ON THE TOPOLOGY OF SASAKIAN MANIFOLDS

GHEORGHE PITIŞ

Abstract

The notion of q-bisectional curvature of a Sasakian manifold M is defined. It is proved that if M has lower bounded q-bisectional curvature and contains a compact invariant submanifold tangent to the structure vector field then M is compact. Myers and Frankel type theorems for Sasakian manifolds with lower bounded and positive q-bisectional curvature, respectively, are also given.

1. Introduction

Let M be a complete connected Riemannian manifold. An important theorem, proved by Myers [11], asserts that if M has sectional curvature $\geq k_{0}>0$ (or more generally, if all the eigenvalues of the Ricci tensor are $\geq(\operatorname{dim} M-1) k_{0}>$ 0) then M is compact, its diameter is $\leq \pi / \sqrt{k_{0}}$ and has finite fundamental group.

Another remarkable theorem, due to Frankel [2], asserts that if M has positive sectional curvature, then any two compact totally geodesic submanifolds N, P of M and such that $\operatorname{dim} N+\operatorname{dim} P \geq \operatorname{dim} M$, must intersect. He also proved that in the case of a complete connected Kähler manifold with positive sectional curvature the same conclusion holds if we replace the hypothesis totally geodesic by analytic. Such results were proved by Goldberg and Kobayashi [5] for Kähler manifolds with positive bisectional curvature. Frankel's theorems were extended by Gray [6] to nearly Kähler manifolds, by Marchiafava [10] to quaternionic Kähler manifolds and by Ornea [12] to locally conformal Kähler manifolds and to Sasakian manifolds in the case when the submanifolds N and P are invariant and tangent to the structure vector field of M.

Recently, Kenmotsu and Xia [7], [8] proved Frankel type theorems for Kähler manifolds in the more general case when M has either partially positive sectional curvature or partially positive bisectional curvature.

Our purpose is to give Myers and Frankel type theorems for a Sasakian manifold M under weaker conditions on the curvature of the manifold. The second section of this paper is devoted to the notion of q-bisectional curvature for such a manifold. We remark that if $q=1$ then it is exactly the F-bisectional
curvature of the manifold [13], [14] and so the class of Sasakian manifolds with positive (or lower bounded) q-bisectional curvature is richer than that of Sasakian manifolds with positive (or lower bounded) F-bisectional curvature. We prove that if M has lower bounded q-bisectional curvature and contains a compact invariant submanifold tangent to the structure vector field of M then M must be compact (Theorem 2.3 and Corollary 2.4). In section 3 we prove a Myers type theorem for Sasakian manifolds with lower bounded q-bisectional curvature (Theorem 3.2). The last section is devoted to the proof of a Frankel type theorem for Sasakian manifolds with positive q-bisectional curvature and we obtain an extension of Ornea's Theorem 2, [12].

2. q-bisectional curvature

Let M be a Sasakian manifold and denote by F, ξ, η, g its fundamental tensor fields. For any vector fields $X, Y \in \mathscr{X}(M)$, orthogonal to ξ, the F-bisectional curvature \mathscr{H} of M is defined by

$$
\begin{equation*}
\mathscr{H}(X, Y)=\frac{\mathscr{R}(X, F X, Y, F Y)}{\|X\|^{2}\|Y\|^{2}} \tag{1}
\end{equation*}
$$

where \mathscr{R} is the Riemann-Christoffel curvature tensor of M. Then for any $X^{\prime}, Y^{\prime} \in \mathscr{X}(M)$ such that

$$
\operatorname{span}_{\mathrm{R}}\left\{X^{\prime}, F X^{\prime}\right\}=\operatorname{span}_{\mathrm{R}}\{X, F X\}, \quad \operatorname{span}_{\mathrm{R}}\left\{Y^{\prime}, F Y^{\prime}\right\}=\operatorname{span}_{\mathrm{R}}\{Y, F Y\}
$$

