ON THE TOPOLOGY OF SASAKIAN MANIFOLDS

GHEORGHE PITIŞ

Abstract

The notion of q-bisectional curvature of a Sasakian manifold M is defined. It is proved that if M has lower bounded q-bisectional curvature and contains a compact invariant submanifold tangent to the structure vector field then M is compact. Myers and Frankel type theorems for Sasakian manifolds with lower bounded and positive q-bisectional curvature, respectively, are also given.

1. Introduction

Let *M* be a complete connected Riemannian manifold. An important theorem, proved by Myers [11], asserts that if *M* has sectional curvature $\geq k_0 > 0$ (or more generally, if all the eigenvalues of the Ricci tensor are $\geq (\dim M - 1)k_0 > 0$) then *M* is compact, its diameter is $\leq \pi/\sqrt{k_0}$ and has finite fundamental group.

Another remarkable theorem, due to Frankel [2], asserts that if M has positive sectional curvature, then any two compact totally geodesic submanifolds N, P of M and such that dim $N + \dim P \ge \dim M$, must intersect. He also proved that in the case of a complete connected Kähler manifold with positive sectional curvature the same conclusion holds if we replace the hypothesis *totally geodesic* by *analytic*. Such results were proved by Goldberg and Kobayashi [5] for Kähler manifolds with positive bisectional curvature. Frankel's theorems were extended by Gray [6] to nearly Kähler manifolds, by Marchiafava [10] to quaternionic Kähler manifolds and by Ornea [12] to locally conformal Kähler manifolds and to Sasakian manifolds in the case when the submanifolds N and P are invariant and tangent to the structure vector field of M.

Recently, Kenmotsu and Xia [7], [8] proved Frankel type theorems for Kähler manifolds in the more general case when M has either partially positive sectional curvature or partially positive bisectional curvature.

Our purpose is to give Myers and Frankel type theorems for a Sasakian manifold M under weaker conditions on the curvature of the manifold. The second section of this paper is devoted to the notion of q-bisectional curvature for such a manifold. We remark that if q = 1 then it is exactly the F-bisectional

Received June 18, 2001.

curvature of the manifold [13], [14] and so the class of Sasakian manifolds with positive (or lower bounded) q-bisectional curvature is richer than that of Sasakian manifolds with positive (or lower bounded) F-bisectional curvature. We prove that if M has lower bounded q-bisectional curvature and contains a compact invariant submanifold tangent to the structure vector field of M then M must be compact (Theorem 2.3 and Corollary 2.4). In section 3 we prove a Myers type theorem for Sasakian manifolds with lower bounded q-bisectional curvature (Theorem 3.2). The last section is devoted to the proof of a Frankel type theorem for Sasakian manifolds with positive q-bisectional curvature and we obtain an extension of Ornea's Theorem 2, [12].

2. *q*-bisectional curvature

Let *M* be a Sasakian manifold and denote by *F*, ξ , η , *g* its fundamental tensor fields. For any vector fields *X*, *Y* $\in \mathscr{X}(M)$, orthogonal to ξ , the *F*-bisectional curvature \mathscr{X} of *M* is defined by

(1)
$$\mathscr{H}(X,Y) = \frac{\mathscr{R}(X,FX,Y,FY)}{\|X\|^2 \|Y\|^2}$$

where \mathscr{R} is the Riemann-Christoffel curvature tensor of M. Then for any $X', Y' \in \mathscr{X}(M)$ such that

 $\operatorname{span}_{\mathsf{R}}\{X', FX'\} = \operatorname{span}_{\mathsf{R}}\{X, FX\}, \quad \operatorname{span}_{\mathsf{R}}\{Y', FY'\} = \operatorname{span}_{\mathsf{R}}\{Y, FY\},$

we obtain

$$\mathscr{H}(X',Y') = \mathscr{H}(X,Y)$$

Moreover

PROPOSITION 2.1. For any $X, Y \in \mathcal{X}(M)$, orthogonal to ξ , we have

$$\begin{aligned} \mathscr{H}(X,Y) &= \frac{1}{\|X\|^2 \|Y\|^2} \Big\{ \mathscr{R}(X,Y,X,Y) + \mathscr{R}(X,FY,X,FY) \\ &+ 2 \big[g^2(X,Y) - \|X\|^2 \|Y\|^2 + g^2(X,FY) \big] \Big\}. \end{aligned}$$

