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ON THE TOPOLOGY OF SASAKIAN MANIFOLDS

GHEORGHE PITIŞ

Abstract

The notion of q-bisectional curvature of a Sasakian manifold M is defined. It is proved that if M

has lower bounded q-bisectional curvature and contains a compact invariant submanifold tangent
to the structure vector field then M is compact. Myers and Frankel type theorems for Sasakian
manifolds with lower bounded and positive q-bisectional curvature, respectively, are also given.

1. Introduction

Let M be a complete connected Riemannian manifold. An important theorem,
proved by Myers [11], asserts that if M has sectional curvature ≥ k0 > 0 (or
more generally, if all the eigenvalues of the Ricci tensor are ≥ (dim M−1)k0 >

0) then M is compact, its diameter is ≤ π/
√

k0 and has finite fundamental
group.

Another remarkable theorem, due to Frankel [2], asserts that if M has posit-
ive sectional curvature, then any two compact totally geodesic submanifoldsN ,
P of M and such that dim N+dim P ≥ dim M , must intersect. He also proved
that in the case of a complete connected Kähler manifold with positive sec-
tional curvature the same conclusion holds if we replace the hypothesis totally
geodesic by analytic. Such results were proved by Goldberg and Kobayashi [5]
for Kähler manifolds with positive bisectional curvature. Frankel’s theorems
were extended by Gray [6] to nearly Kähler manifolds, by Marchiafava [10] to
quaternionic Kähler manifolds and by Ornea [12] to locally conformal Kähler
manifolds and to Sasakian manifolds in the case when the submanifolds N and
P are invariant and tangent to the structure vector field of M .

Recently, Kenmotsu and Xia [7], [8] proved Frankel type theorems for
Kähler manifolds in the more general case when M has either partially positive
sectional curvature or partially positive bisectional curvature.

Our purpose is to give Myers and Frankel type theorems for a Sasakian
manifold M under weaker conditions on the curvature of the manifold. The
second section of this paper is devoted to the notion of q-bisectional curvature
for such a manifold. We remark that if q = 1 then it is exactly the F -bisectional
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curvature of the manifold [13], [14] and so the class of Sasakian manifolds
with positive (or lower bounded) q-bisectional curvature is richer than that of
Sasakian manifolds with positive (or lower bounded) F -bisectional curvature.
We prove that if M has lower bounded q-bisectional curvature and contains a
compact invariant submanifold tangent to the structure vector field of M then
M must be compact (Theorem 2.3 and Corollary 2.4). In section 3 we prove a
Myers type theorem for Sasakian manifolds with lower bounded q-bisectional
curvature (Theorem 3.2). The last section is devoted to the proof of a Frankel
type theorem for Sasakian manifolds with positive q-bisectional curvature and
we obtain an extension of Ornea’s Theorem 2, [12].

2. q-bisectional curvature

Let M be a Sasakian manifold and denote by F , ξ , η, g its fundamental tensor
fields. For any vector fields X, Y ∈ X (M), orthogonal to ξ , the F -bisectional
curvature H of M is defined by

(1) H (X, Y ) = R(X, FX, Y, FY )

‖X‖2‖Y‖2
,

where R is the Riemann-Christoffel curvature tensor of M . Then for any
X′, Y ′ ∈ X (M) such that

spanR{X′, FX′} = spanR{X,FX}, spanR{Y ′, FY ′} = spanR{Y, FY },
we obtain

H
(
X′, Y ′) = H (X, Y ) .

Moreover

Proposition 2.1. For any X, Y ∈ X (M), orthogonal to ξ , we have

H (X, Y ) = 1

‖X‖2‖Y‖2

{
R(X, Y,X, Y ) + R(X, FY,X, FY )

+ 2
[
g2(X, Y ) − ‖X‖2‖Y‖2 + g2(X, FY )

]}
.

