A NOTE ON THE LOCAL INJECTIVITY OF WEAKLY DIFFERENTIABLE MAPPINGS HAVING CONSTANT JACOBIAN SIGN

MIHAI CRISTEA

Abstract

We give topological and analytical conditions in order that some weakly differentiable mappings with constant Jacobian sign to be locally injective, generalizing results from [10], [2], established for Sobolev mappings.

1. Introduction

The central result of this paper is the following theorem.

THEOREM 1. Let $D \subset \mathbb{R}^n$ be open, $f : D \to \mathbb{R}^n$ continuous so that f satisfies condition (N) and suppose that f has at a.e. point $x \in D$ a quasidifferential L_x with det $L_x \ge 0$. Then f is weakly sense-preserving. If, in addition, f is open, then f is sense-preserving.

Throughout this paper we shall work with mappings $f : D \to \mathbb{R}^n$ defined on open sets from \mathbb{R}^n . Condition (N) requires that f carries sets $A \subset D$ with $\mu_n(A) = 0$ to sets with $\mu_n(f(A)) = 0$, where μ_n denotes the Lebesgue measure from \mathbb{R}^n . An $n \times n$ matrix L is called a quasidifferential of f at $x \in D$ if there exists $r_i \to 0$ so that for every $\varepsilon > 0$, there is $i_{\varepsilon} \in \mathbb{N}$ so that

$$\sup_{\|z-x\|=r_i} \|f(z) - f(x) - L(z-x)\| \le \varepsilon \cdot r_i, \quad \text{for} \quad i \ge i_{\varepsilon}.$$

A map f can have different quasidifferentials at the same point. The concepts weakly "sense-preserving" and "sense-preserving" refer to the topological degree, see Section 2 for the definitions. We call a mapping f open if it maps open sets to open sets. We wish to point out that the condition (N) assumption cannot be omitted even when det $L_x > 0$ a.e. and $f \in \bigcap_{p < n} W^{1,p}(D, \mathbb{R}^n)$, see [5]. On the other hand, if $f \in W^{1,n}(D, \mathbb{R}^n)$ and either det $L_x > 0$ a.e., $L_x = 0$ a.e. in the set where det $L_x = 0$, or f is open, then condition (N) is

Received April 24, 2000; in revised form July 6, 2002.

automatically satisfied, see [2], [6], [8]. For results related to Theorem 1, see Theorem 1.5 and Theorem 2.4 from [5]. See also [3] for some other results concerning the maps with finite distortion.

Theorem 1 together with its slightly more general version given in Section 3 allow us to prove extensions of certain results of Putten [10] and Fonseca and Gangbo [2] on the local invertibility of Sobolev mappings. For simplicity we only formulate here the following result and refer the reader to Section 2 and Section 3 for further conclusions.

THEOREM 2. Let $D \subset \mathbb{R}^n$ be open, $f : D \to \mathbb{R}^n$ continuous, open and satisfying condition (N), and suppose that f has at a.e. point $x \in D$ a quasidifferential L_x with det $L_x \ge 0$. Then $B_f \subset \tilde{Z}_f \cup \tilde{S}_f$.

Here, B_f consists of those points x in D for which f fails to be a local homeomorphism at x, \tilde{S}_f is the set of the points x at which f does not have a quasidifferential, \tilde{Z}_f is the set of points where f has only quasidifferentials L with det L = 0.

2. Proofs of the main results

We begin with a Sard type lemma for quasidifferentiable maps.

LEMMA 1. Let $D \subset \mathbb{R}^n$ be open and $f : D \to \mathbb{R}^n$ be continuous and open. Then $\mu_n(f(C_f)) = 0$.

Here C_f is the set of points where f has a quasidifferential L with det L = 0.