PROOF. By the Lemma, pg. 93, [1], on a contact manifold we have

(2)
$$\mathscr{R}(FY, Y, X, FX) = \mathscr{R}(Y, X, X, Y)$$

+ $\mathscr{R}(FY, X, X, FY) - 2\mathscr{P}(X, Y, X, FY),$

where

$$\mathcal{P}(X, Y, Z, U) = d\eta(X, Z) g(Y, U) - d\eta(X, U) g(Y, Z) - d\eta(Y, Z) g(X, U) + d\eta(Y, U) g(X, Z).$$

But *M* is Sasakian, hence $d\eta = \Omega$, with $\Omega(X, Y) = g(X, FY)$, and then

(3)
$$\mathscr{P}(X, Y, X, FY) = g^2(X, Y) + g^2(X, FY) - ||X||^2 ||Y||^2$$

Now, from (1) and taking into account (2), (3), we obtain the announced formula.

Let $T_x M$ be the tangent space to the Sasakian manifold M at the point x and we denote by $\mathscr{S} = \{X_1, \ldots, X_q\} \subset T_x M$ an orthonormal system of vectors orthogonal to ξ . Then the vectors of the system $F\mathscr{S} = \{FX_1, \ldots, FX_q\}$ are orthogonal to ξ . \mathscr{S} is called an *F*-orthonormal *q*-system of tangent vectors at x if $\mathscr{S} \cup F\mathscr{S}$ is orthonormal. We remark that $q \leq \lfloor \frac{1}{2} \dim M \rfloor$ and for such a system \mathscr{S} and for any tangent vector $X \in T_x M$, orthogonal to ξ , we can consider the scalar

$$\mathscr{H}_q(X,\mathscr{S}) = \sum_{i=1}^q \mathscr{H}(X,X_i).$$

Now, taking into account Proposition 2.1, we obtain

PROPOSITION 2.2. Let X be a unit tangent vector at $x \in M$ and \mathscr{S} be an F-orthonormal q-system at x. If $\mathscr{S}' \subset T_x M$ is an orthonormal system such that span_R $\mathscr{S}' = \text{span}_R \mathscr{S}$ then:

a) \mathscr{S}' is an *F*-orthonormal *q*-system

b)
$$\mathscr{H}_q(X, \mathscr{S}') = \mathscr{H}_q(X, \mathscr{S}).$$

From Proposition 2.2 it follows that $\mathcal{H}_q(X, \mathcal{S})$ is depending only on the subspace of $T_x M$ spanned by \mathcal{S} , but not on the *F*-orthonormal *q*-system \mathcal{S} . We call $\mathcal{H}_q(X, \mathcal{S})$ the *q*-bisectional curvature of *M* at the point *x* and we remark that for q = 1 it is exactly the *F*-bisectional curvature of *M*.

In the following of this section we shall construct F-orthonormal systems and these will be used in order to give information about the topology of the manifold.

