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ON THE BOREL COHOMOLOGY OF FREE
LOOP SPACES

IVER OTTOSEN∗

Abstract

Let X be a space and let K = H ∗(X; Fp) where p is an odd prime. We construct functors �̄ and �

which approximate cohomology of the free loop space 	X as follows: There are homomorphisms
�̄(K) → H ∗(	X; Fp) and �(K) → H ∗(ET ×T 	X; Fp). These are isomorphisms when X is a
product of Eilenberg-MacLane spaces of type K(Fp, n) for n ≥ 1.

1. Introduction

Let X be a topological space and R a ring. The circle group T acts on the free
loop space 	X by rotation of loops. The associated Borel cohomology groups
are called string cohomology of X [4]. We denote them as follows:

H ∗
st (X;R) = H ∗(ET ×T 	X;R).

String cohomology as well as non equivariant cohomology of free loop spaces
play a central role in geometry and topology. It is however often not possible
to compute such cohomology groups.

When R = F2 = Z/2, M. Bökstedt and I found functors of H ∗(X) which
approximate H ∗

st (X) and H ∗(	X) [2]. The purpose of this paper is to gen-
eralize these functors to the case R = Fp = Z/p where p is any of the odd
primes. Certain algebra generators in string cohomology are more difficult to
construct in the odd primary case. Hence method and strategy differs from [2]
at various places.

The following application of the functors �̄ and � will appear in the near
future. There are two Bousfield cohomology spectral sequences. One conver-
ging to H ∗(	X) and the other converging to H ∗

st (X). The E2 term of the first
is isomorphic to the (non Abelian) derived functors of �̄ and the E2 term of
the second is isomorphic to the derived functors of �.
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Notation. Fix an odd prime p. We use Fp-coefficients everywhere unless
otherwise is specified. A denotes the mod p Steenrod algebra, U the category
of unstable A -modules and K the category of unstable A -algebras. We let
A lg denote the following category. An object in A lg is a non-negatively
graded Fp-algebra A with the property that if a ∈ A and |a| = 0 then a = ap.
The category of differential graded Fp-algebras is denoted DGA. For any
A ∈ A lg we define σ : A → Fp by σ(x) = 1 for |x| odd and σ(x) = 0 for
|x| even. We also define σ̂ : A → Fp by σ̂ (x) = 1 − σ(x). The circle group
is denoted T.

2. The approximation functor �̄

In this section we define a functor �̄ : F → A lg which approximates the
cohomology ring H ∗(	X) when applied to H ∗X. Here F is a certain category
which lies between K and A lg. The functor �̄ lifts to an endofunctor on
K which is nothing but an explicit description of Lannes’ division functor
(− : H ∗(T))K introduced in [5].

Definition 2.1. Let F denote the following category. An object in F is
an object A ∈ A lg which is equipped with an Fp-linear map λ : A → A with
the following properties:

• |λx| = p(|x| − 1) + 1 for all x ∈ A.

• λx = x when |x| = 1 and λx = 0 when |x| is even.

• λ(xy) = λ(x)yp + xpλ(y) for all x, y ∈ A.

Furthermore A is equipped with an Fp-linear map β : A → A of degree 1 with
the following properties:

• β ◦ β = 0.

• β(xy) = β(x)y + (−1)|x|xβ(y) for all x, y ∈ A.

A morphism f : A → A′ in F is a morphism in A lg such that f (λx) =
λ′f (x) and f (βx) = β ′f (x).

Remark 2.2. There are forgetful functors K → F and F → A lg. For
an object K in K the map λ : K → K is defined by λx = P (|x|−1)/2x when
|x| is odd. The map β is the Bockstein operation.

We let 	(v) denote the object H ∗(T) in K . There is an associative and
commutative coproduct δ : 	(v) → 	(v) ⊗ 	(v); v �→ 1 ⊗ v + v ⊗ 1. It
comes from the product on T and has counit γ : 	(v) → Fp coming from the
unit 1 → T.

Let ⊥ : K → K be the functor given by A �→ 	(v) ⊗ A. The coproduct
and counit above define natural transformations δ : ⊥ → ⊥2 and γ : ⊥ → Id



on the borel cohomology of free loop spaces 187

such that (⊥, δ, γ ) is a comonad. A ⊥-coalgebra is an object K in K equipped
with a morphism f : K → ⊥(K) such that the following diagrams commute:

K
f−−−→ ⊥(K)

❅↘id ↓γ

K

K
f−−−−→ ⊥(K)

↓f ↓δ

⊥(K)
⊥(f )−−−−→ ⊥2(K).

Examples of ⊥-coalgebras are cohomology of T-spaces.

Proposition 2.3. IfK is a⊥-coalgebra with structure mapf : K → ⊥(K)

then K is a graded commutative DGA with degree −1 differential d given by

f (x) = 1 ⊗ x + v ⊗ dx, x ∈ K.

Furthermore, d(P ix) = P idx for each i ≥ 0 and d(βx) = −βd(x). In
particular d(λx) = (dx)p and d(βλx) = 0.

Proof. By the left of the above diagrams f may be expanded as stated.
By the right diagram d ◦ d = 0. Since f is a morphism in K we see that d is
Fp-linear, a derivation over the identity and that the stated relations hold.

Proposition 2.4. Assume that the functor ⊥ : K → K has a left adjoint
� : K → K . Then there is a natural ⊥-coalgebra structure η : � → ⊥�
on �. For an object B ∈ K the map ηB is the image of the identity under the
composite

HomK (�(B),�(B)) HomK (�(B),⊥�(B))

↓∼= ↑∼=

HomK (B,⊥�(B))
δ∗−−−−→ HomK (B,⊥2�(B))

Proof. This is formally the same as the proof of [11] Proposition 3.4.

Definition 2.5. For A ∈ F we define �̄(A) as the quotient of the free
graded commutative and unital A-algebra on generators

dx for x ∈ A

where |dx| = |x| − 1, by the ideal generated by the elements

d(x + y) − dx − dy,(1)

d(xy) − d(x)y − (−1)|x|xd(y),(2)

d(λx) − (dx)p,(3)

d(βλx).(4)
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Note that �̄(A) is non-negatively graded since d(xp) = 0. We have defined
a functor �̄ : F → A lg.

Proposition 2.6. The functor �̄ : F → A lg lifts to a functor �̄ :
K → K . Explicitely the A -action on �̄(K) is given by θ(x) = θx and
θ(dx) = (−1)|θ |d(θx) for x ∈ K and θ ∈ A and the Cartan formula. The
differential d on �̄(K) is graded A -linear.

Proof. Let dK denote the graded Fp-vector space given by (dK)n = Kn+1.
We write dx for the element in dK corresponding to x in K hence d(x +y) =
dx + dy. We define an A -module structure on dK by P idx = dP ix and
βdx = −dβx. Let S(dK) denote the free graded commutative algebra on
the Fp-vector space dK . By the Cartan formula S(dK) is an A -algebra and
the symmetric product K � S(dK) is an A -algebra. By definition �̄(K) =
K � S(dK)/I where I is the ideal generated by

1 � d(xy) − d(x) � y − (−1)|x|x � d(y),(5)

1 � (d(λx) − (dx)p),(6)

1 � d(βλx).(7)

We verify that A · I ⊆ I such that �̄(K) is an A -algebra. We have

Pn(1 � d(xy) − dx � y − (−1)|x|x � dy)

=
∑

i+j=n

(1 � d(P i(x)P j (y)) − dP ix � P jy − (−1)|x|P ix � dP jy)

which is in I by (5) since the degree of P i is even. Further

β(1 � d(xy) − dx � y − (−1)|x|x � dy)

= −(1 � d(β(x)y) − dβx � y − (−1)|βx|βx � dy)

− (−1)|x|(1 � d(xβy) − dx � βy − (−1)|x|x � dβy)

which is also in I by (5).
In any A -algebra one has P i(ap) = (P i/pa)p when i = 0 mod p and

zero otherwise, since this is a consequence of the Cartan formula alone. So by
Lemma 2.7 we have the following relation in S(dK) when i = 0 mod p:

P i(d(λx) − (dx)p) = d(P iλx) − (P i/pdx)p = d(λP i/px) − (dP i/px)p.

For i �= 0 mod p we get zero. So P i applied to an element of the form (6) lies
in I . If we apply β to such an element we also land in I by (7). Finally Lemma
2.7 shows that P i(1 � d(βλx)) ∈ I and trivially β(1 � d(βλx)) ∈ I .
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We verify that �̄(K) ∈ U. We must show that P idx = 0 if 2i > |x| − 1.
This holds if 2i > |x| since K ∈ U. If 2i = |x| we have P idx = dP ix =
d(xp) = 0. We must also show that βP idx = 0 when 2i + 1 > |x| − 1.
This holds if 2i + 1 > |x| since K ∈ U and if 2i + 1 = |x| we have
βP idx = −dβP ix = −dβλx = 0. Since the action on products are by the
Cartan formula we have shown that �̄(K) ∈ U.

Finally we check that �̄(K) ∈ K . The Cartan formula holds by definition.
For |x| odd we have P |dx|/2(dx) = dλx = (dx)p and the result follows.

Lemma 2.7. For any unstable A -algebra K and x ∈ K the following
equations hold.

P iλx =
{
λ(P

i
p x), i = 0 mod p

0, otherwise
(8)

P iβλx =


βλ(P

i
p x), i = 0 mod p

(βP
i−1
p x)p, i = 1 mod p

0, otherwise

(9)

Proof. We just prove (8) since the proof of (9) is similar. When |x| is even
both sides in the equation are zero. Assume that |x| is odd. By the instability
condition P iλx = 0 when 2i > p(|x| − 1) + 1. When i is divisible by p

this inequality implies 2i ≥ p(|x| − 1) + p or 2i
p

≥ |x| and since |x| is odd
2i
p

> |x|. So P i/px = 0 and the equation holds in this case. If 2i = p(|x| − 1)

then P iλx = λ2x = λ(P i/px).
Finally assume that 2i < p(|x|−1). Then we can apply the Adem relation:

P iP
|x|−1

2 x =
[ i
p

]∑
t=0

(−1)i+t

(
(p − 1)

( |x|−1
2 − t

) − 1

i − pt

)
P i+ |x|−1

2 −tP tx.

