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ON NON-HOLOMORPHIC FUNCTIONAL CALCULUS
FOR COMMUTING OPERATORS

SEBASTIAN SANDBERG

Abstract

We provide a general scheme to extend Taylor’s holomorphic functional calculus for several
commuting operators to classes of non-holomorphic functions. These classes of functions will
depend on the growth of the operator valued forms that define the resolvent cohomology class.
The proofs are based on a generalization of the so-called resolvent identity to several commuting
operators.

1. Introduction

Let X, Y be two Banach spaces. We denote by L(X, Y ) the Banach space of
all continuous linear operators from X to Y and we let L(X) = L(X,X). We
denote by e the identity operator of L(X). For a subset A ⊂ L(X) we let A′′
denote the bicommutant, that is the Banach algebra of all operators in L(X)

which commute with every operator in {b ∈ L(X) : ab = ba for all a ∈ A} .
Suppose that a ∈ L(X). The spectrum of a is defined as

σ(a) = {z ∈ C : z − a is not invertible} ,

where z − a is the operator ze − a. If f is a holomorphic function in a neigh-
borhood of σ(a) then one can define the operator f (a) by the integral

(1.1) f (a) = 1

2πi

∫
∂D

f (z)(z − a)−1 dz,

where D is an appropriate neighborhood of σ(a). This expression defines a
continuous algebra homomorphism

f �→ f (a) : O(σ (a)) → (a)′′,

such that 1(a) = e and z(a) = a, called the Riesz functional calculus. We want
to extend this algebra homomorphism to functions not necessarily holomorphic
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in a neighborhood of the spectrum. Following Dynkin [6] we define f (a) by

(1.2) f (a) = − 1

2πi

∫
∂̄f (z) ∧ (z − a)−1 dz

for all f ∈ Sa , where

∂̄f = ∂f

∂z̄
dz̄

and Sa is defined by

Sa = {
f ∈ C1

c (C) : ‖f ‖a := ∥∥∂̄f (z) ∧ (z − a)−1 dz
∥∥∞ < ∞}

.

It is evident that f (a) is a bounded linear operator on X which commutes
with each operator that commutes with a, that is f (a) ∈ (a)′′. By Stokes
theorem the definition of f (a) only depends on the behavior of f near σ(a).
Suppose that D is an open set such that σ(a) ⊂ D and that f ∈ O(D). Then
if φ ∈ C1

c (D) is equal to 1 in a neighborhood of σ(a), we have that φf ∈ Sa

and φf (a) defined by (1.2) equals f (a) defined by (1.1).
We now prove that f �→ f (a) is an algebra homomorphism and that the

spectral mapping theorem holds for functions in Sa . This is done in Dynkin [6],
but we provide proof as we will generalize these theorems to the several oper-
ator case.

Theorem 1.1. The mapping

f �→ f (a) : Sa → (a)′′,

where a ∈ L(X), is a continuous algebra homomorphism that continuously ex-
tends the holomorphic functional calculus. Moreover, if f ∈ Sa then σ(f (a))

= f (σ(a)).

Proof. The map f �→ f (a) is obviously linear and continuous. We have
the so-called resolvent identity,

(1.3) (w − z)(z − a)−1(w − a)−1 = (z − a)−1 − (w − a)−1

where z,w ∈ C. The multiplicative property then follows,

f (a)g(a)

= 1

(2πi)2

∫
z

∫
w

∂̄f (z) ∧ (z − a)−1 dz ∧ ∂̄g(w) ∧ (w − a)−1 dw

= 1

(2πi)2

∫
z

∫
w

∂̄f (z) ∧ (z − a)−1 dz ∧ ∂̄g(w) ∧ (w − z)−1 dw
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+ 1

(2πi)2

∫
z

∫
w

∂̄f (z) ∧ (z − w)−1 dz ∧ ∂̄g(w) ∧ (w − a)−1 dw

= − 1

2πi

∫
z

g(z)∂̄f (z) ∧ (z − a)−1 dz

− 1

2πi

∫
w

f (w)∂̄g(w) ∧ (w − a)−1 dw = fg(a),

by Fubini-Tonelli’s theorem.
Suppose that D is an open neighborhood of σ(a) and that fn ∈ O(D) is a

sequence such that fn → 0 uniformly on compacts. Then if φ ∈ C1
c (D) is a

function equal to 1 in a neighborhood of σ(a) we have that ‖fnφ‖a → 0. Thus
the mapping f �→ f (a) continuously extends the holomorphic functional
calculus.

If w /∈ f (σ(a)) and φ ∈ C1
c (C) is equal to 1 in an appropriate neighborhood

of g(σ (a)), then
φ

w − f
∈ Sa,

and hence w − f (a) is invertible and thus w /∈ σ(f (a)). Therefore we have
the inclusion σ(f (a)) ⊂ f (σ(a)). Suppose that w ∈ f (σ(a)) and assume
that w = 0. Then 0 = f (ζ ) for some ζ ∈ σ(a). Let

g(z) = f (z)

z − ζ
.

Then
f (a) = − 1

2πi

∫
z

(z − ζ )∂̄g(z) ∧ (z − a)−1 dz

= (ζ − a)
1

2πi

∫
z

∂̄g(z) ∧ (z − a)−1 dz

− 1

2πi

∫
z

(z − a)∂̄g(z) ∧ (z − a)−1 dz.

The last integral equals f (ζ ), which is 0, and hence 0 ∈ σ(f (a)) since other-
wise ζ − a would be invertible. Therefore f (σ(a)) ⊂ σ(f (a)), and hence the
theorem is proved.

Furthermore, we have a rule of composition for this functional calculus.

Theorem 1.2 (Rule of composition). If g ∈ Sa and f is a holomorphic
function in a neighborhood of σ(a), then φ (f ◦ g) ∈ Sa and f (g(a)) =
φ (f ◦ g) (a), if φ ∈ C1

c (C) is equal to 1 in a neighborhood of σ(a).
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Proof. Suppose thatψ ∈ C1
c (C) is equal to 1 in a neighborhood ofσ(g(a)).

There is a function φ ∈ C1
c (C) such that φ is equal to 1 in a neighborhood of

σ(a) and

h = φ

w − g
∈ Sa

for each fixed w ∈ supp
∣∣∂̄ψ∣∣. The function φ(f ◦ g) is in Sa since

∂ (φ (f ◦ g))

∂z̄
= f ◦ g

∂φ

∂z̄
+ φ

∂f

∂w

∂g

∂z̄
.

Since

f (g(a)) = − 1

2πi

∫
w

f (w)∂̄wψ(w) ∧ (w − g(a))−1 dw

= 1

(2πi)2

∫
w

∫
z

f (w)∂̄wψ(w) ∧ dw ∧ ∂̄zh(z) ∧ (z − a)−1 dz

= 1

(2πi)2

∫
z

∂̄z

∫
w

f (w)∂̄wψ(w) ∧ φ(z)dw

w − g(z)
∧ (z − a)−1 dz

= − 1

2πi

∫
z

∂̄z (φf ◦ g) ∧ (z − a)−1 dz = φ(f ◦ g)(a)

the theorem is proved.

For further results regarding this functional calculus, see Dynkin [6].
Now we turn to the notion of spectrum of a commuting tuple of operators.