Let *N* be a 2*r*-dimensional $(r \ge 1)$ submanifold of the complete connected Sasakian manifold *M* and we assume *N* to be invariant (i.e. $FT_x N \subseteq T_x N$ for any $x \in N$) and it is tangent to ξ . If $\{e_1, \ldots, e_r, Fe_1, \ldots, Fe_r, \xi\}$ is an adapted basis of $T_x N$ then $\mathcal{B} = \{e_1, \ldots, e_r\}$ is, obviously, an *F*-orthonormal *r*-system. Moreover, if $\gamma : [0, \infty) \to M$ is the geodesic starting from *x* and orthogonal to *N* at *x* then the system $\tilde{\mathcal{B}}$, obtained from \mathcal{B} by parallel translation along γ is an *F*-orthogonal *r*-system, too. Indeed, if E_i is obtained by parallel translation of e_i along γ then we have

$$\nabla_{\gamma'} E_i = 0, \qquad E_i(\gamma(t)) = E_i(t) = e_i,$$

hence E_i is normal to γ . Similar equalities hold for the vector fields \tilde{E}_i , obtained from Fe_i by parallel translation along γ , and therefore \tilde{E}_i are normal to γ , too. But by using the well-known equality, true on a Sasakian manifold, ([1], Theorem, pg. 73)

$$(\nabla_X F) Y = g(X, Y)\xi - \eta(Y)X,$$

we have

$$\nabla_{\gamma'} \left(F E_i \right) = 0,$$

and because $FE_i(\gamma(t)) = Fe_i$, it follows $\tilde{E}_i = FE_i$, which proves that $\tilde{\mathscr{B}}$ is an *F*-orthonormal *r*-system.

THEOREM 2.3. Let M be a complete connected Sasakian manifold of dimension $2n + 1 \ge 5$. If for some $r \ge 1$ there exists a 2r + 1-dimensional compact invariant submanifold N, tangent to ξ and such that

(4)
$$\liminf_{t\to\infty}\int_0^t \mathscr{H}_r(\gamma'(s),\tilde{\mathscr{B}})\,ds>0,$$

for any $x \in N$ and for any *F*-orthonormal *r*-system \mathscr{B} of T_xM then the manifold *M* is compact.

For the proof of this theorem we drew one's inspiration from [8].

PROOF. If *M* is not compact then, by Theorem 1 of [3], there exists $x \in N$ and a geodesic $\gamma : [0, \infty) \to M$, orthogonal to *N* at *x*, and such that

distance(
$$\gamma(t), N$$
) = length $\gamma_{[0,t]}$,

hence γ has no conjugate points. By putting $\mathcal{H}(t) = \frac{1}{2r}\mathcal{H}_r(\gamma'(t), \tilde{\mathcal{B}})$ and taking into account (4), from [15] (see also [8]) it follows that the scalar Jacobi equation

$$f'' + \mathcal{H}(t)f = 0$$

has a solution $\Phi : [0, \infty) \to \mathsf{R}$, satisfying the conditions $\Phi(0) = 1, \Phi'(0) = 0$ and $\Phi(t_0) = 0$ for some $t_0 > 0$.

In the following we shall use the well-known expressions of the index form *I* of the geodesic γ along $\gamma_{[a,b]}$ (see [9], t. II, Theorems 5.4 and 5.5, pg. 81)

(5)
$$I_{a}^{b}(X,Y) = \int_{a}^{b} \left[g(X',Y') - \mathcal{R}(X,\gamma',Y,\gamma') \right] dt$$
$$= g(X',Y)(b) - g(X',Y)(a)$$
$$- \int_{a}^{b} \left[g(X'',Y) + \mathcal{R}(X,\gamma',Y,\gamma') \right] dt$$

for all vector fields *X* and *Y* along γ . Indeed, we consider it for the vector fields X_i , Y_i , defined along $\gamma_{|[0,t_0]}$, by

(6)
$$X_i(t) = \Phi(t)E_i(t), \qquad Y_i(t) = \Phi(t)\tilde{E}_i(t).$$

They are tangent to N at $\gamma(0)$ and $X_i(t_0) = Y_i(t_0) = 0$. Moreover we have

(7)
$$X'_i = \Phi' E_i, \qquad Y'_i = \Phi' \tilde{E}_i,$$

hence $X'_i(0) = Y'_i(0) = 0$ and $X''_i = \Phi'' E_i, Y''_i = \Phi'' \tilde{E}_i$. Then we have