Proof. By the Lemma, pg. 93, [1], on a contact manifold we have

(2) R(FY, Y,X, FX) = R(Y,X,X, Y )

+ R(FY,X,X, FY ) − 2P(X, Y,X, FY ),

where

P(X, Y, Z,U) = dη(X,Z) g(Y,U) − dη(X,U) g(Y, Z)

− dη(Y, Z) g(X,U) + dη(Y,U) g(X,Z).
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But M is Sasakian, hence dη = �, with �(X, Y ) = g(X, FY ), and then

(3) P(X, Y,X, FY ) = g2(X, Y ) + g2(X, FY ) − ‖X‖2‖Y‖2.

Now, from (1) and taking into account (2), (3), we obtain the announced
formula.

Let TxM be the tangent space to the Sasakian manifold M at the point x and
we denote by S = {X1, . . . , Xq} ⊂ TxM an orthonormal system of vectors
orthogonal to ξ . Then the vectors of the system FS = {FX1, . . . , FXq} are
orthogonal to ξ . S is called an F -orthonormal q-system of tangent vectors at
x if S ∪ FS is orthonormal. We remark that q ≤ [

1
2 dim M

]
and for such

a system S and for any tangent vector X ∈ TxM , orthogonal to ξ , we can
consider the scalar

Hq(X, S ) =
q∑

i=1

H (X,Xi) .

Now, taking into account Proposition 2.1, we obtain

Proposition 2.2. Let X be a unit tangent vector at x ∈ M and S be an
F -orthonormal q-system at x. If S ′ ⊂ TxM is an orthonormal system such
that spanR S ′ = spanR S then:

a) S ′ is an F -orthonormal q-system

b) Hq

(
X, S ′) = Hq (X, S ).

From Proposition 2.2 it follows that Hq(X, S ) is depending only on the
subspace of TxM spanned by S , but not on the F -orthonormal q-system S .
We call Hq(X, S ) the q-bisectional curvature of M at the point x and we
remark that for q = 1 it is exactly the F -bisectional curvature of M .

In the following of this section we shall construct F -orthonormal systems
and these will be used in order to give information about the topology of the
manifold.

Let N be a 2r-dimensional (r ≥ 1) submanifold of the complete connected
Sasakian manifold M and we assume N to be invariant (i.e. FTxN ⊆ TxN for
any x ∈ N ) and it is tangent to ξ . If {e1, . . . , er , F e1, . . . , F er , ξ} is an adapted
basis of TxN then B = {e1, . . . , er} is, obviously, an F -orthonormal r-system.
Moreover, if γ : [0,∞) → M is the geodesic starting from x and orthogonal
to N at x then the system B̃, obtained from B by parallel translation along γ is
an F -orthogonal r-system, too. Indeed, if Ei is obtained by parallel translation
of ei along γ then we have

∇γ ′Ei = 0, Ei(γ (t)) = Ei(t) = ei,
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hence Ei is normal to γ . Similar equalities hold for the vector fields Ẽi , ob-
tained from Fei by parallel translation along γ , and therefore Ẽi are normal
to γ , too. But by using the well-known equality, true on a Sasakian manifold,
([1], Theorem, pg. 73)

(∇XF) Y = g(X, Y )ξ − η(Y )X,

we have ∇γ ′ (FEi) = 0,

and because FEi(γ (t)) = Fei, it follows Ẽi = FEi , which proves that B̃ is
an F -orthonormal r-system.

Theorem 2.3. Let M be a complete connected Sasakian manifold of di-
mension 2n + 1 ≥ 5. If for some r ≥ 1 there exists a 2r + 1-dimensional
compact invariant submanifold N , tangent to ξ and such that

(4) lim inf
t→∞

t∫
0

Hr

(
γ ′(s), B̃

)
ds > 0,

for any x ∈ N and for any F -orthonormal r-system B of TxM then the
manifold M is compact.

For the proof of this theorem we drew one’s inspiration from [8].