PROOF. By usual covering arguments (see for instance [1]), it clearly sufficies to prove that, given $x \in C_f$, there is a sequence of radii r_i tending to zero so that

$$\lim_{i\to\infty}\frac{\mu_n(f(B(x,r_i)))}{\mu_n(B(x,r_i))}=0.$$

For this, let *L* be a quasidifferential with det L = 0 and (r_i) a corresponding sequence of radii. Because *L* is not injective, there is an (n - 1)-dimensional plane *T* so that $f(x) + L(z - x) \in T$ for all $z \in \mathbb{R}^n$. Now, given $\varepsilon > 0$,

$$\|f(z) - f(x) - L(z - x)\| \le \varepsilon r_i$$

and

$$\|f(z) - f(x)\| \le \|f(z) - f(x) - L(z - x)\| + \|L(z - x)\| \le (1 + \|L\|)r_i,$$

when *i* is sufficiently large and $||z - x|| = r_i$. Thus $f(S(x, r_i))$ is contained in a product type set *U* obtained from an (n - 1)-ball of radius no more than $(1 + ||L||)r_i$ in *T* and an interval of lenght $2\varepsilon r_i$. As f is open and continuous, also $f(B(x, r_i)) \subset U$. The claim follows because ε was arbitrary.

The topological degree is widely used in the proofs, and we use the notations from [7] and [2]. If $D \subset \mathbb{R}^n$ is open, bounded, $f : \overline{D} \to \mathbb{R}^n$ is continuous and $p \notin f(\partial D)$, we denote by d(f, D, p) the topological degree of f, on D, at the point p. We say that $f : D \to \mathbb{R}^n$ is weakly sense-preserving (sensepreserving) if $d(f, Q, y) \ge 0$ (d(f, Q, y) > 0) for every domain Q with $\overline{Q} \subset D$.

PROOF OF THEOREM 1. Let $U \subset D$ be open and $x_0 \in U$ such that $f(x_0) \notin f(\partial U)$. Pick an open ball W with $f(x_0) \in W$ and so that $\overline{W} \cap f(\partial U) = \emptyset$. We shall associate to each point $x \in U \setminus \tilde{S}_f$ a sequence of balls $B(x, r_i)$ shrinking to x and corresponding open sets V_i with $f(S(x, r_i)) \subset V_i$ as follows.

If $x \in \tilde{Z}_f$, we use the same argument as in the proof of Lemma 1 to select a sequence (r_i) tending to zero and open sets V_i with $f(\bar{B}(x, r_i)) \subset V_i$ and so that

$$\frac{\mu_n(V_i)}{\mu_n(B(x,r_i))} \leq \frac{\mu_n(W)}{2 \cdot \mu_n(U)}.$$

Then $d(f, B(x, r_i), y) = 0$ for every $y \notin V_i$.

Given $x \in U \setminus (\tilde{Z}_f \cup \tilde{S}_f)$, let L_x be a quasidifferential of f at x with det $L_x \neq 0$. Let (r_i) be a sequence as in the definition of quasidifferentiability, corresponding to L_x .

We can find as in [12], pages 325–334, a sequence of numbers $\lambda_i > 0$ tending to zero, so that

$$f(S(x, r_i)) \subset V_i := f(x) + (L_x(B(0, (1 + \lambda_i)r_i)) \setminus L_x(B(0, (1 - \lambda_i)r_i))),$$

with

$$d(f, B(x, r_i), y) = 0$$
 if $y \notin f(x) + L_x(B(0, (1 + \lambda_i)r_i))$

and

$$d(f, B(x, r_i), y) = 1$$
 if $y \in f(x) + L_x(B(0, (1 - \lambda_i)r_i)))$,

and so again

$$\frac{\mu_n(V_i)}{\mu_n(B(x,r_i))} \leq \frac{\mu_n(W)}{2\mu_n(U)}.$$

Our balls in this case will be the balls $B(x, r_i)$.