(8)
$$g(X_i'', X_i) + \mathscr{R}(X_i, \gamma', X_i, \gamma') = \Phi'' \Phi + \Phi^2 \mathscr{R}(E_i, \gamma', E_i, \gamma'),$$

(9)
$$g(Y_i'',Y_i) + \mathscr{R}(Y_i,\gamma',Y_i,\gamma') = \Phi''\Phi + \Phi^2\mathscr{R}(\tilde{E}_i,\gamma',\tilde{E}_i,\gamma').$$

By using Gauss formula we have

$$g(X', Y) = g(h(X, Y), \gamma')$$

for all X, Y tangent to N and normal to γ . But N is invariant and tangent to ξ and then we have

(10)
$$h(Fe_i, Fe_i) = -h(e_i, e_i).$$

Now, from (5), (8), (9) and (10) we give

$$\sum_{i=1}^{r} \left[I_0^{t_0}(X_i, X_i) + I_0^{t_0}(Y_i, Y_i) \right] = -2r \int_0^{t_0} \Phi[\Phi'' + \mathcal{H}(t)\Phi] dt$$
$$-2r \int_0^{t_0} \|\gamma'\|^2 dt$$
$$= -2r \int_0^{t_0} \|\gamma'\|^2 dt < 0,$$

hence $I_0^{t_0}(X_i, X_i) < 0$ or $I_0^{t_0}(Y_i, Y_i) < 0$ for some $i \in \{1, 2, ..., r\}$ and therefore $\gamma_{|[0,t_0]}$ has a conjugate point. But this contradicts the hypothesis that γ has no conjugate points.

We say that M has *lower bounded* q-*bisectional curvature* at the point $x \in M$ if there exists $k_0 \in \mathbb{R}$ such that $\mathcal{H}_q(X, \mathcal{S}) \geq k_0$ for any unit tangent vector $X \in T_x M$ and for any F-orthonormal q-system \mathcal{S} . If $k_0 = 0$ then we say that M has *nonnegative* q-*bisectional curvature* and taking into account (1) we remark that if M has nonnegative F-bisectional curvature then its q-bisectional curvature is also nonnegative for any $q \leq \lfloor \frac{1}{2} \dim M \rfloor$. Hence the family of Sasakian manifolds with nonnegative q-bisectional curvature is richer

GHEORGHE PITIŞ

than the one containing all Sasakian manifolds with nonnegative F-bisectional curvature.

By using the above notions, from Theorem 2.3 we deduce

COROLLARY 2.4. Let M be a complete connected Sasakian manifold with positive lower bounded r-bisectional curvature, $r \leq \left[\frac{1}{2} \dim M\right]$. If M contains a 2r + 1-dimensional compact invariant submanifold, tangent to ξ , then M is compact.

3. A Myers type theorem

Let *M* be a 2n + 1-dimensional Sasakian manifold and we denote by M^* its universal covering space. It is well-known (see for instance [9], t. I, pg. 162) that on M^* there is a Riemannian metric g^* such that the projection $\pi : M^* \to M$ is an isometric immersion and we define the 1-form η^* on M^* by $\eta_p^* = \pi_p^* \eta_{\pi(p)}$, where π_p^* is the codifferential of π at the point $p \in M^*$. If ξ^{**} is its dual vector field with respect to g^* , i.e. the only vector field satisfying

(11)
$$\eta^*(X^*) = g^*(X^*, \xi^{**}),$$

for any $X^* \in \mathscr{X}(M^*)$, then ξ^{**} is nowhere zero, hence we can consider its associated unit vector field ξ^* and we have $\pi_{*,p} \xi_p^* = \xi_{\pi(p)}$, where $\pi_{*,p}$ is the differential of π .

Let ∇^* be the Levi-Civita connection on M^* , associated with the metric g^* . Then we can define the morphism $F^* : \mathscr{X}(M^*) \to \mathscr{X}(M^*)$ by

$$F^*X^* = -\nabla_{X^*}^*\xi^*$$

for any $X^* \in \mathscr{X}(M^*)$ and a straightforward computation shows that the tensor fields F^*, ξ^*, η^*, g^* define a Sasakian structure on M^* (see for instance [1], Theorem, pg. 73).