The instability condition shows that P i+ |x|−1
2 −tP tx = 0 unless i ≤ pt . But the

binomial coefficient is zero when i < pt . So we get zero when i �= 0 mod p

and the term corresponding to t = i/p when i = 0 mod p.

Proposition 2.8. The functor �̄ : K → K is left adjoint to ⊥ : K → K ;
B �→ H ∗(T)⊗B. Thus there is an equivalence of functors �̄ ∼= (− : H ∗(T))K .
The differential d : �̄(A) → �̄(A), associated to the natural ⊥-coalgebra
structure, is given by d(x) = dx for x ∈ A.



190 iver ottosen

Proof. We can define natural maps as follows where x ∈ A:

F : HomK (�̄(A), B) →← HomK(A,⊥(B)) : G

F(f )(x) = 1 ⊗ f (x) + v ⊗ f (dx),

G(g)(x) = γ ◦ g(x), G(g)(dx) = (α ⊗ 1) ◦ g(x)

where α : 	(v) → Fp is the additive map of degree −1 given by v �→ 1 and
1 �→ 0. It is easy to verify that F ◦G = id and G◦F = id. The description of
d follows by using these explicit adjunction formulas in the composite defining
η in Proposition 2.4.

Proposition 2.9. For any space X there is a morphism in K (and in DGA)

e : �̄(H ∗X) → H ∗(	X); e(x) = ev∗
0(x); e(dx) = dev∗

0(x)

where ev0 : 	X → X;ω �→ ω(1). This morphism is natural in X and it is
an isomorphism if X = K(Fp, n) with n ≥ 0. If H∗X is of finite type and Y is
any space then there is a commutative diagram

�̄(H ∗X) ⊗ �̄(H ∗Y )
∼=−−−−→ �̄(H ∗X ⊗ H ∗Y )

↓e⊗e ↓e
H ∗(	X) ⊗ H ∗(	Y)

∼=−−−−→ H ∗(	(X × Y ))

where the lower horizontal map is the Künneth isomorphism.

Proof. The proof of Proposition 3.9 in [11] goes through with the obvious
changes. Thus the isomorphism statement is a consequence of [5] 1.11.

3. The approximation functor �

In this section we describe the functor � : F → A lg which gives an approx-
imation to H ∗(ET ×T 	X) when applied to H ∗X. We also define a natural
transformation Q : � → �̄ which corresponds to the map H ∗(ET ×T 	X) →
H ∗(	X) induced by the quotient. We do however not go into the topological
interpretations here.

Definition 3.1. ForA ∈ F we define �(A) as the free graded commutative
Fp-algebra on generators φ(x), q(x), δ(x) for x ∈ A and u of degrees

|φ(x)| = p|x| − σ(x)(p − 1),

|δ(x)| = |x| − 1,

|q(x)| = p|x| − 1 − σ(x)(p − 3),

|u| = 2
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modulo the ideal generated by

(10) φ(x + y) − φ(x) − φ(y) + σ(x)

p−2∑
i=0

(−1)iδ(x)iδ(y)p−2−iδ(xy),

(11) δ(x + y) − δ(x) − δ(y),

(12) q(x + y) − q(x) − q(y) + σ̂ (x)

p−1∑
i=1

(−1)i
1

i
δ(xiyp−i ),

(13) (−1)σ(a)σ̂ (c)δ(a)δ(bc) + (−1)σ(b)σ̂ (a)δ(b)δ(ca)

+ (−1)σ(c)σ̂ (b)δ(c)δ(ab),

(14) φ(ab) − (−up−1)σ(a)σ (b)φ(a)φ(b),

(15) q(ab) − (−up−1)σ(a)σ (b)(uσ(b)q(a)φ(b) + (−u)σ(a)φ(a)q(b)),

(16) q(x)p − up−1q(λx) − φ(βλx),

(17) δ(a)φ(b) − δ(abp) − δ(aλb) + δ(ab)δ(b)p−1,

(18) δ(a)q(b) − δ(abp−1)δ(b) − δ(aβλb),

(19) δ(x)u,

(20) q(βλx),

(21) δ(xp)

where a, b, c, x, y ∈ K and |x| = |y|.
Remark 3.2. We have some immediate consequences of these relations:

By (10), (11) and (20) we have φ(0) = q(0) = δ(0) = 0. By (14) and (15) we
have q(an) = nφ(a)n−1q(a) such that q(ap) = 0. By (21) we have δ(1) = 0
so by (21) and (17) we find δ(λb) = δ(b)p. By (18) and δ(1) = 0 we have
δ(βλb) = 0. By (14), (15) and (17) the algebra �(A) is unital with unit φ(1).

Since δ(xp) = q(xp) = 0 we see that �(A) is non-negatively graded. We
have defined a functor � : F → A lg.

Lemma 3.3. Let K ∈ F and x, y ∈ K with |x| = |y| = n. The following
relations hold in �̄(K):

(22)
p−1∑
i=1

(−1)i+1 1

i
d(xiyp−i )

= (x + y)p−1d(x + y) − xp−1dx − yp−1dy, n even
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(23)
p−2∑
j=0

(−1)j+1(dx)j (dy)p−2−j d(xy)

= (d(x + y))p−1(x + y) − (dx)p−1x − (dy)p−1y, n odd.

Proof. We verify (22) and omit the proof of (23) which is similar. Since d

is a derivation we have

p−1∑
i=1

(−1)i+1 1

i
d(xiyp−i ) =

p−1∑
i=1

(−1)i+1(xi−1yp−1dx − xiyp−i−1dy).

By splitting the sum in two at the minus sign and substituting j = i − 1 in the
first of the resulting sums we see that the above equals the following:

p−2∑
j=0

(−1)j xjyp−j−1dx +
p−1∑
i=1

(−1)ixiyp−i−1dy

=
p−1∑
t=0

(−1)txtyp−t−1(dx + dy) − xp−1dx − yp−1dy.

For 0 ≤ t ≤ p − 1 we have that t! is invertible in Fp and also(
p − 1

t

)
t! = (p − 1)(p − 2) . . . (p − t) = (−1)t t! mod p.

Thus we have
(
p−1
t

) = (−1)t . Substituting this in the above and using the
binomial formula the result follows.

Proposition 3.4. For A ∈ F there is a natural morphism in A lg as
follows:

Q : �(A) → �̄(A); φ(x) �→ xp + λx − x(dx)p−1,

δ(x) �→ dx, q(x) �→ xp−1dx + βλx, u �→ 0.

Furthermore, Im(Q) ⊆ ker(d : �̄(A) → �̄(A)).

Proof. We check that the formulas for Q map the relations (10)-(21) to
zero. Formula (23) and the additivity of x �→ xp shows that (10) is mapped
to zero. It is trivial that (11) is mapped to zero. By (22) and the additivity of
x �→ βλx it follows that (12) is mapped to zero.
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Taking the derivative of products and permuting factors we find the follow-
ing equations:

d(a)d(bc) = d(a)d(b)c + (−1)σ(b)d(a)bd(c),

d(b)d(ca) = (−1)σ(a)(σ̂ (b)+σ̂ (c))ad(b)d(c)

+ (−1)σ(c)+σ̂ (a)(σ̂ (b)+σ(c))d(a)d(b)c,

d(c)d(ab) = (−1)σ̂ (c)(σ̂ (a)+σ(b))d(a)bd(c)

+ (−1)σ(a)+σ̂ (c)(σ (a)+σ̂ (b))ad(c)d(b).

After some reductions (13) follows from these.
One easily checks that (14) and (15) are mapped to zero in each of the cases

σ(a) = σ(b) = 0, σ(a) = σ(b) = 1 and σ(a) = σ̂ (b) = 1. It also follows
by small direct computations that (16)–(21) are mapped to zero.

4. The morphism Q and cohomology of �̄(A)

In this section we define an additive transformation τ : �̄ → � which corres-
ponds to the T-transfer from H ∗(	X) to H ∗(ET ×T 	X). The map Q gives
a morphism from �(A)/(u) to the cycles in �̄(A). Via this a map 8 similar to
the Cartier map [3] is defined. It turns out that �(A)/(u) ∼= ker(d) when 8 is
an isomorphism. Parts of the material presented here correspond to section 8
in [2]. We let A denote an object in F .

Definition 4.1. Let Iδ(A)⊆ �(A) denote the ideal Iδ(A)= (δ(x) | x ∈A).

Proposition 4.2. There is an Fp-linear map of degree −1 as follows

τ : �̄(A) → �(A); a0da1 . . . dan �→ δ(a0)δ(a1) . . . δ(an), a0 �→ δ(a0)

where ai ∈ A for each i. It has the following properties:

τ(Q(α)β)=(−1)|α|ατ(β) for α ∈ �(A), β ∈ �̄(A), Q ◦ τ=d, τ ◦Q=0.

Note that τ ◦ d = 0 and Im(τ ) = Iδ(A).

Proof. We must show that τ is well defined. The relations arising from
(1), (3) and (4) are respected since we have the same relations in �(K) with d

replaced by δ. We must verify that the following relation is respected:

a0da1 . . . dai−1d(aiai+1)dai+2 . . . dan

= (−1)(k+σ̂ (ai ))σ (ai+1)a0ai+1da1 . . . daidai+2 . . . dan

+ (−1)(k+1)σ (ai )a0aida1 . . . dai−1dai+1 . . . dan
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where k = |da1 . . . dai−1|. It suffices to check that

xd(yz) = (−1)σ̂ (y)σ (z)xzd(y) + (−1)σ(y)xyd(z)

is respected. This follows by (13) after some work with the signs.
By definition we have Q ◦ τ = 0. By direct computations one sees that

τ(Q(α)β) = (−1)|α|ατ(β) when α equals φ(x), q(x) or δ(x) and β equals
a0da1 . . . dan or a0. The general case follows from this. In particular τ ◦Q = 0
since τ(1) = 0.