Proof. If M is not compact then, by Theorem 1 of [3], there exists x ∈ N

and a geodesic γ : [0,∞) → M , orthogonal to N at x, and such that

distance(γ (t), N) = length γ|[0,t],

hence γ has no conjugate points. By putting H (t) = 1
2r Hr (γ

′(t), B̃) and
taking into account (4), from [15] (see also [8]) it follows that the scalar Jacobi
equation

f ′′ + H (t)f = 0

has a solution " : [0,∞) → R, satisfying the conditions "(0) = 1, "′(0) = 0
and "(t0) = 0 for some t0 > 0.

In the following we shall use the well-known expressions of the index form
I of the geodesic γ along γ|[a,b] (see [9], t. II, Theorems 5.4 and 5.5, pg. 81)

(5)

I b
a (X, Y ) =

∫ b

a

[
g(X′, Y ′) − R(X, γ ′, Y, γ ′)

]
dt

= g(X′, Y )(b) − g(X′, Y )(a)

−
∫ b

a

[
g(X′′, Y ) + R(X, γ ′, Y, γ ′)

]
dt
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for all vector fields X and Y along γ . Indeed, we consider it for the vector
fields Xi, Yi , defined along γ|[0,t0], by

(6) Xi(t) = "(t)Ei(t), Yi(t) = "(t)Ẽi(t).

They are tangent to N at γ (0) and Xi(t0) = Yi(t0) = 0. Moreover we have

(7) X′
i = "′Ei, Y ′

i = "′Ẽi,

hence X′
i (0) = Y ′

i (0) = 0 and X′′
i = "′′Ei, Y

′′
i = "′′Ẽi . Then we have

g(X′′
i , Xi) + R(Xi, γ

′, Xi, γ
′) = "′′" + "2R(Ei, γ

′, Ei, γ
′),(8)

g(Y ′′
i , Yi) + R(Yi, γ

′, Yi, γ
′) = "′′" + "2R(Ẽi, γ

′, Ẽi , γ
′).(9)

By using Gauss formula we have

g(X′, Y ) = g(h(X, Y ), γ ′)

for all X, Y tangent to N and normal to γ . But N is invariant and tangent to ξ

and then we have

(10) h (Fei, F ei) = −h (ei, ei) .

Now, from (5), (8), (9) and (10) we give

r∑
i=1

[
I
t0
0 (Xi,Xi) + I

t0
0 (Yi, Yi)

] = −2r
∫ t0

0
"["′′ + H (t)"] dt

− 2r
∫ t0

0
‖γ ′‖2 dt

= −2r
∫ t0

0
‖γ ′‖2 dt < 0,

hence I
t0
0 (Xi,Xi) < 0 or I

t0
0 (Yi, Yi) < 0 for some i ∈ {1, 2, . . . , r} and

therefore γ|[0,t0] has a conjugate point. But this contradicts the hypothesis that
γ has no conjugate points.

We say that M has lower bounded q-bisectional curvature at the point
x ∈ M if there exists k0 ∈ R such that Hq(X, S ) ≥ k0 for any unit tangent
vector X ∈ TxM and for any F -orthonormal q-system S . If k0 = 0 then we
say that M has nonnegative q-bisectional curvature and taking into account
(1) we remark that if M has nonnegative F -bisectional curvature then its q-
bisectional curvature is also nonnegative for any q ≤ [

1
2 dim M

]
. Hence the

family of Sasakian manifolds with nonnegativeq-bisectional curvature is richer
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than the one containing all Sasakian manifolds with nonnegative F -bisectional
curvature.

By using the above notions, from Theorem 2.3 we deduce

Corollary 2.4. Let M be a complete connected Sasakian manifold with
positive lower bounded r-bisectional curvature, r ≤ [

1
2 dim M

]
. If M contains

a 2r + 1-dimensional compact invariant submanifold, tangent to ξ , then M is
compact.