If $\mathscr{S} = \{e_1, \ldots, e_q\}$ is an *F*-orthonormal *q*-system of local vector fields in *M* then we consider the 1-forms $\omega_1, \ldots, \omega_{2q}$, defined by

$$\omega_i(X) = g(e_i, X), \qquad \omega_{q+i}(X) = g(Fe_i, X)$$

for any $X \in \mathscr{X}(M)$ and $i \in \{1, ..., q\}$. We obtain 2q local 1-forms $\omega_1^*, ..., \omega_{2q}^*$, defined by

$$\omega_{j,p}^* = \pi_p^* \omega_{j,\pi(p)}$$

for $j \in \{1, ..., 2q\}$. Their dual local vector fields $e_1^*, ..., e_{2q}^*$, given by formulae similar to (11), satisfy

$$g(\pi_*e_j^*,\pi_*Y^*) = (\pi^*\omega_j)(Y^*) = \omega_j(\pi_*Y^*) = g(e_j,\pi_*Y^*),$$

104

and taking into account π_* is injective, we deduce $e_j = \pi_* e_j^*$. Hence $\mathscr{S}^* = \{e_1^*, \ldots, e_q^*\}$ is an *F*-orthonormal *q*-system of local vector fields in M^* and by a straightforward computation we deduce

PROPOSITION 3.1. Let M be a Sasakian manifold and M^* its universal covering. If \mathcal{H}_q , \mathcal{H}_q^* are the q-bisectional curvatures of M and M^* respectively, then

$$\mathscr{H}_{a}^{*}(X^{*},\mathscr{S}^{*}) = \mathscr{H}_{q}(\pi_{*}X^{*},\mathscr{S}),$$

for any unit vector field $X^* \in \mathscr{X}(M^*)$ and for any *F*-orthonormal *q*-system \mathscr{S} of *M*.

Now we shall prove a Myers type theorem for Sasakian manifolds, namely

THEOREM 3.2. Let M be a complete connected Sasakian manifold with lower bounded q-bisectional curvature $\mathcal{H}_q \ge k_0 > 0$. Then:

- a) M is compact;
- b) the diameter of M is at most equal to $\pi \sqrt{\frac{2q}{2q+k_0}}$;
- c) *M* has finite fundamental group.

PROOF. For two arbitrary points x and y of M denote by $\gamma : [a, b] \to M$ the minimizing geodesic joining x to y. We assume that γ is parametrized by its arc length s and b is such that $\gamma(b)$ is the first conjugate point of γ . If $\mathscr{S} = \{e_1, \ldots, e_q\} \subset T_x M$ is an F-orthonormal q-system normal to γ at $\gamma(a)$ then, as above, by parallel translation of \mathscr{S} along γ , we obtain another F-orthonormal q-system $\tilde{\mathscr{S}} = \{E_1, \ldots, E_q\}$ of vector fields defined along γ and normal to γ .

Now, if $\Phi : [a, b] \to \mathbb{R}$ is a nonzero differentiable function such that $\Phi(a) = \Phi(c) = 0$ for some $c \in (a, b)$, then definitions similar to (6) give the vector fields X_i , Y_i along γ and by using (7) we obtain

(12)
$$\sum_{i=1}^{q} \left[I_{a}^{c}(X_{i}, X_{i}) + I_{a}^{c}(Y_{i}, Y_{i}) \right]$$
$$= \int_{a}^{c} \left\{ 2q \, \Phi'^{2} - \Phi^{2} \sum_{i=1}^{q} \left[\mathscr{R}(E_{i}, \gamma', E_{i}, \gamma') + \mathscr{R}(FE_{i}, \gamma', FE_{i}, \gamma') \right] \right\} ds.$$