we obtain

$$
\mathscr{H}\left(X^{\prime}, Y^{\prime}\right)=\mathscr{H}(X, Y) .
$$

Moreover
Proposition 2.1. For any $X, Y \in \mathscr{X}(M)$, orthogonal to ξ, we have

$$
\begin{aligned}
& \mathscr{H}(X, Y)=\frac{1}{\|X\|^{2}\|Y\|^{2}}\{\mathscr{R}(X, Y, X, Y)+\mathscr{R}(X, F Y, X, F Y) \\
&\left.+2\left[g^{2}(X, Y)-\|X\|^{2}\|Y\|^{2}+g^{2}(X, F Y)\right]\right\}
\end{aligned}
$$

Proof. By the Lemma, pg. 93, [1], on a contact manifold we have
(2) $\mathscr{R}(F Y, Y, X, F X)=\mathscr{R}(Y, X, X, Y)$

$$
+\mathscr{R}(F Y, X, X, F Y)-2 \mathscr{P}(X, Y, X, F Y)
$$

where

$$
\begin{aligned}
\mathscr{P}(X, Y, Z, U)=d \eta(X, Z) & g(Y, U)-d \eta(X, U) g(Y, Z) \\
& -d \eta(Y, Z) g(X, U)+d \eta(Y, U) g(X, Z) .
\end{aligned}
$$

But M is Sasakian, hence $d \eta=\Omega$, with $\Omega(X, Y)=g(X, F Y)$, and then

$$
\begin{equation*}
\mathscr{P}(X, Y, X, F Y)=g^{2}(X, Y)+g^{2}(X, F Y)-\|X\|^{2}\|Y\|^{2} \tag{3}
\end{equation*}
$$

Now, from (1) and taking into account (2), (3), we obtain the announced formula.

Let $T_{x} M$ be the tangent space to the Sasakian manifold M at the point x and we denote by $\mathscr{S}=\left\{X_{1}, \ldots, X_{q}\right\} \subset T_{x} M$ an orthonormal system of vectors orthogonal to ξ. Then the vectors of the system $F \mathscr{S}=\left\{F X_{1}, \ldots, F X_{q}\right\}$ are orthogonal to $\xi . \mathscr{S}$ is called an F-orthonormal q-system of tangent vectors at x if $\mathscr{S} \cup F \mathscr{S}$ is orthonormal. We remark that $q \leq\left[\frac{1}{2} \operatorname{dim} M\right]$ and for such a system \mathscr{S} and for any tangent vector $X \in T_{x} M$, orthogonal to ξ, we can consider the scalar

$$
\mathscr{H}_{q}(X, \mathscr{S})=\sum_{i=1}^{q} \mathscr{H}\left(X, X_{i}\right)
$$

Now, taking into account Proposition 2.1, we obtain
Proposition 2.2. Let X be a unit tangent vector at $x \in M$ and \mathscr{S} be an F-orthonormal q-system at x. If $\mathscr{S}^{\prime} \subset T_{x} M$ is an orthonormal system such that $\operatorname{span}_{\mathrm{R}} \mathscr{S}^{\prime}=\operatorname{span}_{\mathrm{R}} \mathscr{S}$ then:
a) \mathscr{S}^{\prime} is an F-orthonormal q-system
b) $\mathscr{H}_{q}\left(X, \mathscr{S}^{\prime}\right)=\mathscr{H}_{q}(X, \mathscr{S})$.

From Proposition 2.2 it follows that $\mathscr{H}_{q}(X, \mathscr{S})$ is depending only on the subspace of $T_{x} M$ spanned by \mathscr{S}, but not on the F-orthonormal q-system \mathscr{S}. We call $\mathscr{H}_{q}(X, \mathscr{S})$ the q-bisectional curvature of M at the point x and we remark that for $q=1$ it is exactly the F-bisectional curvature of M.

In the following of this section we shall construct F-orthonormal systems and these will be used in order to give information about the topology of the manifold.

