,[u] ® K
by A | |
Ste(x) = u= WY " (—ur~ M @ g Pl

i>0
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Note that the terms where the total exponent of u is negative has g€ P'x = 0.
Let R(K) € F,[u] ® K be the sub-F,-algebra generated by u ® 1 and Sz, (x)
forallx € K ande =0, 1.

THEOREM 5.2. For each 0 € </ one has OR(K) C R(K). Thus R is a
Sfunctor R : 5 — J{. The explicit formulas are as follows where n = [|x|/2]
ande =0, 1:

PiStE(X) — Z ((p - 1)(’: __;)t-i_ EG(X))M(P_I)(i_pI)SIG (Plx)

—e(—1)7™ Z ((P - 1)(;1_—1;) :]1 + a(x))

t

. M(p_l)(i_pt)_1+(2_p)a(x)Sto(ﬂPt)C),
BSt.(x) = (1 — )u’ @St (x).

ProoF. The formula for the Bockstein operation follows directly by the
definition of St.(x). We use results from [6] to prove the other formula. By
[13] we have that F,[u, u~']is an .o/-algebra with 8 = 0 and

Pul = <]> b g jeZ; i=0.
l

Here the following extended definition of binomial coefficients is used where
reRandk € Z.

rc—=1...r —k+1 £ 0

- k!
(1)=11. -

0, k<0

Let A = A(a) ®F,[b, b=l with |a| =2p—3, |b| = 2p — 2 be the .«/-algebra
introduced in [6] (2.6). That is Ba = b and

Pi(bT) = (1) <(P - 1)1) bt

Pi(abi~") = (—1)i((p - li)j — 1>abi+~f—1_
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Note that we have changed the names of the generators. In [6] they were named
u and v instead of a and b. We define an additive transfer map as follows:

T:A— F,lu, u ' bl 0: ab’ ' (—uP " YHYu

Note that || = —1. A direct verification shows that 7 is .«/-linear.

A functor R from the category of graded 27-modules to itself is constructed
in [6]. In the case of an unstable .«/-algebra K it comes with an 2/-linear map
f: R K — YA ® K defined by [6] (3.1), (3.2). The composite

R.K—L 5 oA®Kk =2 SFu,u"'1®K
is given by

shF @ x > —s 2:(—u”_1)k_ju_1 ® BP/x,
J
sab* ' @ x > s Z(—upfl)kfju” ® P/x.
J
Especially sb" ® x > —su®™ St;(x) and sab" ' ® x > su~'Sty(x) where

n = [|x|/2]. The formulas [6] (3.4), (3.5) for the &/-action on R, M gives the
following formulas for the .7-action on u” ™ St, (x) and u~' Sty (x):

. —1 —t .
P @ St (x)) = Z ((P i _)(Zt ))u(p—])(l—pt)—a(x)stl(Ptx)
t

_ Z(_l)g(x)<(p - 1)(” - t) - 1)

i—pt—1
. u(ﬂ—l)(i—lﬁ—tf(x))—lSto(ﬂptx)’
i —1 -1 —1 )
Pi(u='S1p(x)) = Z ((p i)(—npt ) )M(Pl)(lpt)IS[o(Prx),
t

This proves the result directly for o(x) = 0 and € = 1. By the Cartan for-
mula applied to uu~'St.(x) we have that P'St.(x) = uP'(u~'St.(x)) +
u? PI='(u='5t.(x)). By combining this with the formulas above we get the
result in the other cases.

6. A pullback description of the functor £

In this section we describe £(K) as a pullback in the case where K is a free
objectin J7'. We start by a result on cohomology of Eilenberg-MacLane spaces.
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Recall that a sequence of integers I = (€1, §1, €2, $2, - . . , €k, Sk, €k+1) With
s; > 0ande; € {0, 1} is called admissible if s; > ps; 1 +€;41 and s, > 1 orif
k = 0 when I = (¢). The degree of I is definedas [I| =) ¢;+ ) 2s;(p—1)
and the excess is defined recursively by e((e, s), J) = 2s + € — |J|. We use
the following notation P! = B¢ P51 82 Ps2 | B Pk Bk,

LEMMA 6.1. The cohomology ring of the Eilenberg-MacLane space K (F,,,n)
can be written in the following form when n > 2.:

H*(K(F,,n)) = Sz[P'1, | I is admissible, e(I) <n — 2, €, = 0].

Furthermore, H*(K (F,, 1)) = S#[u1] and H*(K (F,, 0)) = S#[io].

ProOF. The cases n = 0, 1 are trivial. Assume that n > 2 and define the

set
A(m) = {1 | I isadmisseble,e(l) <n—1,|I|+ nisodd}.

Remark thatif I € A(n) then (0, (|I|+n—1)/2,1) € A(n). To see this write
I € An)asI = (e,s,1"). Thene(I) =2s +¢ — |I'| <n— 1 orequivalently
2sp + 2e¢ — |I| < n — 1 such that the sequence (0, (|| +n — 1)/2,1) is
admissible. Its excess is 7 — 1 and its degree plus # is odd since p — 1 is even.

By Cartan’s computation (a special case of [9], Theorem 10.3) we have that
H*B"F, is the free graded commutative algebra on the set

B ={P’i, | Jisadmissible, e(J) <nor(e(J)=nande; =1)}.

Assume that P!, belongs to the set in the statement of the lemma. Then
P'i, and BP'1, belongs to B. By the remark we see that if || + n is even
then A’ BP1, € B andif |I|+n is odd then B€A' P!, € B fore =0, 1 and
i>1.