But $\gamma_{|[a,c]}$ has no conjugate points and taking into account Proposition 2.1, from (12) we deduce

$$0 < \int_{a}^{c} \left\{ 2q \, \Phi'^{2} - \Phi^{2}[\mathscr{H}_{q}(\gamma', \tilde{\mathscr{I}}) + 2q] \right\} ds \le \int_{a}^{c} \left[2q \, \Phi'^{2} - (k_{0} + 2q) \Phi^{2} \right] ds$$

For $\Phi(s) = \sin \pi \frac{s-a}{c-a}$, from the above inequalities we obtain

$$(c-a)^2 < \frac{2q}{2q+k_0}\pi^2.$$

But *c* is arbitrary in (a, b), hence

$$b-a \le \pi \sqrt{\frac{2q}{2q+k_0}}$$

and because γ is parametrized by its arc length, it follows

(13) distance
$$(x, y)$$
 = distance $(\gamma(a), \gamma(b)) \le \pi \sqrt{\frac{2q}{2q+k_0}}$.

Thus b) is proved. From (13) we also deduce that M is bounded and because it is complete, a) is proved too (see [9], t. I, Theorem 4.1, pg. 172). Now, because M is compact, it is well-known that M^* is complete and connected ([9], t. I, pg. 76) and taking into account Proposition 3.1, it follows that M^* satisfies the hypothesis of Theorem 3.2. Hence, by a) it follows that M^* is compact and then the fundamental group of M is finite.

4. A Frankel type theorem

THEOREM 4.1. Let M be a complete connected Sasakian manifold with positive q-bisectional curvature. If N and P are two compact invariant submanifolds of M, tangent to ξ and such that dim N + dim $P \ge \dim M + 2q - 1$, then $N \cap P \neq \emptyset$.

PROOF. If $N \cap P = \emptyset$ then there is a geodesic $\gamma : [0, l] \to M$, parametrized by the arc length, joining two points $x_0 \in N$, $y_0 \in P$ and realizing the minimum of the distance between N and P. We denote by V_{y_0} the subspace of $T_{y_0}M$, obtained by parallel translation of $T_{x_0}N$ along γ at the point y_0 . From the hypothesis concerning the dimensions and because N and P are tangent to ξ , it follows that dim $(V_{y_0} \cap T_{y_0}P) \ge 2q$. But N and P are invariant, hence $V_{y_0} \cap T_{y_0}P$ is invariant under F and because $\xi_{y_0} \in V_{y_0} \cap T_{y_0}P$, it follows that dim $(V_{y_0} \cap T_{y_0}P) \ge 2q + 1$. Moreover, we can find an F-orthonormal q-system $\mathscr{S}_{y_0} = \{e_1, \ldots, e_q\} \subset V_{y_0} \cap T_{y_0}P$. By parallel translation of \mathscr{S}_{y_0} along γ , we obtain a system of q unit vector fields $\tilde{\mathscr{F}} = \{E_1, \ldots, E_q\}$, defined along γ and such that a vectors of $\tilde{\mathscr{I}} \cup F\tilde{\mathscr{I}}$ are from $\tilde{\mathscr{I}}$ and b (a + b = 2q) of them are from $F\tilde{\mathscr{I}}$.

If $a \ge q$ then we can assume that these vector fields are E_1, \ldots, E_q and because P is invariant, it follows that FE_1, \ldots, FE_q are tangent to P at y_0 ,

106

too. The same argument used if $b \ge q$ shows that always we can find an *F*-orthonormal *q*-system $\tilde{\mathscr{I}}$ of vector fields along γ , tangent to *N* at x_0 and tangent to *P* at y_0 . Then, by a computation similar to the one used in [8] (the proof of Theorem 3.2.) and taking into account (10), we obtain