Definition 4.3. Let L (A) = �(A)/(u) and �̃(A) = L (A)/Iδ(A). Ex-
plicitely, �̃(A) is the free graded commutative Fp-algebra on generators φ(x),
q(x) for x ∈ A of degrees |φ(x)| = p|x| − σ(x)(p− 1), |q(x)| = p|x| − 1 −
σ(p − 3) modulo the relations that φ and q are additive and

φ(ab) = (1 − σ(a)σ (b))φ(a)φ(b),(24)

q(ab) = σ̂ (b)q(a)φ(b) + σ̂ (a)φ(a)q(b),(25)

φ(βλx) = q(x)p,(26)

q(βλx) = 0.(27)

Since Q(Iδ(A)) ⊆ d�̄(A) we may define an Fp-algebra map 8 by the follow-
ing diagram where P denotes the canonical projection:

L (A) P−−−−→ �̃(A)

↓Q ↓8
�̄(A) −−−−→ �̄(A)/d�̄(A)

Since d ◦Q = 0 we have in fact defined a morphism 8 : �̃(A) → H ∗(�̄(A)).

Remark 4.4. Since τ ◦ d = 0 we can define τ as a map on �̄(A)/d�̄(A).
We have a commutative diagram as follows:

�̃(A) 8−−−−→ �̄(A)/d�̄(A) τ−−−−→ L (A) P−−−−→ �̃(A)

↑
↓Q ↓8

�̄(A) d−−−−→ �̄(A) −−−−→ �̄(A)/d�̄(A)

where the composite τ ◦ 8 vanishes and ker(P ) = Im(τ ).

Theorem 4.5. Assume that the map 8 : �̃(A) → H ∗(�̄(A)) is an iso-
morphism. Then so is Q : L (A) → ker(d : �̄(A) → �̄(A)).
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Proof. The diagram is formally the same as the one above Theorem 8.5 of
[2]. So the same diagram chase gives the result.

There is a filtration �(A) ⊇ u�(A) ⊇ u2�(A) ⊇ . . . with associated graded
object Gr∗�(A) given by Gri�(A) = ui�(A)/ui+1�(A). Consider the follow-
ing composite of surjective maps:

�(A) ui ·−−−−→ ui�(A) −−−−→ Gri�(A), i ≥ 1

The ideal Iδ(A)+u�(A) ⊆ �(A) is send to zero so we get a surjective Fp-linear
map ui · : �̃(A) → Gri�(A).

Proposition 4.6. For each i ≥ 1 there is a unique Fp-linear map 8i such
that the following diagram commutes:

�̃(A) ui ·−−−−−→ Gri�(A)

↓8 ↓8i

H ∗(�̄(A))
ui⊗−−−−−−→ ui ⊗ H ∗(�̄(A))

If 8 : �̃(A) → H ∗(�̄(A)) is an isomorphism then

Gr∗�(A) ∼= ker(d) ⊕ (u ⊗ �̃(A)) ⊕ (u2 ⊗ �̃(A)) ⊕ · · · .

Proof. The following elements generate the Fp-vector space Gri�(A):

(28) uiφ(x1) . . . φ(xn)q(xn+1) . . . q(xn+m) + ui+1�(A)

where n,m ≥ 0 and xj ∈ A for all j . (If n or m equals zero we have an empty
product which equals 1 by definition.) We can describe the relations among
these generators. Firstly they are additive in each variable xj . Secondly there
is a relation corresponding to each of the relations (24)–(27) for example

uiφ(x1) . . . φ(x ′
t x

′′
t ) . . . φ(xn)q(xn+1) . . . q(xn+m)

= (1 − σ(x ′
t )σ (x ′′

t ))u
iφ(x1) . . . φ(x ′

t )φ(x ′′
t ) . . . φ(xn)q(xn+1) . . . q(xn+m)

modulo ui+1�(A). If the map 8i exists such that the diagram commutes it must
send (28) to

ui ⊗ 8(φ(x1) . . . φ(xn)q(xn+1) . . . q(xn+m)).

But this formula gives a well defined map by the above identification of the
relations among the generators.
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The map ui ⊗ − is an isomorphism so if 8 is also an isomorphism we see
that ui · is injective. By definition ui · is always surjective so the result follows.

Definition 4.7. Let nFp denote the category of non-negatively graded Fp-
vector spaces. Define the free functor SF : nFp → F to be the left adjoint of
the forgetful functor F → nFp.

Remark 4.8. We have SF (V ⊕W) = SF (V )⊗SF (W). Furthermore there
is an explicit description as follows

SF (V ) = SA lg

(
V ⊕ βV ∗≥1 ⊕

⊕
i≥1,ν∈{0,1}

βνλi
(
βV even,∗≥2 ⊕ V odd,∗≥2

))

where SA lg denotes the left adjoint of the forgetful functor A lg → nFp.

Theorem 4.9. The map 8 : �̃(A) → H ∗(�̄(A)) is an isomorphism when
A is a free object in F .

Proof. By the results in the appendix section 10 it suffices to show that
8 is an isomorphism when A = Fn = SF (Vn), n ≥ 0 where Vn is the free
Fp-vector space on one single generator xn of degree n.

We have F0 = Fp[x0]/(xp

0 − x0) and �̄(F0) = F0 with zero differential
such that H ∗(�̄(F0)) = F0. On the other hand �̃(F0) ∼= F0 with generator
φ(x0). So 8 is an isomorphism since 8(φ(x0)) = x

p

0 = x0.
Further, F1 = 	(x1) ⊗ Fp[βx1] with λx1 = x1. Since (dx1)

p = dx1 we
can use the idempotents from Remark 4.11 below to get a splitting

�̄(F1) =
⊕
i∈Fp

ei�̄(F1).

For each i we have dei = 0 and (dx1)ei = iei . Also dβx1 = dβλx1 = 0. Thus
d(xε

1(βx1)
rei) = εi(βx1)

rei . It follows that H ∗(ei�̄(F1)) = 0 for i �= 0 and
H ∗(e0�̄(F1)) = F1 such that H ∗(�̄(F1)) = F1. Since 8(φ(x1)) = x1e0 and
8(q(x1)) = βx1 we see that 8 is surjective. The relations φ(βx1) = q(x1)

p

and q(βx1) = 0 shows that φ(x1) and q(x1) generate �̃(K) so 8 is also
injective.

Assume that n is even and n ≥ 2. In the following we write [−] for the
functor which takes a set to the vector space it generates. We have

Fn = SA lg[xn, βxn, λ
iβxn, βλ

iβxn | i ≥ 1]

and we find that �̄(Fn) = Fn ⊗ SA lg[dxn, dβxn]. We change basis such that
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the differential becomes easier to describe:

�̄(Fn) = SA lg[xn, dxn] ⊗ SA lg[βxn, dβxn]

⊗ SA lg[λiβxn − (dλi−1βxn)
p−1λi−1βxn, βλ

iβxn | i ≥ 1].

By the Künneth formula we find that H ∗(�̄(Fn)) equals

SA lg[xp
n , x

p−1
n dxn]⊗SA lg[λiβxn − (dλi−1βxn)

p−1λi−1βxn, βλ
iβxn | i ≥ 1].

The algebra �̃(Fn) is generated by the classes φ(xn), φ(λiβxn), q(xn)

and q(λiβxn) where i ≥ 0. We see that 8 maps these generators to the free
generators for the cohomology of �̄(Fn). Hence 8 is an isomorphism. The
case where n is odd and n ≥ 3 is similar.

Lemma 4.10. There is an isomorphism of rings as follows

α : Fp[x]/(xp − x) → (Fp)
p; x �→ (0, 1, 2, . . . , p − 1)

where Fp[x] is the polynomial ring in one variable x of degree zero and (Fp)
p

is the p-fold Cartesian product of Fp by itself.

Proof. Use the factorization xp − x = ∏
n∈Fp

(x − n) and the Chinese
remainder theorem.

Remark 4.11. Let en = α−1(0, . . . , 0, 1, 0, . . . , 0) with the 1 on the nth
place for n ∈ Fp. Clearly enem = 0 for n �= m, e2

n = en and
∑

en = 1. Also
xen = nen. Finding eigenvectors for xf (x) = nf (x) and normalizing one gets
the following:

e0 = 1 − xp−1, em = −
p−1∑
i=1

( x

m

)i

, m �= 0.

5. Steenrod diagonal elements

In this section we use the functor R+ of [6] to define a functor R : K → K .
We need R for a description of � given in the next section. Let K denote an
unstable A -algebra and consider Fp[u] with |u| = 2 an object in K by the
isomorphism Fp[u] ∼= H ∗(BT).

Definition 5.1. For x ∈ K and ε = 0, 1 we define Stε(x) ∈ Fp[u] ⊗ K

by
Stε(x) = u−εσ̂ (x)

∑
i≥0

(−up−1)[|x|/2]−i ⊗ βεP ix.
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Note that the terms where the total exponent of u is negative has βεP ix = 0.
Let R(K) ⊆ Fp[u] ⊗ K be the sub-Fp-algebra generated by u ⊗ 1 and Stε(x)

for all x ∈ K and ε = 0, 1.

Theorem 5.2. For each θ ∈ A one has θR(K) ⊆ R(K). Thus R is a
functor R : K → K . The explicit formulas are as follows where n = [|x|/2]
and ε = 0, 1:

P iStε(x) =
∑
t

(
(p − 1)(n − t) + εσ (x)

i − pt

)
u(p−1)(i−pt)Stε(P

tx)

− ε(−1)σ(x)
∑
t

(
(p − 1)(n − t) − 1 + σ(x)

i − pt − 1

)
· u(p−1)(i−pt)−1+(2−p)σ(x)St0(βP

tx),

βStε(x) = (1 − ε)uσ̂ (x)St1(x).

Proof. The formula for the Bockstein operation follows directly by the
definition of Stε(x). We use results from [6] to prove the other formula. By
[13] we have that Fp[u, u−1] is an A -algebra with β = 0 and

P iuj =
(
j

i

)
uj+i(p−1); i, j ∈ Z; i ≥ 0.