Suppose that a = (a1, . . . , an) ∈ L(X)n is a commuting tuple of operators,
that is aiaj = ajai for all i and j . Denote by

! = ⊕n
p=0!

p

the exterior algebra of Cn over C. If s1, · · · , sn is a basis of Cn then ! has the
basis

s∅ = 1, sI = si1 ∧ · · · ∧ sip , I = {i1, · · · , ip},
where i1 < · · · < ip and 1 ≤ p ≤ n, and we denote ! = !(s) in this case.
We let K•(a,X) be the Koszul complex induced by a,

· · · → Kp+1(a,X)
δp+1−−−→ Kp(a,X)

δp−−→ Kp−1(a,X) → · · · ,
where

Kp(a,X) = !p(s,X) = X ⊗C !p(s)
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and

δp(xsI ) = 2πi

p∑
k=1

(−1)k−1aik xsi1 ∧ · · · ∧ ŝik ∧ · · · ∧ sip .

If K•(a,X) is exact then a is called nonsingular, otherwise singular. The spec-
trum is defined as

σ(a) = {
z ∈ Cn : z − a is singular

}
.

One also defines the split spectrum as

sp(a) = {
z ∈ Cn : K•(z − a,X) is not split

}
,

where split means that for every integer p there are operators h and k such that
e = δp+1h+kδp. IfX is a Hilbert space or n = 1 then sp(a) = σ(a). In general
we have that σ(a) ⊂ sp(a), but not the reverse inclusion, see Müller [11].

We will consider operators parametrized by a variable z, such as z �→ z−a.
In that case the boundary map δp depends on z and we will henceforth suppress
the index p and write δp as δz−a for every p. We also let si = dzi .

Now suppose that T ∈ L(X, Y ) has closed range and let k(T ) be the norm
of the inverse of T considered as a map from X/Ker T to �T . The next lemma
is Lemma 2.1.3 of [7], and it implies that if a0 is a nonsingular tuple then a is
nonsingular if ‖a0 − a‖ is small enough.

Lemma 1.3. Suppose that X, Y,Z are Banach spaces, α0 ∈ L(X, Y ),
β0 ∈ L(Y,Z), �β0 closed and Ker β0 = �α0, that is

X
α0−−→ Y

β0−−→ Z

is exact. Let r be a number such that r > max {k(α0), k(β0)} . If α ∈ L(X, Y ),
β ∈ L(Y,Z), �α ⊂ Ker β and ‖α − α0‖ , ‖β − β0‖ < 1/6r then �α = Ker β
and k(α) ≤ 4r .

Hence σ(a) is closed. Furthermore, the spectrum has the projection prop-
erty, see Theorem 2.5.4 of [7].

Theorem 1.4. If a ∈ L(X)n and a′ = (a, an+1) ∈ L(X)n+1 are commuting
and π : Cn+1 → Cn is defined by π(z, zn+1) = z then π(σ(a′)) = σ(a).

It follows that
σ(a) ⊂ σ(a1) × · · · × σ(an)

and hence σ(a) is bounded. Thus σ(a) is a compact subset of Cn. Conversely,
any compact set K in Cn can arise as the spectrum of a commuting tuple of
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operators. This one sees by letting the operators ak to be multiplication by zk
on the Banach space C(K) of continuous functions on K ⊂ Cn.

The next theorem says that pointwise exactness is equivalent to continuous
exactness, see Corollary 2.1.4 of [7].

Theorem 1.5. Suppose thatX, Y,Z are Banach spaces and that/ is a para-
compact topological space. Furthermore suppose that α ∈ C(/,L(X, Y ))

and β ∈ C(/,L(Y,Z)) such that �β(λ) is closed and Ker β(λ) = �α(λ) for
all λ ∈ /. Then

Ker
(
C(/, Y )

β−→ C(/,Z)
) = �(

C(/,X) α−→ C(/, Y )
)
.

Moreover for each point λ ∈ / and vector x ∈ Ker α(λ) there is a function
f ∈ C(/,X) with αf = 0 and f (λ) = x.

Thus the complex
K•(a, C(Cn \ σ(a),X))

is exact. The next theorem is more complicated to prove, see Taylor [16],
Theorem 2.16 and Eschmeier and Putinar [7], Section 6.4.

Theorem 1.6. Suppose that U is an open subset of Cn, Yp are Banach
spaces, αp ∈ O

(
U,L(Yp, Yp−1)

)
and that

· · · → Yp+1
αp+1(z)−−−−→ Yp

αp(z)−−−→ Yp−1 → · · ·
is exact for all z ∈ U . Then the complex

· · · → C∞(U, Yp+1)
αp+1−−−→ C∞(U, Yp)

αp−−→ C∞(U, Yp−1) → · · ·
is exact.

Hence the complex

K•(a, C∞(Cn \ σ(a),X))

is exact.
This notion of joint spectrum for a commuting tuple of operator was in-

troduced by Taylor, [15], in 1970. Furthermore, he proved the holomorphic
functional calculus and the spectral mapping theorem for this spectrum in [16].
His first proof of the holomorphic functional calculus was based on the Cauchy-
Weil integral. Using homological algebra he generalized the construction to
not necessarily commuting tuples of operators in [18]. See Kisil and Ramirez
de Arellano [9] for more recent developments of non-commuting functional
calculus. In [1], [2] Andersson proved the holomorphic functional calculus for
commuting operators using Cauchy-Fantappié-Leray formulas.
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The purpose of this paper is to study generalizations of Theorem 1.1 to
the case of several commuting operators. Suppose that E is a set such there
is a smooth function s such that δz−as = e outside E. In that case we can
use the integral representation from [1] to extend the holomorphic functional
calculus. The main difficulty is to show the multiplication property; for this
we will generalize the resolvent identity (1.3) to several commuting operators.
In case E is a convex set we can use approximation by holomorphic functions
to show that the map f �→ f (a) extends. Similar results to the one in this
paper have been proved in Nguyen [13]. In the setting where one has a tuple
a of elements in a commutative Banach algebra (or more general a b-algebra)
he extends the holomorphic functional calculus. The method of the proof of
the multiplication property in [13] is to show that f (a)g(a) = f ⊗ g(T a) =
f ⊗ g ◦ T (a) = fg(a), where T (z) = (z, z). In Droste [5] the holomorphic
fuctional calculus is extended to ultradifferentiable functions in the case when
the spectrum is contained in a totally real submanifold in Cn. His method
of proof is to use the denseness of the holomorphic functions in the algebra
ultradifferentiable functions.

I would like to thank my supervisor MatsAndersson for valuable discussions
about the results of this paper.

2. Holomorphic functional calculus

Remember that X is a Banach space, a ∈ L(X)n is a tuple of commuting
operators on X, and z ∈ Cn is a variable. Remember also the fact that if the
complex K•(z − a,X) is exact for every z in an open set U then there is a
smooth solution u in U to the equation δz−au = f if f is a closed and smooth
X-valued form in U .