Conversely, assume that P71, € B.Ife(J) <n —2ore(J) =n — 1 and
€; = l itis clearly one of the generators described in the lemma. It suffices to
handle the case e(J) = n — 1, €; = 0 since the case e(J) = n, €; = 1 then
follows. Write J as J = (0, s, J') where e(J) = 2s — |J|' = n — 1. Then
2s = n+|J'| —1suchthat P71, = AP71, and e(J) < e(J'). We can continue
this process until the next € equals one or the excess drops below n — 1.

PROPOSITION 6.2. For any object K in J there is natural morphism of
Fp-algebras A : £(K) — F,[u] ® K defined by

¢ (x) = Sty(x), q(x) — St (x), 5(x)— 0, Uur—u®l.

The image of this morphism is Im(A) = R(K).
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PrOOF. We check that (10)—(21) are mapped to zero by the formulas defin-
ing A. Since §(x) is mapped to zero this is trivial for all elements except (14),
(15), (16) and (20).

By the Cartan formula and [%] = [%] + [%] + o (a)o (b) one verifies
that

Sto(ab) = (—uP~H7 W7 §13(a) Sty (),
Sti(ab) = (—uP~H7 WO (7B 1, () Sty (b) + (—u)” W Sty (a) St (b))

such that (14) and (15) are mapped to zero. Lemma 2.7 implies that (16) and
(20) are mapped to zero.

PRrROPOSITION 6.3. If K is a free object in F{ then ker(A) = I5(K).

PROOF. Assume that K = Sy (V) for a non negatively graded vector space
V. We must show that A : £(K)/Is(K) — Folul ® K is injective.

The algebra £(K)/Is(K) has generators ¢ (x), g(x) for x € K and u. The
relations are that ¢ and ¢ are additive and that (14), (15), (16) and (20) equals
zero. Let {v; | s € S} denote a basis for V. By Lemma 6.1 we find that
K = Sz (W) where W is the graded vector space with basis

B = { P'v, | I admissible, e(]) < |v;| —2,€¢; = 0,5 € S}.

We see that the following elements are algebra generators for £(K)/Is(K)
where a € B, b € B!, v € B4:*=3 ) € BeVen*22 apd | > 0:

u, ¢(a), p(b), g(Bb),
¢ (Bv), p(A'v), q(Bv), g(A'v),
P (w), p(A pw), g(w), g(\ pw).

We claim that these generators are mapped to algebraically independent
elements in F,[u] ® K. By the formulas defining A we see that it suffices
to check this claim in the case where V is one dimensional. So assume that
K = Sy[t,] where |,| = n.

For any n we have u — u ® 1. For n = 0 we have ¢ (1p) — 1 ® (¢ and for
n =1wehave ¢(t;) = 1 ® 1, g(t1) = 1 ® Bty so in these two cases the
claim holds.

Assume that n > 2. The algebra generators are mapped as follows modulo
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elements in the ideal (u”~! ® 1):

¢ (Bv) — 1 ® (Bv)?, q(Bv) — —u e ﬁP(lvl_l)/zﬂv,
d(Av) > 1@ Ay, g\iv) > 1 ® BAitly,
¢ (w) ~ 1w’ Gw) > —uP2 @ BPMI21y,

A pw) > 1@ A Bw, g Bw) > 1@ AT Bw.

If |7] 4+ n is odd we must look closer at BPU/+=D/2gply Write I as
I = (0,s,1I). We have e(]) = 2s — |I'| < n — 2 which implies that
O,(Il +n—1)/2,1,s,I) is admissible. Its excess equals n — 2 and we
see that PUIIF7=D/2gply e peven,

If |I| + n is even we must look at g P(11+7"=2/2 pl; A in the odd case we
see that PU/H=2/2pl, e Be'e" However there is no B between the first two
P-operations from the left.

We conclude that the claim holds for n > 2 which completes the proof.

In the following K denotes an object in J7". Before stating the main theorem
we need some definitions and lemmas.

LEMMA 6.4. Letay, ...,a, € K be elements of odd degree and define the
following element in I5(K):

P
D(ay,...,a,) = ZS(alai)S(az) .. .8@) ... 8(ap).
i=2

where the hat means that the factor is left out. Then for any permutation
T € X,onehas D(ay, ...,a,) = D(arq), ..., ar(py). The element is mapped
as follows under the map Q : £L(K) — Q(K):

P
D(ay, ..., a,) — Zaidal...a"gi...dap.
i=1

ProOOF. We first show the invariance under permutation. Since the degree
of 6(a;) is even D(ay, ..., ap) is invariant under permutations fixing a;. Thus
it suffices to show that D(ay, aa, ...,a,) = D(aa, ..., ap, ar). We prove the
following more general formula for n > 3:

Y S@ans(a)...8@) ... 8(a)

i=2

= ZS(agaj)S(al)S(ag) ... 8@) 0(ay) — (m— Dé(azar)dé(as) ... 6(ay).

j=3
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The proof is by induction on n. For n = 3 we have

d(a1a2)é(a3) + d(ar1az)é(ax) = §(araz)d(az) — é(azar)d(az)
= 28(a1az)d8(az) + 8(arasz)é(ay)
= —28(axa1)8(asz) + 8(araz)S(ay)

where we used (13) at the second equality sign. Assume that the formula holds
for n — 1. Then we have

ZS(alai)cS(az) L 8(@) ... 8(ay)

i=2
n—1

= (Z S(arad(@) ... 5(a;) . .. 8(an—1)>5(an) + d(aran)é(az) ... 8(an—1)
i=2

n—1
= (Z 8(aza;)8(ar)s(as) ... 8(a;) . .. 8(an1)>8(an)
j=3
— (0 = 2)8(@a)8(@3) . .. 8(an-1)8(an) + 5(@13,)8(@) . .. 8(@n1).