Let N be a $2 r$-dimensional ($r \geq 1$) submanifold of the complete connected Sasakian manifold M and we assume N to be invariant (i.e. $F T_{x} N \subseteq T_{x} N$ for any $x \in N$) and it is tangent to ξ. If $\left\{e_{1}, \ldots, e_{r}, F e_{1}, \ldots, F e_{r}, \xi\right\}$ is an adapted basis of $T_{x} N$ then $\mathscr{B}=\left\{e_{1}, \ldots, e_{r}\right\}$ is, obviously, an F-orthonormal r-system. Moreover, if $\gamma:[0, \infty) \rightarrow M$ is the geodesic starting from x and orthogonal to N at x then the system $\tilde{\mathscr{B}}$, obtained from \mathscr{B} by parallel translation along γ is an F-orthogonal r-system, too. Indeed, if E_{i} is obtained by parallel translation of e_{i} along γ then we have

$$
\nabla_{\gamma^{\prime}} E_{i}=0, \quad E_{i}(\gamma(t))=E_{i}(t)=e_{i}
$$

hence E_{i} is normal to γ. Similar equalities hold for the vector fields \tilde{E}_{i}, obtained from $F e_{i}$ by parallel translation along γ, and therefore \tilde{E}_{i} are normal to γ, too. But by using the well-known equality, true on a Sasakian manifold, ([1], Theorem, pg. 73)

$$
\left(\nabla_{X} F\right) Y=g(X, Y) \xi-\eta(Y) X
$$

we have

$$
\nabla_{\gamma^{\prime}}\left(F E_{i}\right)=0
$$

and because $F E_{i}(\gamma(t))=F e_{i}$, it follows $\tilde{E}_{i}=F E_{i}$, which proves that $\tilde{\mathscr{B}}$ is an F-orthonormal r-system.

Theorem 2.3. Let M be a complete connected Sasakian manifold of dimension $2 n+1 \geq 5$. If for some $r \geq 1$ there exists a $2 r+1$-dimensional compact invariant submanifold N, tangent to ξ and such that

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} \int_{0}^{t} \mathscr{H}_{r}\left(\gamma^{\prime}(s), \tilde{\mathscr{B}}\right) d s>0 \tag{4}
\end{equation*}
$$

for any $x \in N$ and for any F-orthonormal r-system \mathscr{B} of $T_{x} M$ then the manifold M is compact.

For the proof of this theorem we drew one's inspiration from [8].
Proof. If M is not compact then, by Theorem 1 of [3], there exists $x \in N$ and a geodesic $\gamma:[0, \infty) \rightarrow M$, orthogonal to N at x, and such that

$$
\operatorname{distance}(\gamma(t), N)=\text { length } \gamma_{[[0, t]}
$$

hence γ has no conjugate points. By putting $\mathscr{H}(t)=\frac{1}{2 r} \mathscr{H}_{r}\left(\gamma^{\prime}(t), \tilde{\mathscr{B}}\right)$ and taking into account (4), from [15] (see also [8]) it follows that the scalar Jacobi equation

$$
f^{\prime \prime}+\mathscr{H}(t) f=0
$$

has a solution $\Phi:[0, \infty) \rightarrow R$, satisfying the conditions $\Phi(0)=1, \Phi^{\prime}(0)=0$ and $\Phi\left(t_{0}\right)=0$ for some $t_{0}>0$.

In the following we shall use the well-known expressions of the index form I of the geodesic γ along $\gamma_{\mid[a, b]}$ (see [9], t. II, Theorems 5.4 and 5.5, pg. 81)

$$
\begin{align*}
I_{a}^{b}(X, Y)= & \int_{a}^{b}\left[g\left(X^{\prime}, Y^{\prime}\right)-\mathscr{R}\left(X, \gamma^{\prime}, Y, \gamma^{\prime}\right)\right] d t \\
= & g\left(X^{\prime}, Y\right)(b)-g\left(X^{\prime}, Y\right)(a) \tag{5}\\
& \quad-\int_{a}^{b}\left[g\left(X^{\prime \prime}, Y\right)+\mathscr{R}\left(X, \gamma^{\prime}, Y, \gamma^{\prime}\right)\right] d t
\end{align*}
$$