MIHAI CRISTEA

By the Vitali covering theorem (see [9], page 26), we can select pairwise disjoint balls B_i from the above two collections of balls so that

$$\mu_n\bigg((U\setminus \tilde{S}_f)\setminus \bigcup_1^\infty B_j\bigg)=0.$$

Let $K = U \setminus \bigcup_{1}^{\infty} B_j$. Then $\mu_n(K) = 0$, and hence $\mu_n(f(K)) = 0$, as f satisfies condition (N). Consider the sets V_j associated to the balls B_j . From the definition of the sets V_j we notice that

$$d(f, B(x, r_i), y) \ge 0$$

whenever $y \notin V_i$. Moreover,

$$\sum_{1}^{\infty} \mu_n(V_j) \leq \frac{\mu_n(W)}{2\mu_n(U)} \cdot \sum_{1}^{\infty} \mu_n(B_j) \leq \frac{\mu_n(W)}{2}.$$

Thus there is at least one point y with

$$y \in W \setminus \left(f(K) \cup \bigcup_{1}^{\infty} V_j\right).$$

Notice that $f^{-1}(y) \cap U \subset \bigcup_{1}^{\infty} B_j$. Let $I = \{j \in \mathbb{N} \mid f^{-1}(y) \cap B_j \neq \emptyset\}$. Then *I* is finite and we obtain

$$d(f, U, f(x_0)) = d(f, U, y) = d\left(f, \bigcup_{j \in I} B_j, y\right) = \sum_{j \in I} d(f, B_j, y) \ge 0.$$

It follows that f is weakly sense-preserving.

Suppose then that f is open. By Lemma 1, it follows that $\mu_n(f(\tilde{Z}_f)) = 0$. Let again x_0 , U, and W be as in the first part of the proof. Let B_0 be an open ball centered at x_0 so that $f(B_0) \subset W$. Because f is open and $\mu_n(f(\tilde{Z}_f \cup \tilde{S}_f)) = 0$, there is a point $x \in B_0$ with $f(x) \in W \setminus (f(\tilde{Z}_f \cup \tilde{S}_f))$. We can find a radius r > 0 so that $\bar{B}(x, r) \subset B_0$, $f(x) \notin f(S(x, r))$ and d(f, B(x, r), f(x)) = 1. By the first part of the proof, we conclude that

$$d(f, U, f(x_0)) = d(f, U, f(x))$$

= $d(f, U \setminus \overline{B}(x, r), f(x)) + d(f, B(x, r), f(x)) \ge 1$,

as desired.

Our next result deals with local invertibility.

THEOREM 3. Let $D \subset \mathbb{R}^n$ be open, $f : D \to \mathbb{R}^n$ continuous, nonsingular and satisfying condition (N) and $\mu_n(f(\tilde{Z}_f)) = 0$. Suppose that f has at a.e. point $x \in D$ a quasidifferential L_x at x with det $L_x \ge 0$. Then, for every $x \notin \tilde{Z}_f \cup \tilde{S}_f$, there is $r_x > 0$ and a neighborhood Q_x of x so that

$$f|Q_x \setminus (\tilde{Z}_f \cup \tilde{S}_f) : Q_x \setminus (\tilde{Z}_f \cup \tilde{S}_f) \to B(f(x), r_x) \setminus f((\tilde{Z}_f \cup \tilde{S}_f) \cap Q_x)$$

is a homeomorphism and for every $y \in B(f(x), r_x), f^{-1}(y) \cap Q_x$ is connected.

Here, a map $f: D \to \mathbb{R}^n$ is nonsingular if int $f(U) \neq \emptyset$ for every open nonempty set $U \subset D$. We denote by N(y, f, A) the number of elements of the set $A \cap f^{-1}(y)$.