Since §(aja,)d(az) + §(azay)s(a,) = 8(aza,)d(a;) by relation (13) the sum
of the last two terms above equals

—(n — Dé(azar)é(as) ...8(ay) + d(axay)d(ay) ... 8(an-1)
and we recover the formula for n.
We use that d(a;a;) = a;da; — a;da; to compute the image under Q:
p —_—
D(ay, ..., a,) — Zd(alai)daz ...da; ...da,
=2

p
= Zaidal ...Jz;,»...dap —(p—Daidas .. .da,.
j=2

DEFINITION 6.5. For any non negative integer n we let B(n) denote the
following set:

B(n) ={(Br,....Bp) €ZP Vi : B; =0, pr+---+Bp =n,3i, j: fi # Bj}.

The cyclic group on p elements C, act on B(n) by cyclic permutation of
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coordinates. For x € K we define the following elements in I5(K):
Dy(x) =—o0(x) Yy D(PP(x), PP(x), ..., PP (x)),

D} (x) =6(x) Y 8(PP(x)PP(x)... PP (x))
where both sums are taken over 8 € B(n)/C,. Note that Dy (x) is well defined

by Lemma 6.4
LEMMA 6.6. For any x € K the following formulas hold in Q(K):

(29) Pio Q(p(x) = Q(@(P/Px) + Di(x)),
(30) P'o Q(g(x)) = Q(g(P"Px) + Di(x))

where by convention P! = 0 when t is a rational number which is not a non
negative integer.

PrOOF. We first prove (29). Recall that Q(¢(x)) = x? + Ax — x(dx)?~".
We have P'Ax = AP!/Px by Lemma 2.7 and also P'(x?) = (P!/Px)P so it
suffices to prove the following for |x| odd:

P'(x(dx)"™") = (P/Px)(d PP x)P~" — Q(D)(x)).
By the Cartan formula we have
Pi(x(dx)P™" = Z PP (x)d PP (x)...d PP (x)

where we sum over the tuples (B, ..., B,) with ) B; = i. The cyclic group
C, acts on the set of such tuples and an orbit has length 1 or p. Arranging
the terms according to this the result follows by the definition of D} (x) and
Lemma 6.4.

For the proof of (30) recall that Q(g(x)) = x”~'dx + Bix. We have
Pi(Brx) = BA(P/Px)+ (BP~V/Px)P by Lemma 2.7 so when | x| is odd we
are done. For |x| even we must show that

Pi(xP7ldx) = (PPx)P1d PP x + Q(Di(x)).

This follows by the Cartan formula and a similar argument on orbits as the
above.

THEOREM 6.7. For any object K in K there is an &/-module structure on
L(K) such that £ becomes a functor £ : ' — JH . The explicit formulas for the
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action are as follows where x € K, n = [|x|/2] and i > 0. Firstly, the action
on ¢ (x) is given by:

(p— D —1)

. )u(p_l)(i_pt)(]b(P[x),
i — pt

Pigp(x) = Dy(x) + ) (

Bd(x) = u’™ (q(x) = 8(x)" S (xBx)).
Secondly, the action on q(x) is given by:
; i (p—Dr—1)+0ox)
Pq(x>:Dl(x>+Z( P

_ (_1)0'(x) Z ((p - 1)(ln__ptt):11 +O'(X)>

)u(Pl)(iPl)q(Plx)

. M(Pfl)(ifpl)*1+(2*P)U(X)¢(ﬁplx),

Bg(x) = —8(x""" px).
Thirdly, the actions on &(x) and u are as follows:
Pis(x) =8(P'x),  B8(x) = —38(Bx), Plu=u?, Bu=0.

Furthermore the maps Q and A becomes < -linear and there is a commutative
diagram in ¢ as follows:

UK) —2— R(K)

Ql Pll
ker(d) 22— K

where the morphisms p| and p, are given by p1(u) = 0, p1(x) = x, p2(dx) =
0, p2(x) = x for x € K. Finally, if K is a free object in J then the diagram
is a pullback square.

Proor. By the definition of A and Q there is a commutative diagram as
stated in the category of F,-algebras. We first prove that this diagram is a
pullback when K is a free object in J7'.

By Lemma 6.1 and Theorem 4.9 the map ® is an isomorphism. So by
Theorem 4.5 the kernel of Q is the ideal (#) C ¢(K). The kernel of p; is the
ideal (u ® 1) € R(K) so it suffices to show that the restriction of the map A
to these kernels A| : (1) — (# ® 1) is an isomorphism. It is surjective since A
is surjective and A(u) = u ® 1. By Proposition 6.3 we have ker(A) = I5(K)
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such thatker(A|) = (u)NIs(K).Letx € (u)NIs(K). We can write x = uz for
some z € £(K). Since 0 = A(uz) = uA(z) we have A(z) = 0soz € I5(K)
and x = uz = 0. Thus (1) N I5(K) = 0 and A| is injective.

When K is a free object the pullback defines an &/-module structure on
£(K). By Theorem 5.2 and Lemma 6.6 we see that the stated formulas describe
this &/-action. A standard naturality argument now proves the statements for
general objects K in J7/.