We now construct the resolvent on Cn \ σ(a). We remark that

δz−a∂̄
∑
k

fkdzk = −2πi
∑
k,l

(zk − ak)
∂fk

∂z̄l
dz̄l = −∂̄δz−a

∑
k

fkdzk,

and therefore δz−a∂̄ = −∂̄δz−a for 1-forms and hence for all forms since δz−a

and ∂̄ are anti-derivations. Suppose that K•(z − a,X) is exact and x ∈ X.
Then we can define a sequence ui in Cn \ σ(a) by

(2.1) δz−au1 = x, δz−aui+1 = ∂̄ui,

since ∂̄ and δz−a anti-commute. If this sequence starts with x = 0 then there is
a form wn such that un = ∂̄wn, this follows from the fact that we successively
can find wi such that

(2.2) w1 = 0, δz−awi+1 = ∂̄wi − ui.
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Thus if one has two sequences ui and u′
i as in (2.1) then the difference un −u′

n

is exact. Hence un defines a Dolbeault cohomology class ωz−ax of bidegree
(n, n − 1), which is called the resolvent cohomology class.

Suppose we have two cohomology classes, ωz−ax and ωw−bx, where z,w ∈
Cn, a, b ∈ L(X)n, corresponding to sequences ui and vi , respectively. Then
one defines the X-valued cohomology class ωz−a ∧ ωw−bx as the class of c2n,
where ci solve

(2.3) c1 = 0, δz−a,w−bci+1 = ∂̄ci + vi − ui.

To see that this really is a well defined cohomology class, let u′
i , v

′
i and c′

i be
other choices of sequences. Let wu

i and wv
i be the sequences given by (2.2) for

the sequences ui − u′
i and vi − v′

i respectively. Then we obtain

c1 − c′
1 + wv

1 − wu
1 = 0

and

δz−a,w−b

(
ci+1 − c′

i+1 + wv
i+1 − wu

i+1

) = ∂̄
(
ci − c′

i + wv
i − wu

i

)
.

Hence, by (2.2) again, there exists a sequence wc
i such that c2n − c′

2n = ∂̄wc
2n.

Now suppose that we instead have operator valued forms, ui , such that

(2.4) δz−au1 = e, δz−aui+1 = ∂̄ui,

so thatun represents the operator valued cohomology classωz−a . Then we have
that ωz−a ∧ ωw−bx is the class of un ∧ vn, where vi is an X-valued sequence
defining ωw−bx. This follows from the fact

δz−a (u1 ∧ vn) = vn, δz−a (ui+1 ∧ vn) = ∂̄ (ui ∧ vn)

and the following proposition.

Proposition 2.1. If vi is a sequence defining ωw−bx and

δz−af1 = vn, δz−afi+1 = ∂̄fi,

then fn represents ωz−a ∧ ωw−bx.

Proof. Let ci be any sequence that definesωz−a∧ωw−bx, so that ci satisfies
(2.3). Denote by c

k,l
i the component of ci which is of degree k in dz and degree

l in dw. We have that δz−ac
0,i
i = 0, so there is a form f such that c0,1

i = δz−af .
This gives

δz−a,w−bci = δz−a,w−b

(
ci − c

0,1
i − δw−bf

)
,
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and hence we can assume that the component c0,i
i vanishes. We have that

δz−ac
1,n
n+1 = vn, δz−ac

i+1,n
n+i+1 = ∂̄c

i,n
n+i ,

and therefore there is a form wn such that

fn − c
n,n
2n + ∂̄wn = 0.

Since c2n = c
n,n
2n the proposition is proved.

In one variable there is only one possible representative for ωz−ax, a ∈
L(X),

ωz−ax = 1

2πi
(z − a)−1dz x,

and we have that ωz−a is operator valued. The key part of the proof of the
holomorphic functional calculus in one variable is the resolvent identity (1.3),
which we can reformulate as

ωz−a ∧ ωw−a + ωw−a ∧ ωz−w + ωw−z ∧ ωz−a = 0.

We will now generalize this equality to several commuting operators. Let 7 ={
(z, w) ∈ C2n : z = w

}
be the diagonal.

Lemma 2.2. For every x ∈ X, we have the equality

(2.5) ωz−a ∧ ωw−ax + ωw−a ∧ ωz−wx + ωw−z ∧ ωz−ax = 0,

on ((Cn \ σ(a)) × Cn ∩ Cn × (Cn \ σ(a))) \ 7.

Proof. Define the sequence mk by

(2.6) mk = 1

(2πi)k

∂ |z − w|2
|z − w|2 ∧

(
∂̄
∂ |z − w|2
|z − w|2

)k−1

.

The equalities,

δz−a,w−am1 = 1

2πi |z − w|2 δz−a,w−a∂ |z − w|2 = 1,(2.7)

δz−a,w−amk+1 = 1

(2πi)k

(
∂̄
∂ |z − w|2
|z − w|2

)k

= ∂̄mk,(2.8)

for all k ≤ n, and mk = 0 for all k > n, hold on C2n \7. Let ui be a sequence
as in (2.1) that defines ωz−ax. Define u1

i and u2
i by u1

i = π∗
1 ui and u2

i = π∗
2 ui ,
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whereπ1(z, w) = z andπ2(z, w) = w are the projections. Let ci be a sequence
that satisfies the equalities

(2.9) c1 = 0, δz−a,w−acl+1 = ∂̄cl + u2
l − u1

l .

Using the equalities (2.7), (2.8) and (2.9) (for l ≥ n), we get

−∂̄
∑

k+l=2n

mk ∧ cl = δz−a,w−a

∑
k+l=2n+1

mk ∧ cl − ∂̄
∑

k+l=2n

mk ∧ cl

=
2n∑

l=n+1

δz−a,w−am2n+1−l ∧ cl −
2n−1∑
l=n

∂̄m2n−l ∧ cl

+
n∑

k=1

mk ∧ (
∂̄c2n−k − δz−a,w−ac2n+1−k

)
= −∂̄mn ∧ cn + c2n + mn ∧ (

u1
n − u2

n

)
.

Thus

(2.10) −∂̄
∑

k+l=2n

mk ∧ cl = c2n + u2
n ∧ mn + mn ∧ u1

n

outside the diagonal. We have that the component ofmn which does not contain
dw and dw̄ represents ωz−w and that the component of mn which does not
contain dz or dz̄ represents ωw−z. Since c2n represents ωz−a ∧ ωw−ax, the
lemma follows from (2.10).

Choose representatives ω̃z−ax, ω̃w−ax and ω̃z−a ∧ω̃w−ax for ωz−ax, ωw−ax

and ωz−a ∧ ωw−ax respectively on (Cn \ σ(a)) × Cn ∩ Cn × (Cn \ σ(a)). Let
ω̃z−w = mn. Then (2.5) says that the form

(2.11) ω̃z−a ∧ ω̃w−ax + ω̃w−a ∧ ω̃z−wx + ω̃z−w ∧ ω̃z−ax,

defined on ((Cn \ σ(a)) × Cn ∩ Cn × (Cn \ σ(a))) \7, is exact. We want this
expression to be an exact current over 7 as well. Suppose that (2.11) is exact
on (Cn \ σ(a)) × Cn ∩ Cn × (Cn \ σ(a)). We have [7] = ∂̄ω̃z−w, where [7]
denotes the current of integration over 7. If we apply ∂̄ to (2.11), interpreted
as a current, we obtain

0 = −ω̃w−ax ∧ [7] + [7] ∧ ω̃z−ax = [7] ∧ (ω̃z−ax − ω̃w−ax)

since (2.11) is supposed to be exact and therefore is closed. Hence i∗(ω̃z−ax −
ω̃w−ax) = 0, where i is a function defined by i(τ ) = (τ, τ ). The next theorem
gives the desired result in the case where we have i∗ω̃z−ax = i∗ω̃w−ax.
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Theorem 2.3 (Resolvent identity). Suppose that ω̃z−ax, ω̃w−ax and ω̃z−a ∧
ω̃w−ax are representatives for ωz−ax, ωw−ax and ωz−a ∧ωw−ax, respectively.
Let ω̃z−w = mn, where mn is defined in (2.6). Then the current

ω̃z−a ∧ ω̃w−ax + ω̃w−a ∧ ω̃z−wx + ω̃z−w ∧ ω̃z−ax

defined on (Cn \σ(a))×Cn∩Cn×(Cn \σ(a)) is exact if and only if i∗ω̃z−ax =
i∗ω̃w−ax, where i : Cn → C2n is defined by i(τ ) = (τ, τ ).