PROOF OF THEOREM 3. Since f is nonsingular and $\mu_n(f(\tilde{Z}_f \cup \tilde{S}_f)) = 0$, we see that int $f^{-1}(f(\tilde{Z}_f \cup \tilde{S}_f)) = \emptyset$, hence $\operatorname{int}(\tilde{Z}_f \cup \tilde{S}_f) = \emptyset$. Let $x \notin \tilde{Z}_f \cup \tilde{S}_f$. Then f has a quasidifferential L_x at x with det $L_x > 0$, and we find $\delta_x > 0$ so that $f(x) \notin f(S(x, \delta_x))$ and $d(f, B(x, \delta_x), f(x)) = 1$. Let $r_x > 0$ be so that $\bar{B}(f(x), r_x) \cap f(S(x, \delta_x)) = \emptyset$ and let Q_x be the component of $f^{-1}(B(f(x), r_x))$ containing x. Then $Q_x \subset B(x, \delta_x)$, Q_x is a neighbourhood of x and

$$d(f, B(x, \delta_x), y) = d(f, B(x, \delta_x), f(x)) = 1$$
 for every $y \in B(f(x), r_x)$,

and hence $B(f(x), r_x) \subset f(B(x, \delta_x))$. Let $y \in B(f(x), r_x) \setminus f(\tilde{Z}_f \cup \tilde{S}_f)$ and suppose that there exist $x_1, x_2 \in B(x, \delta_x), x_1 \neq x_2$ so that $f(x_1) = f(x_2) = y$. Then $x_1, x_2 \notin \tilde{Z}_f \cup \tilde{S}_f$ and we can find $r_1, r_2 > 0$ so that

$$\bar{B}(x_1,r_1)\cup\bar{B}(x_2,r_2)\subset B(x,\delta_x),\qquad \bar{B}(x_1,r_1)\cap\bar{B}(x_2,r_2)=\emptyset,$$

 $y \notin f(S(x_1, r_1) \cup S(x_2, r_2))$ and $d(f, B(x_1, r_1), y) = d(f, B(x_2, r_2), y) = 1$.

From Theorem 1 we see that f is weakly sense-preserving; hence

$$d(f, B(x, \delta_x) \setminus (\overline{B}(x_1, r_1) \cup \overline{B}(x_2, r_2)), y) \ge 0,$$

and we obtain that

$$1 = d(f, B(x, \delta_x), y) = d(f, B(x, \delta_x) \setminus (\bar{B}(x_1, r_1) \cup \bar{B}(x_2, r_2)), y) + d(f, B(x_1, r_1), y) + d(f, B(x_2, r_2), y) \ge 2$$

which represents a contradiction. We proved that f is injective on

$$(B(x,\delta_x)\cap f^{-1}(B(f(x),r_x)))\setminus f^{-1}(f(\tilde{Z}_f\cup\tilde{S}_f)),$$

and hence f is injective on $Q_x \setminus f^{-1}(f(\tilde{Z}_f \cup \tilde{S}_f))$.

MIHAI CRISTEA

Let now $z \in Q_x$ be so that f is open at z and suppose that there is $w \neq z, w \in B(x, \delta_x)$ so that f(z) = f(w). We can find U_1, U_2 open, disjoint so that $z \in U_1, w \in U_2, \overline{U_1} \cup \overline{U_2} \subset B(x, \delta_x)$, and using the openness of f at z and the continuity of f at w, we can assume that

$$f(U_2) \subset f(U_1) \subset B(f(x), r_x).$$

Since int $f^{-1}(f(\tilde{Z}_f \cup \tilde{S}_f)) = \emptyset$, we can find a point $a \in U_2 \setminus f^{-1}(f(\tilde{Z}_f \cup \tilde{S}_f))$, hence we can find a point $b \in U_1 \setminus f^{-1}(f(\tilde{Z}_f \cup \tilde{S}_f))$ so that f(a) = f(b), which represents a contradiction, since we proved that f is injective on

$$B(x, \delta_x) \cap f^{-1}(B(f(x), r_x) \setminus f(\tilde{Z}_f \cup \tilde{S}_f))$$

We proved that

(1)
$$N(f(z), f, B(x, \delta_x)) = 1$$
 if $z \in Q_x$ and f is open at z .