7. Homotopy orbits of T-spaces

In this section we list some results on homotopy orbits of T-spaces. They are
all similar to results for p = 2 considered in [2] and we often refer to the
proofs given there. In the entire section Y denotes a T-space. We write C,
for the cyclic group of order n. We let u of degree |u| = 2 and v of degree
[v| = 1 denote algebra generators as follows: H*T = A(v), H*BT = F,[u]
and H*BC,» = A(v) ® Fplul.

ProposITION 7.1. The fibration Y — ET x1Y — BT has the following
Leray-Serre spectral sequence:

E}*=H*(BT)® H*(Y) = H*(ET x717Y).
The differential in the E,-term is given by
dy: H*(Y) > uH*(Y);  da(y) = ud(y)
where d is the differential associated to the T-action (see Proposition 2.3).

PrOOF. Similar to the proof of [2] Proposition 3.3.

DEFINITION 7.2. Let Eo.Y = ET x1 Y and define
E, Y =ET XCpn Y for n=0,1,2,...
For nonnegative integers n and m with m > n define the maps
q, :H'E,Y - H'E,Y, ) : H'E,Y - H'E,Y

by letting g, be the map induced by the quotient map and t,* be the transfer
map. Alsodefineq), : H*E, Y — H*E,Y asthe mapinduced by the quotient.

The following theorem is inspired by a result of Tom Goodwillie which can
be found in [8] p. 279.
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THEOREM 7.3. There is a commutative diagram as follows for any m > 1:
E,Y —2— E.Y
(31) prnl Prll
BCpn —L— BT

Here Q denotes the quotient map and j : C,n — T the inclusion. The diagram
gives rise to an isomorphism.

O : H*(BCpn) Qpu=s1) H'(ExcY) = H*(E,Y);  x®y = pri(x)qh(y)

The transfer map t"*' : H*E,Y — H*E,, .Y is zero on elements of the

form O(1 ® y) and the identity on elements of the form ® (v ® y). We get an
isomorphism

colim H*E,,Y = vH*EoY = H*(Z(ExY)4).

PRrROOF. Similar to the proof of [2] Theorem 4.2.
We use the above theorem to give a convenient definition of the T-transfer:

DEFINITION 7.4. Fornonnegative n the T-transfert.° : H*E,Y — H*EY
is defined as the following composite:

H*E,Y —> colim H*E,,Y —>—— H*E..Y.

The colimit is taken over the transfer maps 7 *!. Note that |t>°| = —1.

PROPOSITION 7.5. Frobenius reciprocity holds for any n > 0:
T (g5 (1)) = (=DM ().
Furthermore the following composition formulas hold.

00 0 _ 0 0o __
Ty  0qy =0, g o Ty =d.

PRroOOF. Similar to the proof of [2] Proposition 4.6, 4.7 and 4.8.

PROPOSITION 7.6. There is always an inclusion Im(qgo) C ker(d). If we
have equality Im(qgo) = ker(d) then the Leray-Serre spectral sequence of the
fibration Y — ET x1Y — BT collapses at the E3-term.

PrOOF. By Proposition 7.5 we have d 0 g% = g2 o 1{° 0 ¢, = 0. The
collapse statement follows by Proposition 7.1.
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DEFINITION 7.7. Put {, = exp(2mi/p) and define the map
fy:TxY—> ETxYP?, (z,y) > (ze, zy, {pzy, {izy, el {If_lzy).

We let C,, act on the space to the left by ¢, - (z, y) = ({,z, y) and on the space
to therightby ¢, - (e, yi, ..., yp) = (&pe, y2, ..., ¥p, y1). Then the above map
is Cp-equivariant. Passing to the quotients we get a map

fy:T/CpXY—>ETXCPYp.

Note that this map is natural in Y with respect to C,-equivariant maps.

Recall the followings facts on the order p cyclic construction [10], [9]
and [12]. For any space X with homology of finite type there is a natural
isomorphism

H*(ET x¢, X?) = H*(Cp; H*(X)®7)

where C,, acts on H*(X)®? by cyclic permutation with the usual sign con-
vention. For a homogeneous element y € H*X the C, invariant y®” defines
an element 1 ® y®” in the zeroth cohomology group of C,. Let N = 1 +
¢y + {3 4+ 4 {,f’fl be the norm element in the group ring F,[C,]. If
X1, ...,x, € H*X are homogeneous elements, which are not all equal, then
the invariant Nx; ® - -- ® x,, also defines an element 1 ® Nx; ® --- ® x,, in
the zeroth cohomology group of C,,.

THEOREM 7.8. The following formula holds where §; ; denotes the Kro-
necker delta: f;(1® y®?) =1® y’ +v® y?~'dy + 3p,3v @ BAy.

ProOOF. We write Y| for the space Y with trivial T-action. We first prove the
theorem in the special case Y = Y. Here the differential is zero. There is a
factorization

fro 1 T/Cp x Yo = ET/C, x Yo —2— ET x¢, Y.

By this and the formula for the Steenrod diagonal, [12] p. 119 & Errata, the
result follows.
Next we prove the following formula for a general T-space:

(32) HUQNXI ® - - ®xp) =v®@d(x1...Xp).
There is a commutative diagram as follows:
H*(T/Cp x ¥) «— H*(ET x¢, Y7)

A ®1T ‘KOIT

H*TxY) < H*ETxvyr
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The lower horizontal map is given by

p
FA®x® - ®x,)=][1®x +v®dx)

i=1
as seen by the factorization

prixA,

fl}:T><YL>(T><Y)2 Tx (T xY)?