Here the following extended definition of binomial coefficients is used where
r ∈ R and k ∈ Z.

(
r

k

)
=


r(r − 1) . . . (r − k + 1)

k!
, k > 0

1, k = 0

0, k < 0

Let A = 	(a)⊗Fp[b, b−1] with |a| = 2p−3, |b| = 2p−2 be the A -algebra
introduced in [6] (2.6). That is βa = b and

P i(bj ) = (−1)i
(
(p − 1)j

i

)
bi+j ,

P i(abj−1) = (−1)i
(
(p − 1)j − 1

i

)
abi+j−1.
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Note that we have changed the names of the generators. In [6] they were named
u and v instead of a and b. We define an additive transfer map as follows:

τ : A → Fp[u, u−1]; bj �→ 0; abj−1 �→ (−up−1)ju−1.

Note that |τ | = −1. A direct verification shows that τ is A -linear.
A functorR+ from the category of graded A -modules to itself is constructed

in [6]. In the case of an unstable A -algebra K it comes with an A -linear map
f : R+K → BA ⊗ K defined by [6] (3.1), (3.2). The composite

R+K
f−−−−→ σA ⊗ K

Bτ⊗1−−−−−→ BFp[u, u−1] ⊗ K

is given by

sbk ⊗ x �→ −s
∑
j

(−up−1)k−ju−1 ⊗ βP jx,

sabk−1 ⊗ x �→ s
∑
j

(−up−1)k−ju−1 ⊗ P jx.

Especially sbn ⊗ x �→ −suσ(x)St1(x) and sabn−1 ⊗ x �→ su−1St0(x) where
n = [|x|/2]. The formulas [6] (3.4), (3.5) for the A -action on R+M gives the
following formulas for the A -action on uσ(x)St1(x) and u−1St0(x):

P i(uσ(x)St1(x)) =
∑
t

(
(p − 1)(n − t)

i − pt

)
u(p−1)(i−pt)−σ(x)St1(P

tx)

−
∑
t

(−1)σ(x)

(
(p − 1)(n − t) − 1

i − pt − 1

)
· u(p−1)(i−pt−σ(x))−1St0(βP

tx),

P i(u−1St0(x)) =
∑
t

(
(p − 1)(n − t) − 1

i − pt

)
u(p−1)(i−pt)−1St0(P

tx).

This proves the result directly for σ(x) = 0 and ε = 1. By the Cartan for-
mula applied to uu−1Stε(x) we have that P iStε(x) = uP i(u−1Stε(x)) +
upP i−1(u−1Stε(x)). By combining this with the formulas above we get the
result in the other cases.

6. A pullback description of the functor �

In this section we describe �(K) as a pullback in the case where K is a free
object in K . We start by a result on cohomology of Eilenberg-MacLane spaces.
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Recall that a sequence of integers I = (ε1, s1, ε2, s2, . . . , εk, sk, εk+1) with
si ≥ 0 and εi ∈ {0, 1} is called admissible if si ≥ psi+1 + εi+1 and sk ≥ 1 or if
k = 0 when I = (ε). The degree of I is defined as |I | = ∑

εj +∑
2sj (p−1)

and the excess is defined recursively by e((ε, s), J ) = 2s + ε − |J |. We use
the following notation P I = βε1P s1βε2P s2 . . . βεkP skβεk+1 .

Lemma 6.1. The cohomology ring of the Eilenberg-MacLane spaceK(Fp,n)

can be written in the following form when n ≥ 2:

H ∗(K(Fp, n)) = SF [P I ιn | I is admissible, e(I ) ≤ n − 2, ε1 = 0].

Furthermore, H ∗(K(Fp, 1)) = SF [ι1] and H ∗(K(Fp, 0)) = SF [ι0].

Proof. The cases n = 0, 1 are trivial. Assume that n ≥ 2 and define the
set

A(n) = { I | I is admisseble, e(I ) ≤ n − 1, |I | + n is odd }.
Remark that if I ∈ A(n) then (0, (|I | +n− 1)/2, I ) ∈ A(n). To see this write
I ∈ A(n) as I = (ε, s, I ′). Then e(I ) = 2s + ε − |I ′| ≤ n− 1 or equivalently
2sp + 2ε − |I | ≤ n − 1 such that the sequence (0, (|I | + n − 1)/2, I ) is
admissible. Its excess is n− 1 and its degree plus n is odd since p − 1 is even.

By Cartan’s computation (a special case of [9], Theorem 10.3) we have that
H ∗BnFp is the free graded commutative algebra on the set

B = {P J ιn | J is admissible, e(J ) < n or (e(J ) = n and ε1 = 1) }.
Assume that P I ιn belongs to the set in the statement of the lemma. Then

P I ιn and βP I ιn belongs to B. By the remark we see that if |I | + n is even
then βελiβP I ιn ∈ B and if |I |+n is odd then βελiP I ιn ∈ B for ε = 0, 1 and
i ≥ 1.

Conversely, assume that P J ιn ∈ B. If e(J ) ≤ n − 2 or e(J ) = n − 1 and
ε1 = 1 it is clearly one of the generators described in the lemma. It suffices to
handle the case e(J ) = n − 1, ε1 = 0 since the case e(J ) = n, ε1 = 1 then
follows. Write J as J = (0, s, J ′) where e(J ) = 2s − |J |′ = n − 1. Then
2s = n+|J ′|−1 such that P J ιn = λP J ′

ιn and e(J ) ≤ e(J ′). We can continue
this process until the next ε equals one or the excess drops below n − 1.

Proposition 6.2. For any object K in K there is natural morphism of
Fp-algebras A : �(K) → Fp[u] ⊗ K defined by

φ(x) �→ St0(x), q(x) �→ St1(x), δ(x) �→ 0, u �→ u ⊗ 1.

The image of this morphism is Im(A) = R(K).
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Proof. We check that (10)–(21) are mapped to zero by the formulas defin-
ing A. Since δ(x) is mapped to zero this is trivial for all elements except (14),
(15), (16) and (20).

By the Cartan formula and
[ |ab|

2

] = [ |a|
2

] + [ |b|
2

] + σ(a)σ (b) one verifies
that

St0(ab) = (−up−1)σ(a)σ (b)St0(a)St0(b),

St1(ab) = (−up−1)σ(a)σ (b)(uσ(b)St1(a)St0(b) + (−u)σ(a)St0(a)St1(b))

such that (14) and (15) are mapped to zero. Lemma 2.7 implies that (16) and
(20) are mapped to zero.

Proposition 6.3. If K is a free object in K then ker(A) = Iδ(K).

Proof. Assume that K = SK (V ) for a non negatively graded vector space
V . We must show that Ā : �(K)/Iδ(K) → Fp[u] ⊗ K is injective.

The algebra �(K)/Iδ(K) has generators φ(x), q(x) for x ∈ K and u. The
relations are that φ and q are additive and that (14), (15), (16) and (20) equals
zero. Let {vs | s ∈ S} denote a basis for V . By Lemma 6.1 we find that
K = SF (W) where W is the graded vector space with basis

B = {P Ivs | I admissible, e(I ) ≤ |vs | − 2, ε1 = 0, s ∈ S }.

We see that the following elements are algebra generators for �(K)/Iδ(K)

where a ∈ B0, b ∈ B1, v ∈ Bodd,∗≥3, w ∈ Beven,∗≥2 and i ≥ 0:

u, φ(a), φ(b), q(βb),

φ(βv), φ(λiv), q(βv), q(λiv),

φ(w), φ(λiβw), q(w), q(λiβw).

We claim that these generators are mapped to algebraically independent
elements in Fp[u] ⊗ K . By the formulas defining A we see that it suffices
to check this claim in the case where V is one dimensional. So assume that
K = SK [ιn] where |ιn| = n.

For any n we have u �→ u ⊗ 1. For n = 0 we have φ(ι0) �→ 1 ⊗ ι0 and for
n = 1 we have φ(ι1) �→ 1 ⊗ ι1, q(ι1) �→ 1 ⊗ βι1 so in these two cases the
claim holds.

Assume that n ≥ 2. The algebra generators are mapped as follows modulo
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elements in the ideal (up−1 ⊗ 1):

φ(βv) �→ 1 ⊗ (βv)p,

φ(λiv) �→ 1 ⊗ λi+1v,

φ(w) �→ 1 ⊗ wp,

φ(λiβw) �→ 1 ⊗ λi+1βw,

q(βv) �→ −up−2 ⊗ βP (|v|−1)/2βv,

q(λiv) �→ 1 ⊗ βλi+1v,

q(w) �→ −up−2 ⊗ βP |w|/2−1w,

q(λiβw) �→ 1 ⊗ βλi+1βw.

If |I | + n is odd we must look closer at βP (|I |+n−1)/2βP I ιn. Write I as
I = (0, s, I ′). We have e(I ) = 2s − |I ′| ≤ n − 2 which implies that
(0, (|I | + n − 1)/2, 1, s, I ′) is admissible. Its excess equals n − 2 and we
see that P (|I |+n−1)/2βP I ιn ∈ Beven.

If |I | + n is even we must look at βP (|I |+n−2)/2P I ιn. As in the odd case we
see that P (|I |+n−2)/2P I ιn ∈ Beven. However there is no β between the first two
P -operations from the left.

We conclude that the claim holds for n ≥ 2 which completes the proof.

In the following K denotes an object in K . Before stating the main theorem
we need some definitions and lemmas.

Lemma 6.4. Let a1, . . . , ap ∈ K be elements of odd degree and define the
following element in Iδ(K):

D(a1, . . . , ap) =
p∑

i=2

δ(a1ai)δ(a2) . . . δ̂(ai) . . . δ(ap).

where the hat means that the factor is left out. Then for any permutation
τ ∈ Bp one has D(a1, . . . , ap) = D(aτ(1), . . . , aτ(p)). The element is mapped
as follows under the map Q : �(K) → �̄(K):

D(a1, . . . , ap) �→
p∑

i=1

aida1 . . . d̂ai . . . dap.