Proof. The necessity of having i∗ (ω̃z−ax − ω̃w−ax) = 0 has already been
proved. Now suppose that i∗ (ω̃z−ax − ω̃w−ax) = 0. Let u1

i , u2
i , mi and ci be

the sequences in the proof of Lemma 2.2. Let δ = δz−a,w−a . Then we have
i∗δ = δτ−ai

∗ by induction, since

i∗δ (f dzk + gdwl) = (τk − ak) f (τ, τ ) + (τl − al) g(τ, τ )

= δτ−ai
∗ (f dzk + gdwl)

and
i∗δ(u ∧ v) = i∗δu ∧ i∗v − i∗u ∧ i∗δv = δτ−ai

∗ (u ∧ v) ,

if u is a 1-form. Thus

i∗c1 = 0, δτ−ai
∗ci+1 = ∂̄i∗ci

and hence, by (2.2), there is a form wn of τ such that i∗cn = ∂̄wn. For all test
forms f we have the identity

∂̄mn ∧ cn.f =
∫
7

i∗ (cn ∧ f ) =
∫
7

∂̄wn ∧ i∗f =
∫
7

wn ∧ i∗∂̄f.

Therefore the calculation in the proof of Lemma 2.2 gives the equality

(2.12) −∂̄

(
[7] ∧ wn +

n∑
k=1

mk ∧ c2n−k

)
= c2n + u2

n ∧ mn + mn ∧ u1
n.

Since ω̃τ−ax and un represent the same cohomology class, there is a form q

such that ω̃τ−ax − un = ∂̄q. Let q1 = π∗
1 q and q2 = π∗

2 q. Then

ω̃z−w ∧ (
ω̃z−ax − ω̃w−ax − (u1

n − u2
n)

) = ω̃z−w ∧ (
∂̄q1 − ∂̄q2

)
= [7] ∧ (

q1 − q2
) − ∂̄

(
ω̃z−w ∧ (

q1 − q2
)) = −∂̄

(
ω̃z−w ∧ (

q1 − q2
))

.

Thus, since ω̃z−a ∧ ω̃w−ax − c2n is an exact current, the theorem is proved.
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Now we give the definition of f (a). If f is a holomorphic function in a
neighborhood of σ(a) then we define f (a) by the formula

(2.13) f (a)x = −
∫

f ∂̄φ ∧ ωz−ax for all x ∈ X,

where φ ∈ C∞
c is equal to 1 in a neighborhood of σ(a). This definition is

independent of the choice of φ. To see this, suppose that ϕ ∈ C∞
c is equal to

0 in a neighborhood of the spectrum. Then we obtain∫
∂̄ϕ ∧ ωz−ax =

∫
∂̄ϕ ∧ un =

∫
∂̄ (ϕ ∧ un) = 0,

if un is a smooth form in Cn \ σ(a) representing ωz−ax. Note also that, by
Stokes theorem, we have the equality

−
∫

f ∂̄φ ∧ ωz−ax =
∫
∂D

fωz−ax,

where D is a small enough neighborhood of σ(a). We now prove that f (a) ∈
(a)′′.

Lemma 2.4. If f (a) is defined by the formula (2.13), then f (a) ∈ (a)′′.

Proof. Suppose that x, y ∈ X and c, d ∈ C. Denote by ux
i the sequence

(2.1). Then
δz−a

(
u
cx+dy

1 − cux
1 − du

y

1

) = 0

and
δz−a

(
u
cx+dy

i+1 − cux
i+1 − du

y

i+1

) = ∂̄
(
u
cx+dy

i − cux
i − du

y

i

)
,

so u
cx+dy
n and cux

n + du
y
n define the same cohomology class. Therefore the

resolvent is linear, i.e.,

ωz−a (cx + dy) = cωz−ax + dωz−ay,

and hence f (a) is a linear operator.
The map δz−a is linear, continuous and surjective between the Frechet space

of all C∞
p+1,q(U,X) forms to the Frechet space of all δz−a-closed C∞

p,q(U,X)

forms, where U = Cn \ σ(a). Let K1 ⊂ Cn \ σ(a) be a given compact set
and let t1 = 0. The open mapping theorem gives the existence of a sequence
of compact sets Ki ⊂ Cn \ σ(a) and natural numbers ti such that the equation
δz−au = v has a solution u, which satisfies

‖u‖Ki,ti+1 ≤ C ‖v‖Ki+1,ti+1
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for all closed v. Thus we can choose the sequence (2.1) so that

‖u1‖Kn,tn+1 ≤ C ‖x‖Kn+1,tn+1
= C ‖x‖

and

‖ui+1‖Kn−i ,tn−i+1 ≤ C
∥∥∂̄ui

∥∥
Kn−i+1,tn−i+1

≤ C ‖ui‖Kn−i+1,tn−i+1+1 .

Hence

(2.14) ‖f (a)x‖ ≤
∫ ∥∥f ∂̄φ ∧ un

∥∥ ≤ C |f |suppφ ‖x‖

and thus the operator f (a) is bounded.
Suppose that b ∈ L(X) is an operator which commutes with the tuple a.

Then
δz−abu

x
1 = bx, δz−abu

x
i+1 = ∂̄bux

i ,

so bux
n and ubx

n defines the same cohomology class. Therefore

bωz−ax = ωz−abx

and thus f (a) ∈ (a)′′.

We can now prove Taylor’s theorem.

Theorem 2.5 (Taylor). The mapping

(2.15) f �→ f (a) : O(σ (a)) → (a)′′

is a continuous algebra homomorphism such that 1(a) = e and zk(a) = ak .

Proof. The map f �→ f (a) is continuous by (2.14). We now prove that
f (a)g(a) = fg(a). Let ui , u1

i , u2
i and ci be as in Lemma 2.2. By the proof of

Proposition 2.1 we can assume that the component c0,i
i vanishes. Since

δz−ac
1,n
n+1 = un(w), δz−ac

i+1,n
n+i+1 = ∂̄c

i,n
n+i ,

we have that c2n represents ωz−aun(w) and thus we have that

f (a)un(w) = −
∫
z

f (z)∂̄φ1(z) ∧ ωz−aun(w) = −
∫
z

f (z)∂̄φ1(z) ∧ c2n.