I 1% g, X x gl ™!

D ET x yP ET x YP.

The norm class is hit by the transfer and by finding the coefficient to v in the
above formula (32) follows.

Finally we prove the Theorem for a general T-space Y. Because of the
degrees f7(1 ® v®”) = 0. The two projection maps pr; : T x ¥y — T and
pra . T x Yy — Yy are T-equivariant. Thus we can use naturality together with
the case Y = Yj and the above equation to find the equations below

fixy, 1 ® (1 ® Y)®p) =1®1®y"+38,3v®1Q BAry,
0

[, 1@ 0@ D) = f1,y, (1® (v ®dy)®") = 0.

The action map n : T x Yy — Y is also an T-equivariant map, hence by
naturality we have a commutative diagram

T/Cp x (T x Yo) —2% 5 ET x¢, (T x ¥o)?
lxnl lxnpl
T/C, xY — ET xc, Y?

We compute the pull back of the class 1 ® y®? to the cohomology of the upper
left corner. First we find

(Ixn") ARy =101 ®y+vedy)®’

=100y +1® (v dy)®”
p—1
+) 1ONI® N @ vedy)®r .
i=1

By (32) we can compute f7,  applied to the norm element terms. Only the
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i = p — 1 term contributes.
1@ NA®@ P @ (0 ®dy) = v@dry @y 'dy)
= ® (dr(v) ® y'~'dy
+ v ® dy, (¥’ 'dy))
=v®1®y" dy
Altogether we have
A1®n) o fy1®y*F) = fr.y, o (1 xn")* (1 ® y¥P)
= i, (1@ 1@ N®) +ve 1@y’ 'dy.
Lety : Y — T x Y be the map given by y — (1, y). We have y* o n* = 1.
By applying 1 ® y* on both sides of the above equation the results follows.
8. Construction of certain classes in string cohomology

In this section X denotes a connected space. We shall construct certain classes
in string cohomology of X from classes in ordinary cohomology of X.

DEFINITION 8.1. Put ¢, = exp(2mi/p) and define evaluation maps as fol-
lows:

evy: AX—X; y = yd),
evi: ET x¢, AX=ET x¢, X" le,y1> [e,y (D, 7)oy €]

DEFINITION 8.2. The classes f(x), g(x),8(x) € H*(ET x1t AX) forx €
H*X are defined by

f(x)=10ev](v@x®), g(x) =1 0ev{(1®x®7), §(x)=r1 0ev](x).
The class u is defined by u = pr{(u) where pr; : ET x1 AX — BT is the
projection on the first factor.

THEOREM 8.3. Let iy : X < AX denote the constant loop inclusion and
let i be the corresponding map of T-homotopy orbits. There is a commutative
diagram as follows

H*(ET x7 AX) —=—» H*(BT x X)

(33) qé’cl l

H*(AX) —% 5  H*X)
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and an inclusion Im(qgo) C ker(d : H*(AX) — H*(AX)). The constructed
classes are mapped as follows under i

i (f(x)) = 6 (x)Sto(x) + o (x)(=1)"m!u"™ Sto(x),

i%,(8(x)) = 6 (xX)St; (x) + o (X)(=1)"m!u" " Sty (x),

i) =0 and il (u)=u®l.

Here m = (p — 1)/2. Under q°, the images of the classes are as follows.

g% (f(x)) = & (x)e(xP),
q%(g(x)) = 6 (x)e(x""'dx) + o (x)8, 3e(BArx),
g2 (8(x)) =e(dx) and  q°(u)=0.

Here 5, 3 = 1 for p = 3 and zero otherwise.

PROOF. A commutative diagram of spaces gives the diagram (33) and Pro-
position 7.5 gives the stated inclusion.

We check that the formulas for i are valid. Since i, sits over the identity
on BT we have i3 (u) = u ® 1. There is a commutative diagram as follows
where A, : X — X7 is the diagonal and i; is the map of C,-homotopy orbits
induced by ij.

5
evy

H*(X) H*(AX)

A;T id

H*(XP) ——s  H*(AX)

1 1
Trol T

H*(ET x¢, XP) = H*(ET x¢, AX) —— H*(BC, x X)

1 T?@ll

H*(ET x7 AX) —= H*(BT x X)

The horizontal map with no label is the induced in cohomology of the map
y = (), v &), ..., ¥ ({,‘,p_l)). A homotopy commutative square of spaces
shows that the upper square commutes and it is obvious that the other two are
commutative.

The composite ev; oi is the diagonal A;. Its induced in cohomology is the
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Steenrod diagonal A} given by the following ([12] p. 119 & Errata):

V@OATI®x®) =Y (~=1)'u" 4V Q@ Plx 4+ ) (—D)ivu" "' @ BP'x

where ¢ = |x| and v(g) = (m!)?(—1)"@’*+9/2, From this formula and the
lower part of the diagram we see that

V@I (f0) = (=D @ Plx = (=D 1y x),

V(@)iZ(g(x) = Y (=D @ BPIx = (=)D 51 (x).

1

By [12] Lemma 6.3 one has (m!)?> = (—1)"*! mod p and from this one sees
that v(¢)~'(—=1)14/?1 = 1 for g even and v(g) ™' (=D4/? = (=1)"m! for ¢
odd. Hence we have verified the formulas for i (f(x)) and i% (g(x)).