Proof. We first show the invariance under permutation. Since the degree
of δ(ai) is even D(a1, . . . , ap) is invariant under permutations fixing a1. Thus
it suffices to show that D(a1, a2, . . . , ap) = D(a2, . . . , ap, a1). We prove the
following more general formula for n ≥ 3:

n∑
i=2

δ(a1ai)δ(a2) . . . δ̂(ai) . . . δ(an)

=
n∑

j=3

δ(a2aj )δ(a1)δ(a3) . . . δ̂(aj ) . . . δ(an) − (n − 1)δ(a2a1)δ(a3) . . . δ(an).
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The proof is by induction on n. For n = 3 we have

δ(a1a2)δ(a3) + δ(a1a3)δ(a2) = δ(a1a2)δ(a3) − δ(a3a1)δ(a2)

= 2δ(a1a2)δ(a3) + δ(a2a3)δ(a1)

= −2δ(a2a1)δ(a3) + δ(a2a3)δ(a1)

where we used (13) at the second equality sign. Assume that the formula holds
for n − 1. Then we have

n∑
i=2

δ(a1ai)δ(a2) . . . δ̂(ai) . . . δ(an)

=
(n−1∑

i=2

δ(a1ai)δ(a2) . . . δ̂(ai) . . . δ(an−1)

)
δ(an) + δ(a1an)δ(a2) . . . δ(an−1)

=
(n−1∑

j=3

δ(a2aj )δ(a1)δ(a3) . . . δ̂(aj ) . . . δ(an−1)

)
δ(an)

− (n − 2)δ(a2a1)δ(a3) . . . δ(an−1)δ(an) + δ(a1an)δ(a2) . . . δ(an−1).

Since δ(a1an)δ(a2) + δ(a2a1)δ(an) = δ(a2an)δ(a1) by relation (13) the sum
of the last two terms above equals

−(n − 1)δ(a2a1)δ(a3) . . . δ(an) + δ(a2an)δ(a1) . . . δ(an−1)

and we recover the formula for n.
We use that d(a1ai) = aida1 − a1dai to compute the image under Q:

D(a1, . . . , ap) �→
p∑

i=2

d(a1ai)da2 . . . d̂ai . . . dap

=
p∑

i=2

aida1 . . . d̂ai . . . dap − (p − 1)a1da2 . . . dap.

Definition 6.5. For any non negative integer n we let B(n) denote the
following set:

B(n) = {(β1, . . . , βp) ∈ Zp | ∀i : βi ≥ 0, β1 +· · ·+βp = n, ∃i, j : βi �= βj }.
The cyclic group on p elements Cp act on B(n) by cyclic permutation of



204 iver ottosen

coordinates. For x ∈ K we define the following elements in Iδ(K):

Dn
0 (x) = − σ(x)

∑
D(Pβ1(x), P β2(x), . . . , P βp (x)),

Dn
1 (x) =σ̂ (x)

∑
δ(P β1(x)P β2(x) . . . P βp (x))

where both sums are taken over β ∈ B(n)/Cp. Note that Dn
0 (x) is well defined

by Lemma 6.4

Lemma 6.6. For any x ∈ K the following formulas hold in �̄(K):

P i ◦ Q(φ(x)) = Q(φ(P i/px) + Di
0(x)),(29)

P i ◦ Q(q(x)) = Q(q(P i/px) + Di
1(x))(30)

where by convention P t = 0 when t is a rational number which is not a non
negative integer.

Proof. We first prove (29). Recall that Q(φ(x)) = xp + λx − x(dx)p−1.
We have P iλx = λP i/px by Lemma 2.7 and also P i(xp) = (P i/px)p so it
suffices to prove the following for |x| odd:

P i(x(dx)p−1) = (P i/px)(dP i/px)p−1 − Q(Di
0(x)).

By the Cartan formula we have

P i(x(dx)p−1) =
∑

Pβ1(x)dP β2(x) . . . dP βp (x)

where we sum over the tuples (β1, . . . , βp) with
∑

βj = i. The cyclic group
Cp acts on the set of such tuples and an orbit has length 1 or p. Arranging
the terms according to this the result follows by the definition of Di

0(x) and
Lemma 6.4.

For the proof of (30) recall that Q(q(x)) = xp−1dx + βλx. We have
P i(βλx) = βλ(P i/px)+ (βP (i−1)/px)p by Lemma 2.7 so when |x| is odd we
are done. For |x| even we must show that

P i(xp−1dx) = (P i/px)p−1dP i/px + Q(Di
1(x)).

This follows by the Cartan formula and a similar argument on orbits as the
above.

Theorem 6.7. For any object K in K there is an A -module structure on
�(K) such that � becomes a functor � : K → K . The explicit formulas for the
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action are as follows where x ∈ K , n = [|x|/2] and i ≥ 0. Firstly, the action
on φ(x) is given by:

P iφ(x) = Di
0(x) +

∑
t

(
(p − 1)(n − t)

i − pt

)
u(p−1)(i−pt)φ(P tx),

βφ(x) = uσ̂(x)(q(x) − δ(x)p−2δ(xβx)).

Secondly, the action on q(x) is given by:

P iq(x) = Di
1(x) +

∑
t

(
(p − 1)(n − t) + σ(x)

i − pt

)
u(p−1)(i−pt)q(P tx)

− (−1)σ(x)
∑
t

(
(p − 1)(n − t) − 1 + σ(x)

i − pt − 1

)
· u(p−1)(i−pt)−1+(2−p)σ(x)φ(βP tx),

βq(x) = −δ(xp−1βx).

Thirdly, the actions on δ(x) and u are as follows:

P iδ(x) = δ(P ix), βδ(x) = −δ(βx), P 1u = up, βu = 0.

Furthermore the maps Q and A becomes A -linear and there is a commutative
diagram in K as follows:

�(K) A−−−−→ R(K)

↓Q ↓p1

ker(d) p2−−−−→ K

where the morphisms p1 and p2 are given by p1(u) = 0, p1(x) = x, p2(dx) =
0, p2(x) = x for x ∈ K . Finally, if K is a free object in K then the diagram
is a pullback square.

Proof. By the definition of A and Q there is a commutative diagram as
stated in the category of Fp-algebras. We first prove that this diagram is a
pullback when K is a free object in K .

By Lemma 6.1 and Theorem 4.9 the map 8 is an isomorphism. So by
Theorem 4.5 the kernel of Q is the ideal (u) ⊆ �(K). The kernel of p1 is the
ideal (u ⊗ 1) ⊆ R(K) so it suffices to show that the restriction of the map A

to these kernels A| : (u) → (u⊗1) is an isomorphism. It is surjective since A

is surjective and A(u) = u ⊗ 1. By Proposition 6.3 we have ker(A) = Iδ(K)
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such that ker(A|) = (u)∩Iδ(K). Let x ∈ (u)∩Iδ(K). We can write x = uz for
some z ∈ �(K). Since 0 = A(uz) = uA(z) we have A(z) = 0 so z ∈ Iδ(K)

and x = uz = 0. Thus (u) ∩ Iδ(K) = 0 and A| is injective.
When K is a free object the pullback defines an A -module structure on

�(K). By Theorem 5.2 and Lemma 6.6 we see that the stated formulas describe
this A -action. A standard naturality argument now proves the statements for
general objects K in K .

7. Homotopy orbits of T-spaces

In this section we list some results on homotopy orbits of T-spaces. They are
all similar to results for p = 2 considered in [2] and we often refer to the
proofs given there. In the entire section Y denotes a T-space. We write Cn

for the cyclic group of order n. We let u of degree |u| = 2 and v of degree
|v| = 1 denote algebra generators as follows: H ∗T = 	(v), H ∗BT = Fp[u]
and H ∗BCpn = 	(v) ⊗ Fp[u].

Proposition 7.1. The fibration Y → ET ×T Y → BT has the following
Leray-Serre spectral sequence:

E∗∗
2 = H ∗(BT) ⊗ H ∗(Y ) ⇒ H ∗(ET ×T Y ).

The differential in the E2-term is given by

d2 : H ∗(Y ) → uH ∗(Y ); d2(y) = ud(y)

where d is the differential associated to the T-action (see Proposition 2.3).

Proof. Similar to the proof of [2] Proposition 3.3.

Definition 7.2. Let E∞Y = ET ×T Y and define

EnY = ET ×Cpn Y for n = 0, 1, 2, . . .

For nonnegative integers n and m with m > n define the maps

qn
m : H ∗EmY → H ∗EnY, τm

n : H ∗EnY → H ∗EmY

by letting qn
m be the map induced by the quotient map and τm

n be the transfer
map. Also defineqn∞ : H ∗E∞Y → H ∗EnY as the map induced by the quotient.

The following theorem is inspired by a result of Tom Goodwillie which can
be found in [8] p. 279.
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Theorem 7.3. There is a commutative diagram as follows for any m ≥ 1:

(31)

EmY
Q−−−−→ E∞Y

↓pr1 ↓pr1

BCpm
Bj−−−−→ BT

Here Q denotes the quotient map and j : Cpm ↪→ T the inclusion. The diagram
gives rise to an isomorphism.

I : H ∗(BCpm)⊗H ∗(BT) H
∗(E∞Y ) ∼= H ∗(EmY ); x ⊗y �→ pr∗

1 (x)q
m
∞(y)

The transfer map τm+1
m : H ∗EmY → H ∗Em+1Y is zero on elements of the

form I(1 ⊗ y) and the identity on elements of the form I(v ⊗ y). We get an
isomorphism

colim H ∗EmY = vH ∗E∞Y ∼= H̃ ∗(B(E∞Y )+).

Proof. Similar to the proof of [2] Theorem 4.2.

We use the above theorem to give a convenient definition of the T-transfer:

Definition 7.4. For non negativen the T-transfer τ∞
n :H ∗EnY→H ∗E∞Y

is defined as the following composite:

H ∗EnY −−−−→ colim H ∗EmY
v−1−−−−−→ H ∗E∞Y.

The colimit is taken over the transfer maps τm+1
m . Note that |τ∞

n | = −1.

Proposition 7.5. Frobenius reciprocity holds for any n ≥ 0:

τ∞
n (qn

∞(x)y) = (−1)|x|xτ∞
n (y).