for all vector fields X and Y along γ. Indeed, we consider it for the vector fields X_{i}, Y_{i}, defined along $\gamma_{\left[\left[0, t_{0}\right]\right.}$, by

$$
\begin{equation*}
X_{i}(t)=\Phi(t) E_{i}(t), \quad Y_{i}(t)=\Phi(t) \tilde{E}_{i}(t) \tag{6}
\end{equation*}
$$

They are tangent to N at $\gamma(0)$ and $X_{i}\left(t_{0}\right)=Y_{i}\left(t_{0}\right)=0$. Moreover we have

$$
\begin{equation*}
X_{i}^{\prime}=\Phi^{\prime} E_{i}, \quad Y_{i}^{\prime}=\Phi^{\prime} \tilde{E}_{i} \tag{7}
\end{equation*}
$$

hence $X_{i}^{\prime}(0)=Y_{i}^{\prime}(0)=0$ and $X_{i}^{\prime \prime}=\Phi^{\prime \prime} E_{i}, Y_{i}^{\prime \prime}=\Phi^{\prime \prime} \tilde{E}_{i}$. Then we have

$$
\begin{align*}
g\left(X_{i}^{\prime \prime}, X_{i}\right)+\mathscr{R}\left(X_{i}, \gamma^{\prime}, X_{i}, \gamma^{\prime}\right) & =\Phi^{\prime \prime} \Phi+\Phi^{2} \mathscr{R}\left(E_{i}, \gamma^{\prime}, E_{i}, \gamma^{\prime}\right) \tag{8}\\
g\left(Y_{i}^{\prime \prime}, Y_{i}\right)+\mathscr{R}\left(Y_{i}, \gamma^{\prime}, Y_{i}, \gamma^{\prime}\right) & =\Phi^{\prime \prime} \Phi+\Phi^{2} \mathscr{R}\left(\tilde{E}_{i}, \gamma^{\prime}, \tilde{E}_{i}, \gamma^{\prime}\right) \tag{9}
\end{align*}
$$

By using Gauss formula we have

$$
g\left(X^{\prime}, Y\right)=g\left(h(X, Y), \gamma^{\prime}\right)
$$

for all X, Y tangent to N and normal to γ. But N is invariant and tangent to ξ and then we have

$$
\begin{equation*}
h\left(F e_{i}, F e_{i}\right)=-h\left(e_{i}, e_{i}\right) \tag{10}
\end{equation*}
$$

Now, from (5), (8), (9) and (10) we give

$$
\begin{aligned}
\sum_{i=1}^{r}\left[I_{0}^{t_{0}}\left(X_{i}, X_{i}\right)+I_{0}^{t_{0}}\left(Y_{i}, Y_{i}\right)\right]= & -2 r \int_{0}^{t_{0}} \Phi\left[\Phi^{\prime \prime}+\mathscr{H}(t) \Phi\right] d t \\
& -2 r \int_{0}^{t_{0}}\left\|\gamma^{\prime}\right\|^{2} d t \\
= & -2 r \int_{0}^{t_{0}}\left\|\gamma^{\prime}\right\|^{2} d t<0
\end{aligned}
$$

hence $I_{0}^{t_{0}}\left(X_{i}, X_{i}\right)<0$ or $I_{0}^{t_{0}}\left(Y_{i}, Y_{i}\right)<0$ for some $i \in\{1,2, \ldots, r\}$ and therefore $\gamma_{\left[\left[0, t_{0}\right]\right.}$ has a conjugate point. But this contradicts the hypothesis that γ has no conjugate points.