Multiplying this equality by g(w)∂̄φ2(w) and integrating with respect to w we
get

f (a)g(a)x =
∫
w

∫
z

f (z)g(w)∂̄φ2(w) ∧ ∂̄φ1(z) ∧ c2n.
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The resolvent identity (2.12) then gives that the right hand side is equal to∫∫
fg∂̄φ1 ∧ ∂̄φ2 ∧ mn ∧ u1

n +
∫∫

fg∂̄φ1 ∧ ∂̄φ2 ∧ u2
n ∧ mn,

and hence we get, by the Bochner-Martinelli integral formula,

−
∫

(fgφ2∂̄φ1 + f φ1g∂̄φ2) ∧ un = −
∫

fg∂̄ (φ1φ2) ∧ un = fg(a)x,

since u1
n = π∗

1 un and u2
n = π∗

2 un. Since the map (2.15) obviously is linear, it
is an algebra homomorphism.

It remains to prove that 1(a) = e and zk(a) = ak . The first equality follows
by representing ωz−a by

1

(2πi)n

(|z|2e − z̄a
)−n

∂|z|2 ∧ (
∂̄∂|z|2)n−1

,

cf. [1], and integrating against ∂̄φ, where φ is a radial cutoff function which
is equal to 1 in a neighborhood of σ(a). The second equality follows from the
first equality and the equalities

(zk − ak) un = 1

2πi
(δz−aun) ∧ dzk = 1

2πi
∂̄ (un−1 ∧ dzk) ,

where ui is a sequence that satisfies (2.1).

Taylor also proved the spectral mapping theorem; if f ∈ O(σ (a)) then
f (σ(a)) = σ(f (a)). Suppose that a is a commuting tuple and that D is an
open set such that σ(a) ⊂ D. Then there exists a δ > 0 such that σ(b) ⊂ D if
‖a − b‖ < δ. This follows from Lemma 1.3. In Newburgh [12] it is proved that
the spectrum of one operator is continuous under commutative perturbations;
the next proposition says that the same is true for the Taylor spectrum.

Proposition 2.6. If a and b are tuples of operators such that a, b is com-
muting then

sup
z∈σ(a)

inf
w∈σ(b)

|z − w| + sup
w∈σ(b)

inf
z∈σ(a)

|z − w| ≤ 2 sup
z∈σ(a−b)

|z| ≤ 2 ‖a − b‖ .

Proof. Suppose that u ∈ σ(a). Since Pσ(a, b) = σ(a), where P(z,w) =
z, there is a v in σ(b) such that (u, v) ∈ σ(a, b). Since T σ(a, b) = σ(a − b),
where T (z,w) = z − w, we have that u − v ∈ σ(a − b). Thus

sup
z∈σ(a)

inf
w∈σ(b)

|z − w| ≤ sup
z∈σ(a−b)

|z|
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and by symmetry the proposition is proved.

The next theorem says what happens when one has a norm convergent
sequence in L(X)n. Notice that if σ(a) = sp(a) then the conclusion would be
that f (ak) → f (a0) in operator norm.

Theorem 2.7. Suppose that ak ∈ L(X)n are commuting tuples (not ne-
cessarily commuting with each other) for k ≥ 0 and that ‖ak − a0‖ → 0
as k → ∞. If f is holomorphic in a neighborhood of ∪k≥0σ(ak), then
f (ak)x → f (a0)x for every x ∈ X.

Proof. Consider the Banach space

c(X) = {
(xk)

∞
k=0 : lim

k→∞
‖xk − x0‖ = 0

}
with norm

∥∥(xk)
∞
k=0

∥∥∞ = supk≥0 ‖xk‖ and the tuple of n operators a′ ∈
L(c(X))n defined by a′(xk)

∞
k=0 = (akxk)

∞
k=0. Suppose that ak is a nonsin-

gular tuple for every k ≥ 0. Let f be a closed c(X)-form, that is δa′f = 0.
Then δak

fk = 0 for every k ≥ 0. Hence there is a solution u0 of the equation
δa0u0 = f0 since a0 is nonsingular. Lemma 1.3 gives a uniform constant C

and vk such that δak
vk = δak

u0 − fk and

‖vk‖ ≤ C‖δak
u0 − fk‖ ≤ C‖δak

− δa0‖‖u0‖ + C‖f0 − fk‖.
Thus uk = u0 − vk solve the equations δak

uk = fk and uk → u0 if k → ∞.
Hence u = (uk)

∞
k=0 is a solution of δa′u = f and the complex K•(a′, c(X)) is

exact, and thus a′ is nonsingular. That is, we have proved the inclusion

σ(a′) ⊂
⋃
k≥0

σ(ak).

Let ui be smooth c(X)-forms defined on Cn \ σ(a′) by the equations

δz−a′u1 = x, δz−a′ui+1 = ∂̄ui .

Thus (un)k represent ωz−ak
x for all k > 0 and (un)0 = limk→∞ (un)k repres-

ents ωz−a0x. Suppose that φ ∈ C∞
c is equal to 1 in a neighborhood the union

of σ(ak). Then

lim
k→∞ f (ak)x = − lim

k→∞

∫
f ∂̄φ ∧ (un)k = −

∫
f ∂̄φ ∧ (un)0 = f (a0)x

for all x ∈ X, and hence the theorem is proved.
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3. Non-holomorphic functional calculus

In this section we will extend the holomorphic functional calculus of Section 2
to functions such that

∣∣∂̄f (z)
∣∣ tends to zero when z approaches the spectrum.

If f is a C1-function with compact support, we define whenever possible

f (a)x = −
∫

∂̄f ∧ ux
n,

where ux
n is a form that represents ωz−ax.

Several problems occur. There is a problem with the possible dependence
of the choice of representative ux

n of the class ωz−ax. Other problems are to
investigate whether

f (a) ∈ (a)′′, f (a)g(a) = fg(a),

σ (f (a)) = f (σ(a)), g(f (a)) = g ◦ f (a)

and whether f (a) = 0 if f = 0 on σ(a). We will prove that f (a)g(a) =
fg(a), f (a) ∈ (a)′′ and σ(f (a)) = f (σ(a)) for a certain algebra Sa (3.7)
of functions. In order to do this, we will need a slightly stronger condition on
∂̄f than in the case n = 1. To begin with, we will see what is needed for the
muliplicative property to hold.

Suppose that E ⊃ σ(a) is a compact set such that there exists a sequence
ui on Cn \ E satisfying (2.4). Then we have that un is operator valued and
represents ωz−a in Cn \ E. The definition of f (a) in this case is

f (a) = −
∫

∂̄f ∧ un.

Define a sequence cl by

(3.1) c1 = 0, δz−a,w−acl+1 = ∂̄cl + u2
l − u1

l ,

where u1
l = π∗

1 ul and u2
l = π∗

2 ul . Thus c2n represents ωz−a ∧ ωw−a . We now
prove the multiplicative property.

Proposition 3.1. Let ui be a sequence defined on Cn \E, where E ⊃ σ(a)

is a compact set, as in (2.4), and suppose that cl , n ≤ l ≤ 2n, are forms that
satisfy the conditions

(3.2) i∗cn = 0, δz−a,w−acl+1 = ∂̄cl + u2
l − u1

l , c2n = u1
n ∧ u2

n,

where i(τ ) = (τ, τ ). Moreover suppose that f, g ∈ C2
c such that∫ ∥∥∂̄f ∧ un

∥∥ < ∞,

∫ ∥∥∂̄g ∧ un

∥∥ < ∞
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and

(3.3)
∫
z

∫
w

∥∥∂̄f (z) ∧ ∂̄g(w) ∧ cl
∥∥

d (z, E) d (w,E) |z − w|2(2n−l)−1
< ∞,

for all l such that n ≤ l < 2n. Then f (a)g(a) = fg(a).