Furthermore the following composition formulas hold.

τ∞
0 ◦ q0

∞ = 0, q0
∞ ◦ τ∞

0 = d.

Proof. Similar to the proof of [2] Proposition 4.6, 4.7 and 4.8.

Proposition 7.6. There is always an inclusion Im(q0∞) ⊆ ker(d). If we
have equality Im(q0∞) = ker(d) then the Leray-Serre spectral sequence of the
fibration Y → ET ×T Y → BT collapses at the E3-term.

Proof. By Proposition 7.5 we have d ◦ q0∞ = q0∞ ◦ τ∞
0 ◦ q0∞ = 0. The

collapse statement follows by Proposition 7.1.
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Definition 7.7. Put ζp = exp(2πi/p) and define the map

f ′
Y : T × Y → ET × Yp; (z, y) �→ (ze, zy, ζpzy, ζ

2
p zy, . . . , ζ

p−1
p zy).

We let Cp act on the space to the left by ζp · (z, y) = (ζpz, y) and on the space
to the right by ζp ·(e, y1, . . . , yp) = (ζpe, y2, . . . , yp, y1). Then the above map
is Cp-equivariant. Passing to the quotients we get a map

fY : T/Cp × Y → ET ×Cp
Y p.

Note that this map is natural in Y with respect to Cp-equivariant maps.

Recall the followings facts on the order p cyclic construction [10], [9]
and [12]. For any space X with homology of finite type there is a natural
isomorphism

H ∗(ET ×Cp
Xp) ∼= H ∗(Cp;H ∗(X)⊗p)

where Cp acts on H ∗(X)⊗p by cyclic permutation with the usual sign con-
vention. For a homogeneous element y ∈ H ∗X the Cp invariant y⊗p defines
an element 1 ⊗ y⊗p in the zeroth cohomology group of Cp. Let N = 1 +
ζp + ζ 2

p + · · · + ζ
p−1
p be the norm element in the group ring Fp[Cp]. If

x1, . . . , xp ∈ H ∗X are homogeneous elements, which are not all equal, then
the invariant Nx1 ⊗ · · · ⊗ xp also defines an element 1 ⊗ Nx1 ⊗ · · · ⊗ xp in
the zeroth cohomology group of Cp.

Theorem 7.8. The following formula holds where δi,j denotes the Kro-
necker delta: f ∗

Y (1 ⊗ y⊗p) = 1 ⊗ yp + v ⊗ yp−1dy + δp,3v ⊗ βλy.

Proof. We write Y0 for the space Y with trivial T-action. We first prove the
theorem in the special case Y = Y0. Here the differential is zero. There is a
factorization

fY0 : T/Cp × Y0
i×1−−−−→ ET/Cp × Y0

×A−−−−→ ET ×Cp
Y

p

0 .

By this and the formula for the Steenrod diagonal, [12] p. 119 & Errata, the
result follows.

Next we prove the following formula for a general T-space:

(32) f ∗
Y (1 ⊗ Nx1 ⊗ · · · ⊗ xp) = v ⊗ d(x1 . . . xp).

There is a commutative diagram as follows:

H ∗(T/Cp × Y )
f ∗
Y←−−−− H ∗(ET ×Cp

Y p)

↑
τ 1

0 ⊗1
↑

τ 1
0

H ∗(T × Y )
f ′∗
Y←−−−− H ∗(ET × Yp)
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The lower horizontal map is given by

f ′∗
Y (1 ⊗ x1 ⊗ · · · ⊗ xp) =

p∏
i=1

(1 ⊗ xi + v ⊗ dxi)

as seen by the factorization

f ′
Y : T × Y

A2−−−−→ (T × Y )2 pr1×Ap−−−−−−−→ T × (T × Y )p

i×ηp−−−−−→ ET × Yp 1×1×ζp×···×ζ
p−1
p−−−−−−−−−−−−→ ET × Yp.

The norm class is hit by the transfer and by finding the coefficient to v in the
above formula (32) follows.

Finally we prove the Theorem for a general T-space Y . Because of the
degrees f ∗

T (1 ⊗ v⊗p) = 0. The two projection maps pr1 : T × Y0 → T and
pr2 : T×Y0 → Y0 are T-equivariant. Thus we can use naturality together with
the case Y = Y0 and the above equation to find the equations below

f ∗
T×Y0

(1 ⊗ (1 ⊗ y)⊗p) = 1 ⊗ 1 ⊗ yp + δp,3v ⊗ 1 ⊗ βλy,

f ∗
T×Y0

(1 ⊗ (v ⊗ 1)⊗p) = f ∗
T×Y0

(1 ⊗ (v ⊗ dy)⊗p) = 0.

The action map η : T × Y0 → Y is also an T-equivariant map, hence by
naturality we have a commutative diagram

T/Cp × (T × Y0)
fT×Y0−−−−−→ ET ×Cp

(T × Y0)
p

↓1×η ↓1×ηp

T/Cp × Y
fY−−−−−→ ET ×Cp

Y p

We compute the pull back of the class 1⊗y⊗p to the cohomology of the upper
left corner. First we find

(1 × ηp)∗(1 ⊗ y⊗p) = 1 ⊗ (1 ⊗ y + v ⊗ dy)⊗p

= 1 ⊗ (1 ⊗ y)⊗p + 1 ⊗ (v ⊗ dy)⊗p

+
p−1∑
i=1

1 ⊗ N(1 ⊗ y)⊗i ⊗ (v ⊗ dy)⊗(p−i).

By (32) we can compute f ∗
T×Y0

applied to the norm element terms. Only the
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i = p − 1 term contributes.

f ∗
T×Y0

(1 ⊗ N(1 ⊗ y)⊗(p−1) ⊗ (v ⊗ dy)) = v ⊗ dT×Y0(v ⊗ yp−1dy)

= v ⊗ (dT(v) ⊗ yp−1dy

+ v ⊗ dY0(y
p−1dy))

= v ⊗ 1 ⊗ yp−1dy

Altogether we have

(1 ⊗ η∗) ◦ f ∗
Y (1 ⊗ y⊗p) = f ∗

T×Y0
◦ (1 × ηp)∗(1 ⊗ y⊗p)

= f ∗
T×Y0

(1 ⊗ (1 ⊗ y)⊗p) + v ⊗ 1 ⊗ yp−1dy.

Let γ : Y → T × Y be the map given by y �→ (1, y). We have γ ∗ ◦ η∗ = 1.
By applying 1 ⊗ γ ∗ on both sides of the above equation the results follows.

8. Construction of certain classes in string cohomology

In this section X denotes a connected space. We shall construct certain classes
in string cohomology of X from classes in ordinary cohomology of X.

Definition 8.1. Put ζp = exp(2πi/p) and define evaluation maps as fol-
lows:

ev0 :	X→X; γ �→ γ (1),

ev1 :ET ×Cp
	X→ET ×Cp

Xp; [e, γ ] �→ [e, γ (1), γ (ζp), . . . , γ (ζ p−1
p )].

Definition 8.2. The classes f (x), g(x), δ(x) ∈ H ∗(ET ×T 	X) for x ∈
H ∗X are defined by

f (x)= τ∞
1 ◦ev∗

1(v⊗x⊗p), g(x)= τ∞
1 ◦ev∗

1(1⊗x⊗p), δ(x)= τ∞
0 ◦ev∗

0(x).

The class u is defined by u = pr∗
1 (u) where pr1 : ET ×T 	X → BT is the

projection on the first factor.

Theorem 8.3. Let i0 : X ↪→ 	X denote the constant loop inclusion and
let i∞ be the corresponding map of T-homotopy orbits. There is a commutative
diagram as follows

(33)

H ∗(ET ×T 	X)
i∗∞−−−−→ H ∗(BT × X)

↓q0∞ ↓
H ∗(	X)

i∗0−−−−→ H ∗(X)
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and an inclusion Im(q0∞) ⊆ ker(d : H ∗(	X) → H ∗(	X)). The constructed
classes are mapped as follows under i∗∞.

i∗∞(f (x)) = σ̂ (x)St0(x) + σ(x)(−1)mm!umSt0(x),

i∗∞(g(x)) = σ̂ (x)St1(x) + σ(x)(−1)mm!um−1St1(x),

i∗∞(δ(x)) = 0 and i∗∞(u) = u ⊗ 1.

Here m = (p − 1)/2. Under q0∞ the images of the classes are as follows.

q0
∞(f (x)) = σ̂ (x)e(xp),

q0
∞(g(x)) = σ̂ (x)e(xp−1dx) + σ(x)δp,3e(βλx),

q0
∞(δ(x)) = e(dx) and q0

∞(u) = 0.

Here δp,3 = 1 for p = 3 and zero otherwise.

Proof. A commutative diagram of spaces gives the diagram (33) and Pro-
position 7.5 gives the stated inclusion.

We check that the formulas for i∗∞ are valid. Since i∞ sits over the identity
on BT we have i∗∞(u) = u ⊗ 1. There is a commutative diagram as follows
where Ap : X → Xp is the diagonal and i1 is the map of Cp-homotopy orbits
induced by i0.

H ∗(X)
ev∗

0−−−−→ H ∗(	X)

↑
A∗

p
↑

id

H ∗(Xp) −−−−→ H ∗(	X)

↓T r1
0 ↓τ 1

0

H ∗(ET ×Cp
Xp)

ev∗
1−−−−→ H ∗(ET ×Cp

	X)
i∗1−−−−→ H ∗(BCp × X)

↓τ∞
1 ↓τ∞

1 ⊗1

H ∗(ET ×T 	X)
i∗∞−−−−→ H ∗(BT × X)

The horizontal map with no label is the induced in cohomology of the map
γ �→ (γ (1), γ (ζp), . . . , γ (ζ

p−1
p )). A homotopy commutative square of spaces

shows that the upper square commutes and it is obvious that the other two are
commutative.