We say that M has lower bounded q-bisectional curvature at the point $x \in M$ if there exists $k_{0} \in \mathrm{R}$ such that $\mathscr{H}_{q}(X, \mathscr{S}) \geq k_{0}$ for any unit tangent vector $X \in T_{x} M$ and for any F-orthonormal q-system \mathscr{S}. If $k_{0}=0$ then we say that M has nonnegative q-bisectional curvature and taking into account (1) we remark that if M has nonnegative F-bisectional curvature then its q bisectional curvature is also nonnegative for any $q \leq\left[\frac{1}{2} \operatorname{dim} M\right]$. Hence the family of Sasakian manifolds with nonnegative q-bisectional curvature is richer
than the one containing all Sasakian manifolds with nonnegative F-bisectional curvature.

By using the above notions, from Theorem 2.3 we deduce
Corollary 2.4. Let M be a complete connected Sasakian manifold with positive lower bounded r-bisectional curvature, $r \leq\left[\frac{1}{2} \operatorname{dim} M\right]$. If M contains a $2 r+1$-dimensional compact invariant submanifold, tangent to ξ, then M is compact.

3. A Myers type theorem

Let M be a $2 n+1$-dimensional Sasakian manifold and we denote by M^{*} its universal covering space. It is well-known (see for instance [9], t. I, pg. 162) that on M^{*} there is a Riemannian metric g^{*} such that the projection $\pi: M^{*} \rightarrow M$ is an isometric immersion and we define the 1-form η^{*} on M^{*} by $\eta_{p}^{*}=\pi_{p}^{*} \eta_{\pi(p)}$, where π_{p}^{*} is the codifferential of π at the point $p \in M^{*}$. If $\xi^{* *}$ is its dual vector field with respect to g^{*}, i.e. the only vector field satisfying

$$
\begin{equation*}
\eta^{*}\left(X^{*}\right)=g^{*}\left(X^{*}, \xi^{* *}\right) \tag{11}
\end{equation*}
$$

for any $X^{*} \in \mathscr{X}\left(M^{*}\right)$, then $\xi^{* *}$ is nowhere zero, hence we can consider its associated unit vector field ξ^{*} and we have $\pi_{*, p} \xi_{p}^{*}=\xi_{\pi(p)}$, where $\pi_{*, p}$ is the differential of π.

Let ∇^{*} be the Levi-Civita connection on M^{*}, associated with the metric g^{*}. Then we can define the morphism $F^{*}: \mathscr{X}\left(M^{*}\right) \rightarrow \mathscr{X}\left(M^{*}\right)$ by

$$
F^{*} X^{*}=-\nabla_{X^{*}}^{*} \xi^{*}
$$

for any $X^{*} \in \mathscr{X}\left(M^{*}\right)$ and a straightforward computation shows that the tensor fields $F^{*}, \xi^{*}, \eta^{*}, g^{*}$ define a Sasakian structure on M^{*} (see for instance [1], Theorem, pg. 73).

If $\mathscr{S}=\left\{e_{1}, \ldots, e_{q}\right\}$ is an F-orthonormal q-system of local vector fields in M then we consider the 1 -forms $\omega_{1}, \ldots, \omega_{2 q}$, defined by

$$
\omega_{i}(X)=g\left(e_{i}, X\right), \quad \omega_{q+i}(X)=g\left(F e_{i}, X\right)
$$

for any $X \in \mathscr{X}(M)$ and $i \in\{1, \ldots, q\}$. We obtain $2 q$ local 1-forms $\omega_{1}^{*}, \ldots, \omega_{2 q}^{*}$, defined by

$$
\omega_{j, p}^{*}=\pi_{p}^{*} \omega_{j, \pi(p)}
$$

for $j \in\{1, \ldots, 2 q\}$. Their dual local vector fields $e_{1}^{*}, \ldots, e_{2 q}^{*}$, given by formulae similar to (11), satisfy

$$
g\left(\pi_{*} e_{j}^{*}, \pi_{*} Y^{*}\right)=\left(\pi^{*} \omega_{j}\right)\left(Y^{*}\right)=\omega_{j}\left(\pi_{*} Y^{*}\right)=g\left(e_{j}, \pi_{*} Y^{*}\right),
$$

and taking into account π_{*} is injective, we deduce $e_{j}=\pi_{*} e_{j}^{*}$. Hence $\mathscr{S}^{*}=$ $\left\{e_{1}^{*}, \ldots, e_{q}^{*}\right\}$ is an F-orthonormal q-system of local vector fields in M^{*} and by a straightforward computation we deduce