Proof. First note that

f (a)g(a) = −
∫
z

∫
w

∂̄f (z) ∧ ∂̄g(w) ∧ u1
n ∧ u2

n

and that, by the Bochner-Martinelli integral formula,

fg(a) = −
∫ (

g∂̄f + f ∂̄g
) ∧ un

=
∫
z

∫
w

∂̄f (z) ∧ ∂̄g(w) ∧ mn ∧ u1
n

−
∫
z

∫
w

∂̄f (z) ∧ ∂̄g(w) ∧ mn ∧ u2
n.

Let χε be the convolution of the characteristic function of the set{
(z, w) : d((z,w),E × Cn ∪ Cn × E) ≥ 2ε

}
and the function ε−4nρ(·/ε), where ρ is a non-negative smooth function with
compact support in the unit ball of C2n such that its integral is equal to 1. Since∥∥∂̄f (z) ∧ ∂̄g(w) ∧ (

u1
n ∧ u2

n + mn ∧ u1
n − mn ∧ u2

n

)∥∥
is integrable, we must prove that

lim
ε→0

∫
z

∫
w

χε∂̄f (z) ∧ ∂̄g(w) ∧ (
u1
n ∧ u2

n + mn ∧ u1
n − mn ∧ u2

n

) = 0.

The resolvent identity (2.10) gives that

−∂̄
∑

k+l=2n

mk ∧ cl + [7] ∧ cn = u1
n ∧ u2

n + mn ∧ u1
n − mn ∧ u2

n

in the sense of currents (note that the proof of this formula only made use of
the forms cl for l ≥ n). Hence, since i∗cn = 0, we must prove that

(3.4) lim
ε→0

∫
z

∫
w

χε∂̄f (z) ∧ ∂̄g(w) ∧ ∂̄
∑

k+l=2n

mk ∧ cl = 0.
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Integration by parts gives that (3.4) is equivalent to

(3.5) lim
ε→0

∫
z

∫
w

∂̄χε ∧ ∂̄f (z) ∧ ∂̄g(w) ∧
∑

k+l=n

mk ∧ cl = 0.

Note that
∣∣∂̄χε

∣∣ ≤ Cε−1 and that
∣∣∂̄χε

∣∣ has support in

ε ≤ d((z,w),E × Cn ∪ Cn × E) ≤ 3ε.

We also note that

d
(
(z, w),E × Cn ∪ Cn × E

) ≥ min {d(z, E), d(w,E)}
≥ Cd (z,E) d (w,E)

on a bounded set, where C > 0 is a constant (depending on the bound). Thus
(3.5) follows since∫

z

∫
w

∥∥∂̄f (z) ∧ ∂̄g(w) ∧ ∑
k+l=2n mk ∧ cl

∥∥
d((z,w),E × Cn ∪ Cn × E)

< ∞

by (3.3). Hence the proposition is proved.

To be able to separate the condition (3.3) we will assume that ui commute
with a. We can then choose the sequence ci in the following way.

Proposition 3.2. Suppose that ui is a sequence as in (2.4) and that aui =
uia. Then

ci =
∑
k+l=i

u1
k ∧ u2

l

satisfies (3.1).

Proof. We have that c1 = 0, and since a and ui commute,

δci+1 − ∂̄ci =
∑

k+l=i+1

(
δu1

k ∧ u2
l − u1

k ∧ δu2
l

)
−

∑
k+l=i

(
δu1

k+1 ∧ u2
l − u1

k ∧ δu2
l+1

) = u2
i − u1

i ,

where δ = δz−a,w−a . Thus ci satisfies (3.1).

Unfortunately, the sequence ci in Proposition 3.2 does not necessarily sat-
isfy i∗cn = 0. However, by the proof of Theorem 2.3 we infer that i∗cn is
exact.
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We have an explicit choice of sequence that satisfies (2.4). Suppose that s
satisfies the equalities δz−as = e and as = sa. Then

δz−as = e, δz−a

(
s ∧ (∂̄s)i

) = (∂̄s)i = ∂̄
(
s ∧ (∂̄s)i−1

)
and hence ui = s ∧ (∂̄s)i−1 satisfies (2.4). The sequence ci of Proposition 3.2
is then

(3.6) ci =
∑
k+l=i

s1 ∧ (
∂̄s1

)k−1 ∧ s2 ∧ (
∂̄s2

)l−1
,

where s1 = π∗
1 s and s2 = π∗

2 s. Note that if s ∧ s = 0 then s ∧ (∂̄s) = (∂̄s)∧ s

and hence i∗cn = 0.
Let E ⊃ σ(a) be a compact set and let s be a given form such that s is

defined on Cn \ E, δz−as = e and as = sa. Define the class Sa by

(3.7) Sa = {
f ∈ C2

c

(
Cn

)
: ‖f ‖a < ∞}

,

where

‖f ‖a =
n∑

i=1

∥∥∥∥ ∂̄f ∧ s ∧ (∂̄s)i−1

d(z, E)

∥∥∥∥∞

+
∑

k+l=n

∥∥∥∥ ∂̄f ∧ s ∧ (∂̄s)k−1 ∧ s ∧ (∂̄s)l−1

d(z, E)

∥∥∥∥∞
.

Note that the second sum vanishes if s ∧ s = 0. This is always the case if
n = 2 since then δz−a (s ∧ s) = s − s = 0 and δz−a injective. If n = 1 then Sa

defined by (3.7) is a slightly smaller class than Sa defined in the introduction.
This is because the left hand side in the resolvent identity (2.10) is 0 if n = 1.
If f ∈ Sa then f (a) is defined by

f (a) = −
∫

∂̄f ∧ s ∧ (∂̄s)n−1.

Of course we have that f (a) ∈ L(X) if f ∈ Sa . Note that Sa is an algebra. In
the next lemma we will use Proposition 3.1 to prove that f (a)g(a) = fg(a)

if f, g ∈ Sa .

Lemma 3.3. If f, g ∈ Sa then f (a)g(a) = fg(a).

Proof. Let ci be the sequence defined by (3.6) and let

di =
∑
k+l=i

s2 ∧ (
∂̄s2

)k−1 ∧ s2 ∧ (
∂̄s2

)l−1
.
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By a computation similar to the proof of Proposition 3.2, we see that the
sequence di satisfies the relation

δz−a,w−adi+1 = ∂̄di,

and hence that ∂̄dn = 0. For every l > n define c′
l by c′

l = cl and define
c′
n by c′

n = cn − dn. Then c′
l satisfies the condition (3.2) since ∂̄dn = 0 and

i∗cn = i∗dn. We have that |z − w|−2n+1 is a locally integrable function on C2n

and hence∫
z

∫
w

‖∂̄f (z) ∧ ∂̄g(w) ∧ ci‖
d (z, E) d (w,E) |z − w|2n−1

≤
∑
k+l=i

∫
z

∫
w

∥∥∂̄f (z) ∧ s1 ∧ (∂̄s1)k−1
∥∥∥∥∂̄g(w) ∧ s2 ∧ (∂̄s2)l−1

∥∥
d (z, E) d (w,E) |z − w|2n−1 < ∞.