The composite ev1 ◦ i1 is the diagonal A1. Its induced in cohomology is the
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Steenrod diagonal A∗
1 given by the following ([12] p. 119 & Errata):

ν(q)A∗
1(1⊗x⊗p) =

∑
i

(−1)ium(q−2i) ⊗P ix+
∑
i

(−1)ivum(q−2i)−1 ⊗βP ix

where q = |x| and ν(q) = (m!)q(−1)m(q2+q)/2. From this formula and the
lower part of the diagram we see that

ν(q)i∗∞(f (x)) =
∑
i

(−1)ium(q−2i) ⊗ P ix = (−1)[q/2]uσ(x)mSt0(x),

ν(q)i∗∞(g(x)) =
∑
i

(−1)ium(q−2i)−1 ⊗ βP ix = (−1)[q/2]uσ(x)(m−1)St1(x).

By [12] Lemma 6.3 one has (m!)2 = (−1)m+1 mod p and from this one sees
that ν(q)−1(−1)[q/2] = 1 for q even and ν(q)−1(−1)[q/2] = (−1)mm! for q

odd. Hence we have verified the formulas for i∗∞(f (x)) and i∗∞(g(x)).
By the left part of the diagram we see that

δ(x) = τ∞
1 ◦ ev∗

1 ◦ T r1
0 (x ⊗ 1 ⊗ · · · ⊗ 1).

The composite A∗
1 ◦ T r1

0 is zero by [12] Lemma 4.1 so i∗∞(δ(x)) = 0.
We now check the formulas for q0∞. It follows directly from Proposition 7.5

that δ(x) is mapped as stated and clearly u is mapped to zero. For the classes
f (x) and g(x) we proceed as follows.

Let Y be a T-space and let e be a point in ET. There is a T-equivariant map
θ0 : T × Y0 → ET × Y given by (z, y) �→ (ze, zy) where Y0 means Y with
trivial T-action. Let θ1 be the associated map of Cp-orbits ie. θ1 = θ0/Cp.
There is a commutative diagram

H ∗(ET ×Cp
Y )

θ∗
1−−−−→ H ∗(T/Cp) ⊗ H ∗Y

↓τ∞
1 ↓τ∞

1 ⊗1

H ∗(ET ×T Y )
q0∞−−−−→ H ∗Y

where τ∞
1 : H ∗(T/Cp) → Fp is given by 1 �→ 0 and v �→ 1. This is proved

in as similar way as [2] Proposition 4.6. When Y = 	X we have

q0
∞ ◦ τ∞

1 ◦ ev∗
1 = (τ∞

1 ⊗ 1) ◦ θ∗
1 ◦ ev∗

1 = (τ∞
1 ⊗ 1) ◦ (ev1 ◦ θ1)

∗.

Note that ev1 ◦ θ1 equals the composite

T/Cp × 	X
f	X−−−−→ ET ×Cp

(	X)p
1×ev

p

0−−−−−→ ET ×Cp
Xp
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where f	X is the map from Definition 7.7. Thus we have

q0
∞ ◦ τ∞

1 ◦ ev∗
1 = (τ∞

1 ⊗ 1) ◦ f ∗
	X ◦ (1 × ev

p

0 )
∗.

From this and Theorem 7.8 we get the stated results.

Proposition 8.4. The following diagram is a pullback square:

H ∗(ET ×T 	BFp)
i∗∞−−−−→ Fp[u] ⊗ H ∗BFp

↓q0∞ ↓
ker(d)

i∗0−−−−→ H ∗BFp.

Proof. Define the action map fn : Z × Fp → Fp by (r, [s]) �→ [nr +
s] for n ∈ Fp. We let BFp(n) denote BFp equipped with T-action Bfn and
write d(n) for the corresponding action differential on H ∗BFp(n). So we have
H ∗BFp(n) = 	(vn) ⊗ Fp[βvn] where |vn| = 1.

We claim that d(n)(vn) = n and d(n)(βvn) = 0. Firstly, (Bfn)
∗(vn) =

1 ⊗ vn + nv ⊗ 1 as one sees from H1(Bfn) = π1(Bfn) = fn by taking duals.
Secondly, λvn = vn so d(n)(βvn) = 0.

From [1] Lemma 7.11 we have 	BFp ' (BFp where the disjoint union is
taken over n ∈ Fp. Define maps as follows for n ∈ Fp:

jn : BFp(n) → 	BFp; x �→ (z �→ Bfn(z, x)).

These are T-equivariant maps. Let (	BFp)(n) denote the component of 	BFp

containing the image of jn. Then the restriction jn| of jn to (	BFp)(n) is T-
equivariant and a homotopy equivalence. Especially the induced in cohomo-
logy (jn|)∗ is an isomorphism of differential graded algebras. Thus (	BFp)(n)

�= (	BFp)(m) for n �= m since the differentials on their cohomology rings are
different. Hence (jn : (BFp(n) → 	BFp is T-equivariant and a homotopy
equivalence. It follows that the induced map of T-homotopy orbits ((jn)∞ is
a weak homotopy equivalence.

The diagram in the statement is via ((jn)∞ equivalent to the following
diagram: ⊕

H ∗(ET ×T BFp(n))
pr0−−−−→ H ∗(BT × BFp)

↓⊕Q∗
(n) ↓⊕
ker(d(n)) −−−−→ H ∗(BFp)

where Q(n) : ET × BFp(n) → ET ×T BFp(n) denotes the quotient map and
pr0 is the projection on the direct summand with n = 0.
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We have H ∗(ET ×T BFp(n)) ∼= ker(d(n)) for n �= 0 since here the Leray-
Serre spectral sequence has E

i,∗
3 = 0 for i ≥ 1. It follows that the diagram is

a pullback.

As indicated by Theorem 8.3 above it turns out that when |x| is odd then
both f (x) and g(x) can be written as a product of some power of uwith another
class. This was not the case for p = 2 as described in [2]. We construct new
classes to get around this difficulty.

Theorem 8.5. Let x ∈ H ∗X be a cohomology class of odd degree. Then
there exist classes φ(x), q(x) ∈ H ∗(ET×T 	X) with |φ(x)| = p(|x|−1)+1
and |q(x)| = p(|x| − 1) + 2 such that

i∗∞(φ(x)) = St0(x), q0
∞(φ(x)) = λx − x(dx)p−1,

i∗∞(q(x)) = St1(x), q0
∞(q(x)) = βλx.

Proof. It suffices to prove the theorem when X = K(Fp, n) for odd n ≥ 1.
The general case then follows by definingφ(x) = (1×T	h)∗φ(ιn) and q(x) =
(1 ×T 	h)∗q(ιn) where n = |x| and h : X → K(Fp, n) has h∗(ιn) = x. So
assume that X = K(Fp, n).

For n = 1 we have St0(ι1) = 1⊗ ι1 and St1(ι1) = 1⊗βι1 so here the result
follows from Proposition 8.4.

Assume that n = 2r +1 where r ≥ 1. By Proposition 7.1, Theorem 2.9 and
Theorem 4.9 the E3-term of the Leray-Serre spectral sequence for the fibration
	X → ET ×T 	X → BT has the following form:

E3
∼= Im(d) ⊕ (Fp[u] ⊗ �̃(K))

where K = H ∗X. Here u has bidegree (2, 0) and an element y in Im(d) or
�̃(K) has bidegree (0, |y|). Define s : BT → ET×T	X such thatpr1◦s = id

by choosing a constant loop. By s∗ we see that the horizontal line (∗, 0) survives
to E∞.

Up to dimension 2rp + 2p − 1 the only horizontal lines (∗,m), m ≥ 0
which are non trivial for ∗ > 0 are (∗, 0), (∗, 2rp + 1), (∗, 2rp + 2) and
(∗, 2rp + 2p − 1) corresponding to powers of u times the classes 1, φ(ιn),
q(ιn) and q(βιn) in �̃(K) respectively. Hence we can define φ(ιn), q(ιn) in
H ∗(ET ×T 	X) by

q∞
0 (φ(ιn)) = λιn − ιn(dιn)

p−1, q∞
0 (q(ιn)) = βλιn and s∗(q(ιn)) = 0.

Since |f (ιn)| = 2rp + p and |g(ιn)| = 2rp + p − 1 we see that f (ιn) =
C1u

mφ(ιn) and g(ιn) = C2u
m−1q(ιn) where C1, C2 ∈ Fp and m = (p − 1)/2
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as before. By Theorem 8.3 we conclude that

C1u
mi∗∞(φ(ιn)) = (−1)mm!umSt0(ιn),

C2u
m−1i∗∞(q(ιn)) = (−1)mm!um−1St1(ιn)

and the result follows.

Definition 8.6. For x ∈ H ∗X of even degree we simply define φ(x) =
f (x) and q(x) = g(x).

9. String cohomology and the functor �

In this section we prove the main result of this paper:

Theorem 9.1. Let X be a connected space with H∗X of finite type. Then
there is a morphism of unstable A -algebras

ψ : �(H ∗X) → H ∗(ET ×T 	X)

which sends φ(x), q(x), δ(x) for x ∈ H ∗X and u to the constructed classes
with the same names. The morphism is natural in X. If both of the maps

e : �̄(H ∗X) → H ∗(	X), 8 : �̃(H ∗X) → H ∗(�̄(H ∗X))

are isomorphisms then so is ψ . In particular ψ is an isomorphism when H ∗X
is a free object in K .

Proof. Assume that both e and 8 are isomorphisms and put K = H ∗X.
By Theorem 4.5 we have that Im(Q) = ker(d). From the results in Section 8
we see that Im(Q) ⊆ Im(q0∞) so ker(d) ⊆ Im(q0∞). It now follows from Pro-
position 7.6 that ker(d) = Im(q0∞) and that the Leray-Serre spectral sequence
associated to the fibration 	X → ET×T 	X → BT collapses at the E3-term:

(34) E∞ = E3
∼= ker(d) ⊕ (u ⊗ �̃(K)) ⊕ (u2 ⊗ �̃(K)) ⊕ · · ·

By Proposition 4.6 the filtration of �(K) by powers of the ideal (u) also
has (34) as associated graded object. If we fix a degree the filtrations are finite
and we conclude that �(K) and H ∗(ET ×T 	X) have the same dimension in
each degree. Hence it suffices to show that the map ψ in the statement is a well
defined morphism which is surjective.