By the left part of the diagram we see that

S(X)=1Fo0evfoTri(x®@1® - ®1).

The composite A} o Tr(g is zero by [12] Lemma 4.1 so i¥ (§(x)) = 0.

We now check the formulas for ¢°,. It follows directly from Proposition 7.5
that §(x) is mapped as stated and clearly u is mapped to zero. For the classes
f(x) and g(x) we proceed as follows.

Let Y be a T-space and let e be a point in ET. There is a T-equivariant map
6y : TxYy— ET x Y given by (z, y) — (ze, zy) where Yy means Y with
trivial T-action. Let 6; be the associated map of C,-orbits ie. 6, = 6p/C,,.
There is a commutative diagram

H*(ET x¢, Y) —— H*(T/C,) ® H*Y
r,wl rf“@ll
H*(ET x17) —& H*Y
where t° : H*(T/C,) — F, is givenby 1 - 0 and v — 1. This is proved
in as similar way as [2] Proposition 4.6. When Y = A X we have

g2 ot®oev) =T ®1)0bfoevy = (T ® 1) o0 (ev; 0 ;)"

Note that ev; o 6 equals the composite

V4
1 xevy

T/C, x AX —% 5 ET x¢ (AX)? ET x¢ XP
p P P
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where fax is the map from Definition 7.7. Thus we have
gl ot oev) = (1 ®1) o fiyo(l x ev))*.
From this and Theorem 7.8 we get the stated results.

PrROPOSITION 8.4. The following diagram is a pullback square:

H*(ET x1 ABF,) —=— F,[u] ® H*BF,

) |

ker(d) — %, H*BF,.

Proor. Define the action map f, : Z x F, — F, by (r, [s]) — [nr +
s] for n € F,. We let BF,(n) denote BF, equipped with T-action Bf, and
write d,) for the corresponding action differential on H* BF,(n). So we have
H*BF,(n) = A(v,) ® F,[Bv,] where |v,| = 1.

We claim that d(,)(v,) = n and d,(Bv,) = 0. Firstly, (Bf,)*(v,) =
1 ® v, +nv ® 1 as one sees from H|(Bf,) = m(Bf,) = f, by taking duals.
Secondly, Av, = v, so dg)(Bv,) = 0.

From [1] Lemma 7.11 we have A BF, >~ LIBF, where the disjoint union is
taken over n € F,. Define maps as follows for n € F,:

jn: BF,(n) — ABF,; x = (z— Bf,(z, x)).

These are T-equivariant maps. Let (A BF,)(n) denote the component of A BF,
containing the image of j,. Then the restriction j,| of j, to (ABF,)(n) is T-
equivariant and a homotopy equivalence. Especially the induced in cohomo-
logy (j|)* is an isomorphism of differential graded algebras. Thus (A BF,)(n)
# (ABF,)(m) forn # m since the differentials on their cohomology rings are
different. Hence Uij, : UBF,(n) — ABF, is T-equivariant and a homotopy
equivalence. It follows that the induced map of T-homotopy orbits (LIj,)eo iS
a weak homotopy equivalence.

The diagram in the statement is via (Lj,)~ equivalent to the following

diagram: .
@ H*(ET x1 BF,(n)) —2*— H*(BT x BF,)

@Q}‘n)l l
@ker(d(n)) —_— H*(BFp)

where Q(,) : ET x BF,(n) — ET x1 BF,(n) denotes the quotient map and
pro 1s the projection on the direct summand with n = 0.
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We have H*(ET x1 BF,(n)) = ker(d(,)) for n # 0 since here the Leray-

Serre spectral sequence has E5* = 0 for i > 1. It follows that the diagram is
a pullback.

As indicated by Theorem 8.3 above it turns out that when |x| is odd then
both f(x) and g(x) can be written as a product of some power of u with another
class. This was not the case for p = 2 as described in [2]. We construct new
classes to get around this difficulty.

THEOREM 8.5. Let x € H*X be a cohomology class of odd degree. Then
there exist classes ¢ (x), q(x) € H*(ET x7 AX) with |¢(x)| = p(|x|—1)+1
and |qg(x)| = p(|x| — 1) + 2 such that

i%,(¢(x)) = Sto(x), g2 (9 (x)) = Ax — x(dx)",
it (g(x) = Sh(x),  qo(gx)) = Bix.

Proor. It suffices to prove the theorem when X = K (F,,, n) foroddn > 1.
The general case then follows by defining ¢ (x) = (1 xTAh)*¢ (1) and g (x) =
(I x1 Ah)*q(1,) where n = |x|and h : X — K(F,, n) has h*(1,) = x. So
assume that X = K (F,, n).

Forn = 1 we have Sty(1;) = 1 ®; and St;(¢1;) = 1 ® Bi; so here the result
follows from Proposition 8.4.

Assume that n = 2r + 1 where r > 1. By Proposition 7.1, Theorem 2.9 and
Theorem 4.9 the E3-term of the Leray-Serre spectral sequence for the fibration
AX — ET x7 AX — BT has the following form:

E; = Im(d) @ (F,[u] ® (K))

where K = H*X. Here u has bidegree (2, 0) and an element y in Im(d) or
5(1() has bidegree (0, |y]). Defines : BT — ETx1tAX suchthat prios = id
by choosing a constant loop. By s* we see that the horizontal line (x, 0) survives
to Fso.