Proposition 3.1. Let M be a Sasakian manifold and M^{*} its universal covering. If $\mathscr{H}_{q}, \mathscr{H}_{q}^{*}$ are the q-bisectional curvatures of M and M^{*} respectively, then

$$
\mathscr{H}_{q}^{*}\left(X^{*}, \mathscr{S}^{*}\right)=\mathscr{H}_{q}\left(\pi_{*} X^{*}, \mathscr{S}\right)
$$

for any unit vector field $X^{*} \in \mathscr{X}\left(M^{*}\right)$ and for any F-orthonormal q-system \mathscr{S} of M.

Now we shall prove a Myers type theorem for Sasakian manifolds, namely
THEOREM 3.2. Let M be a complete connected Sasakian manifold with lower bounded q-bisectional curvature $\mathscr{H}_{q} \geq k_{0}>0$. Then:
a) M is compact;
b) the diameter of M is at most equal to $\pi \sqrt{\frac{2 q}{2 q+k_{0}}}$;
c) M has finite fundamental group.

Proof. For two arbitrary points x and y of M denote by $\gamma:[a, b] \rightarrow M$ the minimizing geodesic joining x to y. We assume that γ is parametrized by its arc length s and b is such that $\gamma(b)$ is the first conjugate point of γ. If $\mathscr{S}=\left\{e_{1}, \ldots, e_{q}\right\} \subset T_{x} M$ is an F-orthonormal q-system normal to γ at $\gamma(a)$ then, as above, by parallel translation of \mathscr{S} along γ, we obtain another F-orthonormal q-system $\tilde{\mathscr{S}}=\left\{E_{1}, \ldots, E_{q}\right\}$ of vector fields defined along γ and normal to γ.

Now, if $\Phi:[a, b] \rightarrow \mathrm{R}$ is a nonzero differentiable function such that $\Phi(a)=\Phi(c)=0$ for some $c \in(a, b)$, then definitions similar to (6) give the vector fields X_{i}, Y_{i} along γ and by using (7) we obtain

$$
\begin{align*}
& \sum_{i=1}^{q}\left[I_{a}^{c}\left(X_{i}, X_{i}\right)+I_{a}^{c}\left(Y_{i}, Y_{i}\right)\right] \tag{12}\\
= & \int_{a}^{c}\left\{2 q \Phi^{\prime 2}-\Phi^{2} \sum_{i=1}^{q}\left[\mathscr{R}\left(E_{i}, \gamma^{\prime}, E_{i}, \gamma^{\prime}\right)+\mathscr{R}\left(F E_{i}, \gamma^{\prime}, F E_{i}, \gamma^{\prime}\right)\right]\right\} d s .
\end{align*}
$$

But $\gamma_{[[a, c]}$ has no conjugate points and taking into account Proposition 2.1, from (12) we deduce

$$
0<\int_{a}^{c}\left\{2 q \Phi^{\prime 2}-\Phi^{2}\left[\mathscr{H}_{q}\left(\gamma^{\prime}, \tilde{\mathscr{S}}\right)+2 q\right]\right\} d s \leq \int_{a}^{c}\left[2 q \Phi^{\prime 2}-\left(k_{0}+2 q\right) \Phi^{2}\right] d s
$$

For $\Phi(s)=\sin \pi \frac{s-a}{c-a}$, from the above inequalities we obtain

$$
(c-a)^{2}<\frac{2 q}{2 q+k_{0}} \pi^{2} .
$$

But c is arbitrary in (a, b), hence

$$
b-a \leq \pi \sqrt{\frac{2 q}{2 q+k_{0}}}
$$

and because γ is parametrized by its arc length, it follows

$$
\begin{equation*}
\operatorname{distance}(x, y)=\operatorname{distance}(\gamma(a), \gamma(b)) \leq \pi \sqrt{\frac{2 q}{2 q+k_{0}}} \tag{13}
\end{equation*}
$$