3. A Myers type theorem

Let M be a 2n + 1-dimensional Sasakian manifold and we denote by M∗ its
universal covering space. It is well-known (see for instance [9], t. I, pg. 162) that
on M∗ there is a Riemannian metric g∗ such that the projection π : M∗ → M

is an isometric immersion and we define the 1-form η∗ on M∗ by η∗
p = π∗

pηπ(p),
where π∗

p is the codifferential of π at the point p ∈ M∗. If ξ ∗∗ is its dual vector
field with respect to g∗, i.e. the only vector field satisfying

(11) η∗(X∗) = g∗(X∗, ξ ∗∗),

for any X∗ ∈ X (M∗), then ξ ∗∗ is nowhere zero, hence we can consider its
associated unit vector field ξ ∗ and we have π∗,p ξ ∗

p = ξπ(p), where π∗,p is the
differential of π .

Let ∇∗ be the Levi-Civita connection on M∗, associated with the metric g∗.
Then we can define the morphism F ∗ : X (M∗) → X (M∗) by

F ∗X∗ = −∇∗
X∗ξ

∗

for any X∗ ∈ X (M∗) and a straightforward computation shows that the tensor
fields F ∗, ξ ∗, η∗, g∗ define a Sasakian structure on M∗ (see for instance [1],
Theorem, pg. 73).

If S = {e1, . . . , eq} is an F -orthonormal q-system of local vector fields in
M then we consider the 1-forms ω1, . . . , ω2q , defined by

ωi(X) = g(ei, X), ωq+i (X) = g(Fei, X)

for any X∈X (M) and i ∈ {1, . . . , q}. We obtain 2q local 1-forms ω∗
1, . . . , ω

∗
2q ,

defined by
ω∗

j,p = π∗
pωj,π(p)

for j ∈ {1, . . . , 2q}. Their dual local vector fields e∗
1, . . . , e

∗
2q , given by for-

mulae similar to (11), satisfy

g(π∗e∗
j , π∗Y ∗) = (π∗ωj)(Y

∗) = ωj(π∗Y ∗) = g(ej , π∗Y ∗),



on the topology of sasakian manifolds 105

and taking into account π∗ is injective, we deduce ej = π∗e∗
j . Hence S ∗ =

{e∗
1, . . . , e

∗
q} is an F -orthonormal q-system of local vector fields in M∗ and by

a straightforward computation we deduce

Proposition 3.1. Let M be a Sasakian manifold and M∗ its universal
covering. If Hq, H ∗

q are theq-bisectional curvatures ofM andM∗ respectively,
then

H ∗
q (X∗, S ∗) = Hq(π∗X∗, S ),

for any unit vector field X∗ ∈ X (M∗) and for any F -orthonormal q-system
S of M .

Now we shall prove a Myers type theorem for Sasakian manifolds, namely

Theorem 3.2. Let M be a complete connected Sasakian manifold with
lower bounded q-bisectional curvature Hq ≥ k0 > 0. Then:

a) M is compact;

b) the diameter of M is at most equal to π

√
2q

2q+k0
;

c) M has finite fundamental group.

Proof. For two arbitrary points x and y of M denote by γ : [a, b] → M

the minimizing geodesic joining x to y. We assume that γ is parametrized
by its arc length s and b is such that γ (b) is the first conjugate point of γ .
If S = {e1, . . . , eq} ⊂ TxM is an F -orthonormal q-system normal to γ at
γ (a) then, as above, by parallel translation of S along γ , we obtain another
F -orthonormal q-system S̃ = {E1, . . . , Eq} of vector fields defined along γ

and normal to γ .
Now, if " : [a, b] → R is a nonzero differentiable function such that

"(a) = "(c) = 0 for some c ∈ (a, b), then definitions similar to (6) give the
vector fields Xi, Yi along γ and by using (7) we obtain

(12)
q∑

i=1

[
I c
a (Xi,Xi) + I c

a (Yi, Yi)
]

=
∫ c

a

{
2q "′2 − "2

q∑
i=1

[
R(Ei, γ

′, Ei, γ
′) + R(FEi, γ

′, FEi, γ
′)
]}

ds.

But γ|[a,c] has no conjugate points and taking into account Proposition 2.1,
from (12) we deduce

0 <

∫ c

a

{
2q"′2 − "2[Hq(γ

′, S̃ ) + 2q]
}
ds ≤

∫ c

a

[
2q"′2 − (k0 + 2q)"2

]
ds
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For "(s) = sin π s−a
c−a

, from the above inequalities we obtain

(c − a)2 <
2q

2q + k0
π2.