Up to dimension 2rp 4+ 2p — 1 the only horizontal lines (x,m), m > 0
which are non trivial for * > 0 are (%, 0), (x,2rp + 1), (*,2rp + 2) and
(x,2rp + 2p — 1) corresponding to powers of u times the classes 1, ¢ (t,),
q(t,) and g(B,) in §(K) respectively. Hence we can define ¢ (¢,,), ¢ (i) in
H*(ET x1t AX) by

4P (1) = Ay — t(de)P™', q50(q(w)) = Brt,  and  s*(q (1)) = 0.

Since | f(t,)| = 2rp + p and |g(t,)| = 2rp + p — 1 we see that f(1,) =
Ciu"¢(,) and g(1,) = Czu’"_lq(L,,) where Cy, C; € Fp andm = (p—1)/2
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as before. By Theorem 8.3 we conclude that

Cru™i’ (¢ (1) = (=1)"m!u" Sty (L),
Cou™ % (q(t)) = (=) m!u™ ' St (1)

and the result follows.

DEFINITION 8.6. For x € H*X of even degree we simply define ¢ (x) =
f(x) and g(x) = g(x).

9. String cohomology and the functor ¢
In this section we prove the main result of this paper:

THEOREM 9.1. Let X be a connected space with H,X of finite type. Then
there is a morphism of unstable </-algebras

Y b(H*X) — H*(ET x1 AX)

which sends ¢ (x), q(x), 6(x) for x € H*X and u to the constructed classes
with the same names. The morphism is natural in X. If both of the maps

e: QH*X) > H*(AX), ®: QH*X) - H*(Q(H*X))

are isomorphisms then so is . In particular \ is an isomorphism when H* X
is a free object in J .

PROOF. Assume that both e and ® are isomorphisms and put K = H*X.
By Theorem 4.5 we have that Im(Q) = ker(d). From the results in Section 8
we see that Im(Q) C Im(qgo) so ker(d) C Im(qgo). It now follows from Pro-
position 7.6 that ker(d) = Im(g2)) and that the Leray-Serre spectral sequence
associated to the fibration AX — ET xt AX — BT collapses at the E3-term:

(B4)  Ep=E;Zker(d)®w® QUK) D U QK) S -

By Proposition 4.6 the filtration of £(K) by powers of the ideal (u#) also
has (34) as associated graded object. If we fix a degree the filtrations are finite
and we conclude that £(K) and H*(ET x1 AX) have the same dimension in
each degree. Hence it suffices to show that the map ¥ in the statement is a well
defined morphism which is surjective.

The constructed classes are algebra generators for H*(ET x1 AX) by the
collapse, and the formulas for their images under i}, given in Section 8 show
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that Im(i%) = R(K). Hence we have a commutative diagram as follows:

H*(ET x71 AX) —= 5 R(K)

q&l l’ll
ker(d) —r , K

The kernel of p; is the ideal (¥ ® 1) and i () = u ® 1. Since u € ker(qgo)
and i} is surjective we conclude that the restriction i%_| : ker(qgo) — ker(py)
is surjective. Hence we have a surjection into the pullback.

We now restrict to the case where H*X is a free object in 7. Here e is an
isomorphism by Proposition 2.9 and & is an isomorphism by Theorem 4.9 and
Lemma 6.1.

The above surjection into the pullback together with Theorem 6.7 gives
us a surjective morphism ' : H*(ET x1t AX) — £(K) which is then an
isomorphism. By definition it has inverse ¥.

By the fact that K (F,, n) classifies degree n cohomology and naturality
of the constructed classes, we can now conclude that the defining relations
for £(K) are universal for the constructed classes. Hence v is a well defined
morphism in general.

In the case where e and @ are isomorphisms, the collapse ensures that ¥ is
surjective and hence an isomorphism.

COROLLARY 9.2. Let X be a connected space with H, X of finite type. If
H*X is a polynomial algebra on a set of even dimensional generators then
is an isomorphism.

Proor. If K is zero in odd degrees then Q(K) is the ordinary de Rham
complex Q(K|F,). Furthermore, SZ(K ) is the de Rham complex QK [F))
where K is the algebra defined by K"? = K” and K" = 0 for m # 0 mod p.
The map @ is the Cartier map.

The Eilenberg-Moore spectral sequence for H*(A X) has Hochschild ho-
mology of H* X as its E,-term and it collapses since the algebra generators sit
in ES* and E; "*. By the Hochschild-Konstant-Rosenberger theorem Hoch-
schild homology is isomorphic to the de Rham complex and one concludes
that e is an isomorphism. The Cartier map & is also an isomorphism.

REMARK 9.3. We have a commutative diagram which describes the ideas
of our approximations:

QUH*X) ——  «(H*'X) —25 QH*X)
| d |

=) 0
H*(AX) —2— H*(ET x1 AX) —= H*(AX).
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10. Appendix: Limits and colimits in &

ProrosiTiON 10.1. The category ./*’ has all finite coproducts. The coproduct
A ® A’ of two objects A, A" in F is the tensor product of the underlying
Fp-algebras equipped with maps X x A and B x B’ on A ® A’ defined by

A A (X ®y) =Ax) ® y? +xP QN (y)
BxB(x®y) =Bx)®y+ (—D"x®B(y)

PrOOF. By direct computations one verifies that A ® A’ is indeed an object
in & . It is then easy to see that A ® A’ is the categorical coproduct where the
canonical inclusionsi : A - A® A’and j : A’ —> A ® A’ are defined by
i)=xland j(y) =1® y.

ProOPOSITION 10.2. The category & is complete and cocomplete ie. all
small limits and colimits exist in % .