Thus b) is proved. From (13) we also deduce that M is bounded and because it is complete, a) is proved too (see [9], t. I, Theorem 4.1, pg. 172). Now, because M is compact, it is well-known that M^{*} is complete and connected ([9], t. I, pg. 76) and taking into account Proposition 3.1, it follows that M^{*} satisfies the hypothesis of Theorem 3.2. Hence, by a) it follows that M^{*} is compact and then the fundamental group of M is finite.

4. A Frankel type theorem

THEOREM 4.1. Let M be a complete connected Sasakian manifold with positive q-bisectional curvature. If N and P are two compact invariant submanifolds of M, tangent to ξ and such that $\operatorname{dim} N+\operatorname{dim} P \geq \operatorname{dim} M+2 q-1$, then $N \cap P \neq \emptyset$.

Proof. If $N \cap P=\emptyset$ then there is a geodesic $\gamma:[0, l] \rightarrow M$, parametrized by the arc length, joining two points $x_{0} \in N, y_{0} \in P$ and realizing the minimum of the distance between N and P. We denote by $V_{y_{0}}$ the subspace of $T_{y_{0}} M$, obtained by parallel translation of $T_{x_{0}} N$ along γ at the point y_{0}. From the hypothesis concerning the dimensions and because N and P are tangent to ξ, it follows that $\operatorname{dim}\left(V_{y_{0}} \cap T_{y_{0}} P\right) \geq 2 q$. But N and P are invariant, hence $V_{y_{0}} \cap T_{y_{0}} P$ is invariant under F and because $\xi_{y_{0}} \in V_{y_{0}} \cap T_{y_{0}} P$, it follows that $\operatorname{dim}\left(V_{y_{0}} \cap T_{y_{0}} P\right) \geq 2 q+1$. Moreover, we can find an F-orthonormal q-system $\mathscr{S}_{y_{0}}=\left\{e_{1}, \ldots, e_{q}\right\} \subset V_{y_{0}} \cap T_{y_{0}} P$. By parallel translation of $\mathscr{S}_{y_{0}}$ along γ, we obtain a system of q unit vector fields $\tilde{\mathscr{S}}=\left\{E_{1}, \ldots, E_{q}\right\}$, defined along γ and such that a vectors of $\tilde{\mathscr{S}} \cup F \tilde{\mathscr{S}}$ are from $\tilde{\mathscr{S}}$ and $b(a+b=2 q)$ of them are from $F \tilde{\mathscr{S}}$.

If $a \geq q$ then we can assume that these vector fields are E_{1}, \ldots, E_{q} and because P is invariant, it follows that $F E_{1}, \ldots, F E_{q}$ are tangent to P at y_{0},
too. The same argument used if $b \geq q$ shows that always we can find an F-orthonormal q-system $\tilde{\mathscr{S}}$ of vector fields along γ, tangent to N at x_{0} and tangent to P at y_{0}. Then, by a computation similar to the one used in [8] (the proof of Theorem 3.2.) and taking into account (10), we obtain

$$
\begin{align*}
& \sum_{i=1}^{q}\left[I_{0}^{l}\left(E_{i}, E_{i}\right)+I_{0}^{l}\left(F E_{i}, F E_{i}\right)\right] \tag{14}\\
& \quad=-\int_{0}^{l} \sum_{i=1}^{q}\left[\mathscr{R}\left(E_{i}, \gamma^{\prime}, E_{i}, \gamma^{\prime}\right)-\mathscr{R}\left(F E_{i}, \gamma^{\prime}, F E_{i}, \gamma^{\prime}\right)\right] d s
\end{align*}
$$