Similarly, we remark that

∫
z

∫
w

∥∥∂̄f (z) ∧ ∂̄g(w) ∧ dn

∥∥
d (z, E) d (w,E) |z − w|2n−1 < ∞,

since ‖g‖a < ∞. Thus the statement follows from Proposition 3.1.

In order to prove that f (a) ∈ (a)′′ we construct the resolvent ωz−a,w−b and
use the multiplicative property of the functional calculus of the tuple (a, b),
where b ∈ L(X) commutes with a.

Lemma 3.4. If f ∈ Sa , then f (a) ∈ (a)′′.

Proof. Suppose that b ∈ L(X) is an operator such that ab = ba. Define
the form

v(w) = 1

2πi
(w − b)−1 dw

Define the sequence ck by

c1 = 0, ck = v ∧ s ∧ (∂̄s)k−2.

Then we have the equations

c1 = 0, δz−a,w−bc2 = s − v

and

δz−a,w−bck+1 = s ∧ (∂̄s)k−1 − v ∧ (∂̄s)k−1 = ∂̄ck + s ∧ (∂̄s)k−1.
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Let χ be a smooth cutoff function such that {χ, 1 − χ} is a partition of unity
subordinate the cover

{ {(z, w) : z /∈ E, |w| < 3 ‖b‖} , {(z, w) : |w| > 2 ‖b‖} }
of Cn ×C\E× {w : |w| ≤ 2 ‖b‖} . This is a special choice of function χ used
in Lemma 3.2 of [1] which enables us to avoid an integration by parts. Define
the sequence ak outside E × {w : |w| ≤ 2 ‖b‖} by

a1 = χs + (1 − χ) v, ak = χs ∧ (∂̄s)k−1 − ∂̄χ ∧ ck.

We then have that

δz−a,w−ba1 = e, δz−a,w−ba2 = χ∂̄s + ∂̄χ ∧ (s − v) = ∂̄a1

and that

δz−a,w−bak+1 = χ(∂̄s)k + ∂̄χ ∧ (
∂̄ck + s ∧ (∂̄s)k−1

) = ∂̄ak,

and thus
an+1 = −∂̄χ ∧ v ∧ s ∧ (∂̄s)n−1

represents ωz−a,w−b. Choose φ ∈ C∞
c (C) which is 1 in a neighborhood of

{w ∈ C : |w| < 3 ‖b‖} . Then we have that

(φf )(a, b) = −
∫
w

∫
z

∂̄ (φ(w)f (z)) ∧ an+1(z, w)

=
∫∫

f ∂̄wφ ∧ ∂̄zχ ∧ v ∧ s ∧ (∂̄s)n−1

+
∫∫

φ∂̄zf ∧ ∂̄wχ ∧ v ∧ s ∧ (∂̄s)n−1

= −
∫

∂̄f ∧ s ∧ (∂̄s)n−1 = f (a).

Let a1
k = π∗

1 ak and a2
k = π∗

2 ak , where

π1(z1, w1, z2, w2) = (z1, w1) and π2(z1, w1, z2, w2) = (z2, w2).

Define the sequence c′
i by

c′
1 = 0, c′

i =
∑
k+l=i

a1
k ∧ a2

l
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so that by Proposition 3.2,

c1 = 0, δz1−a,w1−b,z2−a,w2−bc
′
i+1 = ∂̄c′

i + a2
i − a1

i .

LetF = E× {w : |w| ≤ 2 ‖b‖} . Define the functiong byg(z,w) = wψ(z,w)

where ψ ∈ C∞
c is equal to 1 in a neighborhood of F . We have that∥∥∥∥ ∂̄(φf ) ∧ ak

d ((z, w), F )

∥∥∥∥∞
≤

∥∥∥∥χ∂̄(φf ) ∧ s ∧ (∂̄s)k−1

d(z, E)

∥∥∥∥∞

+
∥∥∥∥ ∂̄(φf ) ∧ ∂̄χ ∧ v ∧ s ∧ (∂̄s)k−2

d(z, E)

∥∥∥∥∞
< ∞

since f ∈ Sa . Hence we have that∫∫ ∥∥∂̄(φ(w1)f (z1)) ∧ ∂̄g(z2, w2) ∧ c′
l

∥∥
d ((z1, w1), F ) d ((z2, w2), F ) |(z1, w1) − (z2, w2)|2n+1 < ∞

for all l. Define the forms c′′
l by the equations c′′

l = c′
l if l > n + 1 and

c′′
n+1 = c′

n+1 −
∑

k+l=n+1

a2
k ∧ a2

l .

Then we have that c′′
n+1 satisfies i∗c′′

n+1 = 0 and hence by Proposition 3.1 we
have that (φf )(a, b)g(a, b) = g(a, b)(φf )(a, b) since∫∫ ∥∥∂̄(φ(w1)f (z1)) ∧ ∂̄g(z2, w2) ∧ ∑

k+l=n+1 a
2
k ∧ a2

l

∥∥
d ((z1, w1), F ) d ((z2, w2), F ) |(z1, w1) − (z2, w2)|2n+1 < ∞.

Thus f (a)b = bf (a) since g(a, b) = b by the holomorphic functional calcu-
lus.

We can now prove a generalization of the holomorphic functional calculus.

Theorem 3.5 (Non-holomorphic functional calculus). Suppose that a is
an n-tuple of commuting operators and that E ⊃ σ(a) is compact such that it
exists a smooth form s defined on Cn \ E with δz−as = e and as = sa. Let Sa

be the class defined by (3.7) and let f (a), f ∈ Sa , be the operator defined by

f (a) = −
∫

∂̄f ∧ s ∧ (∂̄s)n−1.

Then the map f �→ f (a) : Sa → (a)′′ is a continuous algebra homomorphism
that continuously extends the map f �→ f (a) : O(E) → (a)′′.
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Proof. By Lemma 3.4 the map f �→ f (a) : Sa → (a)′′ is well defined.
The map is continuous and linear. Lemma 3.3 shows that the map is multiplicat-
ive, and thus the map is an algebra homomorphism. To see that it continuously
extends the map f �→ f (a) : O(E) → (a)′′, suppose that we have a se-
quence fn ∈ O(U), where U is an open neighborhood of E, and that fn → 0
uniformly on compacts. Then

‖fnφ‖a → 0,

where φ ∈ C∞
c (U) is a function equal to 1 in a neighborhood of E.

We now go on and prove the spectral mapping theorem for this functional
calculus. To do this, we need the following lemma which shows that f (w) acts
as f (a) on Hp(w − a, c,X).

Lemma 3.6. Suppose that there is an operator valued form s outside E such
that δz−as = e and sa = as. Furthermore, suppose that c ∈ ((a)′′)m,w ∈ σ(a)

and k∈Kp(w−a, c,X) (with respect to a basis dw1, . . . , dwn, en+1, . . . , en+m

of Cn+m) such that δw−a,ck = 0. If f ∈ Sa , then

(f (a) − f (w)) k = δw−a,c

∫
z

∂̄f (z) ∧
n∑

l=1

m′′
n+1−l ∧ s ∧ (∂̄s)l−1 ∧ k,

where m′′
i is defined in the proof.