Since f is open at every point $z \in Q_x \setminus (\tilde{Z}_f \cup \tilde{S}_f)$, it results that

$$f^{-1}(f(z)) \cap B(x, \delta_x) = \{z\}$$
 for every $z \in Q_x \setminus (\tilde{Z}_f \cup \tilde{S}_f).$

We see that f is injective on $Q_x \setminus (\tilde{Z}_f \cup \tilde{S}_f)$,

$$Q_x \cap (\tilde{Z}_f \cup \tilde{S}_f) = Q_x \cap f^{-1} f(Q_x \cap (\tilde{Z}_f \cup \tilde{S}_f)), Q_x \setminus (\tilde{Z}_f \cup \tilde{S}_f)$$
$$= Q_x \cap f^{-1} (f(Q_x \setminus (\tilde{Z}_f \cup \tilde{S}_f))),$$

and

$$f|Q_x \setminus (\tilde{Z}_f \cup \tilde{S}_f) : Q_x \setminus (\tilde{Z}_f \cup \tilde{S}_f) \to B(f(x), r_x) \setminus f(Q_x \cap (\tilde{Z}_f \cup \tilde{S}_f))$$

is a homeomorphism.

Now, let $y \in B(f(x), r_x)$ and let A_1, A_2 be two different components of $f^{-1}(y) \cap B(x, \delta_x)$. Then A_1 and A_2 are compact and $A_1 \cup A_2 \subset B(x, \delta_x)$.

From Theorem 1, f is sense-preserving, hence it is quasiopen (Lemma 5.5, page 147 in [11]). Let Q_1, Q_2 be open so that $A_1 \subset Q_1, A_2 \subset Q_2$ and $\bar{Q}_1 \cup \bar{Q}_2 \subset B(z, \delta_x)$. Since $f(A_1) = f(A_2) = \{y\}$ and f is quasiopen, we can find a point $w \in f(Q_1) \cap f(Q_2) \cap B(f(x), r_x)$, and since f is sense-preserving, we have that

$$d(f, Q_1, w) \ge 1$$
, $d(f, Q_2, w) \ge 1$, $d(f, B(x, \delta_x) \setminus (Q_1 \cup Q_2), w) \ge 0$.

We obtain that

$$1 = d(f, B(x, \delta_x), f(x)) = d(f, B(x, \delta_x), w)$$

= $d(f, B(x, \delta_x) \setminus (\bar{Q}_1 \cup \bar{Q}_2), w) + d(f, Q_1, w) + d(f, Q_2, w) \ge 2,$

which represents a contradiction.

We therefore proved that $f^{-1}(y) \cap B(f(x), r_x)$ is connected for every $y \in B(f(x), r_x)$.

PROOF OF THEOREM 2. We apply (1) and Lemma 1 to see that $B_f \subset \tilde{Z}_f \cup \tilde{S}_f$.

3. Further results

An $n \times n$ matrix *L* is called the approximate differential of *f* at *x* if the maps $f_h : B(0, 1) \to \mathbb{R}^n$, defined by $f_h(y) = \frac{f(x+hy)-f(x)}{h}$ for $y \in B(0, 1)$ and h > 0, converge to *L* in measure on B(0, 1). Then *L* is unique, and such a matrix *L* is called the weak differential of *f* at *x* if in addition *L* is a quasidifferential of *f* at *x*. We also say that *f* is weakly differentiable at *x* and we denote $J_f(x) = \det L$. We put $Z_f = \{x \in D \mid f \text{ is weakly differentiable at$ *x* $}.$ The version of Theorem 1 for weakly differentiable mappings is:

THEOREM 4. Let $D \subset \mathbb{R}^n$ be open, $f : D \to \mathbb{R}^n$ continuous, nonsingular and satisfying condition (N), weakly differentiable a.e. so that $J_f(x) \ge 0$ a.e. in D. Then f is sense-preserving.