Now, by using Proposition 2.1 and taking into account

$$
\sum_{i=1}^{q}\left[g^{2}\left(\gamma^{\prime}, E_{i}\right)+g^{2}\left(\gamma^{\prime}, F E_{i}\right)\right] \leq\left\|\gamma^{\prime}\right\|^{2}=1
$$

from (14) it follows

$$
\begin{aligned}
& \sum_{i=1}^{q}\left[I_{0}^{l}\left(E_{i}, E_{i}\right)+I_{0}^{l}\left(F E_{i}, F E_{i}\right)\right] \\
& \quad=-q l+\int_{0}^{l} \sum_{i=1}^{q}\left[g^{2}\left(\gamma^{\prime}, E_{i}\right)+g^{2}\left(\gamma^{\prime}, F E_{i}\right)\right] d s-\int_{0}^{l} \mathscr{H}_{q}\left(\gamma^{\prime}, \tilde{\mathscr{S}}\right) d s \\
& \quad \leq l(1-q)-\int_{0}^{l} \mathscr{H}_{q}\left(\gamma^{\prime}, \tilde{\mathscr{S}}\right) d s<0
\end{aligned}
$$

We deduce that $I_{0}^{l}\left(E_{i}, E_{i}\right)<0$ or $I_{0}^{l}\left(F E_{i}, F E_{i}\right)<0$ for some $i \in\{1, \ldots, q\}$, contradicting the hypothesis that γ has minimal length. Hence N and P must have nonempty intersection.

REFERENCES

1. Blair, D., Contact manifolds in Riemannian geometry, Lecture Notes in Math. 509 (1976).
2. Frankel, T., Manifolds with positive curvature, Pacific J. Math. 11 (1961), 165-171.
3. Galloway, G., Some results on the occurences of compact minimal submanifolds, Manuscripta Math. 25 (1981), 209-219.
4. Galloway, G., and Rodriguez, L., Intersections of minimal submanifolds, Geom. Dedicata 39 (1991), 29-42.
5. Goldberg, S. I., and Kobayashi, S., Holomorphic bisectional curvature, J. Differential Geom. 1 (1966), 225-233.
6. Gray, A., Nearly Kähler manifolds, J. Differential Geom. 4 (1970), 283-309.
7. Kenmotsu, K., and Xia, C., Intersections of minimal submanifolds in manifolds of partially positive curvature, Kodai Math. J. 18 (1995), 242-249.
8. Kenmotsu, K., and Xia, C., Hadamard-Frankel type theorems for manifolds with partially positive curvature, Pacific J. Math. 176 (1996), 129-139.
9. Kobayashi, S., and Nomizu, K., Foundations of Differential Geometry, t. I (1963), t. II (1969), Interscience, New-York.
10. Marchiafava, S., Su alcune sottovarieta che ha interesse considerare in una varieta Kaehleriana quaternionale, Rend. Mat. 10 (1990), 493-529.
11. Myers, S. B., Riemannian manifolds in the large, Duke Math. J. 1 (1935), 39-49.
12. Ornea, L., A theorem on nonnegatively curved locally conformal Kaehler manifolds, Rend. Mat. 12 (1992), 257-262.
13. Pitiş, Gh., Rizza's conjecture concerning the bisectional curvature, Riv. Mat. Univ. Parma 16 (1990), 195-203.
14. Rizza, G. B., On the bisectional curvature of a Riemannian manifold, Simon Stevin 61 (1987), 147-155.
15. Tipler, F. J., General relativity and conjugate ordinary differential equations, J. Differential Equations 30 (1978), 165-174.
16. Wu, H., Manifolds of partially positive curvature, Indiana Univ. Math. J. 36 (1987), 525-548.

DEPARTMENT OF EQUATIONS

FACULTY OF MATHEMATICS AND INFORMATICS
UNIVERSITY TRANSILVANIA OF BRAŞOV
2200 BRAŞOV
ROMANIA
E-mail: gh.pitis@info.unitbv.ro