Proof. We have that

δz−a,w−am1 = e, δz−a,w−ami+1 = ∂̄mi,

by (2.7) and (2.8), where mi is defined by (2.6). We also have that

δz−a,w−as = e, δz−a,w−a

(
s ∧ (∂̄s)i

) = ∂̄z
(
s ∧ (∂̄s)i−1

)
,

where s only depends on z. Therefore the same calculation as in the proof of
Proposition 3.2 shows that

δz−a,w−a

∑
k+l=i+1

mk ∧s∧(∂̄s)l−1 − ∂̄
∑
k+l=i

mk ∧s∧(∂̄s)l−1 = s∧(∂̄s)i−1 −mi.

Let i = n and identify the component without any dw anddw̄ in this expression
to get,

δw−a

∑
k+l=n+1

m′′
k ∧ s ∧ (∂̄s)l−1 = s ∧ (∂̄s)n−1 −m′

n + ∂̄z
∑

k+l=n

m′
k ∧ s ∧ (∂̄s)l−1,



132 sebastian sandberg

where

m′
k = 1

(2πi)k

∂z |z − w|2
|z − w|2 ∧

(
∂̄z

∂z |z − w|2
|z − w|2

)k−1

and m′′
k is the component of mk with one dw and no dw̄. Let χε be the convo-

lution of the characteristic function of the set

{z : d(z, E) ≥ 2ε}
and the function ε−2nρ(·/ε), where ρ is a non-negative smooth function with
compact support in the unit ball of Cn such that its integral is equal to 1. We
have that∫
z

∂̄zf (z) ∧ ∂̄z
∑

k+l=n

m′
k ∧ s ∧ (∂̄s)l−1

= lim
ε→0

∫
z

χε∂̄zf (z) ∧ ∂̄z
∑

k+l=n

m′
k ∧ s ∧ (∂̄s)l−1

= lim
ε→0

∫
z

∂̄zχε ∧ ∂̄zf (z) ∧
∑

k+l=n

m′
k ∧ s ∧ (∂̄s)l−1 = 0

since
∣∣∂̄χε

∣∣ ≤ Cε−1 and
∣∣∂̄χε

∣∣ has support in ε ≤ d(z, E) ≤ 3ε. Hence we
have that

f (a) − f (w) =
∫
z

∂̄f (z) ∧ (
s ∧ (∂̄s)n−1 − m′

n

)
= δw−a

∫
z

∂̄f (z) ∧
∑

k+l=n+1

m′′
k ∧ s ∧ (∂̄s)l−1.

Therefore,

(f (a) − f (w)) k = δw−a,c

∫
z

∂̄f (z) ∧
n∑

l=1

m′′
n+1−l ∧ s ∧ (∂̄s)l−1 ∧ k,

since (w − a, c) and s commute.

We can now prove the spectral mapping theorem.

Theorem 3.7 (Spectral mapping theorem). If f is tuple of functions in Sa ,
where Sa is defined by (3.7), then σ (f (a)) = f (σ(a)).

Proof. Suppose that we can prove the statement; if z ∈ σ(a) then (z −
a, f (a)) is nonsingular if and only if f (z) �= 0. In that case (z−a,w−f (a))

is nonsingular if and only if w − f (z) �= 0 and hence

σ (f (a)) = π2σ (a, f (a)) = π2 {(z, w) : w = f (z), z ∈ σ(a)} = f (σ(a))
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by Theorem 1.4.
Suppose that z ∈ σ(a). We have the induction hypothesis that if m is

a natural number then the tuple (z − a, f (a)) is nonsingular if and only if
f (z) �= 0 for all m-tuples f of functions in Sa . The case m = 0 follows
from Lemma 3.6. Assume that the hypothesis has been proved for m. Given
f ′ = (f1, . . . , fm+1) letf = (f1, . . . , fm). Then there is a long exact sequence

. . . → Hp(z − a, f (a),X) → Hp(z − a, f ′(a),X)

→ Hp−1(z − a, f (a),X)
fm+1(a)−−−−−→ Hp−1(z − a, f (a),X) → . . . ,

for this see Taylor [15], Lemma 1.3. Lemma 3.6 gives that the last homo-
morphism is equal to fm+1(z). Hence

Hp(z − a, f ′(a),X) = 0

if fm+1(z) �= 0 and

�Hp(z − a, f ′(a),X) = Hp−1(z − a, f (a),X)

if fm+1(z) = 0. Therefore the induction hypothesis hold for m + 1 and hence
the theorem follows.

We now consider a case where we can answer all the question we set up in
the beginning of this section. Denote by co(E) the convex hull of the set E.

Theorem 3.8. Let h be a positive decreasing function on [0,∞). If there is
a differential form ux on Cn \ co (σ (a)) such that ‖ux(z)‖ ≤ ‖x‖h(d(z, E))

then we define the class Sh(a) by

Sh(a) = {
f ∈ C1

c (C
n) :

∥∥|∂̄f (z)|h (d (z, co (σ (a))))
∥∥
L∞ < ∞}

.

Let the norm of functions in Sh(a) be given by

‖f ‖Sh(a)
= ∥∥|∂̄f (z)|h (d (z, co (σ (a))))

∥∥
L1 .

Then the map

f �→ f (a) : Sh(a) → (a), where f (a)x = −
∫

∂̄f ∧ ux,

is a continuous algebra homomorphism. If f∈ Sh(a) then σ(f (a))=f (σ(a))

and f (a) = 0 if f = 0 on co(σ (a)). Furthermore, if f ∈ Sh(a), g ∈
Sh1(f (a)) (or g ∈ O(σ (f (a)))), where h1 is a decreasing function such that
h(y/ sup |df |) ≤ Ch1(y), y ∈ [0,∞), and g(0) = 0 then g(f (a)) = g◦f (a).
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Proof. Suppose that 0 ∈ co(σ (a)) and let ft (z) = f (tz) for t < 1.
Since h(d(z, co(σ (a))) ≤ h(d(tz, co(σ (a))) we see that ft → f in Sh(a)

by dominated convergence. We know that all the conclusions in the theorem
holds for functions that are holomorphic in a neighborhood of the spectrum.
Since ‖f (a)‖L(X) ≤ ‖f ‖Sh(a)

we will be able to prove the theorem using
the approximation ft . Consider especially the spectral mapping property. By
Proposition 2.6 σ(ft (a)) deforms continuously to σ(f (a)). Since ft (σ (a))

also deforms continuously to f (σ(a)), we get σ(f (a)) = f (σ(a)). For the
composition rule we have

‖g(f (a))x − g ◦ f (a)x‖ ≤ ‖g(f (a))x − gs(f (a))x‖
+ ‖gs(f (a))x − gs(ft (a))x‖
+ ‖gs ◦ ft (a)x − gs ◦ f (a)x‖
+ ‖gs ◦ f (a)x − g ◦ f (a)x‖

≤ ‖g − gs‖Sh1 (f (a)) ‖x‖
+ ‖gs(f (a))x − gs(ft (a))x‖
+ ‖gs ◦ ft − gs ◦ f ‖Sh(a)

‖x‖
+ ‖gs ◦ f − g ◦ f ‖Sh(a)

‖x‖ → 0,

by Theorem 2.7 and∣∣∂̄ (gs ◦ f − g ◦ f )
∣∣h(d(z, co(σ (a))))

≤ |∂ (gs − g)| ∣∣∂̄f ∣∣h(d(z, co(σ (a))))

+ ∣∣∂̄ (gs − g)
∣∣ |∂f |h1(d(f (z), co(f (σ (a))))).
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