PROOF. We see from Theorem 1 that f is weakly sense-preserving. We remark that in the proof of the sense-preserveness of the map f from Theorem 1, we used the openness of f only to state that f is nonsingular and that $\mu_n(f(\tilde{Z}_f)) = 0$. Since we see from [2], Theorem 5.6, page 110, that $\mu_n(f(Z_f)) = 0$, without the openness assumption, we argue as is Theorem 1 to find that f is sense-preserving.

Using Sard's lemma for weakly differentiable mappings from [2], Theorem 5.6, page 110, instead of our version of Sard's lemma from Lemma 1, and replacing the set \tilde{Z}_f by Z_f and the set \tilde{S}_f by S_f , we can formulate Theorem 2 and Theorem 3 in this setting. We give only the version of Theorem 3.

THEOREM 5. Let $D \subset \mathbb{R}^n$ be open, $f : D \to \mathbb{R}^n$ continuous, open, satisfying condition (N), weakly differentiable a.e., so that $J_f(x) \ge 0$, a.e. in D. Then $B_f \subset Z_f \cup S_f$.

We formulate now some simple conditions for nonsingularity, which can be used to obtain new versions of the theorems where it appears this property. First, a map $f : D \to \mathbb{R}^n$ is called a light map if dim $f^{-1}(y) \leq 0$ for every $y \in \mathbb{R}^n$. We know from [4], page 92, that every continuous, light map is nonsingular. Also, if $f : D \to \mathbb{R}^n$ is continuous, so that $\operatorname{int}(\tilde{Z}_f \cup \tilde{S}_f) = \emptyset$ or $\operatorname{int}(Z_f \cup S_f) = \emptyset$, then f is nonsingular.

ACKNOWLEDGEMENTS. I wish to thank to P. Koskela for his comments. The author is supported by the Research Grant 6154, Project A10/2000 of CNCSIZ.

MIHAI CRISTEA

REFERENCES

- Cristea, M., Some remarks about Sard's theorem and the condition (N) satisfied by the inverse map f⁻¹, An. Univ. Bucuresti Mat. 41, 1 (1992), 23–28.
- 2. Fonseca, I., and Gangbo, W., Degree Theory in Analysis and Appl., Oxford Univ. Press, 1995.
- Heinonen, J., and Koskela, P., Sobolev mappings with integrable dilatation, Arch. Rational Mech. Anal. 125 (1993), 81–97.
- 4. Hurewicz, W., and Walman, H., Dimension Theory, Princeton Univ. Press, 1941.
- Kauhanen, J., Koskela, P., and Malý, J., Mappings of finite distortion: discreteness and openness, Arch. Rational Mech. Anal. 160 (2001), 135–151.
- Kauhanen, J., Koskela, P., and Malý, J., *Mappings of finite distortion: Condition (N)*, Michigan Math. J. 49 (2001), 169–181.
- 7. Lloyd, N. G., Degree Theory, Cambridge Univ. Press, Cambridge, 1978.
- Malý, J., and Martio, O., Lusin's condition (N) and mappings of the class W^{1,n}, J. Reine Angew. Math. 458 (1995), 19–36.
- 9. Mattila, P., Geometry of Sets and Measures in Euclidean Spaces, Cambridge Univ. Press, 1995.
- 10. Putten, R., A note on the local invertibility of Sobolev functions, Math. Scand. 83 (1998), 255–264.
- 11. Rickman, S., Quasiregular mappings, Ergeb. Math. Grenzgeb. (3) 26, 1993.
- 12. Radó, T., and Reichelderfer, P. V., *Continuous transformations in analysis*, Springer-Verlag, Berlin, 1955.

UNIVERSITY OF BUCHAREST FACULTY OF MATHEMATICS STR. ACADEMIEI 14, R-70109 BUCHAREST ROMANIA *E-mail:* cristea@geometry.math.unibuc.ro