PRrOOF. Similar to the proof for p = 2 given in [11].

ProposiTION 10.3. The functor L F — Alg commutes with filtered
colimits. The functors <, Q:F — Al g commute with all colimits.

PrROOF. By standard arguments Q, Q and £ commute with filtered colimits.
Thus it suffices to show that Q@ and © commute with finite coproducts and
coequalizers of pairs of maps [7].

For A € /lg we let D(A) be the free graded commutative and unital A-
algebra on generators dx for x € A of degree |dx| = |x| — 1 modulo the ideal
generated by the elements d (x +y) —dx —dy and d (xy) —d (x)y—(—1)*xd (y)
for x,y € A. The functor D : flg — /g is left adjoint to the functor
Hlg — Alg; A — A(v) ® A.

The functor D commutes with colimits since it is a left adjoint. In particular
the canonical morphism z : D(A) ® D(B) — D(A ® B) is an isomorphism.
Let k denote its inverse. Using the factorizationa ® b = (a ® 1)(1 ® b) we
find

k(a®b) =a®Db, k(da®b)) =d@)@b+a®dDb).
Now assume that A and B are objects in #. We have a quotient map
D(A) — 2(A) inducing an isomorphism D(A)/((da)? — d(ra), dfrala €
A) = Q(A). Consider the composite map

D(A® B) —*— D(A) ® D(B) —— Q(A) ® Q(B).
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Elements of the form (d(a ® b))? +d(A(a @ b)) or d(BA(a @ b)) are mapped
to zero under this composite by the above formulas for k. So we can factor
through Q(A® B) and get an inverse to the map QAR Q(B) - QAR B).

By a similar proof one sees that Q commutes with coequalizers of pair of
maps. Thus  commutes with all colimits.

We now show that Q ‘commutes with finite coproducts. The canonical map
h: QA @ QB) - QA®B)isgivenby h(x @ y) = Q) x)Q() ()
where i and j are the inclusions of A and B in the coproduct A ® B.

By the factorization a ® b = i(a)j(h), a € A, b € B the following
equations hold in §(A ® B):

¢la®b) =(1—0a(a)od)¢(i(a)e(jb))
qa®b) =6(b)qi(a)g(j®) +6(a)p(i(a)g(jb))

In order to get an inverse to & we define the following morphism:
k:Q(A®B) - QA) ® QB);

¢@a®b) — (1 —o(a)a(b))p(a) ® ¢(b),
q(a®b) — 6(b)g(a) ® p(b) + o (a)p(a)q(b).

We must check that k is well defined ie. that the relations (24)—(27) are respec-
ted. It suffices to consider the following special form of relation (24):

P((x@YEQw) =(1—-0(x®y)o(zQw)p(x®y)(z®w).

We apply k on the left hand side. Since (x ® )z @ w) = (—=1)°P"@xz ® yw
we get the element (—1)°Y°® ¢ (x)p(z) ® ¢(y)¢(w) times the constant o
below. When applying k to the right hand side we get the same element times
the constant 8 below

a=(1-0o(xx)oyw)d —ax)o ()1 —-a(y)o(w)),
B=0-0c(x®@y)o@w)(l—ol)o(y)(l —o(z)o(w)).

Thus it suffices to check that « = B. If 6(y) = 0(z) = Othena = 8 =
1 —o(x)o(w). If one of o (y), 0 (z) equals one and the other equals zero then
a=8=0cwox).Ifo(y) =0(z) = 1thena = B8 = 0. Hence the
relation (24) is respected by k. A similar argument shows that the relation (25)
is respected by k.

By additivity and symmetry it suffices to check that k respects the following
special form of relation (26): ¢ (BA(a ® b)) = g(a @ b)? where o (a) = 0 and
o(b) = 1. Since BA(a ® b) = a” ® BLb we see that k applied to the left hand
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side equals ¢ (a”) ® ¢ (BAb) = ¢(a)? ® q(b)?. Since k applied to the right
hand side equals (¢ (a) ® g (b))’ = ¢p(a)? ® q(b)? the relation is respected.

By additivity and symmetry it suffices to check that k respects the following
special form of relation (27): g (BA(a®b)) = Owhere o (a) = Oando (b) = 1.
We find k(g (B1(a ® b))) = ¢ (a?) ® g(BLb) = 0 so the relation is respected.
We have shown that k is well defined. We have h ok = id and also ko h = id
as one sees by evaluating on algebra generators. Hence k is an isomorphism
and Q commutes with finite products.

Finally we Verify that € commutes with coequalizers of pairs of maps. For
f-g&: A= Bin% we have coeq(f, g) = B/(f(a) — g(a)|a € A) and

coeq(Q(f), 2(g)) = 2B)/(Q(f)(x) — Q) (x)|x € Q(A)).

The canonical morphism 4 : coeq(ﬁ(f), ﬁ(g)) — ﬁ(coeq(f, g)) is given by
hl¢p(b)] = ¢([b]) and h[q (b)] = g ([b]). We check that there is a well defined
map k in the opposite direction with k(¢ ([»])) = [¢(b)] and k(q([b])) =

g (b)].

It suffices to verify that if y is an element in the ideal (f (a) gla)la € A)
then ¢ (y) and ¢ (y) lies in the ideal (Q(f) (x) — Q(g) x)|x € Q(A)) Writing
x = (f(a) — g(a))z for some a € A and z € B this follows directly by the
relations (24) and (25). By definition £ is the inverse to A.
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