But c is arbitrary in (a, b), hence

b − a ≤ π

√
2q

2q + k0

and because γ is parametrized by its arc length, it follows

(13) distance(x, y) = distance(γ (a), γ (b)) ≤ π

√
2q

2q + k0
.

Thus b) is proved. From (13) we also deduce that M is bounded and because it
is complete, a) is proved too (see [9], t. I, Theorem 4.1, pg. 172). Now, because
M is compact, it is well-known that M∗ is complete and connected ([9], t. I,
pg. 76) and taking into account Proposition 3.1, it follows that M∗ satisfies the
hypothesis of Theorem 3.2. Hence, by a) it follows that M∗ is compact and
then the fundamental group of M is finite.

4. A Frankel type theorem

Theorem 4.1. Let M be a complete connected Sasakian manifold with positive
q-bisectional curvature. If N and P are two compact invariant submanifolds
of M , tangent to ξ and such that dim N + dim P ≥ dim M + 2q − 1, then
N ∩ P �= ∅.

Proof. If N ∩ P = ∅ then there is a geodesic γ : [0, l] → M , paramet-
rized by the arc length, joining two points x0 ∈ N, y0 ∈ P and realizing the
minimum of the distance between N and P . We denote by Vy0 the subspace of
Ty0M , obtained by parallel translation of Tx0N along γ at the point y0. From
the hypothesis concerning the dimensions and because N and P are tangent
to ξ , it follows that dim

(
Vy0 ∩ Ty0P

) ≥ 2q. But N and P are invariant, hence
Vy0 ∩ Ty0P is invariant under F and because ξy0 ∈ Vy0 ∩ Ty0P , it follows
that dim

(
Vy0 ∩ Ty0P

) ≥ 2q + 1. Moreover, we can find an F -orthonormal
q-system Sy0 = {e1, . . . , eq} ⊂ Vy0 ∩ Ty0P . By parallel translation of Sy0

along γ , we obtain a system of q unit vector fields S̃ = {E1, . . . , Eq}, defined
along γ and such that a vectors of S̃ ∪ F S̃ are from S̃ and b (a + b = 2q)
of them are from F S̃ .

If a ≥ q then we can assume that these vector fields are E1, . . . , Eq and
because P is invariant, it follows that FE1, . . . , FEq are tangent to P at y0,
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too. The same argument used if b ≥ q shows that always we can find an
F -orthonormal q-system S̃ of vector fields along γ , tangent to N at x0 and
tangent to P at y0. Then, by a computation similar to the one used in [8] (the
proof of Theorem 3.2.) and taking into account (10), we obtain

(14)
q∑

i=1

[
I l

0(Ei, Ei) + I l
0(FEi, FEi)

]
= −

∫ l

0

q∑
i=1

[
R(Ei, γ

′, Ei, γ
′) − R(FEi, γ

′, FEi, γ
′)
]
ds.

Now, by using Proposition 2.1 and taking into account

q∑
i=1

[
g2(γ ′, Ei) + g2(γ ′, FEi)

] ≤ ‖γ ′‖2 = 1,

from (14) it follows

q∑
i=1

[
I l

0(Ei, Ei) + I l
0(FEi, FEi)

]
= −ql +

∫ l

0

q∑
i=1

[
g2(γ ′, Ei) + g2(γ ′, FEi)

]
ds −

∫ l

0
Hq(γ

′, S̃ ) ds

≤ l(1 − q) −
∫ l

0
Hq(γ

′, S̃ ) ds < 0

We deduce that I l
0 (Ei, Ei) < 0 or I l

0 (FEi, FEi) < 0 for some i ∈ {1, . . . , q},
contradicting the hypothesis that γ has minimal length. Hence N and P must
have nonempty intersection.
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ROMANIA
E-mail: gh.pitis@info.unitbv.ro