The constructed classes are algebra generators for H ∗(ET ×T 	X) by the
collapse, and the formulas for their images under i∗∞ given in Section 8 show
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that Im(i∗∞) = R(K). Hence we have a commutative diagram as follows:

H ∗(ET ×T 	X)
i∗∞−−−−−→ R(K)

↓q0∞ ↓p1

ker(d) p2−−−−−→ K

The kernel of p1 is the ideal (u ⊗ 1) and i∗∞(u) = u ⊗ 1. Since u ∈ ker(q0∞)

and i∗∞ is surjective we conclude that the restriction i∗∞| : ker(q0∞) → ker(p1)

is surjective. Hence we have a surjection into the pullback.
We now restrict to the case where H ∗X is a free object in K . Here e is an

isomorphism by Proposition 2.9 and 8 is an isomorphism by Theorem 4.9 and
Lemma 6.1.

The above surjection into the pullback together with Theorem 6.7 gives
us a surjective morphism ψ ′ : H ∗(ET ×T 	X) → �(K) which is then an
isomorphism. By definition it has inverse ψ .

By the fact that K(Fp, n) classifies degree n cohomology and naturality
of the constructed classes, we can now conclude that the defining relations
for �(K) are universal for the constructed classes. Hence ψ is a well defined
morphism in general.

In the case where e and 8 are isomorphisms, the collapse ensures that ψ is
surjective and hence an isomorphism.

Corollary 9.2. Let X be a connected space with H∗X of finite type. If
H ∗X is a polynomial algebra on a set of even dimensional generators then ψ

is an isomorphism.

Proof. If K is zero in odd degrees then �̄(K) is the ordinary de Rham
complex �(K|Fp). Furthermore, �̃(K) is the de Rham complex �(K̄|Fp)

where K̄ is the algebra defined by K̄np = Kn and K̄m = 0 for m �= 0 mod p.
The map 8 is the Cartier map.

The Eilenberg-Moore spectral sequence for H ∗(	X) has Hochschild ho-
mology of H ∗X as its E2-term and it collapses since the algebra generators sit
in E

0,∗
2 and E

−1,∗
2 . By the Hochschild-Konstant-Rosenberger theorem Hoch-

schild homology is isomorphic to the de Rham complex and one concludes
that e is an isomorphism. The Cartier map 8 is also an isomorphism.

Remark 9.3. We have a commutative diagram which describes the ideas
of our approximations:

�̄(H ∗X) τ−−−−→ �(H ∗X)
Q−−−−→ �̄(H ∗X)

↓e ↓ψ ↓e

H ∗(	X)
τ∞

0−−−−→ H ∗(ET ×T 	X)
q0∞−−−−→ H ∗(	X).



on the borel cohomology of free loop spaces 217

10. Appendix: Limits and colimits in F

Proposition 10.1. The category F has all finite coproducts. The coproduct
A ⊗ A′ of two objects A, A′ in F is the tensor product of the underlying
Fp-algebras equipped with maps λ ∗ λ′ and β ∗ β ′ on A ⊗ A′ defined by

λ ∗ λ′(x ⊗ y) = λ(x) ⊗ yp + xp ⊗ λ′(y)

β ∗ β ′(x ⊗ y) = β(x) ⊗ y + (−1)|x|x ⊗ β ′(y)

Proof. By direct computations one verifies that A⊗A′ is indeed an object
in F . It is then easy to see that A ⊗ A′ is the categorical coproduct where the
canonical inclusions i : A → A ⊗ A′ and j : A′ → A ⊗ A′ are defined by
i(x) = x ⊗ 1 and j (y) = 1 ⊗ y.

Proposition 10.2. The category F is complete and cocomplete ie. all
small limits and colimits exist in F .

Proof. Similar to the proof for p = 2 given in [11].

Proposition 10.3. The functor � : F → A lg commutes with filtered
colimits. The functors �̄, �̃ : F → A lg commute with all colimits.

Proof. By standard arguments �̄, �̃ and � commute with filtered colimits.
Thus it suffices to show that �̄ and �̃ commute with finite coproducts and
coequalizers of pairs of maps [7].

For A ∈ A lg we let D(A) be the free graded commutative and unital A-
algebra on generators dx for x ∈ A of degree |dx| = |x| − 1 modulo the ideal
generated by the elementsd(x+y)−dx−dy andd(xy)−d(x)y−(−1)|x|xd(y)
for x, y ∈ A. The functor D : A lg → A lg is left adjoint to the functor
A lg → A lg; A �→ 	(v) ⊗ A.

The functor D commutes with colimits since it is a left adjoint. In particular
the canonical morphism h : D(A) ⊗ D(B) → D(A ⊗ B) is an isomorphism.
Let k denote its inverse. Using the factorization a ⊗ b = (a ⊗ 1)(1 ⊗ b) we
find

k(a ⊗ b) = a ⊗ b, k(d(a ⊗ b)) = d(a) ⊗ b + a ⊗ d(b).

Now assume that A and B are objects in F . We have a quotient map
D(A) → �̄(A) inducing an isomorphism D(A)/((da)p − d(λa), dβλa|a ∈
A) ∼= �̄(A). Consider the composite map

D(A ⊗ B) k−−−−→ D(A) ⊗ D(B) −−−−→ �̄(A) ⊗ �̄(B).
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Elements of the form (d(a ⊗ b))p + d(λ(a ⊗ b)) or d(βλ(a ⊗ b)) are mapped
to zero under this composite by the above formulas for k. So we can factor
through �̄(A⊗B) and get an inverse to the map �̄(A)⊗ �̄(B) → �̄(A⊗B).

By a similar proof one sees that �̄ commutes with coequalizers of pair of
maps. Thus �̄ commutes with all colimits.

We now show that �̃ commutes with finite coproducts. The canonical map
h : �̃(A) ⊗ �̃(B) → �̃(A ⊗ B) is given by h(x ⊗ y) = �̃(i)(x)�̃(j)(y)

where i and j are the inclusions of A and B in the coproduct A ⊗ B.
By the factorization a ⊗ b = i(a)j (b), a ∈ A, b ∈ B the following

equations hold in �̃(A ⊗ B):

φ(a ⊗ b) = (1 − σ(a)σ (b))φ(i(a))φ(j (b))

q(a ⊗ b) = σ̂ (b)q(i(a))φ(j (b)) + σ̂ (a)φ(i(a))q(j (b))

In order to get an inverse to h we define the following morphism:

k : �̃(A ⊗ B) → �̃(A) ⊗ �̃(B);
φ(a ⊗ b) �→ (1 − σ(a)σ (b))φ(a) ⊗ φ(b),

q(a ⊗ b) �→ σ̂ (b)q(a) ⊗ φ(b) + σ̂ (a)φ(a)q(b).

We must check that k is well defined ie. that the relations (24)–(27) are respec-
ted. It suffices to consider the following special form of relation (24):

φ((x ⊗ y)(z ⊗ w)) = (1 − σ(x ⊗ y)σ (z ⊗ w))φ(x ⊗ y)(z ⊗ w).

We apply k on the left hand side. Since (x⊗y)(z⊗w) = (−1)σ(y)σ (z)xz⊗yw

we get the element (−1)σ(y)σ (z)φ(x)φ(z) ⊗ φ(y)φ(w) times the constant α

below. When applying k to the right hand side we get the same element times
the constant β below

α = (1 − σ(xz)σ (yw))(1 − σ(x)σ (z))(1 − σ(y)σ (w)),

β = (1 − σ(x ⊗ y)σ (z ⊗ w))(1 − σ(x)σ (y))(1 − σ(z)σ (w)).

Thus it suffices to check that α = β. If σ(y) = σ(z) = 0 then α = β =
1 − σ(x)σ (w). If one of σ(y), σ(z) equals one and the other equals zero then
α = β = σ̂ (w)σ̂ (x). If σ(y) = σ(z) = 1 then α = β = 0. Hence the
relation (24) is respected by k. A similar argument shows that the relation (25)
is respected by k.

By additivity and symmetry it suffices to check that k respects the following
special form of relation (26): φ(βλ(a ⊗ b)) = q(a ⊗ b)p where σ(a) = 0 and
σ(b) = 1. Since βλ(a ⊗ b) = ap ⊗ βλb we see that k applied to the left hand
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side equals φ(ap) ⊗ φ(βλb) = φ(a)p ⊗ q(b)p. Since k applied to the right
hand side equals (φ(a) ⊗ q(b))p = φ(a)p ⊗ q(b)p the relation is respected.

By additivity and symmetry it suffices to check that k respects the following
special form of relation (27): q(βλ(a⊗b)) = 0 where σ(a) = 0 and σ(b) = 1.
We find k(q(βλ(a ⊗ b))) = φ(ap)⊗ q(βλb) = 0 so the relation is respected.
We have shown that k is well defined. We have h ◦ k = id and also k ◦ h = id

as one sees by evaluating on algebra generators. Hence k is an isomorphism
and �̃ commutes with finite products.

Finally we verify that �̃ commutes with coequalizers of pairs of maps. For
f, g : A →→ B in F we have coeq(f, g) = B/(f (a) − g(a)|a ∈ A) and

coeq(�̃(f ), �̃(g)) = �̃(B)/(�̃(f )(x) − �̃(g)(x)|x ∈ �̃(A)).

The canonical morphism h : coeq(�̃(f ), �̃(g)) → �̃(coeq(f, g)) is given by
h[φ(b)] = φ([b]) and h[q(b)] = q([b]). We check that there is a well defined
map k in the opposite direction with k(φ([b])) = [φ(b)] and k(q([b])) =
[q(b)].

It suffices to verify that if y is an element in the ideal (f (a)− g(a)|a ∈ A)

then φ(y) and q(y) lies in the ideal (�̃(f )(x)− �̃(g)(x)|x ∈ �̃(A)). Writing
x = (f (a) − g(a))z for some a ∈ A and z ∈ B this follows directly by the
relations (24) and (25). By definition k is the inverse to h.
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