(14)
$$\sum_{i=1}^{q} \left[I_0^l(E_i, E_i) + I_0^l(FE_i, FE_i) \right] \\ = -\int_0^l \sum_{i=1}^{q} \left[\mathscr{R}(E_i, \gamma', E_i, \gamma') - \mathscr{R}(FE_i, \gamma', FE_i, \gamma') \right] ds.$$

Now, by using Proposition 2.1 and taking into account

$$\sum_{i=1}^{q} \left[g^{2}(\gamma', E_{i}) + g^{2}(\gamma', FE_{i}) \right] \le \|\gamma'\|^{2} = 1,$$

from (14) it follows

$$\begin{split} \sum_{i=1}^{q} \Big[I_0^l(E_i, E_i) + I_0^l(FE_i, FE_i) \Big] \\ &= -ql + \int_0^l \sum_{i=1}^{q} \Big[g^2(\gamma', E_i) + g^2(\gamma', FE_i) \Big] ds - \int_0^l \mathscr{H}_q(\gamma', \tilde{\mathscr{S}}) \, ds \\ &\leq l(1-q) - \int_0^l \mathscr{H}_q(\gamma', \tilde{\mathscr{S}}) \, ds < 0 \end{split}$$

We deduce that $I_0^l(E_i, E_i) < 0$ or $I_0^l(FE_i, FE_i) < 0$ for some $i \in \{1, ..., q\}$, contradicting the hypothesis that γ has minimal length. Hence N and P must have nonempty intersection.

REFERENCES

- 1. Blair, D., Contact manifolds in Riemannian geometry, Lecture Notes in Math. 509 (1976).
- 2. Frankel, T., Manifolds with positive curvature, Pacific J. Math. 11 (1961), 165–171.
- Galloway, G., Some results on the occurences of compact minimal submanifolds, Manuscripta Math. 25 (1981), 209–219.
- 4. Galloway, G., and Rodriguez, L., *Intersections of minimal submanifolds*, Geom. Dedicata 39 (1991), 29–42.
- Goldberg, S. I., and Kobayashi, S., *Holomorphic bisectional curvature*, J. Differential Geom. 1 (1966), 225–233.
- 6. Gray, A., Nearly Kähler manifolds, J. Differential Geom. 4 (1970), 283-309.
- 7. Kenmotsu, K., and Xia, C., *Intersections of minimal submanifolds in manifolds of partially positive curvature*, Kodai Math. J. 18 (1995), 242–249.

GHEORGHE PITIŞ

- Kenmotsu, K., and Xia, C., Hadamard-Frankel type theorems for manifolds with partially positive curvature, Pacific J. Math. 176 (1996), 129–139.
- 9. Kobayashi, S., and Nomizu, K., Foundations of Differential Geometry, t. I (1963), t. II (1969), Interscience, New-York.
- 10. Marchiafava, S., Su alcune sottovarieta che ha interesse considerare in una varieta Kaehleriana quaternionale, Rend. Mat. 10 (1990), 493–529.
- 11. Myers, S. B., Riemannian manifolds in the large, Duke Math. J. 1 (1935), 39-49.
- Ornea, L., A theorem on nonnegatively curved locally conformal Kaehler manifolds, Rend. Mat. 12 (1992), 257–262.
- 13. Pitiş, Gh., *Rizza's conjecture concerning the bisectional curvature*, Riv. Mat. Univ. Parma 16 (1990), 195–203.
- 14. Rizza, G. B., *On the bisectional curvature of a Riemannian manifold*, Simon Stevin 61 (1987), 147–155.
- 15. Tipler, F. J., *General relativity and conjugate ordinary differential equations*, J. Differential Equations 30 (1978), 165–174.
- 16. Wu, H., Manifolds of partially positive curvature, Indiana Univ. Math. J. 36 (1987), 525-548.

DEPARTMENT OF EQUATIONS FACULTY OF MATHEMATICS AND INFORMATICS UNIVERSITY TRANSILVANIA OF BRAŞOV 2200 BRAŞOV ROMANIA *E-mail*: gh.pitis@info.unitbv.ro